
Joint Optimization of Cost and Coverage
of Information Gathering Plans

Zaiqing Nie & Subbarao Kambhampati

Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287-5406

Email:
�
nie,rao � @asu.edu

ASU CSE TR 01-002

Abstract

Existing approaches for optimizing queries in informa-
tion integration use decoupled strategies–attempting to
optimize coverage and cost in two separate phases. Since
sources tend to have a variety of access limitations, this
type of phased optimization of cost and coverage can un-
fortunately lead to expensive planning as well as highly
inefficient plans.

In this paper we present techniques for joint optimiza-
tion of cost and coverage of the query plans. Our algo-
rithms search in the space of parallel query plans that
support multiple sources for each subgoal conjunct. The
refinement of the partial plans takes into account the po-
tential parallelism between source calls, and the binding
compatibilities between the sources included in the plan.
We start by introducing and motivating our query plan
representation, and arguing that our way of searching in
the space of parallel plans can improve both the plan
generation and plan execution costs compared to exist-
ing approaches. We then briefly review how to compute
the cost and coverage of a parallel plan. Next, we pro-
vide both a System-R style query optimization algorithm
as well as a greedy local search algorithm for search-
ing in the space of such query plans. Finally we present
an empirical evaluation that demonstrates the flexibility
and efficiency afforded by our algorithms in handling
cost-coverage tradeoffs, in comparison to the existing
approaches.

1 Introduction
With the vast number of autonomous information sources
available on the Internet today, users have access to a
large variety of data sources. Data integration systems
[CGHI94, LRO96, KW96, AHK96, HKWY97, FW97,
DG97b, YPGM98, KMA � 98, LKG99, IFF � 99, PL00] are
being developed to provide a uniform interface to a multi-
tude of information sources, query the relevant sources au-
tomatically and restructure the information from different
sources.

ASU CSE Technical Report

Query optimization in the context of integrating hetero-
geneous data sources on the Internet has thus received sig-
nificant attention of late. It differs from the traditional query
optimization in several important ways. To begin with, a
traditional optimizer is at the site of the (single) database,
and can naturally assume that each relation mentioned in a
query is is stored in the same primary database, and that
the relation can always be accessed “in-whole.” In contrast,
in information integration scenarios: (i) the optimizer sits at
the mediator (ii) relations are effectively stored across multi-
ple and potentially overlapping sources, each of which may
only contain a partial extension of the relation. (iii) sources
have a variety of access limitations–in terms of binding pat-
tern restrictions on feasible calls and in terms of the number
of disjunctive tuples that can be passed in a single query. (iv)
users may have differing objectives in terms of what cover-
age they want and how much execution cost they are willing
to bear for achieving the desired coverage.

Consequently, selecting optimal plans in information in-
tegration requires the ability to consider the coverages of-
fered by various sources, and form a query plan with the
combination of sources that is estimated to be the best plan
given the cost-coverage tradeoffs of the user. The cost of a
plan depends on the specific access calls made to the infor-
mation sources, which in turn depends on the way the vari-
ous access restrictions on the sources are satisfied. The cov-
erage of the plan depends on the coverages of the individual
sources that are accessed as part of the plan. While cov-
erage can be increased by accessing all accessible sources,
this leads to plans that are too costly.

Existing approaches for optimizing queries in informa-
tion integration [LRO96; NLF99; DL99; BRV98; MRV00;
PL00] use decoupled strategies–attempting to optimize cov-
erage and cost in two separate phases. Specifically, they
first generate a set of feasible “linear plans,” that contain
at most one source for each query conjunct, and then rank
these linear plans in terms of the expected coverage offered
by them. Finally top N plans are selected and executed.
Since sources tend to have a variety of access limitations,
this type of phased optimization of cost and coverage can
unfortunately lead to significantly costly planning and inef-

ficient plans.
In this paper we present techniques for joint optimiza-

tion of cost and coverage of the query plans. Our algorithms
search in the space of “parallel” query plans that support
parallel access to multiple sources for each subgoal con-
junct. The generation of the partial plans takes into account
the potential parallelism between source calls, and the bind-
ing compatibilities between the sources included in the plan.
We start, in Section 2, by describing an example scenario
that motivates the need for joint optimization of cost and
coverage of query plans in information integration. We then
argue that our way of searching in the space of parallel query
plans, using cost models that combine execution cost and the
coverage of the candidate plans, provides a promising ap-
proach that reduces both plan generation costs and the plan
execution costs. Section 3 discusses the syntax and seman-
tics of the parallel information gathering plans. Section 4
reviews the statistical models we use in our implementation
to estimate cost and coverage of a parallel plan, and also
discusses the specific methodology we use to combine them
into a single utility metric. Section 5 discusses conditions
for the existence of single parallel plans of maximal util-
ity. Section 6 describes two algorithms to generate parallel
query plans. The first is a System-R style dynamic program-
ming algorithm, while the second is a greedy algorithm.

Section 7 presents an empirical evaluation that shows
given a coverage requirement, the plans generated by our
approach are significantly better, both in terms of planning
cost, and in terms of execution cost, compared to the ex-
isting approaches that use phased optimization using linear
plans. Specifically, we shall show that the query plans re-
turned by our algorithm give over 80% of the coverage given
by the exhaustive enumeration approach in [LRO96], while
incurring only 2% of the execution cost incurred by the lat-
ter. Moreover, our algorithms incur much less planning time
than the enumeration approach in [LRO96], and are able to
handle a spectrum of cost-coverage tradeoffs.

2 Motivating Example

Consider a simple mediator that integrates several sources
that export information about books. Suppose there
are three relations in the global schema of this system:
book(ISBN, title, author), price-of(ISBN, retail-price),
review-of(ISBN, reviewer, review). Suppose the system can
access three sources S ��� , S ��� , S ��� each of which contain
tuples for the book relation, two sources S �	� , S ��� each
of which contain tuples for the price-of relation, and two
sources S �
� , S ��� each of which contain tuples for the
review-of relation. Individual sources differ in the amount
of coverage they offer on the relation they export. Table 1
lists some representative statistics for these sources (more
detailed description of statistics will be given in Section 4).
We will assume that the coverage is measured in terms of
the fraction of tuples of the relation in the global schema
which are stored in the source relation, and cost is specified
in terms of the average response time for a single source
call. The last column lists the attributes that must be bound
in each call to the source. To simplify matters, let us assume

that the sources are “independent” in their coverage (in that
the probability that a tuple is present in a given source is
independent of the probability that the same tuple is present
in another source). Consider the example query:

Q(title,retail-price,review) �
�
book(ISBN, title, author),
price-of(ISBN, retail-price),
review-of(ISBN, reviewer, review),
title=“Data Warehousing”,
retail-price � $40.

Bucket Algorithm [LRO96]: The bucket algorithm by
Levy et al. [LRO96] will generate three buckets for the
three subgoals in the query:

Bucket B(for book): S ��� , S ��� , S ���
Bucket P(for price-of): S �
� , S ���
Bucket R(for review-of): S �	� , S ���

Once the buckets are generated, the algorithm will enumer-
ate 12 possible plans(�����������) corresponding to the
selection of one source from each bucket. For each com-
bination, the correctness of the plan is checked, and exe-
cutable orderings for each plan are computed. Note that the
6 plans that include the source S ��� are not going to lead to
any executable orderings since there is no way of binding the
“reviewer” attribute as the input to the source query. Con-
sequently, the set of plans output by the bucket algorithms
are:

p � ��������� ����"!$# �%� ��
�'&%!�# �%� �(��
� ,
p � ��������� ����"!$# �%� ����)&%!�# �%� �(��
� ,
p � ��������� ����*!$# �%� ��
�'&%!�# �%� �(��
� ,
p +,��������� ���� !$# �%� ���� &%!�# �%� �(��
� ,
p -.����������	� !�# �%� �(���� &%!�# �%� �(��
� ,
p /.����� ������ !�# � � �(���� &%!�# � � �(��
�

where, the superscripts “f” and “b” are used to specify
which attributes are bound in each source call. We call
these plans “linear plans” in the sense that they contain at
most one source for each of the relations mentioned in the
query. Once the feasible logical plans are enumerated, the
approach in [LRO96] consists of finding “optimal” execu-
tion orders for each of the logical plans, and executing all
the plans. While this approach is guaranteed to give max-
imal coverage, it is often prohibitively expensive in terms
of both planning and execution cost. In particular, for a
query with 0 subgoals, and a scenario where there are at
most 1 sources in the bucket of any subgoal, the worst case
complexity of this approach (in terms of planning time) is2 �31�450 � & , as there can be 1�4 distinct linear plans, and the
cost of finding a feasible order for them using the approach
in [LRO96] is

2 �30 � & .
Executing top N Plans: More recent work tried to make-up
for the prohibitive execution cost of the enumeration strat-
egy used in [LRO96] by first ranking the enumerated plans
in the order of their coverage (or more broadly “quality”),

Sources Contents Coverage Cost Must bind attributes
S ��� book(ISBN,title,author) 70% 300 ISBN or title
S ��� book(ISBN,title,author) 50% 200 ISBN or title
S ��� book(ISBN,title,author) 60% 600 ISBN
S �
� price-of(ISBN,retail-price) 75% 300 ISBN or retail-price
S ��� price-of(ISBN,retail-price) 70% 260 ISBN or retail-price
S �
� review-of(ISBN,reviewer,review) 70% 300 ISBN
S ��� review-of(ISBN,reviewer,review) 50% 400 reviewer

Table 1: Statistics for the sources in the example system

and then executing top N plans [FKL97], [NLF99], [DL99],
for some arbitrarily chosen N. The idea is to identify the spe-
cific plans that are likely to have high coverage and execute
those first.

In our example, these ranking procedures might rank
p � �6���%�(� ����7!$# ���$��	�8&�!$# ���$�(��	� as the best plan (since all
of the sources have the highest coverage among sources in
their buckets), and then rank p / �9�$�%�(����:!$# ���$�(����;&.!$# ���$�(��	� ,
as the second best plan as it contains the sources with high-
est coverages after executing the best plan p � .

The problem with this type of approach is that the plans
that are ranked highest in terms of coverage may not neces-
sarily provide the best tradeoffs in terms of execution cost.
In our example, suppose source S ��� stores 1000 tuples with
attribute value retail-price less than $40, then in plan p /
we have to query S ��� , the costliest among the accessible
sources, thousand times. The total cost of this plan will thus
be more than 6*10 - . In contrast, a lower ranked plan such as
p + (�<���%�(� ����=!�# �%� ����)&>!$# ���$�(��	�) may cost significantly less,
while offering coverage that is competitive with that offered
by ? / . For example, assuming that source S ��� maintains 10
independent ISBN values for title=“Data Warehousing”, the
cost of ?@+ may be less than 5800. In such a scenario, most
users may prefer executing the plan p + first instead of p / to
avoid incurring the high cost of executing plan p / .

The lesson from the example above is that if we want
to get a plan that can produce higher quality results with
limited cost, it is critical to consider execution costs while
doing source selection (rather than after the fact). In order
to take the cost information into account, we have to con-
sider the source-call ordering during planning, since differ-
ent source-call orders will result in different execution cost
for the same logical plan. In other words, we have to con-
sider source-call ordering and source selection at the same
time to get a reasonable execution plan in information inte-
gration scenarios.
Need for Parallel Plans: Once we recognize that the cost
and coverage need to be taken into account together, we ar-
gue that it is better to organize the query planning in terms
of “which sources should be called for supporting each sub-
goal” rather than in terms of “which linear plans have the
highest cost/quality tradeoffs.” To this end, we introduce the
notion of a “parallel” plan, which is essentially a sequence
of source sets. Each source set corresponds to a subgoal of
the query, such that the sources in that set export that sub-
goal (relation). The sources in individual source sets can
be called in parallel (while the different source sets are pro-

cessed sequentially).
In our continuing example, looking at the 6 plans gener-

ated by the bucket algorithm we can see that the first four
plans p � , p � , p � and p + have the same subgoal order (the or-
der of the subgoals of the sources in the plan): book A price-
of A review-of, while the other two plans p - , p / have the
same subgoal order: price-of A book A review-of. So we
can use the following two parallel plans to give all of the
tuples that six plans give in this example:

p B � =(���%�(� ����DC �%�(� ����E&%!�# �����$��	�FC �%� ����)&) !$# �%� ����	� ,
p B� =(���%�(��
�FC ��������5&G!$# ���$�(����) !$# �%� �(��
�

These plans access all the sources related to a given sub-
goal of the query in parallel (see Section 3.2 for a more de-
tailed description of their semantics). An important advan-
tage of these plans over linear plans is that they avoid the
significant redundant computation inherent in executing all
feasible linear plans separately. In our example, plan p � and? � will both execute source queries S �(�$���� and S �$�(��	� with the
same binding patterns. In contrast, ? �
H avoids this redundant
access.1

Need for searching in the space of parallel plans: One re-
maining question is whether we should search in the space
of parallel plans directly, or search in the space of linear
plans and post-process the linear plans into a set of equiva-
lent parallel plans. (An example of the post-processing ap-
proach may be one which generates top N plans using meth-
ods similar to those outlined in [DL99] and then parallelizes
them). However such approaches in general are not guar-
anteed to give cost-coverage tradeoffs that are attainable by
searching in the space of parallel plans because (i) The cost
of generating a single best parallel plan can be significantly
lower than the cost of enumerating, rank-ordering the top
N linear plans and post-processing them and (ii) Since the
post-processing approaches de-couple the cost and coverage
considerations, the utility of the resulting plans can be arbi-
trarily far from the optimum.

Moreover, we will see that the main possible objection
to searching in the space of parallel plans–that the space of

1Notice that here we are assuming that the linear plans are all executed
independently of one another. A related issue is the optimal way to execute
a union of linear plans–they can be executed in sequence, with cached inter-
mediate results (which will avoid the redundant computation, but increases
the total execution time), or execute them in parallel (which reduces the
execution time while keeping the redundant accesses). These two options
are really special cases of the more general option of post-processing the
set of linear plans into a minimal set of parallel plans and executing them
(see below).

R1 R2 Rn

S11

S12

S13

S21

S22

S23

Sn1

Sn2

Sn3

B0 B1 B2 Bn-1 Bn

Figure 1: Execution semantics of parallel plans

parallel plans is much larger than the space of linear plans–
turns out to be a red herring. Specifically, we will describe
a way of searching in the space of subogoal orders, and for
each subgoal order efficiently generating an optimal parallel
plan. This approach winds up adding very little additional
planning overhead over that of searching in the space of lin-
ear plans, and even this overhead is more than made up for
by the fact that we avoid the inefficiencies of phased op-
timization. Consequently, in this paper, we consider joint
optimization of cost and coverage in the space of parallel
query plans.

3 Preliminaries
3.1 Schemas and queries

A schema consists of the collections and relations in an ac-
tual or virtual data set. A query is an expression indicating
the data desired in terms of the schema. A view is simply a
named query. In this paper we express queries and views as
datalog rules.

Data integration systems provide their users a virtual me-
diated schema to query over. This schema is a uniform set
of relations serving as the application’s ontology and is used
to provide the user with a uniform interface to a multitude of
heterogeneous external data sources, which store the actual
available data. We model the contents of these external data
sources with a set of source relations which are defined as
views over the mediated schema relations.
In data integration systems, the users’ queries are based on
the mediated schema. Let’s assume I � � J � & , I � � J � & , ...,I 4 � J 4 & are mediated schema relations, a query in our data
integration system has the form:K � J & :- IL�M� JN� & , I>�'� JO� & , ..., I 4 � J 4 &
The atom

K � J & is called the head of the datalog rule, and
the atoms IL�M� JN� & , IF�'� JP� & , ..., I 4 � J 4 & are the subgoals
in the body of the rule. The tuples J , JQ� , JN� , ..., J 4 con-
tain either variables or constants, and we need JSR J � C J �C ... C J 4 for the query to be safe.

3.2 Parallel information gathering plans

A parallel information gathering plan ? has the form? = (��TUTVTW��X�?Y� !�# X�?@� &G!�# TUTVT &Z!$# X�? 4)[�) !$# X�? 4 ,X�?]\^�_�$�Y\ � C �`\ � C TUTVT C �Y\Vacb &
where sp \ is a subplan and S \ed is a source relation corre-
sponding to the fhgji subgoal of a subgoal order of a query.
The execution semantics of subplan sp \ are that it queries
its sources in parallel and unions the results returned from

the sources. The semantics of plan ? are that it executes the
subplans in the order of X�? � AkX�? � AlTVTUT8AkX�? 4 , and joins
the results of subplans, and returns the results as the answer
to the query.

To clarify this process more, we need the concept of bind-
ing relations2, which are intermediate relations that keep
track of the partial results of executing the first k subplans
of the query plan. Given an information gathering plan of 0
subgoals in the order of I � , I � , ..., I 4 , we define a corre-
sponding sequence of 0:mon binding relations prq , p � , p � ,
..., p 4 (see Figure 1). p q has the set of variables bound in
the query as its schema, and it has a single tuple, denoting
the bindings specified in the query. The schema of p � is the
union of the schema of p>q and the schema of the mediated
relation of I � . Its instance is the join of pFq and the union
of the source relations in the subplan of I � . Similarly we
define p>� in terms of pL� and the mediated relation of Ir� ,
and so on. The answer to the conjunctive query is defined
by a projection operation on p 4 .
Example: We noted that ?`� H is a possible parallel query plan
for the example in Section 2:? B � =(���%�(� ����<C �%�(� ����s&G!$# ���%� ��
�FC ���$����5&) !$# ���$�(��	� ,

The execution of ?]B� involves the following steps:

1. Query the sources S ��� and S ��� in parallel by binding
the attribute “title” as “Data Warehousing”, then we
union the results returned by these two sources.

2. Store the unioned results into a result relation (called
binding relation) p � .

3. Use the ISBN values of the binding relation to query
sources S �
� and S ��� in parallel, and union the results
from these two sources.

4. Join the binding relation p � with these new union re-
sults to get the new binding relation, p �

5. Use the ISBN values in the binding relations to query
source S �	� .

6. Join the results with the binding relation p � to get p � .

The tuples in p � constitute the answer to the original query.

4 Cost and Coverage Models

The main aim of this section is to describe the models we use
to assess the execution cost and coverage of (parallel) query
plans, and how these are combined to compute the utility of
the plan. We start by describing the statistics we assume,
and then describe how the execution cost and coverage of
a plan are computed using these statistics. Before we go
further, we must note that the contributions of this paper
are largely independent of the exact statistics assumed in
this section, as well as the specific way in which we combine
cost and coverage into utility. Our intent is to give an idea

2The idea of binding relations is first introduced in [YLUG99] for linear
information gathering plans where each subgoal of the query has only one
source relation. We use a generalization of this idea to parallel plans.

of how cost and coverage of a plan can be computed and
combined.

For a source � defined over the attributes t �� tr�(u�tv�wuxTVTUTUu�t a � and the mediated schema defined in the
data integration system as I � u�I � uxTVTUTUu�I 4 , we currently as-
sume the following statistical data. These assumptions are
in line with the types of statistics used by previous work
(c.f. [LRO96,NLF99]), and techniques for “learning” some
of these statistics through probing are available in the litera-
ture (c.f. [GRZ � 00]).

1. For each attribute y{z , its length (in number of bytes), de-
noted by |W}
~
��� �]�3y{z3� , and for each attribute y{z in source
relation � , the number of distinct values of y z , denoted by���w��� �j��� b �j�`�h� ;

2. The number of tuples in source � , denoted by ���M��� �j�`� ,
and the feasible binding patterns of the source � denoted by�$�
� �j�`� ;

3. For each mediated relation �G� , its coverage in the source �
, denoted by �r�j�Z� �G��� , for example, �r�j�Z� �w� �h�8� � ���9�M� �
denotes that source � stores 80% information of the medi-
ate relation �w� � �8� � ��~ �w� }(� � ��� |W}�� of all the sources in the
data integration system. Following [NLF99,FKL97], we also
make the simplifying assumption that the sources are “in-
dependent” in that the probability that a tuple is present in
source �Y is independent of the probability that the same tu-
ple is present in �@¡ .

4. The local delay time for the source � to process a query with
1 kbyte answer data, denoted by |U� ��� |W¢L}£| �w¤ �j�`� ;

5. The average speed of transfer data from the data integration
system to the source � , denoted by

� � ~ �M¥ � � � �]�j�`� , and the
average time of sending a message from the data integration
site to the source site, denoted by � � �M¢L}£| �w¤ �j�`� ;

We note that while some of these statistics may be provided
by the individual sources, others might be learned from ex-
perience by the mediator. For example, in order to get the
bandwidth statistics, the data integration system has to av-
erage the transfer rates of every query to the source. For
the message delay statistics the data integration system will
average the message response time of every message com-
munication to source.

Estimating the Cost of a parallel plan:

In this paper, we will estimate the cost of a parallel plan
purely in terms of its execution time. We will also assume
that the execution time is dominated by the tuple transfer
costs, and thus ignore the local processing costs at the me-
diator. Thus the execution costs are computed in terms of
the response times offered by the various sources that make
up the (parallel) plan. The response time of a source is pro-
portional to the number of times that the source is called,
and the expected number of tuples transferred over each call.
Since the sources have binding pattern limitations, and the
set of feasible source calls depend on the set of call variables
that can be bound, both the number of calls and the number
of tuples transferred depend on the value of the binding re-
lation preceding the source call.

Specifically, suppose we have a plan ? with the subplans� X�? � u�X�? � u�TUTVTUu�X�? 4 � . The cost of ? is given by:¦£§ Xx¨£�e? & T�ª© \w«�¬ X�? § 0^X ¬�­ f 1 ¬ ��X�? \ &
The response time of each subplan X�?®\��$�� �`\W¯�u	�Y\U°wu�TUTUTVu	�Y\V±>�³²´?) is computed in terms of the

response times of the individual sources that make up
the subplan. Since the sources are processed in parallel,
the cumulative response time is computed in terms of the
maximum response time of all the sources in the subplan:«�¬ X�? § 0^X ¬x­ f$1 ¬ ��X�?@\ & �1�µ8¶ d£·5¸ �	¹ a»º � «�¬ X�? § 0^X ¬�­ f 1 ¬ ���`\½¼�u�p>\ [� & �

Notice that the response time of each source is being
computed in the context of the binding relation preceding
that source call. We will now describe how we estimate of
the response time of a source under a given binding rela-
tion. We start by noting that the different sources will have
different querying capabilities, with some sources support-
ing parallel processing of several queries, and others having
significant binding restrictions on the allowed source calls.

In order to estimate the least costly way to access the
source, we have to take into account the source querying
capabilities, and the available binding relation.
Let us assume that the source relation is �.�j¾^�(u�¾]�'u�TUTVTUu�¾ a & ,
and the binding relation preceding the source call isp��jJ��(u�J¿�Mu�TUTVTUu�J 4 & . We then have«�¬ X�? § 0^X ¬x­ f$1 ¬ ���Gu�p & �1�X£À5Á ¬(Â µ8ÃY��� &®Ä 1�X�À5X8�$�Gu�p & mÅ Ã)¨ ¬ X8���Gu�p &`Ä � Â §�¦ µ Â Á ¬(Â µ'ÃY�$� & m Å µ80`Æ)ÇofhÆM¨�ÈÉ��� &�&

where 1�X�À5X8�$�Gu�p & is the number of separate calls
made to the source � under the binding relation p , andÅ Ã)¨ ¬ X8���Gu�p & denote the total bytes sent back by the source �
in response to these calls. The rest of the expressions are as
described in the source statistics that we assume; see the be-
ginning of this section. Both 1�X£À
X8���Gu�p & and

Å Ã)¨ ¬ X8���Gu�p &
depend on the specific strategy used to query the source � .

Basically there are two broad strategies, one is to get �
to ship the whole relation, and the other is to respect the
querying restrictions and tuple transfer costs on � and fetch
the relation as needed. Since most internet sources tend to
preclude requests for shipping the whole relation, we are
often left with the second strategy. The basic idea here is
similar to the use of “semi joins” in distributed databases
[OV99], where only the join attribute of binding relation B
is shipped to source S. S then performs a join with this sin-
gle attribute, and all the joining tuples are sent back to the
mediator (where the actual join between p and � is done).
One complicating factor is that unlike traditional databases,
many sources on the Internet have limitations on the num-
ber of tuples included in a single query (For example, most
stock quote sources typically limit the number of securities
whose quotes are requested in a single call to under 10).
This limitation in the disjunctive query capability precludes
sending multiple query tuples at the same time. If the source
has a disjunction limit of Æ (in that it can accept at most Æ
query tuples at the same time), then we need to split the
binding attribute tuples being sent to � into packets of sizeÆ . This increases the number of separate calls made to the
source, and consequently the response time. A final twist is

that sometimes the sources do allow multiple parallel calls
to be made. If a source allows ? parallel calls to be made,
then the response time can be reduced by packaging the to-
tal number of source accesses into call sets of size ? . Putting
this all together, we have the following formula for comput-
ing the best-case response time of a source � which has a
disjunction limit of Æ and can support up to ? parallel ac-
cesses together:«�¬ X�? § 0^X ¬x­ f$1 ¬ ���Gu�p & =1�X�À)Á ¬(Â µ'ÃY�$� &YÄ ÊËËË�Ì£Í5Î¯�ÏeÐjÑ�ÒhÓ�Ï ÔMÕ b ÏeÖ5×V×½×Ó ØÙ Ú½ÛÛÛ mÜhÝNÞ� � ¦ µ « Æ@��ßvàGb���p &�&�&�á ?
â Ä ãhä£å�æxçUè8éê Î ¯ çUãhä
å	æxç½ëYì b çUè8é3éjé Ä� © a\Uí � Âj¬ 0®À)¨�È^��¾@\ &) Ä � Â §�¦ µ Â Á ¬(Â µ8ÃY��� & m Å µ80`Æ8ÇofhÆ'¨�È^�$� &�&

Here, î is the number of common (join) attributes be-
tween the binding relation p and the source relation � . No-
tice that we use ï¿���,ð I & as part of the expression for es-
timating the number of tuples transferred by the source �
for each call. Since all the factors used in this expression
are part of the statistics that we assume in our model, com-
puting the response time of a source under a given binding
relation is straightforward.

Estimating the Coverage of a parallel plan: For a plan?ñ� � X�? � u	X�? � uxTVTUTUu�X�? 4 � , the coverage of ? will depend on
the coverages of the subplans X�?®\ in the ? and the join selec-
tivity factor of the subgoals associated with these subplans.
We use �ZòGóY��I>ô Ù b ¯ u�I>ô Ù b ° & , nSõöf��N�÷fh�Qõø0 , to denote
the join selectivity factors of any join combination of two
subgoal relations of the subplans in the plan.¦£§(ù ¬�« µ'À ¬ �e? & =

Ý 4\Uí �wú ï¿��X�?]\�ð I ô Ù b &hû �Ý \ ¯
ü \ °Mú �Zò ó �jI ô Ù b ¯ u�I ô Ù b ° &hû
Since we just want to compare the plans for differ-

ent subgoal orders of the subgoals in the same subset,
the expression

Ý \�¯ ü \V° ú �ZòGóY��I>ô Ù b ¯ u�Irô Ù b ° & û remains con-
stant. Comparison can thus be done just in terms ofÝ 4\Ví �Mú ï¿��X�?@\	ð I ô Ù b &hû .

For each subplan X�? \ in the plan ? we compute how much
information we can get by executing the source calls in this
subplan. Let I ô Ù b be the subgoal of the subplan X�?®\ = � �Y\�¯ ,�Y\U° , ..., �Y\U±>� . We have:ï¿��X�?]\�ð I ô Ù b & = ï¿� C è b ¼ · ô Ù b��`\½¼Mð I ô Ù b &�ñï¿��� \ ¯wð I>ô Ù b & m�ï¿�$� \ °�ý�þZ� \ ¯Mð Irô Ù b & mñTUTVTm>ï¿�$� \ ±Qý:þZ� \ ¯%ýPTUTUT�ý:þZ� \ ±Zÿ8¯Mð I>ô Ù b &

As mentioned earlier, we assume that the contents of the
sources are independent of each other. That is, the presence
of a tuple in one source does not change the probability that
the tuples also belongs to another source. Thus, the conjunc-
tive probabilities can all be computed in terms of products.
E.g.ï¿���Y\U°%ý�þZ�Y\�¯wð I ô Ù b & � ï¿���`\V°8ð I ô Ù b &`Ä ��n,� ï¿�$�Y\�¯wð I ô Ù b &�&
4.1 Combining Cost and Coverage

In order to find the best plan, which can produce highest
quality answers for a user’s query with the cheapest cost, a

data integration system has to evaluate the plans based on
a utility function that combines the cost and coverage to-
gether.

The main difficulty in combining the cost and the cov-
erage of a plan into a utility measure is that, as the length
of a plan (in terms of the number of subgoals covered) in-
creases, the cost of the plan increases additively, while the
coverage of the plan decreases multiplicatively. In order to
make these parameters combine well, we take the sum of the
logarithm of the coverage component and the negative of the
cost component.3 The logarithm ensures that the coverage
contribution of a set of subgoals to the utility factor will be
additive.

� ¨hf Â f ¨hÃY�e? & ��� Ä Â § ÀY� ¦£§(ù ¬�« µMÀ ¬ �e? &�& �;��n.��� &^Ä ¦£§ Xx¨£�½? &
The user can vary � from 0 to 1 to change the relative
weightage given to cost and coverage.4 An advantage of this
combination approach is that we can compute the utility of
all subplans of a plan separately, and add them together as
the utility of the whole plan.

5 Conditions for the existence of single paral-
lel plans of maximal utility

In Section 6, we will develop algorithms for finding the sin-
gle best parallel plan for any given query. While such a
best single parallel plan will often have a significantly better
utility (lower cost, higher coverage) than the best single lin-
ear plan (see the example in Section 2), it may not provide
the maximal possible utility. In general, to achieve maximal
possible utility, we may need to execute a union of parallel
plans (note that executing additional plans increases the cost
component as well as the coverage component of the utility–
thus the improvement in utility will have to come from in-
creased coverage). In practice, this may not be a major is-
sue. To begin with, as the results in Section 7 will show the
best single parallel plan often gives a utility that is more than
80% of the maximal attainable utility. Even in cases addi-
tional utility (coverage) is desired, we can either extend the
algorithms themselves so they will iteratively output ranked
list of plans until the user is satisfied, or can extend the best
parallel plan at execution time (by union-merging binding-
compatible sources into the plan) to provide additional util-
ity.

It is however of theoretical interest to understand the con-
ditions under which the maximal utility can be attained with
a single parallel plan. This is what we try to do in the current
section. Whether or not a single parallel plan with highest
possible utility exists depends on the aggregate binding pat-
tern restrictions of the sources. To formalize this, we define

3We adapt this idea from [C01] for combining the cost and quality of
Multimedia database query plans, while the cost is also increases additively
and the quality (such as precision and recall) decreases multiplicatively
when the number of predicate increases.

4In the actual implementation we scale the coverage appropriately to
handle the discontinuity at 0, and to make the contribution from the cover-
age component to be in the same range as that from the cost component.

the notion of binding restrictions and preferred binding pat-
terns for query subgoals in terms of the corresponding re-
strictions and preferences for the relevant sources for those
subgoals.

Let p �®¦ î ¬ ¨£�jI & be the set of sources that are relevant to
the subgoal I . The binding pattern restriction of a subgoal
is defined as the set of most general binding patterns that
still satisfy the restrictions of all the sources relevant to that
subgoal. For example if a subgoal I �3J � u�J � u�J � & has three

sources � � �3JN�� u�JN�� u�JN��Y& , � � �jJ � � �� u�J � � �� u�JN��`& (X � or X �
must bind), � � �3JN�� u�J �� u�J ��Y& , in its buckets, the binding pat-
tern restriction will be I �jJ �� u�J �� u�JN��Y& .
Theorem 1 If there is a subgoal order which can resolve all
the binding pattern restrictions of the subgoals in the query,
and the utility is defined entirely in terms of coverage, then
there is an optimal single parallel plan of highest possible
utility that will cover all the answers of the query.

Since at least one subgoal order exists that resolves all
the binding restrictions, we can construct a parallel plan that
has the subgoals in that order, and the subplan for each sub-
goal consists of all the sources in the bucket of that subgoal.
Since utility is defined fully in terms of coverage, this single
parallel plan will have the maximum possible utility.

We will now try to characterize the sufficient conditions
for the case when the utility is defined both in terms of cost
and coverage. Although we can query a source using any of
its feasible binding patterns, the execution costs will depend
on the exact binding patterns used in accessing the sources
(see Section 4), which in turn depend on the binding rela-
tion that holds before that subgoal. The preferred binding
pattern of a source � under a given binding relation p is
the feasible binding pattern ? of the source � such that ac-
cessing � with ? will lead to the lowest execution cost underp . The preferred binding pattern of a subgoal I under a
binding relation p is defined as the binding pattern ? that is
the preferred binding pattern of a majority of the sources in
the bucket of I .
Theorem 2 If (i) For every possible binding relation p the
preferred binding pattern ? of each subgoal I under p is
the same as the preferred binding pattern of each of the
sources �_²sp �®¦ î ¬ ¨£�jI & under p and (ii) there is at least
one subgoal order which can resolve all the binding pat-
tern restrictions of the subgoals in the query, then there is
an optimal single parallel plan that will maximize the utility
function, even if it is defined in terms of both coverage and
cost.

Although the condition (i) in the theorem above seems
too restrictive at first glance, it does in fact hold in fairly
general situations. For example, it holds in the following
two cases:

1. All the sources in the bucket of a subgoal have cost
models that satisfy “bound is easier” assumption. That
is, given a source �,�3¶ � u�¶ � & , and a binding relation p
preceding it, the preferred binding pattern of � underp will be the feasible binding pattern of � that binds
all the variables for which values are supplied by p (ifp provides values for ¶`� and not ¶]� , then the preferred
binding pattern of � will be ú Å u�� û).

2. All the sources in the bucket of a subgoal have cost
models that satisfy the “least accesses is best” assump-
tion, which means that it is best to access the source
with the most general feasible binding pattern given the
binding relation p and the binding restrictions of � .
For example, suppose we have the source �,�3¶ � u�¶ � & ,
such that all feasible binding patterns of � require ¶ �
to be bound. Suppose the binding relation p provides
bindings for both ¶`� and ¶]� . Under this assumption,
the least costly way to access � would be to use the
binding pattern ú �]u Å û (and do selection over ¶ � at the
mediator site).

Both the “bound is easier” assumption and the “least ac-
cesses is best” assumptions have been used as the basis for
greedy algorithms for query optimization in information in-
tegration (c.f. [LRO96;KG99]).

6 Generating query plans

Now that we have described the details of computing the
utility of a plan, we are ready to present algorithms for query
planning. The algorithms presented in this section aim to
find a single best parallel plan–i.e., the parallel plan with the
highest utility. As Theorems 1 and 2 in Section 5 show, such
a plan is not guaranteed to have the highest achievable util-
ity in all cases. Nevertheless, as our empirical results shall
demonstrate, not only is it significantly cheaper to generate
the best single parallel plan than it is to enumerate, rank and
execute many linear plans; executing the best single parallel
plan typically also offers a significantly higher utility than
executing several linear plans.

Our basic plan of attack involves considering different
feasible subgoal orderings of the query, and for each order-
ing, generating a parallel plan that has the highest utility. To
this end, we first consider the issue of generating the best
plan for a given subgoal ordering.

Given the semantics of parallel plans (see Figure 1), this
involves finding the best “subplan” for a subgoal relation
under a given binding relation. We provide an algorithm for
doing this in Section 6.1. We then tackle the question of
searching the space of subgoal orders. For this, we first pro-
vide a dynamic programming algorithm (Section 6.2) and
then a greedy plan generator (Section 6.3).

6.1 Subplan Generation

For a subgoal I with 1 sources � �(u��`�wu�TUTUTVu	� a in its cor-
responding bucket, we provide a CreateSubplan algorithm
(see Algorithm 1) to compute the best subplan for the sub-
goal under the binding relation p�T

The algorithm first computes the utility of all the sources
in the bucket, and then sorts the sources according to their
utility value. Next the algorithm adds the sources from the
sorted bucket to the subplan one by one, until the utility of
the current subplan is less than the utility of the previous
subplan. We use the models discussed in Section 4 to calcu-
late the cost and coverage of the sources.

Although the algorithm has a greedy flavor, the subplans
generated by this algorithm can be shown to be optimal if

Algorithm 1 CreateSubplan
1: input: � : the binding relation; 	�
 the subgoal in the query
2: output: ��
�
 the best plan
3: begin
4: ��
������
5: ����������� � the Bucket for the subgoal 	 ;
6: for each source �"!#����������� do
7: if (� is feasible under �) then
8: �$�&%&'(%)�&*$+&�-, . /102'43�56+7��3-89��:�;<59�<+&�-,�,>=?+A@B=/�,C:�����
$3�DE�-��FG%)HI�J+)�<KC�L, ;
9: else

10: :M�-HI3�8J�N� from �����������
11: end if
12: end for
13: sort the sources in ���O���P�-� in decreasing order of their utility(s);
14: �G� the first source in the sorted ���O�����-� ;
15: while (� != null) and (�O�&%)'4%)�&*$+)��
RQS�M���M,UTV�O�&%)'4%)�&*$+)��
O,) do
16: ��
W�X�A
RQY�M���
17: �Z� the next source in the ����������� ;
18: end while
19: return sp;

20: end

the sources are conditionally independent [FKL97] (i.e., the
presence of an object in one source does not change the
probability that the object belongs to another source). Under
this assumption, the order of the sources according to their
coverage and cost will not change after we execute some
selected sources.

The running time of the algorithm is dominated by line
15, which is executed 1 times, taking

2 �j1 & time in each
loop for computing the utility of the subplan (under the
source independence assumption). Thus the algorithm has2 �31 �) complexity.

6.2 A Dynamic Programming Approach for Parallel
Plan Generation

In the following we introduce a dynamic programming-style
algorithm called ParPlan-DP which extends the traditional
System-R style optimization algorithm to find the best par-
allel plan for the query. The basic idea is to generate the var-
ious permutations of the subgoals, compute the best parallel
plan (in terms of utility) for each permutation, and select the
best among these. Although the outlines are similar to a tra-
ditional system-R style algorithm and [FLMS99], there are
some important differences:

1. Our algorithm does source selection and subgoal order-
ing together according to our utility model for parallel
plans; while the traditional System-R and [FLMS99]
just needs to pick a best subgoal order according to the
cost model.

2. In order to generate a parallel subplan, the algorithm
uses the CreateSubplan algorithm to general subplan
for each subgoal of each subgoal order, in contrast the
traditional System-R and [FLMS99], which need only
find the best access strategy for a single source (rela-
tion) of a subgoal.

3. We also have to estimate attribute sizes of the bind-
ing relations for partial parallel plans, where there are
multiple sources for a single subgoal. So we have to

take the overlap of sources in the subplan into account
to estimate the sizes of each attributes in the binding
relation. For a given subgoal I and the binding rela-
tion p [that holds before I in the plan, assume the
best subplan for I is X�?O� � � � u�� � u�TUTUTVu	�Ya � . Then we
can estimate the sizes of the binding attributes in bind-
ing relation p � after querying all the sources in the
subplan using the binding relation estimation formula.
Let’s assume the join attributes of relation p [and �
are J \ � ¾ \ u�f»� nMu��
u�TUTVTUu�îU[5n õªîPõñ1:f 0%�31 u�0 & , and
that J d are the attributes that are in both � and p � , but
not in p [).\^] � \`_ba&c �Ad�ezgf® �
zj� where hWiP�Zi ����w��� �&jlk ¼ � \l] �h�`�>� ���M��� �&jlk ¼ � \`_ba&c �® ��h�h�nmoqp4r °-s�t r ¯�u v woUp(r °<u v w x � ���w��� �&j kY¼ � \ _ a&c � ¡ �h�h�ymQ�e�e� moqp4r ± sOt r ¯�s{z z z s�t r ±Gÿ8¯ u v woqp4r ± u v w x � ���w��� �&j k ¼ � \ _ a&c � e �h�h�

Algorithm 2 ParPlan-DP
1: Input: �L|�}"~#��F���
 Buckets for the n subgoals
2: output:
�
 the best plan
3: begin
4: �y����� ; � a queue to store plans; �
5:
$�9�
$'g;<D{����� ; ��
$� : the initial node �
6:
$�9� �����G� ; � the binding relation of
O� : �G�<�
7:
$�9� 	������ ; � the selected subgoals of
O� : empty �
8:
 � � �$�&%&'4%7�&*���=Z� ; � the utility of
 � : negative infinity �
9: �y�X�`QY��
 � � ;

10:
O� pop the first plan from � ;
11: while (
��.�D��O'4'7, and (# of subgoals
E� 	Y��D) do
12: for each feasible subgoal 	 z +�!��L|�}"~#�"F�� and �!^
E� 	�, do
13: make a new plan
$� ;
14: �A
��X}�:���;<�C�M�{�O�&
$'g;<Dy+
E� �^K�	 z , ;
15:
 � �
O'4;<D#��
E�
$'g;<DlQY�A
 ;
16: H��X� of sources in sp;
17:
 � � �L��
E� �b�7� (� ezgf® � z); �M� z !���
��
18:
 � � 	���
E� 	VQ��M	 z �J�
19:
 � � �O�&%)'4%)�&*P�V�$�&%&'4%7�&*O+
 � ,��
20: if (��
) �!��) and (
5 M� 	 commutatively equals
 � �) and

(
6�A� �$�&%&'(%)�&*�T�
 � �O�&%)'4%)�&*) then
21: remove
 from � and push
$� into �
22: else if (
$�C� �$�&%&'4%7�&*`��
 � �$�&%&'(%)�&*) then
23: ignore
$�
24: else
25: push
 � into � ;
26: end if
27: end for
28:
�� pop the first plan from � ;
29: end while
30: return
 ;

31: end

Algorithm 2 finds the optimal plan by enumerating all
possible subgoal orders restricted to left-deep trees. Sup-
pose we want to find the best plan for the query with I � ,I>� , ..., I 4 as its subgoals. In our algorithm, we use a queue
data structure to remember all the best partial plans for ev-
ery subset of one or more of the 0 subgoals. For each sub-
set, we store the following information: (i) the best plan
for these subgoals, which include optimal source selection
for each subplan of the subgoals in the subset , the subgoal
execution order and the best binding patterns for querying
these selected sources; (ii) the binding relation and binding
attributes after querying all the sources of the best plan; (iii)

the utility of the best plan; and (iv) the coverage of the best
plan (used to compute the coverage for any extensions of
this best plan). In contrast, a traditional system-R style opti-
mizer need only track the best plan, and its cost [SACL79].

The subgoal permutations are produced by the dynamic
construction of a tree of alternative plans. First, the best plan
for any one subgoals is considered, followed by the plan of
two subgoals. This continues until the best plan for 0 sub-
goals is found. When we have the best plan for any f sub-
goals, we can find the best plan for f®m n subgoals by using
the results of first f subgoals and finding the best subplan for
the f`m n th subgoal under the binding relation given by the
subplans of the first f subgoals. Actually, the algorithm does
not generate all possible permutations since some of them
are useless. Permutations involving subgoals without any
feasible source queries are eliminated, as are the commuta-
tively equivalent permutations with the lowest plan utility.

6.2.1 Complexity Analysis

The worst case complexity of query planning with ParPlan-
Greedy is is

2 ���M451 � & , where 0 is the number of subgoals
in the query and 1 is the number of sources exporting each
subgoal. The �M4 factor comes from the complexity of tra-
ditional dynamic programming, and the 1 � factor comes
from the complexity of CreateSubplan. The fact that the
complexity is exponential in terms of the subgoal number0 , but only polynomial in terms of number of sources per
subgoal is good. This is because in a typical data integration
scenario, the number of subgoals in a query may be much
smaller than the number of sources exporting each subgoal.
Finally, it is instructive to note that the complexity of our
approach is significantly less than the full size of the space
of parallel plans, which is5 2 �30"� � a^ & . This happens mainly
because we are using a greedy way of generating subplans
for individual subgoal orders.

We also note that searching in the space of parallel plans
has not significantly increased the complexity of our query
planning algorithm. In fact, our

2 ���'4
1 � & complexity com-
pares very favorably to the complexity of the linear plan
enumeration approach described in [LRO96], which will be2 �31�450 � & , where 1�4 is the number of linear plans that can
be enumerated, and 0 � is the complexity of the greedy algo-
rithm they use to find the feasible execution order for each
linear plan. This is despite the fact that the approach in
[LRO96] is only computing feasible rather than optimal ex-
ecution orders (the complexity would be

2 �31O4 �w4 & if they
were computing optimal orders).

6.3 A Greedy Approach

We noted that ParPlan-DP is already significantly faster than
the linear plan enumeration approaches. Nevertheless, it is
exponential in the number of query subgoals. In order to get
a more efficient algorithm, we need to trade the optimality

5For each subgoal there can be ¡ e possible subplans–corresponding to
the subsets of its bucket, and since there are D subgoals, there are ¡ e
ways of selecting subplans for the individual subgoals. Each selection of
subplans can be arranged in D£¢ permutations

guarantees for performance. We introduce a greedy algo-
rithm ParPlan-Greedy (see Algorithm 3) which gets a plan
quickly at the expense of optimality. This algorithm gets
a feasible execution plan by greedily choosing the subgoal
which can give the maximum plan utility from the uncho-
sen subgoals as the next subgoal to achieve in the plan. The
inputs are the buckets for all the subgoals in the query.

Algorithm 3 Greedy
1: Input: �L|�}"~#��F���
 Buckets with n subgoals;
O�R
 initial plan;
2: |�}"��� : unchosen subgoals; �Z�l
 initial binding relation;
3: output:
�
 the best plan
4: begin
5: �����G�
6: |�}"�y¤¦¥^§.� � ;
7:
O�¨
$�
8: while (|�}"�Y�.����) do
9: for each feasible subgoal 	 z +�!©|�}"��, do

10: �A
 z �X}�:M��;<�C�M�{���&
$'4;JD£+&�lK�	 z ,
11: end for
12: ��
 e�ª�« � subplan which will maximize �-�$�&%&'(%)�&*$+
lQb��
 z ,��
13:
��¬
RQS�A
 eZª�« ; � assume the plan
lQ���
 e�ª�« has the maximum

utility �
14: |�}"�y�X|�}"�#=V�M	 e�ª�« �15: H��X� of sources in �A
 e�ª�« ;
16: �L�����7� (� ezgfY � z); �M� z !���
 e�ª�« �17: end while
18: return
 ;

19: end

We set the input � � = ­P® , ¥^§.� � = ­ all the subgoals in the
query ¯I® and

\ � = ­ the bindings specified in the query ¯I® . The
worst-case running time of ParPlan-Greedy is

2 �j0 � 1 �),
where 0 is the number of subgoals in the query, and 1 is
the number of sources per subgoal.

Theoretically, ParPlan-Greedy may produce plans that
are arbitrarily far from the true optimum, but we shall see
in Section 7 that its performance is quite fair in practice. It
is of course possible to use this ParPlan-Greedy in concert
with a hill-climbing(algorithm 4) approach to iteratively im-
prove the utility.

The output of the greedy best-first algorithm is used as
the input to the Hill-Climbing algorithm. The individual it-
erations of the Hill-Climbing algorithm may in turn involve
use of the Best-First algorithm to get another modified plan.
Since this is an iterative improvement algorithm, we can ter-
minate it within a prescribed time limit (iteration limit).

Since the worst-case running time of the Best-First al-
gorithm is 0 � , it is also the individual iteration time of the
hill-climbing procedure. We can control the total running
time of the Hill-Climbing algorithm in terms of TL.

7 Experiments

We implemented the query planning algorithms described
in this paper on a Solaris machine using JDK1.2.2. In this
section, we describe the results of a set of experiments we
conducted with these algorithms. The goals of our experi-
ments are:

° To compare the running time and quality of the solu-
tions provided by our algorithms with the approaches
that enumerate, rank and execute linear plans. For this

Algorithm 4 HillClimbing
1: Input: p²±�³#´¶µ ­ � : Buckets for the n subgoals,? q :initial plan, ­`· : time limit
2: Output: ?�� result plan

3: begin
4: ¨hf 1 ¬I¸º¹ ;
5: ? ¸ ?@q ;
6: while (time � TL) do
7: ? H ¸ ? ;
8: randomly pick a subplan X�? in ? H ;
9: delete X�? and all the subplans followed by X�? from ? H ;

10: randomly pick a subgoal R in pV±�³#´»µ ­ � such that
its corresponding subplan is not in ? H ;

11: ? H ¸ ? + CreateSubplan(binding relation of ? H , I);
12: B ¸ binding relation of ? H [
13: UCS ¸ subgoals in p²±�³#´¶µ ­ � but their corre-

sponding subplans are not in ? H ;
14: ? H ¸ BestFirst(p²±�³#´¶µ ­ � ,? H , ±�³L� , p);
15: if (utility �½? H) ¼ utility �e? &) then
16: ? ¸ ? H ;
17: end if
18: end while
19: return ? ;
20: end

purpose, we implemented the algorithms described in
[LRO96], which enumerates all linear plans, finds fea-
sible execution orders for all of them, and executes
them.

° To demonstrate that our algorithms area capable of
handling a spectrum of desired cost-quality tradeoffs.

° To compare the performance of ParPlan-DP and
ParPlan-Greedy.

Our experiments were run on a SUN ULTRA 5 with
256Mb of Memory. Our current experiments were done
with a set of simulated sources. We designed 206 artificial
data sources and 10 mediated relations covering all these
sources. The statistics for these sources were generated ran-
domly, 60% sources have coverage of � ¹�½ �¿¾ ¹�½ of their
related mediated relations, � ¹�½ sources have coverage of
¾ ¹E½ ��À ¹E½ , 10% sources have coverage below � ¹E½ , andn ¹E½ sources have coverage above À ¹�½ . Á ¹E½ of the sources
have binding pattern limitations. We also set the response
time statistics of these sources randomly: � ¹�½ of sources
have high response time, � ¹�½ of them have low response
time, and Â ¹�½ of them have the medium response time.
Variation of planning cost w.r.t. number of subgoals:
Figure 2 compares the planning time for our algorithms with
the approach in [LRO96], as the query size is increased from
1 to 10, while the number of sources per subgoal is kept con-
stant at 8. The planning time for [LRO96] consists of the
time taken to produce all the linear plans and find a feasi-
ble execution order for each plan using the greedy approach
in [LRO96], while the time for our algorithms consists of
the time taken to construct and return the first parallel plan
(which is also the best plan in the case of the ParPlan-DP).

1

10

100

1000

10000

100000

1000000

10000000

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

of subgoals

M
ill

is
ec

on
ds

D P

Greedy

[LRO96]

Figure 2: Variation of running time with the query size (when the
the number of relevant sources per subgoal is held constant at 8).
X axis plots the query size while Y axis plots the running time.

1

10

100

1000

10000

100000

1000000

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

of sources per subgoal

M
ill

is
ec

on
ds

D P

Greedy

[LRO96]

Figure 3: Variation of running time with number of relevant
sources per subgoal (for a query of size 3). X axis plots the query
size while Y axis plots the running time.

We see right away that both our algorithms incur signif-
icantly lower planning time than the decoupled approach
used in [LRO96]. We also note, as expected, that ParPlan-
Greedy scales much better than the exhaustive one.
Variation of planning cost w.r.t. number of sources: Fig-
ure 3 studies the effect of varying the number of sources ex-
porting each subgoal. Scalability with respect to the number
of sources per subgoal is, in a sense, more critical, since it is
reasonable to expect that normal queries posed by users will
not have too many conjuncts in them, but harder to limit the
number of sources exporting a query. We keep the number
of subgoals constant at 3, and vary the number of sources
per subgoal from 5 to 50. As we can see, the planning time
for both of our algorithms grows almost linearly as the num-
ber of sources for each subgoal increases, while the planning
time for [LRO96]’s enumeration degrades considerably.
Quality comparison: In Figure 4, we compare the quality
of plans generated by ParPlan-DP and the enumeration algo-
rithm given in [LRO96] for queries with 4 subgoals and each
subgoal with 8 sources. The x-axis shows the weights used
in the utility metric–with the relative weightage for cover-
age increasing from left to right. Notice that the algorithms

0

10

20

30

40

50

60

70

80

90

100

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Weights

P
er

se
nt

ag
e

Coverage

Cost

Figure 4: Comparing the quality of the plans generated by
ParPlan-DP algorithm with those generated by [LRO96] (for
queries of 4 subgoals), while the weight in the utility measure is
varied. X axis shows the weight value in the utility measure and
Y axis plots the cost and coverage of our algorithm expressed as a
percentage of the cost and coverage provided by [LRO96].

in [LR096] do not take account of the relative weighting be-
tween cost and coverage. So the cost and coverage of the
plans produced by this algorithm is the same for all values
of w. Thus, on the y-axis, we plot both the execution cost
and coverage of ParPlan-DP as a percentage of the cost and
coverage provided by [LRO96]. We notice that the best plan
returned by our algorithm gives a pretty high coverage (over
80% of the coverage for � over 0.4) while incurring cost
that is below 2% of that incurred by [LRO96]. Note also
that even though our algorithm seems to offer only 20% of
the coverage offered by [LRO96] at w=0.1, this makes sense
given that at w=0.1, the user is giving 9 times more weight
to cost than coverage (and the approach of [LRO96] is basi-
cally ignoring this user preference and attempting full cov-
erage).

Comparing the greedy and exhaustive approaches: We
also investigated the question: “exactly how bad are the
plans produced by ParPlan-Greedy compared to that pro-
duced by ParPlan-DP?” A moment’s reflection makes it
clear that the answer depends on the specific weights used
in the utility function. As an extreme example, if the utility
function is concerned only about the coverage and not the
cost, then the optimal plans will involve calling all the rele-
vant sources (if their binding patterns allow the call). Both
the algorithms should be able to produce such a plan eas-
ily, and thus ParPlan-Greedy should be as good as ParPlan-
DP. The relative quality is likely to diverge considerably
as the utility function starts taking cost into account and
the subgoal binding pattern performance diverges. In or-
der to see the way the relative performance varies, we ex-
perimented with queries with 4 subgoals and each subgoal
with 8 sources, while the utility function is varied from be-
ing biased towards cost to being biased towards coverage.
Figure 5 shows the utility of the plan produced by ParPlan-
Greedy as a fraction of the utility of the plan produced by
ParPlan-DP. We observe, as expected, that the utility of
plans given by ParPlan-DP is better than that of the ParPlan-
Greedy with small initial weight (corresponding to a bias

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Weights

U
til

ity
(G

re
ed

y)
/U

til
ity

(D
P

)

Figure 5: Ratio of the utility of the plans given by ParPlan-Greedy
to that given by ParPlan-DP for a spectrum of weights in the utility
metric. X axis varies the weight used in the utility metric, and Y
axis shows the ratio of utilities

0

10

20

30

40

50

60

70

80

90

100

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Weights

P
er

ce
nt

ag
e

Coverage

Cost

Figure 6: Comparing the Coverage and cost of the plans found
by ParPlan-DP by using different weights in Utility function, on
queries of 4 subgoals. X axis varies the weights in the utility func-
tion, while the Y axis shows the cost and coverage as a percentage
of the cost and coverage offered by [LRO96].

towards cost), with the ratio tending to 1 for larger weights
(corresponding to a bias towards coverage). It is also inter-
esting to note that at least in these experiments, the greedy
algorithm is always producing plans that are within 70% of
the utility of those produced by ParPlan-DP.
Ability to Handle a spectrum of cost-coverage tradeoffs:
Our final set of experiments was designed to showcase the
ability of our algorithms to handle a variety of utility func-
tions and generate plans optimized for cost, coverage or a
combination of both. Figure 6 shows how the coverage and
the cost of plans given by our ParPlan-DP changes when the
weight of the coverage in the utility function is increased.
The x-axis shows the weight of the coverage component.
The y-axis shows the values of coverage and cost normal-
ized in terms of the maximum coverage and maximum cost
of the plans given by ParPlan-DP. We observe that as ex-
pected both the coverage and the cost increase when we try
to get higher coverage. We can also see that for the partic-
ular query at hand, there is a large area in which the cost
increases slowly while the coverage increases more rapidly.

An intriguing possibility offered by plots like this is that if
they are done for representative queries in the domain, the
results can be used to suggest the best initial weightings–
those that are likely to give high coverage plans with rela-
tively low cost–to the user.

8 Related work

Query processing in information integration context has re-
ceived wide-spread attention of late. Early work in this area
concentrated on modeling the information integration task.
The approach adapted in our work is the so-called “local
as view” approach that models the sources as views on the
virtual global schema [DG97a;LRO96]. Bucket algorithm
[LRO96] and the source inversion algorithm [DG97;DL97]
are two approaches for generating candidate query plans in
the local as view approach. As we saw in Section 2, we
have adapted the bucket algorithm for our work. Once we
know how to generate the candidate plans, the next issue is
one of generating and executing a optimal query plan. This
task is complicated by several issues. The sources may have
partial overlap, and in order to avoid unnecessary calls to
redundant information sources, we need to model the over-
lap between sources. Early approaches to this involved us-
ing the “local closed world assumptions” which attempt to
capture the complete subsumption of one source by another
over a particular query [LRO96;LK98]. A more sophisti-
cated approach involves modeling the statistical overlap be-
tween sources, as is done the coverage computation used in
this paper. The model and assumptions used in this paper are
derived from the work described in [FKL97]. Another issue
is modeling and respecting the limited access capabilities
of the typical sources on the Internet. We do this in terms
of binding patterns [LRO96] and the amount of disjunction
allowed [YLUG99].

The work on Streamer project [DL99] extends the query
planning algorithm in [LRO96], using the source overlap
models in [FKL97] so it uses the coverage information to
decide the order in which the potential plans are executed.
A recent extension of [LRO96] is the MINICON algorithm
presented in [PL00]. Although MINICON improves the effi-
ciency of the bucket algorithm, it still assumes a decoupled
strategy–concentrating on enumerating linear plans first, as-
sessing their quality and executing them in a rank-ordered
fashion next.

The work by Naumann et. al. [NLF99] offers another
variation on the bucket algorithm of [LRO96], where the
set of linear plans are ranked according to a set of quality
criteria, and a branch and bound approach is used to develop
top-N best linear plans. All these approaches use a “phased”
optimization strategy, concentrating solely on the coverage
and quality of plans during query planning. As we discussed
in Section 2, this type of phased optimization can lead to
significantly costly plan generation phase, as well as high
plan execution costs.

Although [YLUG99] and [FLMS99] consider the cost-
based query optimization problem in the presence of bind-
ing patterns, they do not consider the source selection issue
in their work. Although the issues involved in source selec-

tion and ordering, as well as the need to combine them were
discussed in [VP98], no specific algorithms are presented
in that paper. Finally, the work on the GARLIC system
[HKWY97] is similar in spirit to ours in that it too advo-
cates a statistics based approach for query planning in the
context of heterogeneous database integration. An impor-
tant difference is that GARLIC does not deal with partially
overlapping sources, which our algorithms explicitly do.

9 Conclusion

In this paper we started by motivating the need for joint op-
timization of cost and coverage of query plans in informa-
tion integration. We then argued that our way of search-
ing in the space of parallel query plans, using cost models
that combine execution cost and the coverage of the can-
didate plans, provides a promising approach. We described
ways in which cost and coverage of a parallel query plan can
be estimated, and combined into an aggregate utility mea-
sure. We then presented two algorithms to generate parallel
query plans. The first, ParPlan-DP, is a System-R style dy-
namic programming algorithm, while the second, ParPlan-
Greedy, is a greedy algorithm. Our experimental evaluation
of these algorithms demonstrates that for a given coverage
requirement, the plans generated by our approach are signif-
icantly better, both in terms of planning cost, and in terms
of the quality of the plan produced (measured in terms of
its coverage and execution cost), compared to the existing
approaches that use phased optimization using linear plans.
Specifically, we showed that the query plans returned by our
algorithm give over 80% of the coverage given by the ex-
haustive enumeration approach in [LRO96], while incurring
only 2% of the execution cost incurred by the latter. We also
demonstrated the flexibility of our algorithms in handling a
spectrum of cost-coverage tradeoffs.

References

[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. S.
Subrahmanian. Query caching and optimization in distributed me-
diator systems. In Proceedings of SIGMOD-96, 1996.

[AHK96] Yigal Arens, Chung-Nan Hsu, and Craig A. Knoblock.
Query processing in the SIMS information mediator. In Austin
Tate, editor, Advanced Planning Technology, pages 61-69. AAAI
Press, Menlo Park, California, 1996.

[BRV98] L. Bright, L. Raschid, M. Vidal. Optimization of
Wrappers and Mediators for Web Accessible Data Sources (Web-
Sources). In CIKM’98 Workshop on Web Information and Data
Management (WIDM’98),1998.

[C01] K.S. Candan. Query optimization in Multi-media and Web
Databases. ASU CSE TR 01-003. Computer Science & Engg.
Arizona State University.

[CGHI94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantino, J.Ullman, J. Widom. The TSIMMIS project:
Integration of heterogeneous information sources. In IPSJ, Japan,
1994.

[CKPS95] S. Chaudhuri, R. Krishnamurthy, S. Potaminos and K.
Shim. Optimizing queries with materialized views. ICDE. 1995.

[DL99] A. Doan and A. Levy. Efficiently Ordering Plans for Data
Integration. The IJCAI-99 Workshop on Intelligent Information
Integration, Stockholm, Sweden, 1999.

[DG97a] O.M. Duschka and M.R. Genesereth. Answering recur-
sive queries using views. In Proc. PODS,1997.

[DG97b] O.M. Duschka and M.R. Genesereth. Query planning in
infomaster. In 12th ACM Symposium on Applied Computing, San
Jose, CA, 1997.

[DL97] O. M. Duschka and A. Y. Levy. Recursive plans for infor-
mation gathering. In Proc. IJCAI, 1997

[FKL97] D. Florescu, D. Koller, and A. Levy. Using probabilistic
information in data integration. In Proceeding of the International
Conference on Very Large Data Bases (VLDB), 1997.

[FW97] M. Friedman and D. Weld. Efficiently executing
information-gathering plans. In Proceeding of the International
Joint Conference of Artificial Intelligence (IJCAI), pages 785-791,
1997.

[FLMS99] D. Florescu, A. Levy, I. Manolescu, and D. Suciu.
Query optimization in the presence of limited access patterns. In
Proc. SIGMOD, 1999.

[FMRU99] M. Franklin, G. Mihaila, L. Raschid, T.Urhan, M.E.
Vidal, V. Zadorozhny. Search and Query Wide-Area Distributed
Collections. Presented at the 1999 Russian National Conference
on Digital Libraries, St. Petersburg, October 1999.

[GRZ
]

00] Jean-Robert Gruser, Louiqa Raschid, Vladimir
Zadorozhny, Tao Zhan: Learning Response Time for WebSources
Using Query Feedback and Application in Query Optimization.
VLDB Journal 9(1): 18-37 (2000)

[HKWY97] L. Haas, D. Kossman, E.L. Wimmers, J. Yang. Opti-
mizing queries across diverse data sources. In VLDB Conference,
1997.

[IFF
]

99] Zachary G. Ives, Daniela Florescu, Marc A. Friedman,
Alon Y. Levy, and Daniel S. Weld. An adaptive query execution
system for data integration. In Proc. of ACM SIGMOD Int. Conf.
on Management of Data (SIGMOD), pages 299-310. ACM Press,
1999.

[KG99] S. Kambhampati and S. Gnanaprakasam. Optimizing
source-call ordering in information gathering plans.Proc. IJCAI-
99 Workshop on Intelligent Information Integration, 1999.

[KMA
]

98] C. Knoblock, S. Minton, J. Ambite, N. Ashish, P.
Modi, I. Mushlea, A. Philpot, and S. Tejada. Modeling web
sources for information integration. In Proc. of the National Con-
ference on Artificial Intelligence (AAAI), 1998.

[KW96] C. Kwok, and D. Weld. Planning to gather information.
In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, 1996.

[LK98] E. Lambrecht and S. Kambhampati. Optimizing informa-
tion gathering plans. Proc. AAAI-98 Workshop on Intelligent In-
formation Integration, 1998.

[LKG99] E. Lambrecht, S. Kambhampati and S. Gnanaprakasam.
Optimizing recursive information gathering plans. In Proceeding
of the International Joint Conference on Artificial Intelligence (IJ-
CAI), 1999.

[LRO96] A. Levy, A. Rajaraman, J. Ordille. Query Heterogeneous
Information Sources Using Source Descriptions. In VLDB Confer-
ence, 1996.

[MRV00] George A. Mihaila, Louiqa Raschid, Maria-Esther Vidal:
Using Quality of Data Metadata for Source Selection and Ranking.
WebDB (Informal Proceedings) 2000: 93-98

[Nau98] F. Naumann. Data fusion and data quality. In Proc. of the
New Techniques & Technologies for Statistics Seminar (NTTS).
Sorrento, Italy. 1998.

[NLF99] F. Naumann, U. Leser, J. Freytag. Quality-driven Integra-
tion of Heterogeneous Information Systems. In VLDB Conference
1999.

[OV99] M.T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems (2nd Ed). Prentice Hall. 1999.

[PL00] Rachel Pottinger , Alon Y. Levy , A Scalable Algorithm
for Answering Queries Using Views Proc. of the Int. Conf. on
Very Large Data Bases(VLDB) 2000. [SACL79] P. Selinger, M.

Astrahan, D. Chamberlin, R. Lorie, T. Price. Access path selection
in a relational database management system. In SIGMOD 1979.

[YLUG99] R. Yerneni, C. Li, J. Ullman and H. Garcia-Molina.
Optimizing large join queries in mediation systems. In Proc. In-
ternational Conference on Database Theory, 1999.

[VP98] V. Vasslos, Y. Papakonstantinou. Using Knowledge of Re-
dundancy for Query Optimization in Mediators.Proc. AAAI-98
Workshop on Intelligent Information Integration, 1998.

[WS96]Wang, R.Y. and D.M. Strong. Beyond accuracy: What data
quality means to data consumers. Journal on Management of In-
formation Systems. 12(4).

[YPGM98] Ramana Yerneni, Yannis Papakonstantinou, and Hec-
tor Garcia-Molina. Fusion queries over internet databases. In Pro-
ceeding of the 6th Int. Conf. on Extending Database Technology
(EDBT), Valencia, Spain, 1998.

