
Acquiring Planning Knowledge via Crowdsourcing

Jie Gaoa and Hankz Hankui Zhuob and Subbarao Kambhampatic and Lei Lib
aZhuhai college, bSchool of Data & Computer Sci., cDept. of Computer Sci. & Eng.,

Jilin Univ., Zhuhai, China Sun Yat-sen Univ., China Arizona State Univ., US
jiegao26@163.com zhuohank@mail.sysu.edu.cn rao@asu.edu

1 Introduction
Plan synthesis often requires complete domain models and
initial states as input. In many real world applications, it is
difficult to build domain models and provide complete ini-
tial state beforehand. In this paper we propose to turn to the
crowd for help before planning. We assume there are anno-
tators available to provide information needed for building
domain models and initial states. However, there might be a
substantial amount of discrepancy within the inputs from the
crowd. It is thus challenging to address the planning problem
with possibly noisy information provided by the crowd. We
address the problem by two phases. We first build a set of Hu-
man Intelligence Tasks (HITs)1, and collect values from the
crowd. We then estimate the actual values of variables and
feed the values to a planner to solve the problem.

In contrast to previous efforts [Zhang et al., 2012;
Manikonda et al., 2014] that ask the crowd to do planning,
we exploit knowledge about initial states and/or action mod-
els from the crowd and feed the knowledge to planners to
do planning. We call our approach PAN-CROWD, stands for
Planning by Acquiring kNowledge from the CROWD.

2 The Formulation of Our Planning Problem
We formulate our planning problem as a quadruple P =
〈s̃0, g,O, Ā〉, where s̃0 is an incomplete initial state which
is composed of a set of open propositions. A proposition is
called open if there exist variables in the parameter list of the
proposition, e.g., “on(A, ?x)”2 is an open proposition since
?x is a variable in the parameter list of proposition on. An
open initial state can be incomplete, i.e., some propositions
are missing. The set of variables in s̃0 is denoted by V . O is a
set of objects that can be selected and assigned to variables in
V . We assume O can be easily collected based on historical
applications. Ā is a set of incomplete STRIPS action mod-
els. ā ∈ Ā is called “incomplete” if there are some predicates
missing in the preconditions or effects of ā. A solution to the
problem is a plan and a set of “refined” action models.

3 The PAN-CROWD approach
To acquire planning knowledge from the crowd, we first build
HITs for action models and initial states, and then refine ini-

1http://mturk.com
2A symbol preceded by “?” denotes a variable that can be instan-

tiated by an object. on(A,?x) suggests A is on some block x.

tial states and action models based on the answers to HITs
given by the crowd. After that we feed the refined initial states
and action models to planners to solve the planning problem.

Building HITs for Action Models: For this part, we build
on our work with the CAMA system [Zhuo, 2015]. We enu-
merate all possible preconditions and effects for each action.
Specifically, we generate actions’ preconditions and effects
as follows [Zhuo and Yang, 2014]. If the parameters of pred-
icate p, denoted by Para(p), are included by the parameters
of action a, denoted by Para(a), i.e., Para(p) ⊆ Para(a), p is
likely a precondition, or an add effect, or a delete effect of a.
We therefore generate three new proposition variables “p ∈
Pre(a)”, “p ∈ Add(a)” and “p ∈ Del(a)”, the set of which
is denoted by Hpre = {p ∈ Pre(a)|∀p ∈ P and ∀a ∈ A},
Hadd = {p ∈ Add(a)|∀p ∈ P and ∀a ∈ A}, Hdel = {p ∈
Del(a)|∀p ∈ P and ∀a ∈ A}, respectively. We put all the
proposition variables together and estimate the label of each
variable by querying the crowd or annotators.

For each proposition in H , we build a Human Intelligent
Task (HIT) in the form of a short survey. For example, for
the proposition “(ontable ?x) ∈ Pre(pickup)”, we generate a
survey as shown below: Is the fact that “x is on table” a pre-
condition of picking up the block x? There are three possible
responses, i.e., Yes, No, Cannot tell, out of which an annota-
tor has to choose exactly one. Each annotator is allowed to
annotate a given survey once. Note that the set of proposition
variables H will not be large, since all predicates and actions
are in the “variable” form rather than instantiated form, and
we only consider predicates whose parameters are included
by actions. For example, for the blocks domain, there are
only 78 proposition variables in H .

Building HITs for Initial States: To generate surveys that
are as simple as possible, we assume there are sets of objects
known to our approach, each of which corresponds to a type.
For example, {A, B, C} is a set of objects with type “Block”
in the blocks domain, i.e., there are three blocks known to our
approach. We can thus generate a set of possible propositions
S with the sets of objects and predicates of a domain. For
each proposition, we formulate the Human Intelligent Task
(HIT) as a short survey, the set of which is denoted by H.
To reduce the number of HITs, we start from the goal state
g, we search for the action whose add effects match with g,
and update g to be an internal state by deleting add effects and
adding preconditions of the action into g. After that, we check
whether open initial state matches with internal state. Sec-



ondly, from the matched internal state, we select those with
unknown variables, and choose them with the same variables
to build a set of propositions with unknown variables, which
is finally transformed into a set of HITs.

Estimating True Labels Assume there are R annotators
and N tasks with binary labels {1, 0}. The true labels of
tasks are denoted by Z = {zi ∈ {1, 0}, i = 1, 2, . . . , N}
. Let Nj is the set of tasks labeled by annotator j, and Ri

is the set of annotators labeling task i. The task assignment
scheme can be represented by a bipartite graph where an edge
(i, j) denotes that the task i is labeled by the worker j. The
labeling results form a matrix Y ∈ {1, 0}N×R. The goal
is to find an optimal estimator Ẑ of the true labels Z given
the observation Y , minimizing the average bit-wise error rate
1
N

∑
i∈{1,2,...,N} prob[ẑi 6= zi].

We model the accuracy of annotators separately on the pos-
itive and the negative examples [Raykar et al., 2010]. If the
true label is one, the true positive rate TP j for the jth an-
notator is defined as the probability that the annotator labels
it as one, i.e., TP j = p(yji = 1|zi = 1). On the other
hand if the true label is zero, the true negative rate TN j is
defined as the probability that annotator labels it as zero, i.e.,
TN j = p(yji = 0|zi = 0). Suppose we have the training data
set D = {xi, y

1
i , . . . , y

R
i }Ni=1 with N instances from R anno-

tators, where xi ∈ X is an instance (typically a d-dimensional
feature vector), yji is the label (1 or 0) given by the jth annota-
tor. Considering the family of linear discriminating functions,
the probability for the positive class is modeled as a logistic
sigmoid, i.e., p(y = 1|x, w) = σ(wT x), where x, ω ∈ Rd,
and σ(z) = 1

1+e−z .
The task is to estimate the parameter w as well as the

true positive P = 〈TP 1, . . . , TPR〉 and the true negative
N = 〈TN1, . . . , TNR〉. Let θ = {w,P,N}, the prob-
ability of training data D can be defined by p(D|θ) =∏N

i=1 p(y
1
i , . . . , y

R
i |xi, θ). The EM algorithm can be ex-

ploited to estimate the parameter θ by maximizing the log-
likelihood of p(D|θ) [Raykar et al., 2010]. Let µi = p(zi =
1|y1i , . . . , yRi , xi, θ). We simply set the threshold as 0.5, i.e.,
if µi > 0.5, the value of ẑi is assigned with 1, otherwise 0.

Refining Initial States and Action Models: We refine the
initial state and action models based on estimated true la-
bels. Once the initial state and action models refined, we
solve the corresponding revised planning problem using an
off-the-shelf planner.

4 Experiment
Since the action model acquisition part has been evaluated in
the context of CAMA already [Zhuo, 2015], here we focus
on evaluating the initial state acquisition part. We evaluated
our approach in three planning domains, i.e., blocks3, depots4

and driverlog4. We first generated 150 planning problems
with complete initial states, denoted by P̄ . After that we ran-
domly removed propositions from the initial states in P̄ base
on a ratio α, resulting in open problems P . Propositions were

3http://www.cs.toronto.edu/aips2000/
4http://planning.cis.strath.ac.uk/competition/

then changed to short surveys in natural language. We per-
formed extensive simulations using 20 simulated annotators
to complete the human intelligent tasks (HITs). We define the
accuracy of our approach by comparing to ground-truth solu-
tions (generated by simulators). In other words, we solve all
150 problems using our approach, and compare the 150 solu-
tions to ground-truth solutions, viewing the ratio of identical
solutions over 150 as the accuracy.

0.55�

0.6�

0.65�

0.7�

0.75�

0.8�

0.85�

0.1� 0.2� 0.3� 0.4� 0.5�

ac
cu
ra
cy
	  

Ra(o	  of	  incompleteness	  

blocks	   depots	   driverlog	  

Figure 1: The accuracy
w.r.t. ratio α.

We ran our PAN-CROWD al-
gorithm on testing problems by
varying from 0.1 to 0.5 the ratio
α, setting the number of objects
to be 10. The result is shown
in Figure 1. From Figure 1,
we can see that the accuracy
generally becomes lower when
the ratio increases in all three
testing domains. This is con-
sistent with our intuition, since
the larger the ratio is, the more
uncertain the information that is introduced to the original
planning problem when using crowdsourcing. However, from
the curves we can see the accuracies are no less than 70%
when the ratio is smaller than 0.3.

5 Discussion and Conclusion
We propose to acquire knowledge about initial states and ac-
tion models from the crowd. Since the number of HITS sent
to the crowd related to initial states could be large, in the fu-
ture, we could consider how to reduce the number of HITS,
e.g. by exploiting backward chaining planning techniques –
which only might need to know small parts of the initial state,
rather than the whole state. In addition, we could also think
of ways of engaging the crowd in more active ways, rather
than answering yes/no to HITS. For example, we can give
them candidate plans and ask them to critique the plan and/or
modify them to make them correct. We then learn knowledge
from the modification process and use it for computing plans.

Acknowledgements Zhuo’s research is supported by
NSFC (No. 61309011) and Fundamental Research Funds for
the Central Universities (No. 14lgzd06). Kambhampati’s re-
search is supported in part by a Google Research Award and
the ONR grants N00014-13-1-0176 and N00014-15-1-2027.

References
[Manikonda et al., 2014] L. Manikonda, T. Chakraborti, S. De,

K. Talamadupula, and S. Kambhampati. AI-MIX: using auto-
mated planning to steer human workers towards better crowd-
sourced plans. In IAAI, pages 3004–3009, 2014.

[Raykar et al., 2010] V. C. Raykar, S. Yu, L. H. Zhao, G. H.
Valadez, C. Florin, L. Bogoni, and L. Moy. Learning from
crowds. JMLR, 11:1297–1322, 2010.

[Zhang et al., 2012] H. Zhang, E. Law, R. Miller, K. Gajos, D. C.
Parkes, and E. Horvitz. Human computation tasks with global
constraints. In CHI, pages 217–226, 2012.

[Zhuo and Yang, 2014] H. H. Zhuo and Q. Yang. Action-model ac-
quisition for planning via transfer learning. Artif. Intell., 212:80–
103, 2014.

[Zhuo, 2015] H. H. Zhuo. Crowdsourced action-model acquisition
for planning. In AAAI, pages 3004–3009, 2015.


