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Abstract

Finding diverse solutions has become important in many
combinatorial search domains, including Automated Plan-
ning, Path Planning and Constraint Programming. Much of
the work in these directions has however focussed on com-
ing up with appropriate diversity metrics and compiling
those metrics in to the solvers/planners. Most approaches use
linear-time greedy algorithms for exploring the state space
of solution combinations for generating a diverse set of so-
lutions, limiting not only their completeness but also their
effectiveness within a time bound. In this paper, we take a
combinatorial search perspective on generating diverse solu-
tions. We present a generic bi-level optimization framework
for finding cost-sensitive diverse solutions. We propose com-
plete methods under this framework, which guarantee finding
a set of cost sensitive diverse solutions satisficing the given
criteria whenever there exists such a set. We identify vari-
ous aspects that affect the performance of these exhaustive
algorithms and propose techniques to improve them. Exper-
imental results show the efficacy of the proposed framework
compared to an existing greedy approach.

In many real-world domains involving combinatorial search
such as automated planning, path planning and constraint
programming, generating diverse solutions is of much im-
portance. In the case of automated planning, real-world sce-
nario often involves working with unknown or partially
known user preferences (Kambhampati 2007), as the user
preferences are many times difficult to be articulated and
specified completely. Such situations lead to multiple, of-
ten, large number of plans that satisfy a given problem in-
stance. In order to facilitate serving the user with a closest
plan possible as per her (hidden) preferences, presenting a
diverse set of plans to the user is explored (Roberts, Howe,
and Ray 2014; Nguyen et al. 2012) so that the user can make
a well-informed decision. In the constraint programming do-
main, diverse (resp. similar) solutions are explored in order
to handle unknown user preferences as well as to generate
robust solutions (Hebrard et al. 2005).

Several methods have been proposed in the literature for
finding a diverse set of plans. In the context of constraint
programming, (Hebrard et al. 2005) presents a complete
method which creates K copies of the Constraint Satisfac-
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tion Problem (CSP), each copy with a different set of vari-
able names, adds

(
K
2

)
additional constraints for handling the

minimum distance requirement between all pairs, and uses
off-the-shelf solvers to generate solutions. As one would ex-
pect, they report that this approach generates prohibitively
large CSPs and therefore propose a greedy method. The
greedy approach which has since been widely adopted (Pe-
tit and Trapp 2015; Bloem 2015; Roberts, Howe, and Ray
2014; Nguyen et al. 2012) works as follows:

Obtain a candidate solution satisfying any given cost cri-
teria, add this to the solution K-set, provide feedback to the
method finding candidate solutions about the current com-
position of the K-set so that it tries to find the next candidate
solution distant to the current K-set. Upon obtaining the next
candidate solution, the greedy method adds it to the K-set if
it indeed satisfies the distance criteria and provides feedback
to find the next solution, otherwise the candidate solution is
simply discarded. This process is continued until a set of K
diverse solutions is found. (Roberts, Howe, and Ray 2014;
Eiter et al. 2013) and (Nguyen et al. 2012) consider the
first solution generated to be the starting solution (perma-
nent member) for constructing the K-set through the above
greedy approach. (Bloem 2015) considers an optimal solu-
tion to be the starting solution of the greedy method. (Petit
and Trapp 2015) attempt to address the issue of fixed start-
ing solution by running the greedy approach multiple times
with different optimal solutions as the starting solution on
each occasion.

A pertinent issue with the above approaches is that the
first solution (or an optimal solution) is always considered
to be part of the solution set, which may often result in not
finding a K-set even when there exists one, even with a very
good feedback strategy to search for distant solutions after
finding the initial solution. Note that an optimal solution (or
the first found solution) need not be part of a diverse set of
the required size at all. Figure 1 shows an example of an
instance where the optimal solution is not part of the most
diverse solution set of size 2 (assuming that the distance be-
tween two plans is inversely proportional to the number of
edges/actions they have in common; p1 and p2 have edge a
in common and p2 and p3 have edge b in common).

In this paper, we address this problem in depth by propos-
ing complete algorithms which guarantee to find a set of K
diverse solutions whenever there exists one. In order to ac-
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Figure 1: A state-space graph where the optimal cost path
p2, does not belong to the most diverse solution set of size 2
{p1,p3}. G1 and G2 indicate goal nodes.

complish completeness, we first need methods for exploring
all possible cost sensitive solutions in the given domain. For
this, we present extensions of the m-A* algorithm (Dechter,
Flerova, and Marinescu 2012) and the Depth-First Branch
and Bound algorithm (Lawler and Wood 1966) for finding
all cost-bounded plans. One could adapt other types of meth-
ods such as anytime heuristic search algorithms as well for
this purpose. Second, we present a simple strategy for ex-
haustively exploring the set of all plan combinations. This
would guarantee completeness for finding a K-set when-
ever there exists one, thereby addressing the issues in ex-
isting methods. However, we note that the simple exhaustive
method ends up having to explore a large number of combi-
nations as one finds more and more candidate plans, severely
impacting the performance of the overall algorithm. In order
to address this problem, we propose a method which consid-
ers only a few most promising plan combinations whenever
a new candidate solution is found, and postpones the explo-
ration of remaining combinations for the end to guarantee
completeness. This new method is advantageous over the
widely followed greedy approach on two fronts: it explores
a larger (compared to only one combination of the greedy
approach) but limited number of combinations upon finding
a candidate solution thereby increasing its likelihood of find-
ing a diverse K-set quickly, and it keeps track of the combi-
nations that are left postponed to revisit at the end thereby
guaranteeing completeness.

Further, our method for exploring the plan-combinations
space can be used in conjunction with any of the existing
methods to improve their performance, as it is complemen-
tary in nature, replacing the weaker section of those methods
where the greedy approach is present.

Related Work
Several applications have been related to using diverse so-
lutions in recent years, such as, for course of action gen-
eration in cyber security (Boddy et al. 2005), personal-
ized security agents (Roberts et al. 2012), diverse finite
state machines for non-player characters in games (Coman
and Muñoz-Avila 2013; 2012b), formal verification (Nadel
2011), mining group patterns (Vadlamudi, Chakrabarti, and
Sarkar 2012), scheduling personal activities (Alexiadis and

Refanidis 2013), air traffic control advisories (Bloem and
Bambos 2014), and robotics (Voss, Moll, and Kavraki 2015).

An important measure in determining diversity is the dis-
tance between plans. In this paper, we assume that the dis-
tance measure is given as input by the user. Several dis-
tance measures have been proposed in the literature that are
quantitative or qualitative (Scala 2014; Coman and Muñoz-
Avila 2011; Goldman and Kuter 2015). Solution diversity
is explored in both deterministic and non-deterministic do-
mains using the distance metrics (Coman 2012). Distance
measures for finding semantically distinct plans are explored
in (Bryce 2014) based on landmarks. In the context of con-
straint programming, distance constraints in terms of ideal
and non-ideal solutions are studied in (Hebrard, O’Sullivan,
and Walsh 2007).

SAT-based heuristic methods for generating diverse so-
lutions were proposed in (Nadel 2011). Methods through
compilation to CSP, and using heuristic local search have
been proposed in (Srivastava et al. 2007), which use GP-
CSP planner (Do and Kambhampati 2001) and LPG plan-
ner (Gerevini, Saetti, and Serina 2003). Comparison of first-
principle techniques and case-based planning techniques to
find diverse plans is shown in (Coman and Muñoz-Avila
2012a). These algorithms too use the greedy approach pre-
sented before for exploring the space of plan combinations,
leading to the same issues pointed in the Introduction.

Problem Setup
In this paper, we consider the problem of finding a set of so-
lutions that are not only diverse but are also cost sensitive.
In particular, we consider the problem of finding a set of K
cost sensitive diverse (loopless) solutions. Cost sensitivity
of the solutions is controlled by the input c (maximum cost
of each of the solutions) and diversity of the solution sets is
controlled by the input d (minimum distance between each
pair of solutions; or an appropriate set based diversity met-
ric). Both the cost metric and the distance metric are also as-
sumed to be inputs from the user, hence, the studies on good
quality cost metrics and distance metrics are orthogonal to
our work. Further, we choose the planning domain to show-
case our framework and methods, which could be adapted to
other domains. Hence, the problem at-hand can be formally
stated as: Given a planning problem with the set of loopless
solution plans S , a cost metric for the plans C : S → R and
a distance metric for the pairs of plans δ : S ×S → R (a set
based diversity metric may also be used here), the problem
is defined as:

cCOSTdDISTANTkSET: Find P with P ⊆ S,
|P| =k, min

p, q ∈ P
δ(p, q) ≥ d and C(p) ≤ c ∀p ∈ P (1)

The problem is computationally hard given that the problem
of finding cost-bounded plans is PSPACE-complete (Bylan-
der 1991) and the problem of finding a diverse set of plans
is NP-complete (Bloem 2015) with input size (number of
plans) that can potentially be exponential in terms of the
number of state variables. Finding a set of diverse solutions
is shown to be FPNP [log n]-complete in the context of con-
straint programming (Hebrard et al. 2005), where n is the
size of the input.
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Figure 2: A framework for finding a diverse set of solutions
that supports completeness.

Proposed Methods & Properties
Now, we present the proposed framework which supports
completeness, and specific methods that obey the framework
requirements. As mentioned above, the problem of finding a
diverse set of plans is a bi-level optimization problem which
involves exploring the set of all candidate plans (Level 1)
and considering the set of all combinations of these plans
(Level 2). Therefore, in order to guarantee completeness,
we propose to have a framework with a complete method
which guarantees finding all the candidate plans and out-
puts as a stream, and another complete method that takes
the stream of plans being generated by the previous method
as input and explores all combinations of plan sets as per
the diversity criteria until a diverse set of size K is found.
Such a framework ensures that all possible cases are consid-
ered and hence guarantees completeness. Figure 2 shows the
framework with the control flow. In this paper, we emphasize
mainly on how to explore all the solutions and all the solu-
tion combinations efficiently so as to guarantee complete-
ness while not impeding the search progress due to their in-
dividual exhaustive nature. The feedback component shown
in the figure is particular to the domain elements and their
distance measures which we do not explore in this work
leaving it as an option for the user to plug-in to the proposed
framework and methods.

Algorithms for Finding All Cost Sensitive Solutions
For the Level 1, the problem is to find the set of all candi-
date plans that can potentially be part of a diverse solution
set. In our case, the set of all candidate plans correspond to
the set of all valid loopless plans whose cost is≤ max cost.
We present two complete methods which guarantee gener-
ating the set of all candidate plans, one based on Depth-
First Branch and Bound (DFBB) (Lawler and Wood 1966;
Russell and Norvig 1995) and another based on a recent al-
gorithm for finding M best solutions in graphical models,
called m-A* (Dechter, Flerova, and Marinescu 2012). One
may also use other complete methods and extend them to
generate all candidate solutions whose cost is ≤ max cost.

First, we present the DFBB based algorithm for finding
all candidate plans, called DFA. It works similar to regular
DFBB search on graph spaces except for the following two
differences: (i) it does not stop after finding a single solu-
tion within the max cost bound, and (ii) it does not conduct
full duplicate detection (any state reached through a differ-

ent path from the start state leads to a new node unless there
is a loop, at which point it simply backtracks to find other
solutions). It is easy to prove that:

Lemma 1 DFA generates all valid loopless plans whose
cost is≤ max cost, given that the edges of the search graph
have positive costs and the heuristic used is admissible.

Now, we describe the second algorithm for finding the set
of all candidate plans, called A*A. This is based on the m-
A* algorithm (Dechter, Flerova, and Marinescu 2012) which
guarantees finding m best solutions/plans by expanding the
minimum set of nodes. First, we describe the basic idea be-
hind m-A* and then we extend it to find the set of all candi-
date plans for our problem. The basic idea behind m-A* is to
proceed in a manner similar to A* and whenever a duplicate
state is found, the most promising m nodes corresponding to
that state are to be considered for expansion and the rest be
discarded. For our problem, where we want to find the set
of all cost-bounded plans, we will have to keep all the nodes
corresponding to same state for expansion without the m-
limit. This eliminates the requirement of full-scale duplicate
detection all-together, instead suggests treatment of all chil-
dren being generated as new. However, since we are only
interested in loopless plans, we will discard all nodes which
cause loops in the partial plan at any stage, through cycle
checking. We call this adapted strategy- A*A (A* based ap-
proach for finding All cost-bounded solutions). Once again,
it can be proven that:

Lemma 2 A*A generates all valid loopless plans whose
cost is≤ max cost, given that the edges of the search graph
have positive costs and the heuristic used is admissible.

Complete Algorithms for Finding a Diverse
Solution Set
Now, we present the algorithms for Level 2 of our frame-
work, where the stream of all candidate plans, the distance
measure, the size of the diverse plan set needed and the min-
imum distance between any two plans of the solution set is
given as input, to produce a set of satisficing diverse plans.

Algorithm 1 presents a simple strategy called ACER
which explores all combinations of plans in each run for the
in-coming new plan in conjunction with all of the existing
valid plan sets. It is easy to prove that:

Lemma 3 ACER finds a diverse plan set of size K from the
set/stream of all candidate plans whenever there exists one.

However, G can grow rapidly and become an exponen-
tial sized set in terms of K with base being the number of
candidate plans (which itself can be of exponential size in
terms of the planning problem input) before finding a di-
verse plan set. This severely limits its scalability when there
are large number of candidate plans (even for moderate val-
ues of K), which is often the case in practice. Next, we will
present a method which does not explore all plan set combi-
nations in one shot instead only a select most promising sets
at each stage, while keeping track of unexplored combina-
tions that may be explored at the end (after processing the
entire stream of candidate plans once) for completeness.



Algorithm 1 Explore All Possible Combinations of Solu-
tions in Each Run (ACER)
1: INPUT :: A candidate plan p (from the stream of all candi-

date plans), a distance measure dist(), the minimum distance
needed between any two plans of a set min dist, and the size
of the diverse plan set K.

2: OUTPUT :: A diverse plan set of size K (if exists), otherwise
the largest diverse plan set.

3: G ← φ (empty set); (initially) // Global data; the set of all valid
plan sets.

4: for each plan set P ∈ G do
5: if dist(p, l) > min dist ∀l ∈ P then
6: P ′ ← P + {p};
7: if |P ′| = K then
8: return P ′;
9: end if

10: G ← G∪P ′;
11: end if
12: end for
13: G ← G∪{p};
14: return largest P ∈ G;

The second technique, which is an adaptation of the
Anytime Pack Search method (Vadlamudi, Aine, and
Chakrabarti 2015; 2013), focuses on exploring a limited set
of seed nodes in each iteration in a beam search like manner.
It processes the stream of candidate plans much faster than
the previous approach by focusing only on a select number
of most promising plan sets to begin with. The combinations
which this technique ignores while processing the candidate
plan stream are kept track of separately for processing at the
end, which helps in guaranteeing the completeness. Algo-
rithm 2 presents the proposed method MCER for faster pro-
cessing of the stream of candidate plans. It takes as input,
a plan from the stream of candidate plans and its sequence
number for reasons that will become clear shortly, and the
inputs for determining a diverse set similar to the previous
approach, and the number of seed plan sets to be explored
upon finding a new candidate plan.The plan-combinations
space can be visualized as a set enumeration tree (Rymon
1992), where new branches come at all levels (> 0) dynam-
ically as the stream of candidate plans is processed.

MCER maintains a global set of valid plan sets which
have been produced until now, G, that could be further ex-
panded with new candidate plans. It expands nmost promis-
ing nodes from this set, which are populated into Children.
If a diverse set of sizeK is found, it terminates returning the
set. Otherwise, n most promising plan sets from Children
are expanded, and then their n most promising children and
so on until there are no further children to be expanded. It
should also be mentioned at this point, as to what we mean
by ‘most promising’, which would be based on f -value of a
plan set (the largest being most promising), and f -value is
in-turn computed as g + h where g is the size of the plan
set and h is the heuristic estimate denoting potential num-
ber of plans that can be added to this plan set. In this pa-
per, we have explored using three heuristics: (i) 0, (ii) dis-
persion of the current set (arithmetic mean of all pair-wise
distances (Myers and Lee 1999)) divided by min dist, and

Algorithm 2 Explore Most-promising Combinations of So-
lutions in Each Run (MCER)
1: INPUT :: A candidate plan p (from the stream of all candidate

plans), its sequence number in the stream i, a distance measure
dist(), the minimum distance needed between any two plans
of a set min dist, the size of the diverse plan set K, and the
number of seed plan sets to be explored n.

2: OUTPUT :: A diverse plan set of size K (if exists), otherwise
the largest diverse plan set.

3: G ← φ (empty set); (initially) // Global data; the set of all valid
plan sets with satellite data.

4: Open← φ; Children← φ;
5: ExpandMostPromising(G, n, Children);
6: if a diverse set P of size K is found then
7: return P ;
8: end if
9: while Children 6= φ do

10: Swap Children and Open;
11: ExpandMostPromising(Open, n, Children);
12: if a diverse set P of size K is found then
13: return P ;
14: end if
15: Move all plan sets in Open to G;
16: end while
17: P ← {p}; Pexp ← i;
18: G ← G∪P ;
19: return largest P ∈ G;

(iii) quadratic mean of all distances divided by min dist.
The idea behind these heuristics is that the more dispersion
the sets have the more accommodative they could be of new
candidate plans. However, in our experiments, we did not
observe gains of using the dispersion based heuristics in our
experiments compared to the trivial heuristic possibly due
to the limitation of the said heuristics in accounting for the
actions that are not part of the plans found yet, at any given
moment during the runtime. More distance metric based and
domain based estimates can be explored here in future.

Algorithm 3 presents the pseudo-code of ExpandMost-
Promising routine. It expands the n most promising nodes
from the given list (either G or Open) and puts them in
Children. One significant difference to note here is that,
since all the candidate plans are not available apriori, one
must add the expanded nodes back to G for future consider-
ation with newer candidate plans. While doing so, in order
to avoid repetition, we keep track of the last child genera-
tion attempt through the sequence number of candidate plan
considered.

Finally, after the entire stream of candidate solutions has
been processed one by one using MCER, if a diverse set of
size K is not found, we continue to call MCER repeatedly
(this time, without adding back the explored plan sets into G)
until it finds a K-set or terminates exhausting the exploration
of all possible combinations.

Below, we present some of the properties of the proposed
method MCER:

Lemma 4 MCER does not generate the same combination
of plans more than once.

Proof outline: This is ensured by keeping track of the



Algorithm 3 ExpandMostPromising
1: INPUT :: A set of valid plan sets S to expand, Children,

a distance measure dist(), the minimum distance needed be-
tween any two plans of a set min dist, the size of the diverse
plan set K, and the number of plan sets to be explored n.

2: OUTPUT :: Populates Children with new valid plan sets,
returns a diverse plan set of size K if found.

3: Temp← φ (empty set);
4: for n times do
5: P ← most promising plan set from S;
6: for each candidate plan in the stream from sequence number

i = Pexp + 1 to the latest do
7: if dist(p, l) > min dist ∀l ∈ P then
8: P ′ ← P + {p}; P ′

exp ← i;
9: if |P ′| = K then

10: return P ′;
11: end if
12: Children← Children∪P ′;
13: end if
14: Pexp ← i;
15: end for
16: Temp← Temp∪P ;
17: end for
18: G ← G∪Temp;

sequence number of candidate plan from the last child
generation attempt while expanding a plan set P via Pexp,
which increases by 1 at each step during expansion (see
Line 14 in Algorithm 3) and the child generation attempts
start from Pexp + 1 every time (see Line 6 in Algorithm 3),
thereby avoiding repetition. 2

Lemma 5 MCER expands at-most n× (K−1)+1 number
of plan sets in each execution.

Proof outline: Note that, after expansion of n most promis-
ing nodes from G, their n most promising children, and then
their n most promising children and so on are expanded,
until a child of size K is found. Further, size of the children
at each step increases by 1 since a new candidate plan gets
added to the plan set. Therefore, even if we assume that the
initial set of seed nodes are all of size 1, MCER executes
at-most K steps at which point a diverse set of size K will
be found if possible through that set. And at each step,
at-most n number of children are expanded, with only 1 at
level K. Hence, together, at-most n× (K − 1) + 1 number
of plan sets are expanded in each execution of MCER. 2

Lemma 6 MCER guarantees finding a diverse set of plans
of size K if there exists one.

Proof outline: Note that, while we execute MCER several
times with incoming plans from the stream of candidate
plans, each time without exhausting all possible combi-
nations, we keep track of the last expansion attempt for
each node (plan set), and store them in G. Hence all plan
sets which may not have been exhaustively explored with
the candidate plans are present in G when the entire set
of candidate plans has been generated. These plan sets are
then exhaustively explored without re-inserting back in to G

thereby guaranteeing completeness and termination. 2

Now, given a planning problem, a cost metric, a distance
measure, max cost, min dist, and K, for finding a set of
K cost sensitive diverse plans, one could use any one of the
following four combinations: 1) DFA with ACER, wherein
the DFA is executed and whenever a valid plan with cost
< max cost is found, ACER is invoked to find a diverse
set, and then the execution of DFA is continued if a diverse
set with the given requirements is not found, and the pro-
cess is repeated until termination. We call this combination
DFAA. 2) DFA with MCER, similar to the above strategy of
invoking MCER whenever DFA find a valid cost sensitive
plan, followed by repeated calls to MCER at the end to ex-
plore all the remaining plan combinations until termination.
This is denoted by DFAM. 3) A*A with ACER (denoted
by A*AA), and 4) A*A with MCER (denoted by A*AM).
Next section presents the comparison of performances of the
above combinations of methods.

Experimental Results
In this section, we present the experimental results compar-
ing the performances of various proposed algorithms among
themselves as well as with a greedy approach proposed in
the literature. We have implemented all our methods on
top of the Fast Downward planning environment (Helmert
2006), and hence could run problem instances from any of
the supported planning domains. Accordingly, we have con-
ducted experiments on several domains, including, blocks,
rovers, pathways-noneg, airport, driverlog, tpp, zenotravel.
We present the representative results in this paper. All the ex-
periments have been performed on a machine with Intel(R)
Xeon(R) CPU E5-1620 v2 at 3.70GHz and 64GB RAM. The
following distance measure for measuring diversity has been
adopted from (Nguyen et al. 2012):

dist(p1, p2) = 1− A(p1)∩A(p2)
A(p1)∪A(p2)

(2)

where A(p) denotes the set of all actions in plan p.
Table 1 shows the comparison of DFAA and A*AA meth-

ods on problems (denoted by P.no.) from Blocks domain.
We have used the LMcut heuristic which is admissible, to
guide the search. The algorithms are given a maximum time
of 60sec for solving each problem. Given a set of inputs,
the output shows whether a diverse set of plans of size K is
found (otherwise the size of the largest diverse set found in
parenthesis), the time taken, and the number of plans gener-
ated during the process. * denotes that the algorithm stopped
due to the time limit. We see that the DFA based method
generates the cost sensitive plans faster than the A*A based
method in this case, resulting in the processing of more num-
ber of plans in a given time.

The difference in the number of plans generated to find
a diverse set of same size highlights the importance of the
order in which the candidate plans are generated. Depend-
ing on the order of the plans generated, the number of plans
required to be processed by an exhaustive algorithm to pro-
duce a diverse set of specific size varies. As mentioned be-
fore, this could be influenced by devising an appropriate dis-
tance metric and domain dependent feedback mechanism.



Table 1: Comparison of DFAA and A*AA complete algorithms. Domain: Blocks. max time = 60sec.
Input DFAA A*AA

P. no. K max cost min dist
K-set

found? Time (Sec.) Plans gentd. K-set
found? Time (Sec.) Plans gentd.

4-0

4 20 0.6 Yes 0.00 22 Yes 0.00 26
8 No (4) 0.00 43 No (4) 0.00 43

8 30 0.5 Yes 32.90 231 Yes 11.06 130
0.6 No (5) 2.14 323 No (5) 3.42 323

5-0 8 30 0.5 No* (4) 60.00 2567 No* (6) 60.00 923
0.6 No* (3) 60.00 5140 No* (3) 60.00 4115

Table 2: Comparison of DFAM and A*AM complete algorithms. Domain: Blocks. max time = 60sec.
Input DFAM A*AM

P. no. K max cost min dist
K-set

found? Time (Sec.) Plans gentd. K-set
found? Time (Sec.) Plans gentd.

4-0

4 20 0.6 Yes 0.00 26 Yes 0.00 26
8 No (4) 0.00 43 No (4) 0.00 43

8 30 0.5 Yes 0.58 323 Yes 0.04 172
0.6 No (5) 1.74 323 No (5) 2.62 323

5-0 8 30 0.5 No* (6) 60.00 11680 No* (7) 60.00 12226
0.6 No* (2) 60.00 11908 No* (3) 60.00 12311

Table 3: Comparison of DFA based and A*A based greedy algorithms. Domain: Blocks. max time = 60sec.
Input DFAG A*AG

P. no. K max cost min dist
K-set

found? Time (Sec.) Plans gentd. K-set
found? Time (Sec.) Plans gentd.

4-0

4 20 0.6 No (3) 0.00 43 No (3) 0.00 43
8 No (3) 0.00 43 No (3) 0.00 43

8 30 0.5 No (6) 0.04 323 No (7) 0.06 323
0.6 No (4) 0.02 323 No (3) 0.04 323

5-0 8 30 0.5 No (6) 16.70 104712 No* (6) Mem-limit 101908
0.6 No (2) 24.24 104712 No* (2) Mem-limit 101908

Table 2 presents the comparison of DFAM and A*AM
methods (with plan-combinations seed set size equal to 30
in each execution). Note that, both algorithms guarantee to
find a diverse set of required size if there exists one, given
they are given enough time to terminate. Our objective with
the MCER based methods is to quickly process the incoming
candidate plans so as to find a diverse set quicker, postpon-
ing the exhaustive exploration to the end. Accordingly, we
see that both the methods perform much better than they did
compared to Table 1 by processing larger number of plans.
They are able to find larger sized sets of diverse plans in the
given time than before, although, as one can observe it may
also happen that the select exploration could occasionally
(see DFAM vs DFAA in last rows of both the tables) delay
finding large sets compared to ACER based approaches.

Next, we present the results obtained by integrating the
greedy approach discussed in the Introduction with DFA and
A*A, in Table 3. We call these methods DFAG and A*AG
respectively. As one can observe, while the greedy methods
process the incoming candidate plans very fast, they termi-
nate without finding a diverse set of given size even when
there exists one. Furthermore, even for finding the diverse
sets that they produced, they involve generating far more
number of plans compared to the complete algorithms. This
can be a crucial element when finding multiple plans is dif-
ficult for a domain. Also, note that, A*A runs out of mem-
ory (4GB per instance) in this case which makes the case

for memory bounded methods while attempting to gener-
ate multiple solutions. Although, one can improve the per-
formance of the greedy approach through feedback mecha-
nisms, considering only one seed plan set for exploration is
likely to continue to affect the performance. Thus, it would
be beneficial to have multiple seed plan sets to be explored
at each stage for better performance.

Now, we present the results obtained on two other do-
mains, namely, Rovers and Zeno-Travel. We show the re-
sults with DFA as the base method (for generating all cost-
bounded solutions) in these cases since A*A based methods
were quickly reaching the memory limit on these instances.
Table 4 shows the comparison of DFAA, DFAM and DFAG
methods on a problem from the Rovers domain with 14 ob-
jects. Here, a diverse set of size 8 with cost bound 20 is to
be found within 60 seconds. Three sets of results compar-
ing the above three algorithms are presented with different
diversity criterion in each case. Note that, amongst the three
methods, DFAA spends the most amount of effort on explor-
ing plan combinations (exhaustive) whenever a new plan is
found, therefore is only able to generate and process a small
number of plans. Since DFAG spends least amount of ef-
fort on exploring plan combinations (greedy) upon finding
a new plan, it is able to generate and scan through a large
number of plans. Whereas DFAM distributes its effort intel-
ligently across plan generation and plan combination explo-
ration, by adjusting the number of seeds n as per domain and



Table 4: Comparison of DFAA, DFAM and DFAG methods. Domain: Rovers. Problem: roverprob4213 (14 objects), K: 8,
max cost : 20, max time = 60sec.

Input DFAA DFAM DFAG

min dist
K-set

found? Time (Sec.) Plans gentd. K-set
found? Time (Sec.) Plans gentd. K-set

found? Time (Sec.) Plans gentd.

0.4 Yes 0.88 64 Yes 0.00 65 Yes 0.00 64
0.5 No* (6) 60.00 372 Yes 9.84 306061 Yes 1.22 304553
0.6 No* (4) 60.00 1048 No* (6) 60.00 2047871 No* (4) 60.00 15988265

Table 5: Comparison of DFAA, DFAM and DFAG methods. Domain: Zeno-Travel. Problem: ZTRAVEL-2-5 (17 objects), K: 8,
max cost : 15, max time = 60sec.

Input DFAA DFAM DFAG

min dist
K-set

found? Time (Sec.) Plans gentd. K-set
found? Time (Sec.) Plans gentd. K-set

found? Time (Sec.) Plans gentd.

0.4 No* (6) 60.00 294 Yes 0.18 1447 Yes 0.20 1447
0.5 No* (4) 60.00 579 Yes 0.62 7884 Yes 0.44 8545
0.6 No* (3) 60.00 1171 Yes 21.46 505186 Yes 10.30 619579

problem size (in this case, n = 30). Note that, MCER with
n = 1 would result in an exploration similar to that of the
greedy method, with the exception of going further and guar-
anteeing completeness. And, MCER with n =∞ would re-
sult in an exploration similar to that of ACER. Results show
that DFAA performs poorly on large instances due to its ex-
haustive exploration. Between DFAM and DFAG, on easier
problems (with low diversity/distance requirement; first 2 in-
stances), greedy and MCER based methods fare similarly,
with the greedy method slightly outperforming the MCER
based method (note that, one can change the n value to 1
here, to make MCER deliver results similar to that of the
greedy method, however, this is not beneficial in general).
On the other hand, when the diversity required is higher
(third instance), MCER based method outperforms greedy
approach by finding a larger diverse set using only 12.81%
of the plans generated by that of the greedy method, show-
casing the advantage of exploring plan combinations more
thoroughly.

Table 5 presents the comparison of DFAA, DFAM and
DFAG methods on a problem from the Zeno-Travel domain
with 17 objects. Once again, we observe similar results as
that of the previous two domains. ACER based method fares
poorly due to its exhaustive nature which limits its reach
in scanning through the full space plans in the given time.
And, between DFAM and DFAG, while DFAG may find
the K-set in shorter time in some cases, DFAM continues
to leverage the advantage of exploring plan combinations
thoroughly and is able to find required K-sets using lesser
number of plans. This is a crucial element in working with
domains where producing individual plans itself is very dif-
ficult, which is especially the case when large problem sizes
are involved.

Before we conclude, we present a note on solving large
sized problems. In such cases, while completeness may not
be a practical expectation, one should be able to gain perfor-
mance over using the greedy approach by carefully integrat-
ing the proposed MCER approach with the state-of-the-art
solvers/planners, feedback mechanisms, and using efficient
heuristics for exploring the space of plan combinations. Fur-

thermore, the proposed methods can be easily extended to
solve related problems such as, finding a K-set with maxi-
mum diversity, finding largest K-set with a given diversity,
finding high quality (in terms of the cost of the plans) K-sets
with given diversity, and a combination thereof involving the
generation of multi-objective pareto fronts.

Conclusion
In this paper, we take a combinatorial search perspective of
the widely studied diverse solution generation problem. We
observe that many of the approaches proposed in various
domains such as automated planning and constraint satis-
faction use a linear-time greedy method for exploring plan
set combinations, that makes them fail while searching for
a diverse set of required size even when there exists one.
We propose a bi-level optimization framework and methods
to find cost-sensitive diverse solutions which guarantee to
find a diverse set of required size whenever there exists one.
We identify the critical elements that affect the performance
in such scenarios and propose efficient methods to handle
them. We showcased the efficacy of the proposed methods
by implementing our methods as part of the Fast Downward
planning system and comparing with the existing greedy ap-
proach across various domains. The proposed methods have
found larger sets of diverse solutions compared to the greedy
approach on almost all problem instances, within the same
time bound, proving their utility.
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