
Mining, Using and Maintaining Source Statistics for

Adaptive Data Integration

Jianchun Fan and Subbarao Kambhampati

Arizona State University

and

Zaiqing Nie

Microsoft Research Asia

To make query processing effective in data integration scenarios, the mediator needs to be able
to gather and use statistics about data sources as well as to adapt to the often conflicting user

preferences. We present a framework for effectively mining multiple types of statistics including
source coverage statistics, inter-source overlap statistics and source latency profiles. Using these

statistics enables the mediator to optimize the coverage and execution cost respectively. However,
users in data integration systems often require query plans that are optimal with respect to
multiple objectives and such objectives often conflict. We present a joint optimization model that

uses latency as well as coverage/overlap statistics simultaneously to support a spectrum of trade-
offs between the coverage and latency requirements of query plans. Moreover, motivated by the

dynamic and evolving nature of data integration systems, we introduce an incremental approach
for maintaining source statistics.

We describe the details of our approaches and present extensive experimental results in the

context of Bibfinder, a fielded bibliographic mediator system. Our results demonstrate the effec-
tiveness of statistics learning and maintenance and multi-objective optimization.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous Databases;
H.2.4 [Database Management]: Systems—Query Processing; H.3.3 [Information Storage

and Retrieval]: Information Search and Retrieval; H.3.5 [Information Storage and Re-

trieval]: Online Information Services

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Data Integration, Multi-Objective Optimization, Statistics

Mining, Incremental Maintenance

1. INTRODUCTION

The availability of structured information sources on the web has recently led to
significant interest in query processing frameworks that can integrate information
sources available on the Internet. Data integration systems [Duschka et al. 2000;

Parts of this paper–dealing with the learning of coverage and overlap statistics–have been presented

at ICDE 2004 [Nie and Kambhampati 2004]. This paper significantly expands the ICDE paper
by (1) Considering incremental maintenance of statistics (2) learning source latency statistics and

(3) considering multi-objective source selection using coverage as well as latency statistics. This
paper is also differs in content and approach from a related journal publication in IEEE TKDE
[Nie et al. 2004]. Please see the related work section for details.

Authors’ Addresses: (Authors’ names listed in alphabetical order) Jianchun Fan and Subbarao
Kambhampati are with the Department of Computer Science and Engineering, Arizona State

University, Tempe, AZ 85287-5406, email: {jcf, rao}@asu.edu; Zaiqing Nie is with Microsoft
Research Asia, 5F Beijing Sigma Center, No.49 Zhichun Road, Haidian District, Beijing, PR
China, 100080, email: t-znie@microsoft.com.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–0??.

rao
Text Box
ASU CSE Technical Report 05-003May, 2005

2 · Jianchun Fan et al.

Adali et al. 1996; Lambrecht et al. 1999; Levy et al. 1996; Nie et al. 2003; Pottinger
and Levy 2000] are being developed to provide a uniform interface to a multitude of
information sources, query the relevant sources automatically and restructure the
information from different sources. Not only must a data integration system adapt
to the variety of sources available, but it also has to take into account multiple and
possibly conflicting user objectives. Such objectives can include overall coverage
objectives, cost-related objectives (e.g. response time [Gruser et al. 2000]), and
data quality objectives (e.g. density [Naumann et al. 2004], provenance of results
[Buneman et al. 2001]). To address these conflicting user preferences, query opti-
mization in data integration requires the ability to figure out what sources are most
relevant both to the given query and to the specific user objectives. For this pur-
pose, the query optimizer needs to access several types of source-specific statistics
and perform a multi-objective optimization of the query using these statistics.

Unfortunately, the autonomous and decentralized nature of the data sources con-
strains the mediators to operate with very little information about the structure,
scope, contents, and access costs of the information sources they are trying to in-
tegrate. While some types of statistics may well be voluntarily publicized by the
individual data sources, many of these statistics need to be learned/gathered, and
actively maintained by the mediator. This thus raises three challenges:

(1) How to automatically gather various statistics from autonomous sources,

(2) How to use the gathered statistics to support multi-objective query processing,
and

(3) How to maintain the gathered statistics to keep up with the continuously evolv-
ing system.

Not surprisingly, due to the lack of available source statistics, most existing
integration frameworks are unable to support flexible query processing that takes
conflicting user preferences into account.

Our work is motivated and evaluated in the context of Bibfinder (Figure 1,
http://rakaposhi.eas.asu.edu/bibfinder), a fielded bibliography mediation system.
Bibfinder currently integrates several computer science bibliography sources in-
cluding ACM Digital Library, ACM Guide, Network Bibliography, IEEE Explorer,
DBLP, CSB and Sciencedirect. The global schema of Bibfinder is a single relation:
Paper(title, author, conference/journal, year). Each source only covers a subset
of the global schema. Bibfinder presents a unified and more complete view to the
users to query these bibliography sources. The queries submitted to Bibfinder are
selection queries on the Paper relation and they are directed to the most relevant
data sources, and the tuples returned by the sources are presented to the users.
Since its unveiling in December 2002, Bibfinder has answered more than 100,000
queries which were logged and used in our statistics mining and evaluation.

BibFinder offers interesting contrasts with respect to other bibliography search
engines like CiteSeer [CiteSeer]. First of all, because it uses online integration
approach (rather than a data warehouse one), user queries are sent directly to the
integrated Web sources and the results are integrated on the fly to answer a query.
This obviates the need to store and maintain the paper information locally. Sec-
ondly, the sources integrated by BibFinder are autonomous and partially overlap-
ping. By combining the sources, BibFinder can present a unified and more complete

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 3

Fig. 1. The BibFinder User Interface

view to the user. These features require the Bibfinder to tackle the challenges of
mining, using and maintaining various types of source statistics as discussed above.
Specifically, the following are several motivating examples from this scenario:

—A naive way to answer a query is to send it to all the integrated sources, collect
the answers from them and show it to the user. However, some sources may not
have any answers for that query, and different sources may export same answers.
To call every source for every query will unnecessarily increase the work load
of the sources. In stead, the mediator should select only a relevant subset of
the sources to be called for a given query. To make such source selection, the
Bibfinder needs to know the degree of relevance of each source to that query
(coverage), and the size of intersection of answer sets among multiple sources
(overlap). These statistics are not directly available to the mediator. They have
to be mined by the mediator and used in the query processing to figure out the
most relevant subset of sources for a given query.

—For a given bibliography query, the user may want to have some bibliography
entries found as quickly as possible and doesn’t care about the completeness of
the answer set. In this case, the mediator needs to know for that query, which
source is able to respond with the shortest delay. Thus such statistics (latency)
also needs to be learned by the mediator.

—A user might want a query plan to be optimal in multiple dimensions simulta-
neously. For example he/she might want the query to be answered as quickly as
possible and as completely as possible. Therefore the mediator needs to combine
the multiple types of statistics together and tries to jointly optimize the multiple
objectives.

—The Bibfinder system is constantly evolving. New bibliography entries are in-
serted into the individual sources on a daily basis; the focus of interest of the
user population shifts rapidly with the emergence of new “hot spots” of com-
puter science literature; the sources may upgrade their server and network topol-
ogy might change. All these changes indicate that the corresponding statistics
(coverage/overlap and latency) learned by the mediator have to be updated ac-
cordingly so that they can keep being effectively used in query processing.

We have been developing an adaptive data integration framework to address

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

4 · Jianchun Fan et al.

the challenges above. Figure 2 shows the architecture of this framework. Our
contribution can be classified into 3 parts:

1. Mining Query Sensitive Statistics: In this framework the statistics mining
module (Statminer) can automatically identify a set of “frequently accessed query
classes” and gathers source coverage/overlap statistics with respect to them. Stat-

miner also gathers source latency profiles in a query sensitive way by learning them
with respect to the binding patterns of the queries.

Query
Processor

Statistics

Query
List

Statistics
Maintainer

Monitor Statistics
Usage

Modify Statistics

Coverage/Overlap and Latency Statistics

S1
S2

Sn
...

User Queries

Statminer

Learn AV Hierarchies

Discover Frequent
Query Classes

Learn Coverage/
Overalap Statistics

Learn Latency Statistics
w.r.t. Binding Patterns

Fig. 2. The Adaptive Data Integration Architecture

2. Supporting Multi-Objective Query Processing: With the learned sta-
tistics the mediator will be able to make source selection to optimize individual
objectives such as higher coverage or lower latency, using coverage/overlap and
latency statistics respectively.

In data integration systems, the users usually prefer query plans that are optimal
in terms of multiple objectives. Unfortunately such objectives often conflict. A
plan optimal with respect to one objective cannot in general be post-processed
to account for the other objectives. For example, sources with high coverage are
not necessarily the ones that respond quickly. Therefore the mediator will need to
generate a plan optimizing both coverage and latency so that the users can get most
answers as soon as possible. The query processor in our framework adopts a novel
joint optimization model in source selection to resolve conflicting user requirements
with respect to coverage and latency and make flexible trade-offs between them,
using both the coverage/overlap and latency statistics gathered.

3. Incremental Statistics Maintenance: Data integration systems usually
evolve continuously over time. As a result, the statistics of the sources have to be
updated accordingly to keep their accuracy. Maintenance of statistics is not always
a trivial task of relearning, considering the impact of learning cost on the scalability

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 5

of the system. We introduce an incremental statistics maintenance approach for
the purpose of reducing maintenance cost and keeping statistical accuracy.

We have evaluated the mining, usage and maintenance aspects of our adaptive
data integration framework on Bibfinder test bed. We will demonstrate in Section
3.1.4 that the Statminer is able to learn source coverage, inter-source overlap and
source latency statistics effectively. The learned statistics are able to estimate the
statistics for new queries with high accuracy and thus enhance the source selection
task of the query processor. We will then show in Section 3.2.2 that the joint
optimization model we propose can effectively resolve confliction of coverage and
latency and make flexible trade-offs between them. Finally we will show in Section
4.3 that our incremental statistics maintenance approach can significantly reduce
the learning cost and keep the statistics accurate.

The rest of this paper is organized as follows. In the next section, we will first in-
troduce Statminer which automatically discovers frequent query classes and learns
source coverage/overlap statistics. Then we will show how the source latency sta-
tistics are learned in a query sensitive way. In Section 3 we will demonstrate how
using learned statistics can help source selection. We will discuss the need of multi-
objective query optimization, and present our joint optimization model and show
the experimental evaluation on it. In Section 4 we will discuss the motivation and
present the solution and empirical evaluation of incremental statistics maintenance
approach. We will discuss related work in Section 5 and summarize our conclusion
in Section 6.

2. MINING SOURCE STATISTICS

In Bibfinder, the mediator keeps track of a query list which contains the past user
queries. For each query it keeps information of how often it is asked and how many
answers came from each source and source set. Figure 3 shows a fragment of the
query list in Bibfinder. The query list is used in learning source statistics.

Query Frequency |Answers| Overlap (Coverage)
DBLP 35
CSB 23

CSB, DBLP 12
DBLP, Science 3

Science 3
CSB, DBLP, Science 1

Author=”andy king” 106 46

CSB, Science 1
CSB 16

DBLP 16
CSB, DBLP 7

ACMdl 5
ACMdl, CSB 3

ACMdl, DBLP 3
ACMdl, CSB, DBLP 2

Author=”fayyad” &
Title=”data mining”

1 27

Science 1

Fig. 3. A fragment of query list in Bibfinder.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

6 · Jianchun Fan et al.

2.1 Mining Coverage and Overlap Statistics

To efficiently answer user queries, it is important to find and access the most relevant
subset of the sources for the given query. Suppose, the user asks a selection query
Q(title,author,year) :−

paper(title, author, conference/journal, year),
conference/journal =“SIGMOD”.

A naive way of answering this selection query would be to send it to all the data
sources, wait for the results, eliminate duplicates, and return the answers to the
user. This not only leads to increased query processing time and duplicate tuple
transmission, but also unnecessarily increases the load on the individual sources.
A more efficient and polite approach would be to direct the query only to the most
relevant sources. For example, for the selection query above, DBLP and ACM

Digital Library is most relevant, and Network Bibliography is much less relevant.
Furthermore, since DBLP stores records of virtually all the SIGMOD papers, a call
to ACM Digital Library is largely redundant1.

2.1.1 Coverage and Overlap Statistics. In order to judge the source relevance
however, Bibfinder needs to know the coverage of each source S with respect to
the query Q, i.e. P (S|Q), the probability that a random answer tuple for query
Q belongs to source S. Given this information, we can rank all the sources in
descending order of P (S|Q). The first source in the ranking is the one we would
want to access first while answering query Q. Since the sources may be highly
correlated, after we access the source S′ with the maximum coverage P (S′|Q), the
second source S′′ that we access must be the one with the highest residual coverage
(i.e. provides the maximum number of those answers that are not provided by the
first source S′). Specifically we need to determine the source S′′ that has the next
best rank in terms of coverage but has minimal overlap (common tuples) with S′.

If we have the coverage and overlap statistics for every possible query, we can
get the complete order in which to access the sources. However it would be very
costly to learn and store statistics w.r.t. every source-query combination, and
overlap information about every subset of sources with respect to every possible
query. The difficulty here is two-fold. First there is the cost of “learning”–which
would involve probing the sources with all possible queries a priori, and computing
the coverage and overlap with respect to the queries. The second is the cost of
“storing”the statistics.

One way of keeping both learning and storage costs down is to learn statistics
only with respect to a smaller set of “frequently asked” queries that are likely
to be most useful in answering user queries. This strategy trades accuracy of
statistics for reduced statistics learning/storing costs. In the BibFinder scenario,

1In practice, ACM Digital Library is not completely redundant since it often provides additional
information about papers – such as abstracts and citation links – that DBLP does not provide.

BibFinder handles this by dividing the paper search into two phases–in the first phase, the user is
given a listing of all the papers that satisfy his/her query. Bibfinder uses a combination of three

attributes: title, author, and year as the primary key to uniquely identify a paper across sources.
In the second phase, the user can ask additional details on specific papers. While it is important
to call every potentially relevant source in the second phase, we do not have this compulsion in

the first phase. For the rest of this paper, all our references to BibFinder are to its first phase.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 7

for example, we could learn statistics with respect to the list of queries that are
actually posed to the mediator over a period of time. Bibfinder facilitates this by
maintaining a log of queries, and for each query the statistics on how many of the
query answers came from which sources. The motivation for such an approach is
that even if a mediator cannot provide accurate statistics for every possible query,
it can still achieve a reasonable average accuracy by keeping more accurate coverage
and overlap statistics for queries that are asked more frequently. The effectiveness
of this approach is predicated on the belief that in most real-world scenarios, the
distribution of queries posed to a mediator is not uniform, but rather Zipfian. This
belief is amply validated in BibFinder. Figure 4 shows the distribution of the
keywords, and bindings for the Year attribute used in the first 15000 queries that
were posed to Bibfinder. Figure 4(a) shows that the most frequently asked 10%
keywords appear in almost 60% of all the selection queries binding attribute Title.
Figure 4(b) shows that the users are much more interested in recently published
papers.

(a) Keywords Distribution

0

100

200

300

400

500

600

700

800

900
20

03

19
98

19
93

19
88

19
83

19
78

19
73

19
68

Year

F
re

q
u

en
cy

(b) Queries binding attribute year

Fig. 4. Query Distributions in BibFinder

2.1.2 Handling New Queries through Generalization. Once we subscribe to the
idea of learning statistics with respect to a workload query list, it would seem as if
the problem of statistics gathering is solved. When a new query is encountered, the
mediator simply needs to look into the query list to see the coverage and overlap
statistics on this query when it was last executed. In reality, we still need to address
the issue of what to do when we encounter a query that was not covered by the
query list. The key here is “generalization”–store statistics not with respect to the
specific queries in the query list, but rather with respect to query classes. The query
classes will have a general-to-specific partial ordering among them. This in turn
induces a hierarchy among the query classes, with the query list queries making
up the leaf nodes of the hierarchy. The statistics for the general query classes
can then be computed in terms of the statistics of their children classes. When a
new query is encountered that was not part of the workload query list, it can be
mapped into the set of query classes in the hierarchy that are most similar, and the
(weighted) statistics of those query classes can be used to handle the new query.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

8 · Jianchun Fan et al.

Such an organization of the statistics offers an important additional flexibility: we
can limit the amount of statistics stored as much as we desire by stripping off (and
not storing statistics for) parts of the query hierarchy.

The foregoing discussion about query classes raises the issue regarding the way
query classes are defined to begin with. For selection queries that bind (a subset
of) attributes to specific values (such as the ones faced by Bibfinder), one way is
to develop “general-to-specific” hierarchies over attribute values (AV hierarchies,
see below). The query classes themselves are then naturally defined in terms of
(cartesian) products over the AV hierarchies. Figure 5 shows an example of AV
hierarchies and the corresponding query classes (see Section 2.1.3 for details). AV
hierarchies could be hand-developed or automatically generated (see Section 2.1.4)
using clustering techniques. An advantage of defining query classes through the
cartesian product of AV hierarchies is that mapping new queries into the query
class hierarchy is straightforward – a selection query binding attributes Ai and
Aj will only be mapped to a query class that binds either one or both of those
attributes (to possibly general values of the attribute).2

The approach to statistics learning described and motivated in the foregoing
has been implemented in Statminer, and has been evaluated in the context of
Bibfinder. In this paper, we describe the details of the Statminer approach, and its
use in Bibfinder. Statminer starts with a list of workload queries. The query list
is collected from the logs of queries submitted to Bibfinder, and not only gives the
specific queries submitted to Bibfinder, but also coverage and overlap statistics on
how many tuples of each query came from which source. The query list is used to
automatically learn AV hierarchies. The space of query classes is then defined in
terms of the product of these AV hierarchies. The query classes are further pruned
such that only those classes that subsume more than a given number of queries
(specified by a frequency threshold) are retained. For each of these remaining
classes, class-source as well as class-source set association rules are learned. An
example of a class-source association rule could be that SIGMOD → DBLP with
confidence 100%, which means that the information source DBLP covers all the
paper information for SIGMOD related queries.

In the rest of this section we first define some terminology about query classes
and AV hierarchies. Then we introduce the algorithms for learning AV hierarchies
and discovering frequent query classes. We then describe how coverage and overlap
statistics are learned for the frequent query classes, and how the learned statistics
are used to develop a query plan for new queries.

2.1.3 AV Hierarchies and Query Classes. AV Hierarchy: As we consider selec-
tion queries, we can classify the queries in terms of the selected attributes and their
values. To abstract the classes further we assume that the mediator has access to
the so-called “attribute value hierarchies” for a subset of the attributes of each me-
diated relation. An AV hierarchy (or attribute value hierarchy) over an attribute A

2This also explains why we don’t cluster the query list queries directly–there is no easy way of
deciding which query cluster(s) a new query should be mapped to without actually executing the
new query and using its coverage and overlap statistics to compute the distance between that

query and all the query clusters!

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 9

RT,02 AI,RT

SIGMOD,RT ICDE,RT DB,02 AAAI,RT AI,01 ECP,RT

RT,01

SIGMOD01 ICDE02ICDE01 AAAI01

DB,01

ECP01

RT,RT

DB,RT

AI

SIGMOD ICDE AAAI

RT

2001

ECP

2002

RT

DB

AV Hierarchy for the Conference Attribute AV Hierarchy for the Year Attribute

SIGMOD02 ECP02 AAAI02

AI,02

Query Class Hierarchy

Fig. 5. AV Hierarchies and the Corresponding Query Class Hierarchy

is a hierarchical classification of the values of the attribute A. The leaf nodes of the
hierarchy correspond to specific concrete values of A, while the non-leaf nodes are
abstract values that correspond to the union of values below them. Figure 5 shows
two very simple AV hierarchies for the “conference” and “year” attributes of the
“paper” relation. Note that the hierarchies do not have to exist for every attribute,
but rather only for those attributes over which queries are classified. We call such
attributes the classificatory attributes. We can choose as the classificatory at-
tributes the best k attributes whose values differentiate the sources the most, where
the number k is decided based on a tradeoff between prediction performance and
the computational complexity of learning the statistics by using these k attributes.
The selection of the classificatory attributes may either be done by the mediator
designer or using automated techniques. Similarly, the AV hierarchies themselves
can either be hand-coded by the designer, or can be learned automatically. In
Section 2.1.4, we give details on how we learn them automatically.

Query Classes: Since a typical selection query will have values of some set of
attributes bound, we group such queries into query classes using the AV hierarchies
of the classificatory attributes. A query feature is defined as the assignment of
a classificatory attribute to a specific value from its AV hierarchy. A feature is
“abstract” if the attribute is assigned an abstract (non-leaf) value from its AV
hierarchy. Sets of features are used to define query classes. Specifically, a query
class is a set of (selection) queries that all share a particular set of features. The
space of query classes is just the cartesian product of the AV hierarchies of all the
classificatory attributes. Specifically, let Hi be the set of features derived from
the AV hierarchy of the ith classificatory attribute. Then the set of all query
classes (called classSet) is simply H1 × H2 × ... × Hn. The AV hierarchies induce
subsumption relations among the query classes. A class Ci is subsumed by class Cj

if every feature in Ci is equal to, or a specialization of, the same dimension feature
in Cj . A query Q is said to belong to a class C if the values of the classificatory
attributes in Q are equal to, or are specializations of, the features defining C.
Figure 5 shows an example class hierarchy for a very simple mediator with two
example AV hierarchies. The query classes are shown at the bottom, along with
the subsumption relations between the classes.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

10 · Jianchun Fan et al.

Query List: We assume that the mediator maintains a query list QList, which
keeps track of the user queries, and for each query saves statistics on how often it
is asked and how many of the query answers came from which sources. In Figure
3, we show a query list fragment. The statistics we remember in the query list
are: (1) the query frequency, (2) the total number of distinct answers from all the
sources, and (3) the number of answers from each source set which has answers
for that query. The query list is kept as a XML file which can be stored on the
mediator’s hard disk or other separate storage devices. Only the learned statistics
for the frequent query classes will remain in the mediator’s main memory for fast
access. We use FRQ to denote the access frequency of a query Q, and FR to denote
the total frequency of all the queries in QList. The query probability of a query Q,
denoted by P (Q), is the probability that a random query posed to the mediator is

the query Q, and is estimated as: P (Q) =
FRQ

FR
. The class probability of a query

class C, denoted by P (C), is the probability that a random query posed to the
mediator is subsumed by the class C. It is computed as: P (C) =

∑
Q∈C P (Q).

Coverage and Overlap w.r.t Query Classes: The coverage of a data source S
with respect to a query Q, denoted by P (S|Q), is the probability that a random

answer tuple of query Q is present in source S. The overlap among a set Ŝ of
sources with respect to a query Q, denoted by P (Ŝ|Q), is the probability that a

random answer tuple of the query Q is present in each source S ∈ Ŝ. The overlap
(or coverage when Ŝ is a singleton) statistics w.r.t. a query Q are computed using
the following formula

P (Ŝ|Q) =
NQ(Ŝ)

NQ

Here NQ(Ŝ) is the number of answer tuples of Q that are in all sources of Ŝ, NQ is
the total number of answer tuples for Q. We assume that the union of the contents
of the available sources within the system covers 100% of the answers of the query.
In other words, coverage and overlap is measured relative to the available sources.

We also define coverage and overlap with respect to a query class C rather than
a single query Q. The overlap of a source set Ŝ (or coverage when Ŝ is a singleton)
w.r.t. a query class C can be computed using the following formula:

P (Ŝ|C) =
P (C ∩ Ŝ)

P (C)
=

∑
Q∈C P (Ŝ|Q)P (Q)

P (C)

The coverage and overlap statistics w.r.t. a class C is used to estimate the source
coverage and overlap for all the queries that are mapped into C. These coverage and
overlap statistics can be conveniently computed using an association rule mining
approach as discussed below.

Class-Source Association Rules: A class-source association rule represents
strong associations between a query class and a source set (which is some sub-
set of sources available to the mediator) . Specifically, we are interested in the

association rules of the form C → Ŝ, where C is a query class, and Ŝ is a source set
(possibly singleton). The support of the class C (denoted by P (C)) refers to the

class probability of the class C, and the overlap (or coverage when Ŝ is a single-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 11

ton) statistic P (Ŝ|C) is simply the confidence of such an association rule(denoted

by P (Ŝ|C) = P (C∩Ŝ)
P (C)). Examples of such association rules include: AAAI → S1,

AI → S1, AI&2001 → S1 and 2001 → S1 ∧ S2.

2.1.4 Generating AV Hierarchies Automatically. In this section we discuss how
to systematically build AV Hierarchies based on the query list maintained by the
mediator. We first define the distance function between two attribute values. Next
we introduce a clustering algorithm to automatically generate AV Hierarchies. Then
we discuss some complications of the basic clustering algorithm: preprocessing
different types of attribute values from the query list and estimating the coverage
and overlap statistics for queries with low selectivity binding values. Finally we
discuss how to flatten our automatically generated AV Hierarchies.

Distance Function: The main idea of generating an AV hierarchy is to cluster
similar attribute values into classes in terms of the coverage and overlap statistics of
their corresponding selection queries binding these values. The problem of finding
similar attribute values becomes the problem of finding similar selection queries. In
order to find similar queries, we define a distance function to measure the distance
between a pair of selection queries (Q1, Q2):

d(Q1, Q2) =

√∑

i

[P (Ŝi|Q1) − P (Ŝi|Q2)]2

Where Ŝi denotes the ith source set of all possible source sets in the mediator.
Although the number of all possible source sets is exponential in terms of the
number of available sources, we only need to consider source sets with answers
for at least one of the two queries to compute d(Q1, Q2).

3 Note that we are not
measuring the similarity of the answers of Q1 and Q2, but rather the similarity
of the way their answer tuples are distributed over the sources. In this sense,
we may find that a selection query conference = ”AAAI” and another query
conference = ”SIGMOD” to be similar in as much as the sources having tuples
for the former also have tuples for the latter. Similarly we define a distance function
to measure the distance between a pair of query classes (C1, C2):

d(C1, C2) =

√∑

i

[P (Ŝi|C1) − P (Ŝi|C2)]2

We compute a query class’s coverage and overlap statistics P (Ŝ|C) according to the
definition of the overlap (or coverage) w.r.t. to a class given in Section 2.1.3. The
coverage and overlap statistics P (Ŝ|Q) for a specific query Q are computed using
the statistics from the query list maintained by the mediator.

Generating AV Hierarchies: For now we will assume that all attributes have
a discrete set of values, and we will also assume that the corresponding coverage

3For example, suppose query Q1 gets tuples form only sources S1 and S5, and Q2 gets tuples from
S5 and S7, we will only consider source sets {S1},{S5},{S1, S5},{S7}, and {S5, S7}. We will not
consider {S1, S7}, {S1, S5, S7}, {S2}, and many other source sets without any answer for either

of the queries.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

12 · Jianchun Fan et al.

and overlap statistics are available (see the last two paragraphs in this subsec-
tion regarding some important practical considerations). We now introduce GAVH
(Generating AV Hierarchy, see Figure 6), an agglomerative hierarchical clustering
algorithm ([7]), to automatically generate an AV Hierarchy for an attribute.

Algorithm GAVH()
for (each attribute value)

generate a cluster node C;

feature vector C.fv = (
−−−−−→
P (Ŝ|Q), P (Q));

children C.children = null;
put cluster node C into AVQueue;

end for
while (AVQueue has more than two clusters)

find the most similar pair of clusters C1 and C2;
/* d(C1, C2) is the minimum of all d(Ci, Cj) */
generate a new cluster C;

C.fv = (
P (C1)×

−−−−−→
P (Ŝ|C1)+P (C2)×

−−−−−→
P (Ŝ|C2)

P (C1)+P (C2))
, P (C1)+

P (C2));
C.children = (C1, C2);
put cluster C into AVQueue;
remove cluster C1 and C2 from AVQueue;

end while
End GAVH ;

Fig. 6. The GAVH algorithm

The GAVH algorithm will build an AV Hierarchy tree, where each node in the
tree has a feature vector summarizing the information that we maintain about an

attribute value cluster. The feature vector is defined as: (
−−−−−→
P (Ŝ|C), P (C)), where

−−−−−→
P (Ŝ|C) is the coverage and overlap statistics vector of the cluster C for all the source
sets and P (C) is the class probability of the cluster C. Feature vectors are only
used during the construction of AV hierarchies and can be removed afterwards. As
we can see from Figure 6, we can incrementally compute a new cluster’s coverage

and overlap statistics vector
−−−−−→
P (Ŝ|C) by using the feature vectors of its children

clusters C1, C2:

−−−−−→
P (Ŝ|C) =

P (C1) ×
−−−−−→
P (Ŝ|C1) + P (C2) ×

−−−−−→
P (Ŝ|C2)

P (C1) + P (C2))

P (C) = P (C1) + P (C2)

The attribute values for generating AV hierarchies are extracted from the query
list maintained by the mediator. Since the GAVH algorithm assumes that all at-
tributes have discrete domains, we may need to preprocess the values of some types
of attributes. For continuous numerical attributes, we divide the domain of the
attribute into small ranges. Each range is treated as a discrete attribute value. For
keyword-based attributes such as the attribute ”title” in Bibfinder, we learn the
frequently asked keyword sets using an item set mining algorithm. Each frequent

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 13

keyword set will be treated as a discrete attribute value. Keyword sets that are
rarely asked will not be remembered as attribute values.

If an attribute value (i.e. a selection query binding value) is too general, some
sources may only return a subset of answers to the mediator, while others may not
even answer such general queries. In such cases the mediator will not be able to
accurately figure out the number of tuples in these sources, and thus cannot know
the coverage and overlap statistics of these queries to generate AV hierarchies. To
handle this we use the coverage statistics of more specific queries in the query list
to estimate the source coverage and overlap of the original queries. Specifically, we
treat the original general queries as query classes, and the statistics of the specific
queries4 within these classes will be used to estimate the coverage of the sources
for these general queries using the following formula:

P (Ŝ|C)
.
=

∑
Q∈C and (Q is specific) P (Ŝ|Q)P (Q)
∑

Q∈C and (Q is specific) P (Q)

As we can see, there is a slight difference between this formula and the formula
for the definition of the overlap (or coverage) w.r.t. to class C. The difference is
that here we only consider the overlap (or coverage) of specific queries within the
class.

Flattening Attribute Value Hierarchies: Since the nodes of the AV Hierarchies
generated using our GAVH algorithm contain only two children each, we may get
a hierarchy with a large number of layers. One potential problem with such kinds
of AV Hierarchies is that the levels of abstractions may not actually increase when
we go up the hierarchy. For example, in Figure 7, assuming the three attribute
values have the same (or very similar) coverage and overlap statistics, then we
should not put them into separate clusters. If we put these attribute values into
two clusters C1 and C2, these two clusters are essentially in the same level of
abstraction. Therefore we may waste our memory space on remembering the same
(or very similar) statistics multiple times.

In order to prune these unnecessary clusters, we use another algorithm called
FAVH (Flattening AV Hierarchy, see Figure 8). FAVH starts the flattening proce-
dure from the root of the AV Hierarchy, then recursively checks and flattens the
whole hierarchy.

To determine whether a cluster Cchild should be preserved in the hierarchy, we
compute the tightness of the cluster, which measures the accuracy of its statistics.
We consider a cluster is tight if all the queries subsumed by the cluster (especially
frequently asked ones) are close to its center. The tightness t(C), of a cluster C, is
calculated as following:

t(C) =
1

∑
Q∈C

P (Q)
P (C)d(Q,C)

where d(Q,C) is the distance between the query Q and the center of the cluster.

4A query in the query list is called a specific query, if the number of answer tuples of the query

returned by each source is less than the source’s limitation.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

14 · Jianchun Fan et al.

Fig. 7. An example of Flattening AV Hierarchy

Algorithm FAVH(clusterNode C) //Starting from root;
if(C has children)

for (each child node Cchild in C)
put Cchild into Children Queue

for (each node Cchild in Children Queue)
if (d(Cchild, C) <= 1

t(Cchild)
)

put (Cchild).children into Children Queue;
remove Cchild from Children Queue;

end if
for (each children node Cchild in Children Queue)

FAVH(Cchild);
end if

End FAVH ;

Fig. 8. The FAVH algorithm

If the distance, d(Cchild, C), between a cluster and its parent cluster C is not
larger than 1

t(Cchild) , then we consider the cluster as unnecessary and put all of its

children directly into its parent cluster.

2.1.5 Discovering Frequent Query Classes. Once the AV hierarchies are in place,
the query class hierarchy is defined in terms of the cartesian product of the AV
hierarchies. The statistics are stored with respect to these query classes. As we
discussed earlier, it may be prohibitively expensive to learn and keep in memory
the coverage and overlap statistics for every possible query class. In order to keep
the amount of statistics low, we would like to prune query classes which are rarely
accessed. In this section we describe how frequently accessed classes are discovered
in a two-stage process.

We use the term candidate frequent class to denote any class with class probability
more than the minimum frequency threshold minfreq. The example classes shown
in Figure 5 with solid frame lines are candidate frequent classes. As we can see,
some queries may have multiple lowest level ancestor classes which are candidate
frequent classes and are not subsumed by each other. For example, the query (or
class) (ICDE,01) has both the class (DB,01) and class (ICDE,RT) as its parent
class. For a query with multiple ancestor classes, we need to map the query into

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 15

Algorithm DFC(QList; minfreq : minimum support;
n : # of classificatory attributes)

classSet = {};
for(k = 1; k <= n; k + +)

Let classSetk = {};
for(each query Q ∈ QList)

CQ = genClassSet(k, Q, ...);
for(each class c ∈ CQ)

if(c /∈ classSetk)
then classSetk = classSetk ∪ {c};

c.frequency = c.frequency +
Q.frequency;

end for
end for
classSetk = {c ∈ classSetk|c.frequency >=

minfreq};
classSet = classSet ∪ classSetk;

end for
return classSet;

End DFC ;

Fig. 9. The DFC algorithm

a set of least-general ancestor classes which are not subsumed by each other (see
Section 3.1). We will combine the statistics of these mapped classes to estimate the
statistics for the query.

We also define the class access probability of a class C, denoted by Pmap(C), to
be the probability that a random query posed to the mediator is actually mapped
to the class C. It is estimated using the following formula:

Pmap(C) =
∑

Q is mapped to C

P (Q)

Since the class access probability of a candidate frequent class will be affected by
the distribution of other candidate frequent classes, in order to identify the classes
with high class access probability, we have to discover all the candidate frequent
classes first. In the next subsection, we will introduce an algorithm to discover
candidate frequent classes. Later in this section, we will then discuss how to prune
candidate frequent classes with low class access probability.

Discovering Candidate Frequent Classes: We present an algorithm, DFC
(Discovering Candidate Frequent Classes), (see Figure 9), to efficiently discover
all the candidate frequent classes. The DFC algorithm dynamically prunes classes
during counting and uses the anti-monotone property5 [Han and Kamber 2000] to
avoid generating classes which are supersets of the pruned classes.

Specifically the algorithm makes multiple passes over the query list QList. It
first finds all the candidate frequent classes with just one feature, then it finds
all the candidate frequent classes with two features using the previous results and
the anti-monotone property to efficiently prune classes before it starts counting,

5If a set cannot pass a test, all of its supersets will fail that test as well.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

16 · Jianchun Fan et al.

Procedure genClassSet(k : number of features;Q :
the query; classSet : discovered frequent class set; AV
hierarchies)

for (each feature fi ∈ Q)
ftSeti = {fi};
ftSeti = ftSeti ∪ ({ancestor(fi)} − {root});

end for
candidateSet={};
for (each k feature combination (ftSetj1 , ..., ftSetjk

))
tempSet = ftSetj1 ;
for (i = 1; i < k; i + +)

remove any class C /∈ classSeti from tempSet;
tempSet = tempSet× ftSetji+1

;
end for
remove any class C /∈ classSetk−1 from tempSet;
candidateSet = candidateSet ∪ tempSet;

end for
return candidateSet;

End genClassSet ;

Fig. 10. Ancestor class set generation procedure

and so on. The algorithm continues until it gets all the candidate frequent classes
with all the n features (where n is the total number of classificatory attributes for
which AV-hierarchies have been learned). For each query Q in the k-th pass, the
algorithm finds the set of k feature classes the query falls in, and for each class C in
the set, it increases the class probability P (C) by the query probability P (Q). The
algorithm prunes the classes with class probability less than the minimum threshold
probability minfreq.

The DFC algorithm finds all the candidate ancestor classes with k features for
a query Q = {Ac1

, ..., Acn
, frequency} by procedure genClassSet(see Figure 10),

where Aci
is the feature value of the ith classificatory attribute. The procedure

prunes infrequent classes using the frequent class set classSet found in the previous
(k − 1) passes. In order to improve the efficiency of the algorithm, it dynamically
prunes infrequent classes during the cartesian product procedure.

Example: Assume we have a query Q={ICDE, 2001, 50} (here 50 is the query
frequency) and k = 2. We first extract the feature(binding) values {Ac1

=
ICDE,Ac2

= 2001} from the query. Then for each feature, we generate a fea-
ture set which includes all the ancestors of the feature (see the corresponding AV
Hierarchies in Figure 5) . This leads to two feature sets: ftSet1 = {ICDE,DB}
and ftSet2 = {2001}. Suppose the class with the single feature “ICDE” is not a
frequent class in the previous results, then any class with the feature “ICDE” can
not be a frequent class according to the anti-monotone property. We can prune the
feature “ICDE” from ftSet1, then we get the candidate 2-feature class set for the
query Q,

candidateSet = ftSet1 × ftSet2 = {DB&2001}.

Pruning Low Access Probability Classes: The DFC algorithm will discover all
the candidate frequent classes, which unfortunately may include many infrequently

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 17

mapped classes. Here we introduce another algorithm, PLC (Pruning Low Access
Probability Classes, see Figure 11), to assign class access probability and delete
the classes with low access probability. The algorithm will scan the query list
once, and map each query into a set of least-general candidate frequent ancestor
classes (see Section 3.1). It then computes the class access probability for each class
by counting the total frequencies of all the queries mapped to the class. The class
with the lowest class access probability (less than minfreq) will be pruned, and the
queries of the pruned classes will be re-mapped to other existing ancestor classes.
The pruning process will continue until there is no class with access probability less
than the threshold minfreq.

Procedure PLC(QList; classSet: frequent classes from
DFC; minfreq)

for (each C ∈ classSet)
initialize FR = 0, and FRC = 0 ;

for(each query Q)
Map Q into a set of least-general classes mSet;
for(each C ∈ mSet)

FRC ← FRC + FRQ;
FR = FR + FRQ;

end for
end for
for(each class C)

class access probability Pmap(C)← FRC

FR
;

while ((∃C ∈ classSet) Pmap(C) < minfreq)
Delete the class with the smallest class access

probability, C′, from classSet;
Re-map the queries which are mapped to C′;
for(new mapped class CnewMapped)

recompute Pmap(CnewMapped);
end while

End PLC ;

Fig. 11. The PLC procedure

2.1.6 Mining Coverage and Overlap Statistics. For each frequent query class in
the mediator, we learn coverage and overlap statistics. We use a minimum support
threshold minoverlap to prune overlap statistics for uncorrelated source sets.

A simple way of learning the coverage and overlap statistics is to make a sin-
gle pass over the QList, map each query into its ancestor frequent classes (see
Section 3.1, and update the corresponding coverage and overlap statistics vectors
−−−−−→
P (Ŝ|C) of its ancestor classes using the query’s coverage and overlap statistics vec-

tor
−−−−−→
P (Ŝ|Q) through the formula

−−−−−→
P (Ŝ|C) =

∑
Q∈C

−−−−−→
P (Ŝ|Q)×P (Q)

P (C) . When the map-

ping and updating procedure is completed, we simply need to prune the overlap
statistics which are smaller than the threshold minoverlap. One potential problem
of this naive approach is the possibility of running out of memory, since the system
has to remember the coverage and overlap statistics for each source set and class

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

18 · Jianchun Fan et al.

combination. If the mediator has access to n sources and has discovered m frequent
classes, then the memory requirement for learning these statistics is m × 2n × k,
where k is the number of bytes needed to store a float number. If k = 1, m = 10000,
and the total number of memory available is 1GB, this approach would not scale
well when the number of sources is greater than 16.

In order to handle scenarios with large number of sources, we use a modified
Apriori algorithm [Agrawal and Srikant 1994] to avoid considering any supersets
of an uncorrelated source set. We first identify individual sources with coverage
statistics more than minoverlap, and keep coverage statistics for these sources.
Then we discover all 2-sourceSet 6 with overlap more than minoverlap, and keep
only overlap statistics for these source sets. This process continues until we have
the overlap statistics for all the correlated source sets.

2.2 Mining Source Latency Statistics

In data integration scenarios, the speed of retrieving the answer tuples is also a
very important measure of the goodness of a query plan. To optimize the execution
cost, the mediator needs the source latency 7 statistics, since the sources differ
significantly in their latency. Figure 12 shows the average time for retrieving the
answer tuples from the 5 of the data sources using 200 queries randomly chosen from
real user queries submitted to Bibfinder. It shows significant differences in query
processing latency between the sources , which motivates our study on learning
latency statistics of the sources and using them together with coverage/overlap
statistics in our adaptive data integration framework.

0

1000

2000

3000

4000

5000

6000

7000

acm csb dblp net science

sources

A
vg

. R
es

p
o

n
se

 T
im

e
(m

s)

Fig. 12. Average response time for the 5 data sources in Bibfinder.

2.2.1 Defining Latency (Response Time). Because of the autonomous and dy-
namic nature of the data sources and the network topology, the latency statistics
of individual sources have to be learned by the mediator. The first issue is how
to define the latency. Some work has been done in learning source latency pro-
files. For example, [Gruser et al. 2000] defines latency (response time) as a source

6k-sourceSet denotes the source sets with only k sources.
7We use latency and response time interchangeably through out this paper.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 19

specific measure with some variations on several dimensions (See detailed discus-
sion in section 5). Such a definition assumes that the latency of a source is query
insensitive and different queries submitted to a source have similar latency values
(under similar settings, such as the time of a day they are submitted, and quantity
of their answers). However such an assumption is questionable in many cases. For
example when we monitored queries on Bibfinder, we found that the same data
sources sometimes give very different latency values on different queries.

This observation suggests that to accurately estimate latency for the new queries,
the mediator has to learn the latency value in a query sensitive manner. In other
words, for any single data source, we have to learn latency values for different types
of queries. This leads to the next challenge: how to properly classify the queries
so that queries within the same category have similar latency values for that data
source.

We already have the “query class” model from our coverage/overlap statistics,
so a natural first idea would be to use such query classes to classify the queries
and learn source specific latency values for each query class. However, the previous
query class model is based on AV hierarchies and thus such a classification depends
on the binding values of the queries. Based on our observations, the latency values of
queries usually are not value sensitive, but rather more dependent on the binding
pattern of the queries. Specifically, we found that for a given data source, the
latency values are usually quite different when the binding pattern of the queries
are different, as shown in Figure 13. At the same time, for queries with the same
binding patterns, the latency of a given source is relatively stable, as shown in Figure
14. These observations suggest that the “query class” model defined in section 2.1.3
is not a good way to classify the queries in learning latency statistics. In stead, we
decided to learn source latency statistics based on another type of “query classes”
- the binding patterns of queries. For every [source, binding pattern] combination
we learn the latency statistics and use them to predict the latency values of the
future queries that are bound in the same pattern.

Fig. 13. The average latency of the source DBLP shows significant variance between different

binding patterns.

Another minor issue is how to quantify the latency value. In the Bibfinder sce-
nario, the latency is intended to measure how fast a source can answer a query.
Some sources may export answers in multiple pages, but the time to retrieve the
first page (which includes query processing time of the sources and the time for the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

20 · Jianchun Fan et al.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

Random Queries

L
at

en
cy

 V
al

u
es

 (
m

s)
 YYYY NNYN NNNY

Fig. 14. The Latency values of the source DBLP with 10 randomly selected queries for each of the
3 different binding patterns. The queries that fall in same binding patterns have similar latency

values.

mediator to parse the returned answer pages) is very short compared to the overall
time. Obviously for users who care less about the completeness of the answer, the
speed of retrieving the first page is more important. Moreover, when comparing
different queries with the same binding patterns, we found the time to retrieve the
first pages is reasonably stable. Thus, we decided to take this time as the latency
value since it is more likely to be a good estimate for future queries. Admittedly,
different data sources choose to export different number of answer tuples within
each page, thus the time for the mediator to parse those pages would be differ-
ent. However such differences in the size of pages can be ignored, as we noted
that the source-side query processing time almost always significantly dominates
the mediator-side parsing time. In another words, we consider the answers within
a same page to have same latency values.

2.2.2 Learning Latency Statistics. As stated above, we need to learn the latency
statistics for each [source, binding pattern] combination. Binding pattern refers to
whether and how the attributes of a query are bound to concrete values. In the
Bibfinder test bed, we found that for the attributes title, conference and author,
whether or not these attributes are bound highly differentiates the latency for most
data sources. For the attribute year, it is not a boolean choice, since it is a numeric
attribute. We found that for a query with the year attribute bound to a range of
numbers (e.g. 1994 to 2003), the latency is usually very different from that of a
query with the year attribute bound to a single number, and both of them differ
highly from the latency of a query that has the year attribute free. Therefore, in
the Bibfinder scenario, there are (2 × 2 × 2 × 3 − 1), or 23 different patterns.

We randomly selected 20 real user queries for each of the binding patterns from
the query log of Bibfinder and sent each of them to each of the 5 sources. We used
the average response time as the latency value for each [source, binding pattern]
combination. We conducted the probing several times at different times of the day
to minimize the influence of the difference of source work load at different time of
a day8.

8In fact in contrast to the results in [Gruser et al. 2000], in our setting no obvious differences in

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 21

3. USING STATISTICS IN SOURCE SELECTION

With the learned statistics, the mediator is able to make source selection according
to different user objectives. We will first discuss the use of statistics in single
objective query optimization and then multi-objective optimization by combining
multiple types of statistics.

Using latency statistics to select the fastest sources is a straightforward task,
which is just a matter of ordering the learned latency statistics according to the
binding patterns of the queries. In contrast, selecting the most relevant sources
for a new query is not just a simple sorting of coverage statistics regarding that
query, considering the inter-source overlap. In this section we will first discuss how
to map a new query to a set of frequent query classes and use the coverage/overlap
statistics of them to select the most relevant sources. Empirical evaluation will be
presented to show the effectiveness of this approach.

3.1 Using Coverage/Overlap Statistics

With the learned coverage/overlap statistics, the mediator is able to find relevant
sources for answering an incoming query. In order to access the learned statistics
efficiently, both the learned AV hierarchies and the statistics for frequent query
classes are loaded into hash tables in the mediator’s main memory. In this section,
we discuss how to use the learned statistics to estimate the coverage and overlap
statistics for a new query, and how these statistics are used to generate query plans.

3.1.1 Query Mapping. Given a new query Q, we first get all the abstract values
(features) from the AV hierarchies corresponding to the binding values (features)
in Q. Both the binding values and the abstract values are used to map the query
into query classes with statistics. For each attribute Ai with bindings, we generate
a feature set ftSetAi

which includes the corresponding binding value and abstract
values for the attribute. The mapped classes will be a subset of the candidate class
set cSet:

cSet = ftSetA1
× ftSetA2

× ... × ftSetAn

where n is the number of attributes with bindings in the query. Let sSet denote all
the frequent classes which have learned statistics and mSet denote all the mapped
classes of query Q. Then the set of mapped classes is:

mSet = cSet − {C|(C ∈ cSet) ∩ (C /∈ sSet)}
−{C|(∃C ′ ∈ (sSet ∩ cSet))(C ′ ⊂ C)}

In other words, to obtain the mapped class set we remove all the classes which do
not have any learned statistics as well as the classes which subsume any class with
statistics from the candidate class set. The reason for the latter is because the
statistics of the subsumed class are more specific to the query.

Once we have the relevant class set, we compute the estimated coverage and

overlap statistics vector
−−−−−→
P (Ŝ|Q) for the new query Q using the coverage and overlap

statistics vectors of the mapped classes
−−−−−→
P (Ŝ|Ci) and their corresponding tightness

latency values at different times of the day are observed. The nature of the source servers and

network topology largely decide the average response time of the sources.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

22 · Jianchun Fan et al.

information t(Ci).

−−−−−→
P (Ŝ|Q) =

∑

Ci

t(Ci)∑
t(Ci)

−−−−−→
P (Ŝ|Ci)

Since the classes with large tightness values are more likely to provide more
accurate statistics, we give more weight to query classes with large tightness values.

3.1.2 Using Coverage and Overlap Statistics to Generate Query Plans. Once
we have the coverage and overlap statistics, we use the Simple Greedy and
Greedy Select algorithms described in [Florescu et al. 1997] to generate query
plans. Specifically, Simple Greedy generates plans by greedily selecting the top k
sources ranked only according to their coverage, while Greedy Select selects sources
with high residual coverage calculated using both the coverage and overlap statis-
tics. A residual coverage computing algorithm is discussed in [Nie et al. 2003] to
efficiently compute the residual coverage using the estimated coverage and over-
lap statistics. Specifically, recall that we only keep overlap statistics for correlated
source sets with sufficient number of overlap tuples, and assume that source sets
without overlap statistics are disjoint (thus their probability of overlap is zero). If

the overlap is zero for a source set Ŝ, we can ignore looking up the overlap statistics
for supersets of Ŝ, since they will all be zero by the anti-monotone property. In
particular, this algorithm, which exploits this structure of the stored statistics, will
cut the number of statistics lookups from 2n to R+n, where R is the total number
of overlap statistics remembered for class C and n is the total number of sources
already selected. This consequent efficiency is critical in practice since computation
of residual coverage forms the inner loop of any query processing algorithm that
considers source coverage.

3.1.3 Experimental Setting. We now describe the data, algorithms and metrics
of our experimental evaluation on source selection using coverage/overlap statistics.

Database Set: Five structured Web bibliography data sources in Bibfinder are
used in our experimental evaluation: DBLP, CSB, ACM DL, Science Direct and
Network Bibliography. We used the recent 25000 real queries asked by Bibfinder
users as the query list as of May 20, 2003. Among them, we randomly chose
4500 queries as test queries and the others were used as training data. The AV
Hierarchies for all of the four attributes were learned automatically using our GAVH
algorithm. The learned Author hierarchy has more than 8000 distinct values9, the
Title hierarchy keeps only 1200 frequently asked keyword item sets, the Conference
hierarchy has more than 600 distinct values, and the Year hierarchy has 95 distinct
values. Note that we consider a range query (for example: ”>1990”) as a single
distinct value.

Algorithms: In order to evaluate the effectiveness of our learned statistics, we
implemented the Simple Greedy and Greedy Select algorithms described in
[Florescu et al. 1997] to generate query plans using the learned source coverage and

9Since it is too large for GAVH to learn upon it directly. We first group these 8000 values into
2300 value clusters using a radius based clustering algorithm (O(n) complexity), and use GAVH

to generate a hierarchy for these 2300 value clusters.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 23

overlap statistics. A simple Random Select algorithm is also used to randomly
choose k sources as the top k sources.

Evaluation Metrics: We generate plans using the learned statistics and the algo-
rithms mentioned above. The effectiveness of the statistics is estimated according
to how good the plans are. The goodness of a plan, in turn, is evaluated by calling
the sources in the plan as well as all the other sources available to the mediator.
We define the precision of a plan to be the fraction of sources in the estimated plan,
which turn out to be the real top k sources after we execute the query.

We also measure the Estimation error between the estimated statistics and the
real coverage and overlap values. The Estimation error is computed using the
following formula:

∑
Q∈TestQuerySet

√∑
i[P

′(Ŝi|Q) − P (Ŝi|Q)]2

|TestQuerySet|

where Ŝi denotes the ith source set of all possible source sets in the mediator,
P ′(Ŝi|Q) denotes the estimated overlap (or coverage) of the source set Ŝi for query

Q, P (Ŝi|Q) denotes the real overlap (or coverage) of the source set Ŝi for query Q,
and TestQuerySet refers to the set of all test queries.

3.1.4 Experimental Results. Space Consumption for Different minfreq and
minoverlap Thresholds: In Figures 15 and 16, we observe the reduction in
space consumption (and number of classes) when we increase the minfreq and mi-
noverlap thresholds. As we can see in Figure 15, slightly increasing the minfreq
threshold from 0.03% to 0.13% causes the number of classes to drop dramatically
from approximately 10000 classes to 3000. As we increase the minfreq threshold,
the number of classes decreases, however the decrease rate becomes smaller as the
threshold becomes larger. In Figure 16, we observe the size of the required memory
for different levels of abstraction of the statistics. Clearly, as we increase any of
these two thresholds the space consumption drops, however the pruning power also
drops simultaneously10.
Accuracy of the Learned Statistics for Different minfreq and minoverlap

Thresholds: Figure 17 plots the absolute error of the learned statistics for the
4500 test queries. The graph illustrates that although the error increases as any of
these two thresholds increase, the increase rates remain almost the same. There is
no dramatic increase after the initial increases of the thresholds. If we looked at
both Figures 16 and 17 together, we can see that the absolute error of threshold
combination: minfreq = 0.13% and minoverlap = 0.1 is almost the same as that
of minfreq = 0.33% and minoverlap = 0, while the former uses only 50% of the

10Note that for a better readability of our plots, we did not include the number of classes and
memory consumption when the minfreq threshold is equal to zero, as the corresponding values

were much larger than those obtained for other threshold combinations. In fact, the total number
of classes when the minfreq is equal to zero is about 540000, and the memory requirement when

both minfreq and minoverlap are equal to zero is about 40MB. Although in our current experiment
setting 40MB is the maximal memory space needed to keep the statistics (mainly because Bibfinder
is at its beginning stage), the required memory could become much larger as the number of users

and the number of integrated sources grow.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

24 · Jianchun Fan et al.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.
03

0.
13

0.
23

0.
33

0.
43

0.
53

0.
63

0.
73

minfreq(%)

nu
m

be
r

of
 c

la
ss

es

Fig. 15. The total number of classes learned

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73

minfreq(%)

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

b
yt

es
)

minoverlap=0

minoverlap=0.1

minoverlap=0.2

minoverlap=0.3

Fig. 16. The total amount of memory needed for keeping the learned statistics in BibFinder

memory required by the latter. This fact tells us that keeping very detailed overlap
statistics of uncorrelated source sets for general query classes would not necessarily
increase the accuracy of our statistics while requiring much more space.
Effectiveness of the Learned Statistics: We evaluate the effectiveness of the
learned statistics by actually testing these statistics in Bibfinder and observing the
precision of the query plans and the number of distinct answers returned from the
Web sources when we execute these plans to answer user queries.

Note that in all the figures described below, RS refers to Random Select algo-
rithm, SG0 refers to Simple Greedy algorithm with minoverlap = 0, GS0 refers
to Greedy Select algorithm with minoverlap = 0, SG0.3 refers to Simple Greedy
algorithm with minoverlap = 0.3, and GS0.3 refers to Greedy Select algorithm
with minoverlap = 0.3.

In Figure 18, we observe how the minfreq and minoverlap thresholds influence
the average number of distinct answers returned by Bibfinder for the 4500 test
queries when executing query plans with top 2 sources. As indicated by the graph,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 25

0

0.1

0.2

0.3

0.4

0.5

0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73

minfreq(%)

A
ve

ra
g

e
E

rr
o

r

minoverlap=0

minoverlap=0.1

minoverlap=0.2

minoverlap=0.3

Fig. 17. The average distance between the estimated statistics and the real coverage and overlap
values.

28

33

38

43

48

53

0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73

minfreq(%)

N
u

m
b

er
 o

f
d

is
ti

n
ct

 a
n

sw
er

s

RS

SG0

GS0

SG0.3

GS0.3

Fig. 18. The average number of answers Bibfinder returns by executing the query plans with top
2 sources.

for all the threshold combinations, we always get on average more than 50 distinct
answers when using our learned statistics and query plans selected by Simple Greedy
and Greedy Select, while we can only get about 30 distinct answers by randomly
selecting 2 sources. In Figures 19 and 20, we observe the average precision of the
top 2 and top 3 sources ranked using statistics with different level of abstraction
for the test queries. As we can see, the plans using our learned statistics have high
precision, and their precision decreases very slowly as we change the minfreq and
minoverlap thresholds.

One fact we need to point out is that the performance of the plans using Simple
Greedy and Greedy Select algorithm are very close (although Greedy Select is
a little better most of the time). This is not as we expected, since the Simple
Greedy only uses the coverage statistics, while Greedy Select uses both coverage and
overlap statistics. When we studied many queries asked by the Bibfinder users and

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

26 · Jianchun Fan et al.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73

minfreq(%)

p
re

ci
si

o
n

 RS

SG0

GS0

SG0.3

GS0.3

Fig. 19. Precision for query plans with top 2 sources.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73

minfreq (%)

P
re

ci
si

o
n

 RS

SG0

GS0

SG0.3

GS0.3

Fig. 20. Precision for query plans with top 3 sources.

the corresponding coverage and overlap statistics, we found that the distribution
of answer tuples over sources integrated by Bibfinder almost follow independence
assumption for most of the queries asked by the users. However in other scenarios
Greedy Select can perform considerably better than Simple Greedy. For instance, in
our previous experiment with a controlled data set, where we set 20 artificial sources
including some highly correlated sources, we did find that the plans generated by
Greedy Select were significantly better than those generated by Simple Greedy. For
detailed information about our experiments on the controlled data set, please see
[Nie et al. 2003].

Figure 21 shows the possibility of a source call being a completely irrelevant
source call (i.e. the source has no answer for the query asked). The graph reveals
that the most relevant source selected using our algorithm has only 12% possibility
of being an irrelevant source call, while the randomly picked source has about 46%
possibility. This illustrates that by using our statistics Bibfinder can significantly

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.003 0.13 0.23 0.33 0.43 0.53 0.63 0.73

minfreq (%)

P
ro

b
ab

ili
ty

 o
f

ir
re

le
va

n
t

so
u

rc
e-

ca
ll

RS

SG

Fig. 21. The percent of the total source-calls that are irrelevant for query plans with top 1 sources.

reduce the unnecessary load on its integrated sources.

3.2 Multi-Objective Query Optimization

Using coverage/overlap statistics helps the query planner to generate a query plan
that maximizes the coverage (number of answer tuples returned) with limited re-
sources. However in most web-based data integration systems, coverage is usually
not the only requirement of every user. For example in the Bibfinder scenario, when
a user searches for bibliography information of a certain topic, she does not always
care if the answer set is “complete”, i.e. contains all the relevant publications. More
often than not, in such systems users would like to get as many answers as fast as
possible. In other words, they prefer a query plan that is optimal with respect to
multiple objectives (in the example above, both coverage and latency).

Such multi-objective optimization entails two connected tasks: 1. collecting
source statistics pertaining to the different objectives, and 2. combining them
appropriately during query processing. Because of the nature of the autonomous
data sources, such objectives are often conflicting. For example, some data sources
may contain a large amount of data and are able to give high coverage for the given
query, but they might have a longer latency. Some other sources may have less
relevant tuples but they can respond very quickly. As we discussed earlier, for the
efficiency and politeness reasons, the mediator always tries to direct a given query
only to a subset of the data sources instead of all of them. Under such situations,
the mediator has to be able to resolve such conflicts between multiple user objec-
tives. Moreover, different users usually have different preferences on the different
objectives. For example, some may rather get a few answers as fast as possible,
whereas others may be willing to wait a little longer for higher coverage. Thus the
joint optimization approach has to be flexible to adapt to different user preferences.

We investigated such multi-objective query optimization involving coverage and
latency objectives in the Bibfinder scenario. We introduce a novel joint optimization
model that can combine both coverage/overalap statistics and latency statistics to
adapt to such multi-objective user requirements.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

28 · Jianchun Fan et al.

3.2.1 Combining Multiple Objectives. Now that we have both coverage/overlap
statistics and latency statistics learned from past queries, we are able to jointly
use them in source selection. When a new query is submitted to the mediator, the
corresponding latency statistics of each source with respect to its binding pattern
are retrieved. At the same time, the query is mapped to one or more frequent
query classes to get the coverage/overlap estimation of it. In our current work, we
experimented with the following source utility model which takes into account both
the coverage/overalap statistics and the latency statistics:

Util(Si) = ResidualCoverage(Si|Q) × γLatency(Si|Q)

In the formula above, for a given query Q, the coverage estimate of source Si

on Q is discounted by the latency value of source Si for queries that have same
binding pattern as Q. The planner uses the utility value in a greedy way to select
the sources to call. The source with the largest utility value is the first source added
to the plan, and then the source with the next largest utility, and so on. Note that
to maximize the overall coverage of the plan, we use residual coverage with respect
to the set of already selected sources as discussed in Section 3.1. For the selection
of the first source, the residual coverage is just the regular coverage value.

The utility function has the discount factor γ. We can see that when γ is 1, the
utility value is just the coverage value, and the plan generated only optimizes on
coverage. By reducing γ the sources that have shorter latency are favored and thus
the plan is able to jointly optimize both coverage and latency. Adjusting γ makes
it possible to flexibly adapt to different users’ individual preferences on coverage
and latency. We will show in next section that this combined utility function does
make reasonable trade-offs between multiple objectives.

3.2.2 Experimental Evaluation. To evaluate the multi-objective query optimiza-
tion approach, we experimented with Bibfinder to see if it can make reasonable
trade-offs between latency and coverage and generate query plans that can reflect
the users’ preference for different objectives. We evaluated the utility function to
see if the plans generated using combined statistics can reward both high cover-
age and low latency appropriately. For this purpose, we randomly chose 200 real
user queries, made query plans using the discount formula, executed the plan and
recorded the time to retrieve the first K tuples (K=1, 2, 3, . . .). We varied the
discount factor γ to see its influence in query planning. Figure 22 shows the average
time for retrieving the first K (K = 1, 2, 3, . . .) tuples with each of the curves
representing the measure with different values of the discount factor γ. When γ
is 1, we have a plan that only uses coverage/overlap statistics without considering
the latency, and thus on average the speed of retrieving the first K answers is the
lowest (because the faster sources are not rewarded for being faster). On the other
hand, when the discount factor decreases, the coverage estimates of the sources
are discounted with the latency, and the plans generated tend to favor the faster
sources. As a result such plans are able to retrieve the first tuples faster on average.

This experimental evaluation shows that the latency values of different [source,
binding pattern] combinations are a sound estimate of the future queries, and the
joint optimization approach presented here is able to make flexible trade-offs ac-
cording to the users’ preferences regarding different objectives.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 29

Fig. 22. Average time for retrieving first K tuples.

4. MAINTAINING SOURCE STATISTICS

Data integration systems usually evolve continuously, and the statistics of the
sources thus have to be updated accordingly to keep their accuracy. For example,
the user interest patterns might change over time and thus our frequency based
coverage/overlap statistics have to be updated to capture the recent frequent query
classes. Similarly, the data sources might upgrade their services and the network
topology might change over time, and as a result the source latency statistics will
also change accordingly.

All these changes bring up the need for maintaining statistics. In our framework,
maintaining source latency statistics is straightforward. The mediator can always
record the latency values of individual queries during its regular query processing.
The mediator can periodically recompute the latency statistics using those of the
recent queries in the query log. Such statistics recording and recomputing are
straightforward and the cost of them is almost negligible. In contrast, updating the
coverage/overlap statistics is more complicated and must be handled carefully so
that the maintenance cost will not limit the scalability of the system. Hence in this
section we will discuss the challenges of coverage/overlap statistics maintenance.
We will then introduce a incremental maintenance approach to reduce the cost of
maintenance but at the same time keep the accuracy of the statistics.

4.1 Motivation

The frequency based statistics mining approach of Statminer is a user adaptive
one. It is efficient because the mediator keeps coverage/overlap statistics only for
the “frequent query classes”. In other words, more accurate information is kept
for the query classes that users are more interested in, assuming that the access
frequency represents the degree of user interest. When the user interest patterns
change, the actual frequent query class set will change accordingly, i.e. some query
classes might no longer be accessed frequently and some previously non-frequent
query classes might suddenly get more attention. This is very common in the
Bibfinder scenario because new “hot spots” in computer science emerge constantly.

When such shifts of user interest happen, using the old statistics without updating

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

30 · Jianchun Fan et al.

would decrease the quality of statistics estimation for new queries. Thus over time
statistics will be less effective in source selection. We will show empirical evidence
for this kind of deterioration in Section 4.3. To keep statistics accurate over time,
the mediator must change the previously mined frequent query class set to track
the user interest.

A straightforward approach would be to periodically redo the learning process
based on the entire query history of the mediator. There are at least two obvious
drawbacks of this approach. First, although the cost of the learning process is
linear in the number of queries in the query log, the log itself is large and keeps
increasing. Second, learning from the entire history cannot effectively capture the
shifts of recent user interest. The effectiveness of frequency based statistics mining
approach is based on the assumption that we can predict the near future with the
statistics learned from the immediate past. Thus, learning from the entire history
will not be able to emphasize the importance of the immediate past as it treats
the old (and thus less accurate) and new statistics equally. Specifically in our
model, if statistics are learned from the entire history, then very few of the lower-
level query classes (which represent finer granularity of approximation of queries)
will be considered “frequent” in such a long history. The frequent query class set
may contain mostly high level query classes, which are more coarse granularity
abstraction of the individual queries. They are thus not able to approximate the
new queries accurately, if the user interest is relatively concentrated on certain
branches of the class hierarchy within a given period.

To overcome the problems above, a better way of updating the statistics is to
learn the knowledge from a recent “time window” in the query log. The queries
in this window are supposed to represent the recent past and the statistics learned
from them are used to predict the source statistics of the near future. This will keep
the learning costs under control and also capture the recent interests of the user
population. An important issue is that of the window size. The size of the window
should not be too small, because the effectiveness of any machine learning approach
depends on a reasonably large training set to avoid learning too much noise. At the
same time, the learning has to be done frequently enough to capture the shift of
user interest in a timely manner. To meet both of these requirements, we introduce
a “sliding window” update model as shown in Figure 23. In this model, the window
size represents the recent fragment of the query log from which the statistics are
mined. The shift size represents the time interval between consecutive updates.
The window size needs to be large enough so that the learning technique can mine
useful statistics and the shift size has to be small enough so that the recent change
of user interests can be captured in a timely manner.

One remaining problem is that with a relatively large window size, the regular
learning algorithm is still costly. Moreover, we can observe that when the window
size is much larger than the shift size, there is a very big overlap between two
consecutive windows, so the statistics we learn from two consecutive window may
be very similar. Redoing the entire learning process on the new window would
largely repeat the work that has been done in the learning cycle on the previous
window. This observation motivates our investigation of the incremental learning
algorithm. Specifically, we keep the statistics learned previously and use only the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 31

Fig. 23. Sliding window in query log.

queries in the “shift period” as the training data to calibrate the existing statistics
and get the new statistics of the current window. Intuitively, since the shift size is
much smaller than window size, such training will be much less costly than regular
learning on the entire window. More importantly, since it only partially changes
the existing statistics, it is less likely to have the problem of introducing too much
noise to the mined statistics.

In Section 4.3, we will show that incremental maintenance of the statistics will be
less costly but still retains the quality of the statistics in terms of their effectiveness
in query planning.

4.2 Approach of Incremental Statistics Maintenance

Our frequency based statistics mining approach controls the cost of learning and
storage by using query classes as the abstraction of individual queries. Recall that
the set of all query classes is the cartesian product of all the AV hierarchies of the
classification attributes, and that the frequent query class set is just a subgraph
of this cartesian product. As we discussed, the frequent query class set represents
the queries that users are most interested in and thus we keep statistics on them.
Updating the statistics requires changing the frequent query class set as the user
interest patterns change.

The regular learning approach in our previous work maps every query in the
training set to a group of query classes in the query class hierarchy and accumu-
lates mapping frequencies of those classes. Only the classes that have a mapping
frequency higher than a given threshold are kept as frequent classes. The statistics
of the individual queries that are mapped to the frequent query classes are used to
compute their statistics. This approach identifies the frequent query classes in the
entire class hierarchy (cartesian product of all the AV hierarchies).

The reason for such learning being costly is, without prior knowledge of the
distribution of “frequent query classes” in the entire class hierarchy, it needs to
search globally in the space of query classes (cartesian product of all AV hierarchies)
to identify the frequently accessed ones. The size of that space is exponential in the
number of classification attributes and linear in the number of possible values of
each classification, which are large numbers. For example, in the Bibfinder scenario,
when we construct AV hierarchies based on the first 25, 000 queries, the size of the
space of query classes is larger than 100 million, while the number of frequent query
classes we identified (with certain thresholds) is around 1000. When searching for

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

32 · Jianchun Fan et al.

frequent classes, although the regular learning has already cut the search space by
taking advantage of the anti-monotone property [Han and Kamber 2000] of the
class hierarchy, such searching still needs to look at many query classes.

When it comes to updating statistics, we already have the knowledge of the pre-
vious frequent query class set. To reduce the learning cost, the incremental learning
algorithm has to exploit the previously learned statistics as much as possible and
avoid such global search for frequent classes in the entire query class space.

The incremental learning approach tries to limit the space of searching for new
frequent classes by starting the search from the existing frequent class hierarchy
and modifying it. Specifically, if a query class C has been very frequently accessed
lately but it is not currently considered a frequent class, then the closest ancestors
of this class which are already in the frequent class set must be very frequently
accessed too because the queries that belong to C are mapped to the ancestors
instead. Similarly, if an existing frequent class is no longer frequently accessed,
then its descendants that are also in frequent class set are not frequently accessed
lately either. So, when searching for new frequent query classes, we can consider
the children of the existing frequent class that are very frequently accessed as the
candidates. For example, Figure 24 shows a very simple query class hierarchy and
its change over time. In this hierarchy suppose we note that class C1 is being
accessed more frequently than expected. This might then lead us to further refine
the hierarchy below C1, adding C2 as a new frequent class.

Fig. 24. A simple example showing the change of frequent query class set.

To implement such incremental modification of frequent query classes, the media-
tor needs to maintain the following information for each of the previously discovered
frequent query classes:

—The source coverage and overlap statistics.

—The estimated access frequency of this class, which is the access frequency during
the previous learning cycle and is used as the expected access frequency from then
on.

—The real access frequency of this class since the previous learning cycle is over.
This frequency is accumulated as the mediator keeps processing the new queries
posted to it, and mapping the queries to the existing frequent classes to make
query plans.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 33

Procedure IUS(FQCS: Frequent Query Class Set;
QList: Query List of the recent window; Tsplit: Thresh-
old to Split; Tmerge: Threshold to Merge; TminFreq:
Minimum Access Frequency Threshold)

addList = ∅;
removeList = ∅;
for (each class C ∈ FQCS)

C.realFreq = C.numOfAccess

|QList|
;

if C.realFreq > C.estimatedFreq ∗ Tsplit

addList = addList ∪ C.children;
else if C.realFreq < C.estimatedFreq

Tmerge

removeList = removeList ∪ {C};
end for
FQCS = (FQCS ∪ addList)− removeList;
for (each query Q ∈ QList)

Re-map Q to FQCS;
end for
for (each class C ∈ FQCS)

if C.estimatedFreq < TminFreq;
FQCS = FQCS − {C};

end for
End IUS ;

Fig. 25. Incremental statistics maintenance procedure.

The mediator periodically invokes the incremental learning algorithm which com-
pares the real access frequencies of the existing frequent classes and the estimated
frequencies and uses the results of comparison as the basis to add or remove query
classes into/from the frequent query class set. Figure 25 shows the algorithm IUS
(Incrementally Updating Statistics) to perform such incremental statistics mainte-
nance approach.

The algorithm first checks the real access frequency of each frequent query class
and compares it with the estimated frequency. If a query class is very rarely ac-
cessed, i.e. the real frequency is much lower than the estimated one, then this class
will be removed from the frequent query class set, as class C3 shown in Figure 24.
At the same time if the real frequency of a query class is much higher than the
estimated one, that means the users are very interested in queries that fall into this
query class. Thus the statistics about this query class should be further refined by
introducing some of its subclasses into the frequent query class set.

In this case, we consider all the subclasses of this class as the potential candidates
for new frequent classes and temporarily put all of them into the frequent query class
set. After checking all of the classes, we re-map the queries in the query list onto the
new frequent query class set and accumulate the new estimated frequency for each
of them, and remove those newly added ones that are not really frequent. During
this re-mapping, the statistics of the individual queries are combined to update the
statistics of the already existing classes and compute the statistics of the newly
added classes.

Once the learning process is over, the mediator resets the real access frequencies
of the frequent query classes and starts to accumulate the values of them as it keeps

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

34 · Jianchun Fan et al.

processing new queries submitted to it, until the next learning cycle is triggered.
Therefore the mediator will be able to update the statistics continuously to keep
up with changing user access patterns. Note that in Section 2.1.3 we defined access
frequency as the number of queries mapped to it within a given period of time.
In Algorithm IUS the values are normalized by the total number of queries in the
recent window. The threshold values Tsplit, Tmerge and TminFreq are set manually
at present.

We can see that this incremental algorithm cuts the cost of searching for new
frequent query classes by limiting the scope of modification to the vicinity of pre-
vious frequent query class hierarchy. Since we only inspect the direct children of
current frequent classes instead of all their descendants, the new frequent query
class set might not include all the classes that have been accessed with a frequency
higher than given threshold. Therefore this approach may not be globally optimal
in terms of identifying all the recent frequent classes. This of course results from
our trade-off between optimality and cost of learning. However we will show in the
next section that this approach cuts the cost significantly but does not sacrifice too
much quality of the statistics.

4.3 Empirical Evaluation

We empirically evaluated the effectiveness of the incremental statistics maintenance
approach on the Bibfinder test bed. It has been shown in Section 3.1.4 that the
frequency based statistics mining approach is able to make quality source statistics
estimations and source selection for new queries. We will first show that as time
passes it is necessary to update the statistics to retain the accuracy of the statistics.
We will then demonstrate that the incremental learning approach is able to reduce
the learning cost and achieve quality statistics at the same time.

4.3.1 Experiment Setting. Data Sources: We use the same set of data sources
in evaluating the regular statistics mining approach as in Section 3.1.4. We used
the real user queries captured in the Bibfinder query log to train and test our
algorithms. For the convenience of narration, we marked the queries in the order
of the time when they were submitted to Bibfinder. Specifically the first query
submitted to Bibfinder is marked as Q1, and the next query is marked as Q2,
and so on. Naturally the time interval (or sets of consecutive queries) can be
represented using the query number, for example [Q1, Q2000] represents the period
of time between Q1 and Q2000, as well as the set of queries that contains the queries
from Q1 to Q2000.

Algorithms: In order to compare the effectiveness of incremental statistics main-
tenance algorithm and our previous non-incremental regular learning algorithm,
we evaluated the different statistics learned from various [algorithm, training Set]
combination. For example we use Sregular,[Q1,Q6000] to denote the statistics mined
by using the regular learning algorithm on a training set containing Q1 to Q6000.

Evaluation Metrics: We use the same evaluation metrics as shown in Section
3.1.4 to compare the statistics learned using regular learning approach and the
incremental learning approach.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 35

4.3.2 Experimental Results. Measuring Change of User Interest: Our fre-
quency based statistics mining is user adaptive in the sense that we only learn and
keep statistics for the frequent query classes, which represent the queries the user
population is more interested in. Intuitively in data integration systems such as
Bibfinder, user interest changes overtime. We tried to get a more quantified picture
of whether and how these changes might happen. Using the same threshold values
and regular learning algorithm, we identified 1129 frequent query classes from query
list [Q1, Q25000] and 458 frequent query classes from query list [Q25000, Q50000].
Among these 458 frequent query classes 84.5% of them are also present in the pre-
vious frequent query class set, but the other 15.5% are new frequent query classes.
This shows a drift of user interest over time, which reinforces our motivation to
update the learned statistics. On the other hand, the 84.5% remaining of query
classes indicates the necessity of keeping and calibrating the old statistics instead
of discarding them in the face of changes.

Necessity of Updating Statistics: To further illustrate the necessity of updat-
ing the statistics when user interest changes over time, we did the following exper-
iment. We used the statistics Sregular,[Q1,Q6000] as the baseline statistics. Then we
updated the statistics using the “sliding window” model with a window size of 6000
and a shift size of 1000. For example, at the time of query Q7000, we performed
regular learning using [Q1001, Q7000] as the training set, and incremental learning
using [Q6001, Q7000] as the training set. At the time of Q8000, we performed regu-
lar learning using [Q2001, Q8000] as the training set and incremental learning using
[Q7001, Q8000] as the training set, and so on. The difference is that regular learning
involves rerunning the entire statistics learning process on the entire current win-
dow. In contrast, incremental learning takes advantage of the previously learned
statistics and uses only the queries in the sliding period as the training set. For
every 200 queries we calculated the average estimation error on the these queries,
using the statistics Sregular,[Q1,Q6000] (without update), current regularly updated
statistics and current incrementally updated statistics respectively. Figure 26 shows
the comparison of the average estimation errors until the time of Q13200.

Fig. 26. Average estimation error using different statistics.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

36 · Jianchun Fan et al.

We can see that without updating the statistics, the average estimation error
became higher as time passed. By updating the statistics the recent change in
user interest is captured and the frequent query class set is updated accordingly.
Consequently, the statistics estimation for the future queries is more accurate. Note
that the estimation error is just the vector distance between the estimated statistics.
Therefore, in Figure 26 the comparison only shows the differing accuracy of different
sets of statistics, but the values themselves do not directly quantify the degree of
accuracy for a single set of statistics (i.e. 0.7 does not mean the estimation is wrong
in 70%).

Effectiveness of Incremental Updating: In our evaluation we compared the
cost of learning statistics using both regular learning algorithm and incremental
maintenance algorithm under the same experiment setting as shown above. Figure
27 shows the comparison of learning cost at each of the update points. It shows
that with the given window size and shift size, the cost of incremental learning is
always a very small fraction of that of regular learning (less than 20% overall). At
the same time, we can see from Figure 26 that the incremental learning captures the
change in the statistics very effectively. When used in estimating query statistics,
the incrementally updated statistics reduced the estimation error almost as much
as regular learning.

Fig. 27. Average learning cost.

One may argue that the in Figure 27, the learning cost of regular learning al-
gorithm is not prohibitively high in terms of absolute values (around 6 seconds).
However we must notice the fact that in our experimental setting, there are only 5
data sources. In large scale data integration systems, there would be much larger
number of sources. As we stated above, the learning cost is exponential in the
number of sources. Therefore in such systems, a decease of 80% in learning cost by
using incremental maintenance algorithm will be very desirable.

Quality of Learned Statistics in Source Selection: Besides the estimation
errors of the learned statistics themselves, another way to evaluate the quality of the
statistics is to see the quality of the query plans generated by using them. We also
experimentally evaluated the other two metrics, plan coverage and plan precision.
We took the statistics learned from regular learning algorithm on [Q1, Q25000] as the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 37

baseline Sno−update, and used [Q25001, Q35000] as the training set of regular learning
to get updated statistics Sregular. We used the same training set for incremental
update approach where shift size is 2000 (thus the statistics were updated 5 times
incrementally at the time of Q35000) to get the incrementally updated statistics
Sincremental. We used queries of [Q35001, Q37000] as the test queries and divided
them into 5 test sets with 400 queries in each. We used the above three kinds of
statistics to generate query plans (asking for top 2 sources) for the test queries and
compared the average plan coverage and plan precision for each of the test sets.

Figure 28 shows the average plan precision of the 5 test sets. In all of the 5 test
sets, using updated statistics results in query plans with higher average precision
than using old statistics. Moreover, using incrementally maintained statistics in
query planning arrives at plan precision that are almost as high as using statistics
that are updated using regular learning approach, which costs significantly higher.

0.62

0.64

0.66

0.68

0.7

0.72

1 2 3 4 5

Test Sets

A
vg

 P
la

n
 P

re
ci

si
o

n

no update
regular
incremental

Fig. 28. Average plan precision using different statistics.

In summary, the comparison on the metrics above is consistent with our initial
expectation of incremental statistics maintenance, i.e. the cost of learning is sig-
nificantly lower but the quality of statistics learned is almost as good as learning
everything from scratch periodically.

5. RELATED WORK

There has been little work on statistics gathering and source and user-profile learn-
ing in data integration scenarios. Although the utility of quantitative coverage
statistics to rank the sources was explored in [Florescu et al. 1997] and [Doan
and Halevy 2002], the primary aim of these effort was on the “use” of coverage
statistics. [Naumann 2002] explored using qualitative source statistics in query
processing information integration systems but did not discuss how such statistics
are gathered. There has been some previous work on learning database statistics
both in multi-database literature and data integration literature. Much of it, how-
ever, focused on learning response time statistics. Zhu and Larson [Zhu and Larson
1996] describe techniques for developing regression cost models for multi-database
systems by selective querying. Adali et. al. [Adali et al. 1996] discuss how keeping
track of rudimentary access statistics can help in doing cost-based optimizations.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

38 · Jianchun Fan et al.

In contrast to these efforts, in our research, we take a comprehensive look at learn-
ing, using and maintaining a wider range of statistics to support flexible query
processing.

Learning Coverage/Overlap Statistics: some existing efforts consider the
problem of text database selection [Ipeirotis and Gravano 2002; Wang et al. 2000] in
the context of keyword queries submitted to meta-search engines. To calculate the
relevance of a text database to a keyword query, most of the work ([Gravano and
Garcia-Molina 1995; Xu and Callan 1998; Meng et al. 1999; Callan 2000]) uses the
statistics about the document frequency of each single-word term in the query. The
document frequency statistics are similar to our coverage statistics if we consider
an answer tuple as a document. Although some of these efforts use a hierarchy of
topics to categorize the Web sources, they use only a single topic hierarchy and do
not deal with computation of overlap statistics. In contrast we deal with classes
made up from the cartesian product of multiple attribute value hierarchies, and
are also interested in modeling overlap. This makes the issue of space consumed
by the statistics quite critical for us, necessitating our threshold-based approaches
for controlling the resolution of the statistics. Furthermore, most of the existing
approaches in text database selection assume that the terms in a users query are
independent (to avoid storing too many statistics). No efficient approaches have
been proposed to handle correlated keyword sets. We are currently working on ap-
plying our techniques to the text database selection problem to effectively solve the
space and learning overhead brought by providing coverage and overlap statistics
for both single word and correlated multi-word terms.

The similarity between document frequency statistics and coverage statistics sug-
gests that an approach based on coverage and overlap statistics will also be ben-
eficial in text databases. Indeed, recent work in our research group [Hernandez
and Kambhampati 2005] adapted the ideas of StatMiner to the problem of text
database (“collection”) selection. The resulting approach has been shown to be
superior to the traditional collection selection approaches such as CORI [Callan
2000; Callan et al. 1995].

The coverage/overlap statistics mining approach presented in this paper also dif-
fers from our previous work [Nie et al. 2004]. The approach in [Nie et al. 2004]
depends on the domain experts to provide AV hierarchies. In contrast, in our
current work we have developed methods to generate such AV hierarchies auto-
matically based on the query log, which makes it more of a domain independent
approach. Further, in [Nie et al. 2004], the “frequent query classes” are discovered
based on the assumption that the frequency with which a query class is accessed
is correlated with the size of that query class. In contrast, in our current work
we present a improved approach that uses real query distribution to discover real
frequent query classes (rather than large classes) and to learn statistics with respect
to these classes. Finally, unlike [Nie et al. 2004], we also consider learning multiple
types of source statistics, multi-objective query processing and incremental statistics
maintenance.

Learning Latency Statistics: There has been some previous work on learning
response-time statistics in data integration literature [Gruser et al. 2000; Viglas and
Naughton 2002]. In contrast to the results of [Gruser et al. 2000], in our setting

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 39

the latency of a given query does not vary significantly in the dimensions of time
of the day, day, and quantity of data, but rather is more dependent on its binding
pattern. [Viglas and Naughton 2002] also pointed out the possibility of optimizing
the time for retrieving first tuples instead of all tuples. Our approach differs from
these efforts by using query sensitive source latency statistics together with other
types of statistics in source selection to be adaptive to multiple user objectives.

Multi-Objective Optimization: Multi-objective optimization has been studied
in database literature [Güntzer et al. 2000; Balke and Güntzer 2004] to use mul-
tiple data-oriented objective functions in ranking query results. In contrast, our
work focuses on using source specific statistics in selecting relevant sources for given
queries. In data integration scenarios, some existing query optimization approaches
[Levy et al. 1996; Naumann et al. 1999; Doan and Levy 1999; Pottinger and Levy
2000; Balke and Güntzer 2004; Ives et al. 1999; Shanmugasundaram et al. 2000]
use decoupled strategies by attempting to optimize multiple objectives in separate
phases. Our own earlier work [Nie and Kambhampati 2001] studied joint opti-
mization of multiple objectives during query planning with a weighed sum model,
assuming the availability of source statistics in appropriate form. In this paper
we develop the statistics learning model to actually gather such statistics, and a
discounted model is used in combining coverage/overlap and latency statistics. Our
empirical evaluation shows the general applicability of joint optimization of multiple
objectives in data integration systems.

Incremental Statistics Maintenance: There has been some work on learning
selectivity or sampling data in the relational database literature [Aboulnaga and
Chaudhuri 1999; Ganti et al. 2000]. For example, [Aboulnaga and Chaudhuri 1999]
introduced a self-tuning approach to progressively refine the histogram of selectiv-
ity of range selection operators. Our work is similar to it in the sense that both
efforts try to infer the statistics from past query execution feedback instead of ex-
amining the data directly. However our work differs from it in at least the following
aspects. First, our work aims to facilitate source selection in data integration sys-
tems, where query feedback is the only source of statistics learning. In contrast,
[Aboulnaga and Chaudhuri 1999] voluntarily chose not to examine the data but to
exploit query execution feedback for the concern of learning cost for a large scale
relational database. Second, [Aboulnaga and Chaudhuri 1999] constructs the se-
lectivity histogram for the range selection operators on single attributes, while our
work introduces the query class hierarchy and directly learns statistics about the
query classes which can have multiple attributes bound. Third, [Aboulnaga and
Chaudhuri 1999] initializes the histogram with the assumption of uniform distrib-
ution of attribute values, but our work uses a past query list to learn the initial
statistics. Last, our work tries to cut the statistics learning and storage cost by
keeping statistics only with respect to the frequent query classes and updates the
statistics according to recent user queries. As a result our work has an obvious
user adaptive flavor. In this sense, our work is similar to [Ganti et al. 2000], which
adjusts the probability of a tuple being used as a sample of the database also ac-
cording to the recent knowledge of workload. It generates a group of samples to
answer aggregation queries over a relational database. Our work differs from it by
collecting different types of statistics (coverage and overlap) for different purposes

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

40 · Jianchun Fan et al.

(source selection in data integration scenario).

6. CONCLUSION AND FUTURE WORK

In this paper we introduce an adaptive data integration framework that can effec-
tively mine, use and maintain various types of source statistics. This framework
is adaptive to the dynamic and autonomous nature of the data sources, various
user preferences, as well as the shifting interest and access patterns of the user
population.

We first presented the statistics mining approaches in this framework. We de-
veloped techniques that automatically learn source coverage/overlap statistics with
respect to a set of frequently accessed query classes. We also developed a method
to learn query sensitive source latency statistics. By using these statistics the query
processor is able to make quality estimate for the new queries and optimize different
query objectives (specifically, high coverage or low cost) respectively.

Users in data integration systems tend to prefer query plans that are optimal in
terms of multiple objectives. To be adaptive to such multi-objective query process-
ing requirements, we developed a novel multi-objective optimization model that
can use both the coverage/overlap and latency statistics simultaneously to jointly
optimize both the coverage and cost in source selection.

Moreover, to be adaptive to the dynamically changing system, we developed
an incremental statistics maintenance algorithm to handle the change of interest
in the user population. This approach significantly reduces the cost of statistics
maintenance while retaining their accuracy.

All our techniques were evaluated in the context of Bibfinder, a fielded bibli-
ography meta search engine. We provided compelling empirical evaluation result
showing the effectiveness of these techniques in learning, using and maintaining a
wider range of statistics to support flexible and adaptive query processing.

Our framework addresses two of the most important aspects of query processing
in data integration systems: coverage and latency. Users of data integration sys-
tems may have requirements of query plans other than coverage and cost, such as
data density (i.e., average fraction of null values in a tuple) [Naumann 2002] and
dominance (an application-specific statistic such as “price” that gives preference
information among tuples referring to the same entity), etc.. We will consider in-
vestigating the mining and using of those statistics in the future as well. As for
the statistics maintenance, besides the change of user interests, there are many
other types of changes in data integration systems that need to be handled. These
include changes of source contents and addition/deletion of data sources into/from
the systems. Our incremental coverage/overlap statistics maintenance solution is
able to (partially and passively) capture the change of source content. This is be-
cause we use the queries in the recent time window to calibrate the old statistics.
Consequently the change in source content that is projected on the recent queries
is eventually integrated into the updated statistics. In the future we will consider
handling such changes in a more complete and active way.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Mining, Using and Maintaining Source Statistics for Adaptive Data Integration · 41

ACKNOWLEDGMENTS

We wish to thank Thomas Hernandez for his initial investigation and experiments
on learning source latency statistics, and Ulnas Zambia for his many helpful sugges-
tions and comments. This research is supported by ECR A601, the ASU Prop301
grant to ETI3 initiative.

REFERENCES

Aboulnaga, A. and Chaudhuri, S. 1999. Self-tuning histograms: Building histograms without
looking at data. In SIGMOD Conference. 181–192.

Adali, S., Candan, K. S., Papakonstantinou, Y., and Subrahmanian, V. S. 1996. Query
caching and optimization in distributed mediator systems. In SIGMOD Conference. 137–148.

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules in large data-

bases. In VLDB. 487–499.

Balke, W.-T. and Güntzer, U. 2004. Multi-objective query processing for database systems.
In VLDB. 936–947.

Buneman, P., Khanna, S., and Tan, W. C. 2001. Why and where: A characterization of data

provenance. In ICDT. 316–330.

Callan, J. 2000. Distributed Information Retrieval. In W.B. Croft, editor, Advances in infor-
mation retrieval. Kluwer Academic Publishers, Chapter 5, 127–150.

Callan, J. P., Lu, Z., and Croft, W. B. 1995. Searching distributed collections with inference

networks. In SIGIR. 21–28.

CiteSeer. Computer and information science papers. http://www.citeseer.org.

Doan, A. and Halevy, A. Y. 2002. Efficiently ordering query plans for data integration. In
ICDE. 393–.

Doan, A. and Levy, A. 1999. Efficiently ordering plans for data integration. IJCAI-99 Workshop

on Intelligent Information Integration.

Duschka, O. M., Genesereth, M. R., and Levy, A. Y. 2000. Recursive query plans for data
integration. J. Log. Program. 43, 1, 49–73.

Florescu, D., Koller, D., and Levy, A. Y. 1997. Using probabilistic information in data
integration. In VLDB. 216–225.

Ganti, V., Lee, M.-L., and Ramakrishnan, R. 2000. Icicles: Self-tuning samples for approximate
query answering. In VLDB. 176–187.

Gravano, L. and Garcia-Molina, H. 1995. Generalizing gloss to vector-space databases and
broker hierarchies. In VLDB. 78–89.

Gruser, J.-R., Raschid, L., Zadorozhny, V., and Zhan, T. 2000. Learning response time for

websources using query feedback and application in query optimization. VLDB J. 9, 1, 18–37.

Güntzer, U., Balke, W.-T., and Kießling, W. 2000. Optimizing multi-feature queries for
image databases. In VLDB. 419–428.

Han, J. and Kamber, M. 2000. Data Mining: Concepts and Techniques. Morgan Kaufmman

Publishers.

Hernandez, T. and Kambhampati, S. 2005. Improving text collection selection with cover-
age/overlap statistics. In The 14th International World Wide Web Conference. Poster.

Ipeirotis, P. G. and Gravano, L. 2002. Distributed search over the hidden web: Hierarchical
database sampling and selection. In VLDB. 394–405.

Ives, Z. G., Florescu, D., Friedman, M., Levy, A. Y., and Weld, D. S. 1999. An adaptive
query execution system for data integration. In SIGMOD Conference. 299–310.

Lambrecht, E., Kambhampati, S., and Gnanaprakasam, S. 1999. Optimizing recursive

information-gathering plans. In IJCAI. 1204–1211.

Levy, A. Y., Rajaraman, A., and Ordille, J. J. 1996. Querying heterogeneous information
sources using source descriptions. In VLDB. 251–262.

Meng, W., Liu, K.-L., Yu, C. T., Wu, W., and Rishe, N. 1999. Estimating the usefulness of

search engines. In ICDE. 146–153.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

42 · Jianchun Fan et al.

Naumann, F. 2002. Quality-driven query answering for integrated information systems. Springer-

Verlag New York, Inc., New York, NY, USA.

Naumann, F., Freytag, J. C., and Leser, U. 2004. Completeness of integrated information

sources. Inf. Syst. 29, 7, 583–615.

Naumann, F., Leser, U., and Freytag, J. C. 1999. Quality-driven integration of heterogenous

information systems. In VLDB. 447–458.

Nie, Z. and Kambhampati, S. 2001. Joint optimization of cost and coverage of query plans in
data integration. In CIKM. 223–230.

Nie, Z. and Kambhampati, S. 2004. A frequency-based approach for mining coverage statistics
in data integration. In ICDE. 387–398.

Nie, Z., Kambhampati, S., and Hernandez, T. 2003. Bibfinder/statminer: Effectively mining
and using coverage and overlap statistics in data integration. In VLDB. 1097–1100.

Nie, Z., Kambhampati, S., and Nambiar, U. 2004. Effectively mining and using coverage and
overlap statistics for data integration. IEEE Transactions on Knowledge and Data Engineering.

Pottinger, R. and Levy, A. Y. 2000. A scalable algorithm for answering queries using views.
In VLDB. 484–495.

Shanmugasundaram, J., Tufte, K., DeWitt, D. J., Maier, D., and Naughton, J. F. 2000.
Architecting a network query engine for producing partial results. In WebDB (Selected Papers).
58–77.

Viglas, S. and Naughton, J. F. 2002. Rate-based query optimization for streaming information
sources. In SIGMOD Conference. 37–48.

Wang, W., Meng, W., and Yu, C. T. 2000. Concept hierarchical based text database catego-
rization in a metasearch engine environment. In WISE. 283–290.

Xu, J. and Callan, J. P. 1998. Effective retrieval with distributed collections. In SIGIR. 112–120.

Zhu, Q. and Larson, P.-Å. 1996. Developing regression cost models for multidatabase systems.

In PDIS. 220–231.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

