
Mining Source Coverage Statistics for Data Integration

Zaiqing Nie Subbarao Kambhampati Ullas Nambiar Sreelakshmi Vaddi
Department of Computer Science and Engineering

Arizona State University,Tempe, AZ 85287-5406�
nie, rao, mallu, slakshmi � @asu.edu

ABSTRACT
Recent work in data integration has shown the importance of sta-
tistical information about the coverage and overlap of sources for
efficient query processing. Despite this recognition there are no ef-
fective approaches for learning the needed statistics. The key chal-
lenge in learning such statistics is keeping the number of needed
statistics low enough to have the storage and learning costs man-
ageable. Naive approaches can become infeasible very quickly. In
this paper we present a set of connected techniques that estimate the
coverage and overlap statistics while keeping the needed statistics
tightly under control. Our approach uses a hierarchical classifica-
tion of the queries, and threshold based variants of familiar data
mining techniques to dynamically decide the level of resolution at
which to learn the statistics. We describe the details of our method,
and present preliminary experimental results showing the feasibility
of the approach.

1. INTRODUCTION
With the vast number of autonomous information sources avail-

able on the Internet today, users have access to a large variety of
data sources. Data integration systems [CGHI94, LRO96, ACPS96,
LKG99, PL00] are being developed to provide a uniform interface
to a multitude of information sources, query the relevant sources au-
tomatically and restructure the information from different sources.
In a data integration scenario, a user interacts with a mediator sys-
tem via a mediated schema. A mediated schema is a set of virtual
relations, which are effectively stored across multiple and poten-
tially overlapping data sources, each of which only contain a partial
extension of the relation. Query optimization in data integration
[FKL97, NK01] thus requires the ability to figure out what sources
are most relevant to the given query, and in what order those sources
should be called. For this purpose, the query optimizer needs to ac-
cess statistics about the coverage of the individual sources with re-
spect to the given query, as well as the degree to which the answers
they export overlap.
Example: Consider a simple mediator that integrates information
sources exporting information about papers in computer science.

.

Suppose there is one relation in the global schema of this system:
paper(title, author, conference, year). There may be hundreds of
Internet sources, each of which contain only a subset of the papers
of the whole global relation. Some sources may only have informa-
tion about artificial intelligence, some may focus on databases, etc.
In order to answer the user’s query efficiently, we need to find and
query only the relevant subset of the sources.

Suppose, for example, the user asks a selection query:
Q(title,author) : � paper(title, author, conference, year),

conference=”AAAI”.
To answer this query efficiently, we need to know the coverage of

each source � with respect to the query � . Such a coverage can be
represented by �����
	 ��� , the probability that an answer tuple for the
query belongs to the source � . If we have this information, then we
can rank all the sources in descending order of �����
	 �
� , and access
the first source (say ���) in the ranking.

Although it would seem that the ranking provides the complete
order in which to access the sources, this is unfortunately not true
in general. For example, it is possible that the two sources with the
highest coverage with respect to � happen to mirror each others’
contents. Clearly, calling both sources is not going to give any more
information than calling just one source.

In general, after we access the source � � with the maximum cov-
erage ����� � 	 �
� w.r.t. Q, we need to access as the second source,
the source that has the highest residual coverage (i.e., provides the
maximum number of those answers that are not provided by the
first source). Specifically, we need to access the source � � � that
has the maximum value for ������� ����������	 ��� . In order to compute
����� � � ����� � 	 ��� , we need to know the overlap between sources
� � and � � � w.r.t. to Q. This can be represented by the probability
������� ��������	 ��� . Once we have the probability, it is a simple matter
to compute

����� � � ����� � 	 ����������� � � 	 �
��������� � � ��� � 	 �
� 1.
This example thus demonstrates the need for coverage and over-

lap statistics in query optimization. �
Given that sources tend to be autonomous in a data integration

scenario, gathering the coverage and overlap statistics poses several
challenges. It is impractical to assume that the sources will export
such statistics. Consequently, data integration systems should be
able to learn the coverages of sources. Although previous work has
addressed the issue of how to model these statistics (c.f. [FKL97]),
and how to use them as part of query optimization (c.f. [NK01]),
there has not been any work on effectively learning the statistics in

This formula can be generalized to compute �����"!"����� �$#%#&#'����)(*	 �
� , where k is the number of selected sources, and � refers to

a query.

the first place.
In this paper, we consider the issue of learning the coverage and

overlap statistics for sources. The key challenge in this problem is
to keep the number of needed statistics low enough to have the stor-
age and learning costs manageable. Naive approaches can become
infeasible very quickly. In the example above, we were assuming
the availability of coverage statistics with respect to every source-
query combination, and overlap information about every subset of
sources with respect to a query!

We propose a set of connected techniques that estimate the cover-
age and overlap statistics while keeping the needed statistics tightly
under control. The basic idea of our approach is to learn coverage
statistics not with respect to individual queries but with respect to
query classes. Specifically, we develop a hierarchical classification
of queries starting with a hierarchical classification of the values
of certain key attributes of the global relations. The class hierar-
chy allows us to approximate the coverage of a source with respect
to a class + in terms of its coverage with respect to a more gen-
eral class + � . By selectively deciding the level of generality of the
classes with respect to which the coverage statistics are learned, we
can tightly control the number of needed statistics (at the expense
of loss of accuracy). The loss of accuracy may not be a critical is-
sue for us as it is the relative rather than the absolute values of the
coverage statistics that are more important in ranking the sources.

The statistics learning itself is done using threshold-based vari-
ants of the well known association rule mining techniques. The
thresholds are used to decide whether to learn statistics with re-
spect to a given class + , or one of its generalizations. Specifically,
using thresholds on the support counts, we dynamically identify
“large” classes, and learn coverage statistics only with respect to
these classes. The resolution of the learned statistics is thus con-
trolled in an adaptive manner. An interesting by-product of this
adaptive approach is that by identifying classes with high support,
it also provides a macro characterization of the focus areas of the
mediator.

In the rest of the paper, we describe our approach and provide
an empirical evaluation of its feasibility. The paper is organized as
follows. In the next section, we give an overview of our approach
and define the needed terminology. Next we discuss how the sources
are probed to generate training data for mining statistics. We then
describe the algorithms for learning coverage and overlap statistics.
This is followed by an empirical evaluation of our approach. We
end with a discussion of the related work and a summary of our
contributions.

2. FRAMEWORK
In this section we give an overview of our approach and define

the terminology we use in the paper. In order to better illustrate the
novel aspects of our association rule mining approach, we purposely
limit the queries to just projection and selection queries.

2.1 Constructing Query Classes
Our approach consists of grouping queries into abstract classes.

Since we are considering selection queries, we can classify the queries
in terms of the selected attributes and their values. To abstract the
classes further we assume that the mediator has access to the so-
called “attribute value hierarchies” for a subset of the attributes of
each mediated relation.

Note that hierarchies do not have to exist for every attribute, but
rather only for those attributes over which queries are classified.

We call these attributes the classificatory attributes. If we know
the domains (or representative values) of multiple attributes, we can
choose as the classificatory attribute the best , attributes whose val-
ues differentiate the sources the most2, where the number , is de-
cided based on a tradeoff between prediction performance versus
computational complexity of learning the statistics by using these ,
attributes. For example, suppose a mediator system just has three
sources: source � only has papers in conference AAAI, �)- only
has papers in conference IJCAI, and �). only has papers in con-
ference SIGMOD. In order to rank access to these sources, we need
only choose the “conference” attribute as the classificatory attribute,
even if we know the domain of the “year” attribute.

2.1.1 Attribute Value Hierarchy
An AV hierarchy (or attribute value hierarchy) over an attribute /

is a hierarchical classification of the values of the attribute / . The
leaf nodes of the hierarchy correspond to specific concrete values of
/ , while the non-leaf nodes are abstract values that correspond to
the union of values below them. We use the term feature to describe
the nodes of an AV hierarchy. Classificatory Attributes refer to the
attributes for which we have AV hierarchies in the mediator. Con-
tinuing the example in Section 1, we shall assume that the mediator
has two AV hierarchies (see Figure 1), one is for the “conference”
attribute, and the other for the “year” attribute.

2.1.2 Query Classes
A class is a description of a subset of queries. The set of primitive

classes is thus just the set of all queries. The set of leaf classes is just
the set of all primitive queries with all classificatory attributes and
only these classificatory attributes bound. Our interest is to define
abstract classes that cover multiple queries. Let 0 ! denote the set
of leaf node and non-leaf node features in the 1 -th AV hierarchy
in the mediator. We shall assume that the special feature 2435376
corresponds to the root of the hierarchy. The set of abstract classes8:9 is just the cartesian product

0 <; 0=- ; #&#&# ; 0�> .
We call 8 9 the classSet of the mediator.

The AV hierarchies induce subsumption relations among the ab-
stract classes. A class + ! is subsumed by class +�? if every feature
in +@! is equal to or a specialization of the same dimension feature
in + ? . Finally, a query � belongs to a class + if the values of the
classificatory attributes in � are equal to or specializations of the
features defining + .
Example For a mediator with two very simple feature hierarchies:

0 � � ��A*B5CD35E�FGE=HIFJ27353765� and
0 - � �LK:MNMPO F MNQ � MNM FR27353765� ,

the S:TVU�WXWX��Y:Z of the mediator will be8:9 � � ����A*B5C[35E�F K:MNMPO �GFP����A*B5C[35E�F M\Q � M\M �GF
�]E=H=F K^M\M\O �GFP�]E=H=F MNQ � MNM �GFX����A*B5CD35EI�GF
�]E=H
�GF^� K^M\M\O �GFP� M\Q � M\M �GFR24353764�

Here the class + �_����A*B5CD35E�F K^MNMPO � refers to all the SIG-
MOD’94 papers, and the class + - �`�]E=H=F M\Q � MNM � refers to all
the database papers published from year 1990 to 1999. As we can
see + is subsumed by + - . + and + - are classes with multiple
features, each of which comes from a distinct AV hierarchy. The
class ����A*B5C[35EI� = ����A*B5C[35E�FG24353767� is a class with a single
feature. �
- The selection of the attributes may either be done by the media-
tor designer or using automated techniques (such as decision tree
learning techniques to learn their information gains of classifying
the sources).

CS Papers

AI
 DB
 OS

AAAI
 IJCAI
 SIGMOD
 VLDB
 ICDE

Time

70-79
 00-01

70
 79
71

80-89

80
 89
81

90-99

90
 99
91
 00
 01

Figure 1: The Attribute Value hierarchies

2.2 An Overview of Our Approach
In this section, we show how to learn the coverage and overlap

statistics by using our association rule mining approach, and how to
map a user’s query to an abstract class with statistics.

2.2.1 Coverage and Overlap
The coverage of a data source for a class refers to the degree to

which the source covers the class. We use the notation �����
	 +5�
to denote the coverage of source � for class + . We assume that
the union of the contents of the available sources within the system
covers 100% of the class. In other words, coverage is measured
relative to the available sources.

The overlap among , sources for a class refers to the degree to
which these sources cover the same part of the data in the class. We
use the formula ����� �
� - �a#%#&#V�
�"(�	 +5� to denote the overlap among
source � , � - ,..., �"(for class + .

2.2.2 Mining association rules
In order to define the term association rule, we first define the

term source set. Let 8Xb � � � FR� - F:#&#&#&F:�dc5� be a set of all the
sources available to a mediator. A subset of 8Xb is referred to as a
source set. A source set that contains k sources is a , - W:ePfhg\SiYP��Y:Z .
For example,

� � FR�"-X� is a j - W:ePfhg\SiYP��Y:Z .
An association rule represents strong associations between a class

and a sourceSet. It’s an implication of the form +lknm� , where
+po 8i9 and m�_q 8 b . Notice that a class may be defined by a
single leaf node feature, a single non-leaf node feature or a com-
bination of features. For example, /a/7/rAskt� , /rAsku� ,
/rAwv�� K^M\MNQ � K:MNM\M �xky� and � K^M\zNQ � K:MNzNM �Iky� �$� - are
all possible association rules.

Rule support and confidence are two measures of a rule’s signif-
icance. The support of the class + (denoted by ����+5�) refers to the
percentage of tuples in the global relation that belong to the class
+ . The support of the rule +[k m� (denoted by ����+�{ m�|�) refers to
the percentage of the tuples in the global relation that are common
to all the sources in set m� and belong to class + . The confidence of

the rule (denoted by ��� m�@	 +5�5�~}��&�)����L�}��%� �) refers to the percentage
of the tuples in the class + that are common to all the sources in
W:ePfhgPS:YP��Y^Z<m� .

As we discussed in Section 1, it may be prohibitively expensive to
learn and store the coverage and overlap statistics for every possible
class. In order to keep the number of association rules low, we prune
classes and source sets in the following way:

� Discovering large classes: We use a threshold on the support
of the classes to discover large classes (any class with support
higher than a given threshold) and prune small classes. In this
paper we present an algorithm to efficiently discover the large
classes by using the anti-monotone property3([HK00]).

. If a set cannot pass a test, all of its supersets will fail the same test

� Discovering strongly correlated source sets: In order to re-
member small number of overlap statistics, we just store over-
lap statistics for strongly correlated source sets. For the un-
correlated source sets, we assume that the sources follow the
independence assumption(FKL97])4. In the paper, we discuss
how to use the Apriori algorithm([AS94]) to discover strongly
correlated source sets for all the large classes.

After discovering the large classes and strongly correlated source
sets, we can compute the coverage and overlap statistics in the fol-
lowing way:

� For each large class + and each
K
- W^ePfhgPS:YP��Y:Zrm� , we generate

a rule +�k�m� . The confidence of the rule, ���^m�@	 +5� , denotes
the coverage of the single source in m� for class + ;

� For each large class + and each strongly correlated , - W:e\fhgPS:YP��Y:Z
m� (where ,x� K), we generate a rule +[k�m� . The confidence
of the rule, ��� m�
	 +5� , denotes the overlap among the sources
in m� for class + . For example, /aA�k�� ��� - with confi-
dence = 40% means that sources � and �)- have 40% overlap
AI papers.

2.2.3 Mapping users’ queries to abstract classes
In order to use the learned coverage and overlap statistics of the

large classes, we need to map a user’s query to a discovered large
class. Then the coverage and overlap statistics for the corresponding
class can be used to predict the coverage of the sources and overlap
among the sources for the query.

The mapping can be done according to the following algorithm.

1. If the classificatory attributes are bound in the query, then find
the lowest ancestor abstraction class with statistics5 for the
features of the query;

2. If no classificatory attribute is bound in the query, then we
should do one of the following,

� Check whether we have learned some association rules
between the non-classificatory features in the query with
classificatory features6. If we did, use these features as
features of the query to get statistics, go to step 1;

as well.�
If source � and �)- are independent, then the probability that a

tuple is present in source � is independent of the probability that
the same tuple is present in �)- . Thus ����� ���)-^��������� � ; �����"-:� .�

If we have multiple ancestor classes, the lowest ancestor class with
statistics means the ancestor class with lowest support counts among
all the discovered large classes.�

In order to simplify the problem, we did not discuss this kind of
association rule mining in this paper, but it is just a typical associa-
tion rule mining problem. A simple example would be to learn the
rules like: ��# �7T�T���U*>�kpE�ULZ�U*�GU�WXYPW with high enough confidence
and support.

� Present the discovered classes to the user, and take the
user’s feedback to select a class;

� Use the root of the hierarchy as the class of the query.

2.2.4 Ranking sources for a class
In this section we discuss how we rank the sources for the mapped

class + using the statistics we learned. At first we select the source
with the highest coverage7 as the first source, then we use the over-
lap statistics to compute the residual coverages of the rest of the
sources to find the second best, and so on, until we get a plan with
the utility we want. However as we discussed earlier, we only keep
overlap statistics for highly correlated source sets. For source sets
without overlap statistics we use the independence assumption to
estimate their overlap information.

Example: Suppose � , �"- and �d. are sources exporting tuples for
class + . Let ����� 	 +5� , �����"-N	 +5� and �����".'	 +5� be the learned cov-
erage statistics, and ����� �<�"-'	 +5� and �����)-L�<�d.L	 +5� be the learned
overlap statistics. With the independence assumption, it’s easy to
estimate the overlap of the sources in the j - W:e\f�g\SiY\��Y:Z���� FJ� . �

����� ��� . 	 +5�|������� 	 +5� ; ����� . 	 +5�
But computing ����� �$�"-7�$�d.L	 +5� becomes non-trivial, since it
contains both independent and highly correlated subsets. In this
case we begin by choosing the j -sourceSet with maximal overlap
among ��� FR�"-^� , ���"-\FR�".:� and ��� FR�d.^� . Let ���"-\FR�d.^� be the maxi-
mally overlapping j - W^ePfhgPS:YP��Y:Z . Then assuming � is independent
of � - ��� . , we compute

����� ��� - ��� . 	 +5��������� 	 +5� ; ����� - ��� . 	 +5� .
Similarly, the overlap for , sources can be estimated as the product
of the overlap of the maximally overlapping �],
� K � sources and the
coverage of the remaining source.

3. GENERATING DATASET BY PROBING
In order to use association rule mining approach to learn the cov-

erage and overlap statistics, we have to collect the input dataset for
mining. However in a data integration scenario, we can not get all
the data from the sources directly because of their autonomous na-
ture. So the only way we can extract features from the autonomous
sources is to probe the sources. In this section we discuss how to
generate probing queries and store the probing results.

3.1 Probing queries
Once the design of global schema and AV hierarchies of a data

integration system is done, a set of probing queries have to be gen-
erated. The probing queries can be generated by just including all
the features of the leaf nodes of a single AV hierarchy. Note that
even if multiple classificatory attributes’ features can be served as
probing queries, we still just need one classificatory attribute’s leaf
node features as the probing queries. This is because querying all
the sources by binding all the leaf node features of a classificatory
attribute will give you the whole relation or a representative subset
of the relation. For example, in our motivating example, if all the
sources can be queried by giving a conference name, then the prob-
ing queries are just selection queries on the conference names in the
leaf nodes of the AV hierarchy.

3.2 Datasets
�
We can also rank the sources based on the combined utility

with other quality parameters such as response time, freshness of
the data, etc. For a detailed discussion on ranking sources see
[FKL97],[NLF99] and [NK01].

CID Conference Year Count

1 ICDE 2001 79
2 ICDE 2000 67
3 ICDE 1999 70

Table 1: Tuples in the table classInfo

CID Source Count

1 ���)-XFR� � � 79
2 ��� FR� - FR� . � 38
2 ��� FR� - � 20
2 �d. 9
3 ���"-\FR�d.\FR� � � 63
3 ��� FR�)-XFR�".NFJ� � � 7

Table 2: Tuples in the table sourceInfo

After we get the list of probing queries, we can query all the
sources using queries from the query list. Once we get all the an-
swers back from the sources, we union the results by deleting over-
lap tuples, and keep the results in the result dataset. This dataset
will be used as input for our association rule mining algorithm.
Specifically the result dataset consists of two tables, classInfo(CID,
/ 9�� ,..., / 9�� , Count) and sourceInfo(CID, Source, Count), where
/ 9�� refers to the �'� � classificatory attribute. The leaf classes with
at least one tuple in the sources are given a class identifier, CID.
The total number of distinct tuples for each leaf class are entered
into classInfo, and a separate table sourceInfo keeps track of which
tuples come from which sources. If multiple sources have the same
tuples in a leaf class then we just need to remember the total num-
ber of common tuples for that overlapped source set. In the worst
case, we have to keep the counts for all the possible subsets for each
class(j\¡ of them, where > is the number of sources)8.
Example: Continuing the example in Section 1, we shall assume
the following query is the first probing query:

Q(title, author, conference, year) : �
paper(title, author, conference, year),
conference=”ICDE”.

Then we can update these tuples into the dataset: classInfo(see Ta-
ble 1) and sourceInfo (see Table 2). In the table classInfo, we use
attribute CID to keep the id of the class, attributes Conference and
Year to keep the classificatory attribute values, and attribute Count
to keep the total number of distinct tuples of the class. In the table
sourceInfo, we use attribute CID to keep the id of the class, at-
tribute Source to keep the overlap sources in the class, and attribute
Count to keep the number of overlapped tuples of the sources. For
example, in the leaf class with class CID=2, we have three subsets
of overlapped sources which disjointly export the total 67 tuples. As
we can see, all the sources in the set ��� FG� - FR� . � export 38 tuples in
common, all the sources in the set ��� FJ�)-:� export another 20 tuples
in common, and the single source �". itself export another 9 tuples.

¢
Although in practice the worst case is not likely to happen, if the

results are too many to remember, we can do one of the following:
use a single scan mining algorithm(see Section 4.1.2), then we can
count query by query during probing, in this way we just need to
remember the results for the current query; just remember the counts
for the higher level abstract classes; or just remember overlap counts
for upto , - W:ePfhg\SiYP��Y:Z s, where , is a predefined value(,�£�>).

Algorithm 1 LCS algorithm

input: the AV hierarchies; dataset: ¤N¥�¦h§^§^¨G©�ª�« , §:«­¬�®P¤N¯*¨i©�ª�« ;
min sup: minimum support threshold;
output: ruleSet: the learned rules, classSet: discovered large
classes;
beginSiT�U�WXWP��Y:Z�� � � , gPf­T�YP��Y:Z�� � � ;
for (,=� K\° ,�£a�±> ° ,5²�²) doSiT�U�WXWP��Y:ZJ(a� � � ;

for (each leaf class T�S4o�³LULZ�U�W^Y:Z) do+@´ 9 �¶µ*YX>)+4T�U�WXWX��Y^Zi�],dF�T�SPF^#%#&# � ;
for (each class S4o·+@´ 9) do

IF(S=¸o�SiT�U�WXWP��Y:ZJ()
THEN S:T�U�WXWX��Y:ZJ(a�±S:T�U�WXWX��Y:Z�(
¹ � S^� ;S\# SiePfh>­Zº��SP# SiePfh>­Z�²»T�SP# +7ePfh>­Z ;
for (each source �¼o�Zi# W:e\f�g\SiY\W) do

IF(rule g 9�½ b ¸o�g\f­T�Y\��Y:Z)
THEN g\fhT�YP��Y:Z��±gPf­T�YP��Y:Z)¹ � g 9�½ b � ;T�S\# +7ePfh>­Z ��¾ total number of tuples in Source � and
Class TVS ;g 9�½ b # SiePfh>­Z|�±g 9�½ b # SGe\fh>­Z�²¼T�S\# +7ePfh>­Z � ;

end for
end for

end forSiT�U�WXWP��Y:ZJ(a� � S4o�SiT�U�WXWP��Y:ZJ(w	 S\# SiePfh>­Z<�a�±��1]> W:f'¿"� ;
remove rules of corresponding low support classes fromgPf­T�YP��Y:Z ;SiT�U�WXWP��Y:Z��±SiT�U�WPWX��Y:Z)¹xSiT�U�WPWX��Y:Z (;

end for
for (each rule g 9�½ b o�g\fhT�YP��Y:Z) dog 9�½ b # SieP>)À�1]³wYX>dSiY5�ÂÁ�Ã�Ä<Å:Æ 9�ÇRÈ ¡ �9 Æ 9�ÇRÈ ¡ �end for
return g\fhT�YP��Y:Z ;
end

Procedure genClassSet(k: number of features; lc: the leaf class; the
AV hierarchies; classSet; classSet ()
for (each feature ÀP!�o�T�S) doÀ�Z���Y^Z ! � � À ! � ;À�Z���Y^Z�!º��À�Z���Y^Z�!d¹ � Uw>dS:YPWiZ�ePg���ÀX!��J� ; � //root of the hierarchy

is not included in ancestor of À ! �
end forSGUw>"³L1]³LULZ�YP��Y:Z��DÉ ? À�ZJ��Y:Z]? ; À�ZJ��Y:Z]? - ; #&#&# ; À�Z���Y^Z ? (; � //Using
cartesian product to generate all , feature classes. ��

//This pruning procedure can be implemented inside the carte-
sian product procedure �
for (each class S7o�SGU*>d³L1]³LULZ�YP��Y:Z but S=¸o�S:T�U�WXWX��Y:ZJ() do

if (any class c’ (with ,¼� K subset features of class c) ¸oSiT�U�WXWP��Y:ZJ(XÊ) then
delete c from SGUw>"³L1]³LULZ�YP��Y:Z ;

end if
end for
return SiUw>d³L1]³LUwZ�YP��Y:Z ;

4. ALGORITHMS FOR LEARNING COVER-
AGE AND OVERLAP

As we discussed earlier, we use association rules to learn the cov-
erage and overlap statistics. In this section, we introduce an algo-
rithm, LCS, to efficiently discover large classes, generate associa-
tion rules between these classes and sources, and compute the con-
fidence of the rules using the input dataset. We also show how the
Apriori algorithm can be applied to learn the overlap statistics.

4.1 The LCS Algorithm
The LCS algorithm (see Algorithm 1) requires the dataset:

SiT�U�WXW^AL>)À�e and W^ePfhgPS:Y^AL>)À�e , the AV hierarchies, and the minimum
support as inputs, and dynamically discovers the large classes in-

side a mediator system. As mentioned earlier, in order to avoid too
many small classes, we can set support count thresholds to prune the
classes with support count below the threshold. We use a uniform
minimum support for all the classes. We use the anti-monotone
property (which means that if a set cannot pass a test, all of its su-
persets will fail the same test as well) to improve the efficiency of
the algorithm.

As we can see, the LCS algorithm makes multiple passes over
the data. Specifically, we first find all the large classes with just one
feature, then we find all the large classes with two features using the
previous results and the anti-monotone property to efficiently prune
classes before we start counting, and so on. We continue until we
get all the large classes with all the > features. For each tuple in
the , -th pass, we find the set of , feature classes it falls in, increase
the count W:f'¿N¿he\gXZ:��+5� for each class + in the set, and increase the
count W:f'¿N¿he\gXZ:��+¼{I��� for each source � with this tuple. We prune
the classes with total support count less than the minimum support
count. After identifying the large classes, we can easily compute
the coverage of each source � for every large class + as follows:

SGe\>)À�1]³wY^>"SiYL��+ËkÌ����� b È:ÍGÍiÇ Á � �%�)� �w�b È^ÍRÍiÇ Á � �&� �
4.1.1 The “genClassSet” function

In the algorithm, we find all the candidate classes with , features
for a leaf class T�SÎ� � +7AwE�FR/ 9�� F:#&#%#&FR/ 9�� FR+7ePfh>­ZR� by a procedure
genClassSet. The procedure prunes small classes using the large
class set SiT�U�WXWP��Y:ZJ(PÊ found in the �],�� K � th pass. We explain the
procedure using the following example.
Example: Assume we have a leaf class T�S = � 1, ICDE, 2000, 67 �
and k=2. We first extract the feature values

� / 9�� �±A*+4E=Ï�FJ/ 9�Ð �
j Q\QNQ � from the leaf class. Then for each feature, we generate a
feature set which includes all the ancestors of the feature. Then we
will get two feature sets: À�ZJ��Y:Z � � A*+4E=Ï�FJE=HÑ� and À�ZJ��Y:ZJ-7�� j QNQ\Q FP� QNQ � Q*K �J� . Suppose the class with the single feature “ICDE”
is not a large class in the previous results, then any class with the fea-
ture “ICDE” can not be a large class according to the anti-monotone
property9. We can prune the feature “ICDE” from À�ZJ��Y:Z , then we
get the candidate class set for the leaf class S ,

SGU*>d³L1]³LULZ�YP��Y:Z��DÀ�ZJ��Y:Z ; À�ZJ��Y:Z -
� � E=H�v�� QNQ � Q*K �GFRE=H�vÎj Q\QNQ � .

4.1.2 Single versus Multiple Scans of Data
In the LCS algorithm, we assume that the number of classes will

be high. In order to avoid considering a large number of classes,
we prune classes during counting. By doing so, we have to scan
the dataset multiple times. However if the number of classes are
small and the cost of scanning the whole dataset is very expensive,
then we have to use a one pass algorithm. For each leaf class T�S
of every probing query’s results, the algorithm has to generate an
candidate class set of T�S , increase the counts of each class in the set.
By doing so, we have to remember the counts for all the possible
classes during the counting, but we don’t need to remember all the
probing query results.

4.2 Learning Overlap among Sources
Once we discover large classes in the mediator, we can learn the

overlap between sources for each large class. Here we also use the
dataset: classInfo and sourceInfo. In this section we discuss how
to learn the overlap information between sources for a given class.
Ò
In order to improve the efficiency of the algorithm, we can prune

the small classes during the cartesian product procedure.

From the table classInfo we can classify the leaf classes into
the large classes we learned in the previous section. Here a leaf
class can be classified into multiple classes. For example, a leaf
class about a paper in Conference:“AAAI”, and Year:”1999”, can
be classified into the following classes: AAAI, AI, 1999, 90-99,
AAAI&1999, AAAI&90-99, AI&1999, AI&90-99, if all of these
classes are large classes in the mediator.

After we classify the leaf classes in classInfo, for each discovered
large class + , we can get its descendent leaf classes, which can
be used to generate a new table W:e\f�g\SiYXAL>)À�e 9 by selecting relative
tuples for its descendent leaf classes from sourceInfo.

Next we apply the Apriori algorithm to find strongly correlated
source sets. The candidate source sets will include all the combi-
nations of the sources, with

K
- W:ePfhgPS:YP��Y^Z�W , j - W:ePfhg\SiYP��Y:Z�W ,..., > -

W:ePfhgPS:YP��Y^Z�W , where > is the total number of sources. In order to
use Apriori, we have to decide a minimum support threshold, which
will be used to prune uncorrelated source sets.

Once the frequent source sets from the table W^ePfhgPS:Y^AL>)À�e 9 have
been found, it is straightforward to calculate the overlap statistics for
these combination of strongly correlated sources10. We can compute
the overlap probability of these correlated sources � FR�"-PF:#&#&#&F:�"(in
class + by using the following formula:
������� ���"-��·#&#%#X���)(\�:	 +5��� b È:ÍRÍ:Ç Á � 9�ÇRÈ ¡ � � � � � � Ð � Æ Æ Æ � �NÓ:�b È^ÍRÍ:Ç Á � 9�ÇRÈ ¡ � �%� �Here the W:f'¿'¿hePgPZ SiePfh>­Z:��+5� is just the total number of tuples in the
table W:e\fhgPS:Y^AL>)À�e 9 .

5. EMPIRICAL EVALUATION
In this section we present results of experiments conducted to

study the variation in pruning power and accuracy of our algorithms
for different class size thresholds. In particular, given a set of sources
and probing queries, our aim is to show that with increase in thresh-
old value of large classes, the time (to identify large classes) and
space (number of large classes remembered) usage decreases but
with a reduction in accuracy of the learnt estimates.

We have implemented a prototype statistics learning system us-
ing the algorithms described in the paper. Currently our system
only implements LCS algorithm to learn the coverage information
of sources. We also designed a data integration system that mimics
the simple mediator example provided earlier (see Section 1) and
uses the source coverage statistics learnt by our statistics learner.
Both the systems are written in Java 2. All the experiments pre-
sented here were conducted on a Linux system with 256MB main
memory running under Red Hat Linux 6.1. Accordingly we gen-
erate a set of 15 data sources exporting the mediator relation pa-
per(title,author,conference,year). The sources contain publications
of 15 leading research groups in Artificial Intelligence and Database
research. We assume no binding restrictions for the sources and
hence implement them as tables in a Cloudscape database([C36]).
We perform our experiments using sources with sizes ranging fromÔ QNQ

to
K^QNQ\Q

tuples. Conference and Year are the classificatory at-
tributes in our mediator relation.

Since our learning approach is highly dependent on the AV hier-
archy, we assume most system designers will want to start with a
simple hierarchy that reflects all the levels of abstraction but con-
tains small number of features at each level. Based on the efficiency
of the statistics learnt, they may add additional nodes to the hierar-
chy. To see how good our algorithm would work in such a scenario,
we designed two sets of attribute value hierarchies for our classifi- �Õ

There is only a small variation: we need to add the actual number
of counts for each tuple in stead of just add one.

47

48

49

50

51

52

53

54

55

56

57

58

0
 50
 100
 150
 200
 250
 300

Threshold

T
im

e(
se

c)

large hierarchy

small hierarchy

Figure 2: LCS learning time for various thresholds

0

25

50

75

100

125

150

175

0
 50
 100
 150
 200
 250
 300

T
h
reshold

 C
la

ss
 C

o
u

n
t

large hierachy

small hierarchy

Figure 3: Pruning of classes by LCS

catory attributes, called Large Hierarchies and Small Hierarchies
based on Figure 1. Both hierarchies contain three levels of abstrac-
tion from leaf to the root but differ in the number of nodes at each
level as shown in Figure 5 and Figure 6.

5.1 Time and Space Usage
To learn the coverage statistics for the data sources to be used by

the mediator, we used the leaf node features from the AV hierar-
chies of the classificatory attributes as probing queries. To evaluate
the performance of our statistics learner, we varied the threshold
value for a large class and measured the number of large classes and
the amount of time used for learning source coverage statistics for

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0
 25
 50
 75
 100
 125
 150
 175
 200
 225
 250
 275
 300

Threshold

E
rr

o
r

in
 e

st
im

at
io

n

Figure 4: Error induced in Coverage Estimation

CS Papers

AI
 DB

AAAI
 IJCAI
 SIGMOD
ECP
 VLDB

Year

90-95
 96-01

1990
 1995
 1996
1991
 1997
 2001
........

Figure 5: Small Hierarchies

CS Papers

AI
 DB

AAAI
 IJCAI
 SIGMOD
ECP
 VLDB

Year

96-01

1996
 2001

85-89

1985
 1989
1986

90-95

1990
 1995
1991
AIPS
 ECAI
 CIKM
KR
 RIDE
 KDD

....

Figure 6: Large Hierarchies

the large classes. We assume that the results of the probing queries
are materialized before LCS starts learning rules. We do acknowl-
edge the fact that actual learning time should involve the time to
probe and generate results, and given the high latency involved with
Internet sources, the probing time will vary based on the number of
probing queries, number of sources queried and time of querying.
Since variations in threshold values do not necessitate re-probing of
the sources, we chose to ignore the probing time. Figure 2 compares
the time taken by LCS to learn rules for different threshold values.
For a given threshold we note the average time taken by LCS to
generate the rules for different sets of probing queries. Figure 3
compares the number of pruned classes with increase in threshold
values. As can be seen from Figure 2, for lower thresholds LCS
takes more time to learn the rules. As expected, for lower values
of support threshold, LCS will prune less number of classes and
hence will end up learning more number of rules for the classSet
of the mediator. This in turn explains the increase in learning time
for lower threshold values. But a contradiction is seen for support
threshold value of

Q
. Here LCS takes less time but learns more rules

than say for threshold value Ö Ô . This can be explained by noting
that for threshold value of

Q
, no calls to a pruning routine are nec-

essary, while for higher than zero we do have to test and prune each
abstract class generated by cartesian product of the features of the
AV hierarchies. For threshold values above Ö Ô , some of the leaf
node features get pruned, which leads to lesser number of abstract
classes being generated by way of cartesian products and hence re-
duces the time for pruning. This leads to a reduction in the overall
learning time of LCS for thresholds above Ö Ô . Compared to Fig-
ure 2, Figure 3 holds no surprises. As is intuitive with increase in
threshold value, the number of small classes pruned increases and
hence we see a reduction in the number of large classes. For any
threshold value greater than the support of the largest abstract class
in the classSet, LCS returns only the root as the class to remember.
In Figure 3, we get one large class for threshold value × QNQ and

Ô QNQ
for Small and Large hierarchy respectively. Figures 2 and 3 show
LCS performing uniformly for both Small and Large hierarchy. For
both hierarchies, LCS generates large number of classes for small
threshold values and requires more learning time. For the case of
zero threshold value, LCS shows the contradiction explained ear-

lier.

5.2 Accuracy of Estimated Statistics
To calculate the error in our coverage estimates, we make use

of the prototype data integration system and a subset of our prob-
ing queries as testing queries. Given a query, the integration engine
maps it to the lowest abstract class for which coverage statistics
have been learnt. The engine then issues the query to the sources in
descending order of their coverages for the mapped class. Suppose
the testing query is +7e\>)ÀhY^g\YX>dSiYÑ����A*B5CD35E , and the statistics
are available for class E=H while class ��A*B5CD35E was pruned by
LCS. From Figures 5 and 6 one can see that E=H is the next lowest
abstract class for the query and hence the coverage statistics for E=H
would be used to identify the sources to call to answer the given test-
ing query. The tuples returned by sources are then materialized and
coverage statistics are again learnt for each source for the mapped
class. We call the newly learnt statistics as the real coverage of the
sources and use the same to calculate the accuracy of the estimated
coverages for the class. Suppose the real coverage of sources �
to � ¡ for a query � ! is SiePØ �! � F�SGe\Ø �! Ð F:#&#&#&FRSiePØ �! � (n is the number of
sources) for the query. Considering SiePØ ! � F�SiePØ ! Ð F^#&#&#&FJSiePØ ! � as the
learned coverages for the class to which ��! is mapped, we compute

the mean absolute error as Ï�+
!Î�
Ù ���Ú � � Û 9�ÇGÜGÝÞ � Ê 9�ÇGÜ Þ � Û �¡ . Given a

threshold, the error in estimation of the learner is the average value
of the mean absolute error for the test queries. Since we are really
interested in relative ordering of sources given a query, this method
of calculating the accuracy of estimates imposes a tighter control11

than is required.
From Figure 4, we can see that the error in estimation increases

with increase in support threshold. This is intuitive, given that with
increase in threshold values, the number of classes pruned increase
and so a query will be mapped to a high level abstract class instead
of the leaf node class to which it actually belongs. The estimation
error will have a maximum value of one, and as can be seen from

 �
In fact even though the ranking of sources with real and estimated

coverage may be same, the absolute error might be high. On the
contrary, for low absolute error one may see a huge difference in
relative ranking.

the graph in Figure 4, LCS degrades gracefully.
Altogether the experiments show that our LCS algorithm uses the

association mining based approach effectively to control the number
of statistics required for data integration. For our sample mediator,
an ideal threshold for LCS would be around Ö Ô , where LCS effec-
tively prunes a large number of small classes and yet does not have
high estimation errors.

6. RELATED WORK
The utility of quantitative coverage statistics in ranking the sources

is first explored by Florescu et. al. [FKL97]. The primary aim of
their work however was on the “use” of coverage statistics, and they
do not discuss how such coverage statistics could be learned. In
contrast, our main aim in this paper is to provide a framework for
learning the required statistics. We do share their goal of keeping
the set of statistics compact. Florescu et. al. achieve the compact-
ness by assuming that each source is identified with a single primary
class of queries that it exports. They “factorize” the coverage of a
source with respect to an arbitrary class in terms of (a) the coverage
of that source with respect to its primary class and (b) the statistics
about inter-class overlap. In contrast, we consider and learn statis-
tics about a source’s coverage with respect to any arbitrary query
class. We achieve compactness by dynamically identifying “big”
query classes, and keeping coverage statistics only with respect to
these classes. From a learning point of view, we believe that our ap-
proach makes better sense since inter-class overlap statistics cannot
be learned directly12.

The work by Gruser et. al. [GRZ ß 00] considers mining re-
sponse time statistics for sources in an information gathering sce-
nario. Given that both coverage and response time statistics are
important for query optimization, our work can be seen as comple-
mentary to theirs. Indeed, in [NK01], we describe a framework that
uses both coverage and response time statistics to jointly optimize
the cost and coverage of query plans in data integration.

There has been some work on ranking text databases in the con-
text of key word queries submitted to meta-search engines. Recent
work ([WMY00], [IGS01]) considers the problem of classifying
text databases into a topic hierarchy. While their approach involves
estimating the relevance of a database for a given topic, the textual
nature of the databases precludes any sophisticated estimation of
coverage and overlap.

7. CONCLUSION
In this paper we motivated the need for automatically learning the

coverage and overlap statistics of sources for efficient query pro-
cessing in a data integration scenario. We then presented a set of
connected techniques that estimate the coverage and overlap statis-
tics while keeping the needed statistics tightly under control. Our
specific contributions include:

� A model for supporting a hierarchical classification of the set
of queries.

� An approach for estimating the coverage and overlap statistics
using association rule mining techniques. - They would have to be estimated in terms of statistics about the

coverages of the corresponding query classes by various sources, as
well as the inter-source overlap statistics. In this sense, the statistics
in [FKL97] can be thought of as a post-processing factorization of
the statistics learned in our framework.

� A threshold-based modification of the mining techniques for
dynamically controlling the resolution of the learned statis-
tics.

We described the details of our approach, and presented prelim-
inary experimental results showing the feasibility of the approach.
The mining algorithms presented in this paper are being integrated
into a prototype system called HAVASU 13that we are developing for
supporting query processing in data integration. Havasu system is
intended to support multi-objective query optimization, flexible ex-
ecution strategies for parallel plans, as well as mining strategies for
learning source statistics.

Acknowledgements
We would like to thank Huan Liu, as well as the anonymous referees
of the previous version of this paper for their helpful comments and
suggestions. This research is supported in part by the NSF young in-
vestigator award (NYI) IRI-9457634, and NSF grant IRI-9801676.

References

[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. S. Subrahma-
nian. Query caching and optimization in distributed mediator systems. In
Proceedings of SIGMOD-96, 1996.

[AS94] Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Min-
ing Association Rules. In VLDB, Santiage, Chile, 1994.

[CGHI94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantino, J.Ullman, J. Widom. The TSIMMIS project: Integration of
heterogeneous information sources. In IPSJ, Japan, 1994.

[C36] Cloudscape 3.6, available at http://www.cloudscape.com.

[DL99] A. Doan and A. Levy. Efficiently Ordering Plans for Data Integra-
tion. The IJCAI-99 Workshop on Intelligent Information Integration, Stock-
holm, Sweden, 1999.

[FKL97] D. Florescu, D. Koller, and A. Levy. Using probabilistic informa-
tion in data integration. In Proceeding of the International Conference on
Very Large Data Bases (VLDB), 1997.

[GRZ ß 00] Jean-Robert Gruser, Louiqa Raschid, Vladimir Zadorozhny, Tao
Zhan: Learning Response Time for WebSources Using Query Feedback and
Application in Query Optimization. VLDB Journal 9(1): 18-37 (2000)

[HK00] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmman Publishers, 2000.

[IGS01] P. Ipeirotis, L. Gravano, M. Sahami. Probe, Count, and Classify:
Categorizing Hidden Web Dababases. In Proceedings of SIGMOD-01, 2001.

[LKG99] E. Lambrecht, S. Kambhampati and S. Gnanaprakasam. Optimiz-
ing recursive information gathering plans. In Proceeding of the International
Joint Conference on Artificial Intelligence (IJCAI), 1999.

[LRO96] A. Levy, A. Rajaraman, J. Ordille. Query Heterogeneous Informa-
tion Sources Using Source Descriptions. In VLDB Conference, 1996.

[NLF99] F. Naumann, U. Leser, J. Freytag. Quality-driven Integration of
Heterogeneous Information Systems. In VLDB Conference 1999.

[NK01] Z. Nie and S. Kambhampati. Joint optimization of cost and cov-
erage of query plans in data integration. In ACM CIKM, Atlanta, Georgia,
November 2001.

[PL00] Rachel Pottinger , Alon Y. Levy , A Scalable Algorithm for An-
swering Queries Using Views Proc. of the Int. Conf. on Very Large Data
Bases(VLDB) 2000.

[WMY00] W. Wang, W. Meng, and C. Yu. Concept Hierarchy based text
database categorization in a metasearch engine environment. In WISE2000,
June 2000. . http://rakaposhi.eas.asu.edu/havasu.html

