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Abstract

Query optimization in data integration requires source cover-
age and overlap statistics. Gathering and storing the required
statistics presents many challenges, not the least of which is con-
trolling the amount of statistics learned. In this paper we intro-
duce StatMiner, a novel statistics mining approach which automat-
ically generates attribute value hierarchies, efficiently discovers
frequently accessed query classes based on the learned attribute
value hierarchies, and learns and stores statistics only with re-
spect to these classes. We describe the details of our method, and
present experimental results demonstrating the efficiency and ef-
fectiveness of our approach. Our experiments are done in the con-
text of BibFinder, a publicly available bibliography mediator.

1 Introduction

The availability of structured information sources on the web
has recently lead to significant interest in query processing frame-
works that can integrate information sources available on the Inter-
net. Data integration systems [LRO96, ACPS96, LKG99, DGL00,
PL00, NKH03] are being developed to provide a uniform inter-
face to a multitude of information sources, query the relevant
sources automatically and restructure the information from differ-
ent sources. In a data integration scenario, a user interacts with a
mediator system via a mediated schema. A mediated schema is a
set of virtual relations, which are effectively stored across multi-
ple and potentially overlapping data sources, each of which only
contain a partial extension of the relation. Query optimization in
data integration [FKL97, NLF99, NK01, DH02 ] thus requires the
ability to figure out what sources are most relevant to the given
query, and in what order those sources should be accessed. For
this purpose, the query optimizer needs to access statistics about
the coverage of the individual sources with respect to the given
query, as well as the degree to which the answers they export over-
lap. Gathering these statistics presents several challenges because
of the autonomous nature of the data sources. In this paper, we
motivate and investigate the issues involved in statistics gathering

in the context of a bibliography mediation system that we are de-
veloping calledBibFinder.

BibFinder Scenario: We have been developingBibFinder (Fig-
ure 2, http://rakaposhi.eas.asu.edu/bibfinder), a publicly “fielded”
computer science bibliography mediator.BibFinder integrates
several online Computer Science bibliography sources. It cur-
rently coversCSB, DBLP, Network Bibliography, ACM Digital
Library, ScienceDirect,andCiteSeer. Plans are underway to add
several additional sources includingIEEE Xplore, ACM Guide,
AMS MathSciNet and Computational Geometry Bibliography.
Since its unveiling in December 2002,BibFinder has been get-
ting on the order of 200 queries a day. Most of the queries are
“selection” queries on the papers.

The sources integrated byBibFinderare autonomous and par-
tially overlapping. By combining the sources,BibFinder can
present a unified and more complete view to the user. However it
also brings some interesting optimization challenges. The global
schema exported byBibFindercan be modeled in terms of just the
relation:paper(title, author, conference/journal, year). Each of
the individual sources may export only a subset of the global rela-
tion. For example, the sourceNetwork Bibliographyonly contains
publications in Networks,DBLP gives more emphasis to Database
related publications, whileScienceDirecthas only archival journal
publications.

Need for Statistics: To efficiently answer user queries, it is im-
portant to find and access the most relevant subset of the sources
for the given query. Suppose, the user asks a selection query
Q(title,author) :− paper(title, author, conference/journal, year),

conference/journal =“SIGMOD”.
The naive way of answering this selection query would be to send
it to all the data sources, wait for the results, eliminate duplicates,
and return the answers to the user. This not only leads to increased
query processing time and duplicate tuple transmission, but also
unnecessarily increases the load on the individual sources. A more
efficient andpolite approach would be to direct the query only to
the most relevant sources. For example, for the selection query
above,DBLP is most relevant, andNetwork Bibliographyis much
less relevant. Furthermore, sinceDBLP stores records of virtually



all the SIGMOD papers, a call toCiteseeris largely redundant.1

Coverage and Overlap Statistics:In order to judge the source
relevance however,BibFinderneeds to know thecoverageof each
sourceS with respect to the queryQ, i.e. P (S|Q), the probability
that a random answer tuple for queryQ belongs to sourceS. Given
this information, we can rank all the sources in descending order
of P (S|Q). The first source in the ranking is the one we want to
access first while answering queryQ. Since the sources may be
highly correlated, after we access the sourceS′ with the maximum
coverageP (S′|Q), the second sourceS′′ that we access must be
the one with the highestresidual coverage(i.e. provides the max-
imum number of those answers that are not provided by the first
sourceS′). Specifically we need to determine the sourceS′′ that
has next best rank in terms of coverage but has minimaloverlap
(common tuples) withS′.

The Costs of Statistics Learning: If we have the coverage and
overlap statistics for every possible query, we can get the complete
order in which to access the sources. However it would be very
costly to learn and store statistics w.r.t. every source-query combi-
nation, and overlap information about every subset of sources with
respect to every possible query. The difficulty here is two-fold.
First there is the cost of “learning”–which would involve probing
the sources with all possible queriesa priori, and computing the
coverage and overlap with respect to the queries. The second is
the cost of “storing”the statistics.

Motivation for Frequency-based Statistics Learning:One way
of keeping both these costs down is to learn statistics only with re-
spect to a smaller set of “frequently asked” queries that are likely
to be most useful in answering user queries. This strategy trades
accuracy of statistics for reduced statistics learning/storing costs.
In the BibFinderscenario, for example, we could learn statistics
with respect to the list of queries that are actually posed to the
mediator over a period of time.BibFinderfacilitates this by main-
taining a log of queries, and for each query keeping statistics on
how many of the query answers came from which sources. The
motivation of such an approach is that even if a mediator can-
not provide accurate statistics for every possible query, it can still
achieve a reasonable average accuracy by keeping more accurate
coverage and overlap statistics for queries that are asked more fre-
quently, and less accurate statistics for infrequent queries. The
effectiveness of this approach is predicated on the belief that in
most real-world scenarios, the distribution of queries posed to a
mediator is notuniform, but rather Zipfian. This belief is amply
validated inBibFinder. Figure 1 shows the distribution of the key-
words, and bindings for the Year attribute used in the first 15000
queries that were posed toBibFinder. Figure 1(a) shows that the

1In practice,Citeseeris not completely redundant since it often pro-
vides additional information about papers, such as pdf files and citation
links, that DBLP does not provide.BibFinderhandles this by dividing the
paper search into two phases–in the first phase, the user is given a listing
of all the papers that satisfy her query. In the second phase, the user can
ask additional details on specific papers. While it is important to call every
potentially relevant source in the second phase, we do not have this com-
pulsion in the first phase. For the rest of this paper, all our references to
BibFinderare to its first phase.

most frequently asked10% keywords appear in almost60% of all
the selection queries binding attribute Title. Figure 1(b) shows that
the users are much more interested in recently published papers.

(a) Keywords Distribution
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Figure 1. Query Distributions in BibFinder

Handling New Queries through Generalization: Once we sub-
scribe to the idea of learning statistics with respect to a workload
query list, it would seem as if the problem of statistics gathering
is solved. When a new query is encountered, the mediator simply
needs to look into the query list to see the coverage and overlap
statistics on this query when it was last executed. In reality, we
still need to address the issue of what to do when we encounter
a query that was not covered by the query list. The key here
is “generalization”–store statisticsnot with respect to the specific
queries in the query list, but rather with respect to query classes.
The query classes will have a general-to-specific partial ordering
among them. This in turn induces a hierarchy among the query
classes, with the query list queries making up the leaf nodes of the
hierarchy. The statistics for the general query classes can then be
computed in terms of the statistics of their children classes. When
a new query is encountered that was not part of the workload query
list, it can be mapped into the set of query classes in the hierarchy
that are most similar, and the (weighted) statistics of those query
classes can be used to handle the new query. Such an organization
of the statistics offers an important additional flexibility: we can
limit the amount of statistics stored as much as we desire by strip-
ping off (and not storing statistics for) parts of the query hierarchy.

Modeling Query Classes:The foregoing discussion about query
classes raises the issue regarding the way query classes are de-
fined to begin with. For selection queries that bind (a subset of)
attributes to specific values (such as the ones faced byBibFinder),
one way is to develop “general-to-specific” hierarchies over at-
tribute values (AV hierarchies, see below). The query classes
themselves are then naturally defined in terms of (cartesian) prod-
ucts over the AV hierarchies. Figure 4 shows an example of AV
hierarchies and the corresponding query classes (see Section 2 for
details). AV hierarchies could be hand-developed or automatically
generated (see Section 3) using clustering techniques. An advan-
tage of defining query classes through the cartesian product of AV
hierarchies is that mapping new queries into the query class hi-
erarchy is straightforward–a selection query binding attributesAi

andAj will only be mapped to a query class that binds either one



Figure 2. The BibFinder User Interface

or both of those attributes (to possibly general values of the at-
tribute).2

Figure 3. StatMiner Architecture

The approach to statistics learning described and motivated in
the foregoing has been implemented inStatMiner, and has been
evaluated in the context ofBibFinder. In this paper, we describe
the details of theStatMinerapproach, and its use inBibFinder.
Figure 3 shows the high-level architecture ofStatMiner. StatMiner
starts with a list of workload queries. The query list is collected
from the logs of queries submitted toBibFinder, and not only gives
the specific queries submitted toBibFinder, but also coverage and
overlap statistics on how many tuples of each query came from
which source. The query list is used to automatically learn AV
hierarchies. The space of query classes is then defined in terms
of the product of these AV hierarchies. The query classes are fur-
ther pruned such that only those classes that subsume more than a
given number of queries (specified by a frequency threshold) are
retained. For each of these remaining classes, class-source as well

2This also explains why we don’t cluster the query list queries directly–
there is no easy way of deciding which query cluster(s) a new query should
be mapped to without actually executing the new query and using its cov-
erage and overlap statistics to compute the distance between that query and
all the query clusters!

as class-source set association rules are learned. An example of a
class-source association rule could be thatSIGMOD → DBLP

with confidence 100%, which means information sourceDBLP

covers all the paper information forSIGMOD related queries.
When the mediator encounters a new queryQ, it is first mapped
to a setC of closest least-general query classes. The source cov-
erage and overlap statistics forQ are computed as a (weighted)
combination of the statistics of the query classes inC. Notice that
C can be a singleton if the system happens to have statistics forQ

directly. In this case we have fully accurate coverage and overlap
statistics aboutQ. In all other cases, the statistics are approximate.

The rest of the paper is organized as follows. In the next sec-
tion, we define some terminology about query classes and AV hier-
archies. Section 3 describes the details of learning AV hierarchies.
Section 4 describes how query classes are formed by taking the
product of AV hierarchies and efficiently pruning the infrequent
ones. Section 5 describes how coverage and overlap statistics are
learned for the query classes that are retained. Section 6 describes
how a new query is mapped to the appropriate query classes, and
how the combined statistics are used to develop a query plan (i.e.
the plan of accessing the sources). Section 7 describes the setting
for the experiments we have done withStatMinerandBibFinderto
evaluate the effectiveness of our approach. Section 8 presents the
experimental results. Section 9 discusses related work and possi-
ble extensions, and Section 10 presents our conclusions.

2 AV Hierarchies and Query Classes

AV Hierarchy: As we are considering selection queries, we can
classify the queries in terms of the selected attributes and their
values. To abstract the classes further we assume that the medi-
ator has access to the so-called “attribute value hierarchies” for a
subset of the attributes of each mediated relation. AnAV hierarchy
(or attribute value hierarchy) over an attributeA is a hierarchical
classification of the values of the attributeA. The leaf nodes of
the hierarchy correspond to specific concrete values ofA, while
the non-leaf nodes are abstract values that correspond to the union
of values below them. Figure 4 shows two very simple AV hier-
archies for the “conference” and “year” attributes of the “paper”
relation. Note that hierarchies do not have to exist for every at-
tribute, but rather only for those attributes over which queries are
classified. We call these attributes theclassificatory attributes.
We can choose as the classificatory attributes the bestk attributes
whose values differentiate the sources the most, where the number
k is decided based on a tradeoff between prediction performance
and the computational complexity of learning the statistics by us-
ing thesek attributes. The selection of the classificatory attributes
may either be done by the mediator designer or using automated
techniques. Similarly, the AV hierarchies themselves can either be
hand-coded by the designer, or can be learned automatically. In
Section 3, we give details on how we learn them automatically.

Query Classes:Since a typical selection query will have values
of some set of attributes bound, we group such queries into query
classes using the AV hierarchies of the classificatory attributes. A
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ing Query Class Hierarchy

query feature is defined as the assignment of a classificatory at-
tribute to a specific value from its AV hierarchy. A feature is “ab-
stract” if the attribute is assigned an abstract (non-leaf) value from
its AV hierarchy. Sets of features are used to define query classes.
Specifically, a query class is a set of (selection) queries that all
share a particular set of features. The space of query classes is just
the cartesian product of the AV hierarchies of all the classificatory
attributes. Specifically, letHi be the set of features derived from
the AV hierarchy of theith classificatory attribute. Then the set of
all query classes (calledclassSet) is simplyH1×H2× ...×Hn.
The AV hierarchies induce subsumption relations among the query
classes. A classCi is subsumed by classCj if every feature inCi

is equal to, or a specialization of, the same dimension feature in
Cj . A queryQ belongs to a classC if the values of the classi-
ficatory attributes inQ are equal to or are specializations of the
features definingC. Figure 4 shows an example class hierarchy
for a very simple mediator with the two example AV hierarchies.
The query classes are shown at the bottom, along with the sub-
sumption relations between the classes.

Query List: We assume that the mediator maintains a query list
QList, which keeps track of the user queries, and for each query
saves statistics on how often it is asked and how many of the query
answers came from which sources. In Figure 5, we show a query
list fragment. The statistics we remember in the query list are: (1)
query frequency, (2) total number of distinctive answers from all
the sources (i.e.|Answers|) and (3) number of answers from each
source set which has answers for the query. The query list is kept
as a XML file which can be stored on the mediator’s hard disk or
other separate storage devices. Only the learned statistics for the
frequent query classes will remain in the mediator’s main memory
for fast access. We useFRQ to denote the access frequency of a
queryQ, andFR to denote the total frequency of all the queries
in QList. Thequery probabilityof a queryQ, denoted byP (Q),
is the probability that a random query posed to the mediator is
the queryQ. It can be computed using the formula:P (Q) =
FRQ

FR
. Theclass probabilityof a classC, denoted byP (C), is the

probability that a random query posed to the mediator is subsumed
by the classC. It is computed as:P (C) =

∑
Q∈C

P (Q).

Query   Frequency   |Answers|   Overlap (Coverage)  
DBLP   35  
CSB   23  

CSB, DBLP   12  
DBLP, Science   3 

Science   3 
CSB, DBLP, Science   1 

Author=”andy king”   106   46  

CSB, Science   1 
CSB   16  

DBLP   16  
CSB , DBLP   7 

ACMdl   5 
ACMdl, CSB   3 

ACMdl, DBLP   3 
ACMdl, CSB, DBLP   2 

Author=”fayyad” &  
Title=”data mining”  

1  27  

Science   1 
 

Figure 5. A Query List Fragment

Coverage and Overlap w.r.t Query Classes:Thecoverageof a
data sourceS with respect to a queryQ, denoted byP (S|Q), is
the probability that a random answer tuple of queryQ is present
in sourceS. Theoverlapamong a set̂S of sources with respect to
a queryQ, denoted byP (Ŝ|Q), is the probability that a random
answer tuple of the queryQ is present in each sourceS ∈ Ŝ. The
overlap (or coverage when̂S is a singleton) statistics w.r.t. a query
Q are computed using the following formula

P (Ŝ|Q) =
NQ(Ŝ)

NQ

HereNQ(Ŝ) is the number of answer tuples ofQ that are in all
sources ofŜ, NQ is the total number of answer tuples forQ.
We assume that the union of the contents of the available sources
within the system covers 100% of the answers of the query. In
other words, coverage and overlap is measured relative to the avail-
able sources.

The coverageof a sourceS w.r.t. a classC, denoted by
P (S|C), is the probability that a random answer tuple of a ran-
dom query belonging to the classC is present in sourceS. The
overlapamong a set̂S of sources with respect to a classC, de-
noted byP (Ŝ|C), is the probability that a random answer tuple of
a random query belonging to the classC is present in each source
S ∈ Ŝ. The overlap (or coverage when̂S is a singleton) statis-
tics w.r.t. a query classC can be computed using the following
formula:

P (Ŝ|C) =
P (C ∩ Ŝ)

P (C)
=

∑
Q∈C

P (Ŝ|Q)P (Q)

P (C)

The coverage and overlap statistics w.r.t. a classC is used to
estimate the source coverage and overlap for all the queries that
are mapped intoC. These coverage and overlap statistics can be
conveniently computed using an association rule mining approach.

Class-Source Association Rules:A class-source association rule
represents strong associations between a query class and a source
set (which is some subset of sources available to the mediator) .



Specifically, we are interested in the association rules of the form
C → Ŝ, whereC is a query class, and̂S is a source set (possibly
singleton). Thesupportof the classC (denoted byP (C)) refers
to the class probability of the classC, and the overlap (or coverage
whenŜ is a singleton) statisticP (Ŝ|C) is simply theconfidenceof

such an association rule(denoted byP (Ŝ|C) = P (C∩Ŝ)
P (C)

). Exam-
ples of such association rules include:AAAI → S1, AI → S1,
AI&2001 → S1 and2001 → S1 ∧ S2.

3 Generating AV Hierarchies Automatically

In this section we discuss how to systematically build AV Hier-
archies based on the query list maintained by the mediator. We first
define the distance function between two attribute values. Next
we introduce a clustering algorithm to automatically generate AV
Hierarchies. Then we discuss the complications of our basic clus-
tering algorithm: preprocessing different types of attribute values
from the query list and estimating the coverage and overlap statis-
tics for queries with low selectivity binding values. Finally we
discuss how to flatten our automatically generated AV Hierarchies.

Distance Function: The main idea of generating an AV hierar-
chy is to cluster similar attribute values into classes in terms of
the coverage and overlap statistics of their corresponding selec-
tion queries binding these values. The problem of finding similar
attribute values becomes the problem of finding similar selection
queries. In order to find similar queries, we define a distance func-
tion to measure the distance between a pair of selection queries
(Q1, Q2).:

d(Q1, Q2) =

√∑
i

[P (Ŝi|Q1)− P (Ŝi|Q2)]2

WhereŜi denotes theith source set of all possible source sets
in the mediator. Although the number of all possible source sets is
exponential in terms of the number of available sources, we only
need to consider source sets with answers for either of the two
queries to computed(Q1, Q2)3. The interpretation of the distance
function is that we consider two queries similar if their source cov-
erage and overlap statistics are similar. Similarly we define a dis-
tance function to measure the distance between a pair of query
classes (C1, C2):

d(C1, C2) =

√∑
i

[P (Ŝi|C1)− P (Ŝi|C2)]2

We compute a query class’s coverage and overlap statistics
P (Ŝ|C) according to the definition of the overlap (or coverage)
w.r.t. to a class given in Section 2. The coverage and overlap
statisticsP (Ŝ|Q) for a specific queryQ are computed using the
statistics from the query list maintained by the mediator.

3For example, suppose QueryQ1 gets tuples form only sourcesS1 and
S5, andQ2 gets tuples fromS5 andS7, we will only consider source set
{S1},{S5},{S1, S5},{S7}, and{S5, S7}.

3.1 Generating AV Hierarchies

For now we will assume that all attributes have a discrete set of
values, and we will also assume that the corresponding coverage
and overlap statistics are available (see the last two paragraphs in
this subsection for detailed discussion). We now introduce GAVH
(Generating AVHierarchy, see Figure 6), an agglomerative hier-
archical clustering algorithm ([HK00]), to automatically generate
an AV Hierarchy for an attribute.

Algorithm GAVH()
for (each attribute value)

generate a cluster nodeC;

feature vectorC.fv = (
−−−−−→
P (Ŝ|Q), P (Q));

childrenC.children = null;
put cluster nodeC into AVQueue;

end for
while (AVQueue has more than two clusters)

find the most similar pair of clustersC1 andC2;
generate a new clusterC;

C.fv = (
P (C1)×

−−−−−→
P (Ŝ|C1)+P (C2)×

−−−−−→
P (Ŝ|C2)

P (C1)+P (C2))
, P (C1)+

P (C2));
C.children = (C1, C2);
put clusterC into AVQueue;
remove clusterC1 andC2 from AVQueue;

end while
End GAVH;

Figure 6. The GAVH algorithm

The GAVH algorithm will build an AV Hierarchy tree, where
each node in the tree has a feature vector summarizing the infor-
mation that we maintain about an attribute value cluster. The fea-
ture vector is defined as:(

−−−−−→
P (Ŝ|C), P (C)), while

−−−−−→
P (Ŝ|C) is the

coverage and overlap statistics vector of the clusterC for all the
source sets andP (C) is the class probability of the clusterC. Fea-
ture vectors are only used during construction of AV hierarchies
and can be removed afterwards. As we can see from Figure 6, we
can incrementally compute a new cluster’s coverage and overlap

statistics vector
−−−−−→
P (Ŝ|C) by using the feature vectors of its chil-

dren clustersC1, C2:

−−−−−→
P (Ŝ|C) =

P (C1)×
−−−−−→
P (Ŝ|C1) + P (C2)×

−−−−−→
P (Ŝ|C2)

P (C1) + P (C2))

P (C) = P (C1) + P (C2)

Attribute Value Preprocessing: The attribute values for gener-
ating AV hierarchies are extracted from the query list maintained
by the mediator. Since the GAVH algorithm assumes that all at-
tributes have discrete domains, we may need to preprocess the



values of some types of attributes. For continuous numerical at-
tributes, we divide the domain of the attribute into small ranges.
Each range is treated as a discrete attribute value. For keyword-
based attributes such as attribute Title inBibFinder we learn the
frequently asked keywords using an item set mining algorithm.
Keyword sets that are rarely asked will not be remembered as at-
tribute values. Each frequent keyword set will be treated as a dis-
crete attribute value.

Handling Low Selectivity Attribute Values: If an attribute value
(i.e. a selection query binding value) is too general, some sources
may only return a subset of answers to the mediator, while oth-
ers may not even answer such general queries. In such cases the
mediator is unable to figure out the real number of tuples in these
sources, and thus cannot know the coverage and overlap statis-
tics of these queries to generate AV hierarchies. Hence we have
to use the coverage statistics of more specific queries to estimate
the source coverage and overlap of the original queries. Specifi-
cally, we treat the original general queries as query classes, and the
statistics of their sub-queries will be used to estimate the coverage
of the sources for these query classes using the following formula:

P (Ŝ|C)
.
=

∑
Q∈C and (Q is specific) P (Ŝ|Q)P (Q)∑

Q∈C and (Q is specific) P (Q)

As we can see there is a slight difference between this formula
and the formula for the definition of the overlap (or coverage) w.r.t.
to classC. The difference is that here we only consider the overlap
(or coverage) of specific sub-queries for the class and ignore the
influence of the general sub-queries.

3.2 Flattening Attribute Value Hierarchies

Since the nodes of the AV Hierarchies generated using our
GAVH algorithm contain only two children each, we may get a
hierarchy with a large number of layers. One potential problem
of such kinds of AV Hierarchies is that the levels of abstractions
may not actually increase when we go up the hierarchy. For exam-
ple, in Figure 7, assuming the three attribute values have the same
(or very similar) coverage and overlap statistics, then we should
not put them into separate clusters. If we put these attribute val-
ues into two clustersC1 andC2, these two clusters are completely
(or almost) in the same level of abstraction. Therefore we may
waste our memory space on remembering the same (or very simi-
lar) statistics multiple times.

In order to prune these unnecessary clusters, we use another
algorithm called FAVH (Flattening AV Hierarchy, see Figure 8).
FAVH starts the flattening procedure from the root of the AV Hi-
erarchy, then recursively checks and flattens the whole hierarchy.

To determine whether a clusterCchild should be preserved in
the hierarchy, we compute thetightnessof the cluster, which mea-
sures the accuracy of its statistics. Thetightnesst(C), of a cluster
C, is calculated as following:

t(C) =
1∑

Q∈C

P (Q)
P (C)

d(Q, C)

C2

A2A1

C2

A3

C1 A3

A1 A2

D(C1,C2) <= 1 /T(C1)

Flattened AV Hierarchy

Figure 7. An example of Flattening AV Hierar-
chy

Algorithm FAVH(clusterNodeC) //Starting from root;
if (C has children)

for (each child nodeCchild in C)
putCchild into Children Queue

for (each nodeCchild in Children Queue)
if (d(Cchild, C) <= 1

t(Cchild) )
put (Cchild).children into Children Queue;
removeCchild from Children Queue;

end if
for (each children nodeCchild in Children Queue)

FAVH(Cchild);
end if

End FAVH;

Figure 8. The FAVH algorithm

while d(Q, C) is the distance between the queryQ and the cluster.
If the distance,d(Cchild, C), between the cluster and its parent

clusterC is not larger than 1
t(Cchild)

, then we consider the cluster
is unnecessary and put all of its children directly into its parent
cluster.

4 Discovering Frequent Query Classes

As we discussed earlier, it may be prohibitively expensive to
learn and keep in memory the coverage and overlap statistics for
every possible query class. In order to keep the number of asso-
ciation rules low, we would like to prune query classes which are
rarely asked. We use a threshold on the support of a class (i.e.
percentage of total frequency of queries that use the statistics of
that class), calledminfreq, to identify frequent query classes. Cov-
erage and overlap statistics are learned only with respect to these
frequent classes.

Candidate Frequent Classes and Class Access Probability:We
use the termcandidate frequent classto denote any class with class
probability more than the minimum frequency thresholdminfreq.
The example classes shown in Figure 4 with solid frame lines are
candidate frequent classes. As we can see some queries may have



multiple lowest level ancestor classes which are candidate fre-
quent classes and not subsumed by each other. For example, the
query (or class) (ICDE,01) has both the class (DB,01) and class
(ICDE,RT) as its parent class. For a query with multiple ancestor
classes, we need to map the query into a set of least-general ances-
tor classes which are not subsumed by each other (see Section 6).
We will combine the statistics of these mapped classes to estimate
the statistics for the query.

We also define theclass access probabilityof a classC, de-
noted byPmap(C), to be the probability that a random query
posed to the mediator is actually mapped to the classC. It can
be computed using the following formula:

Pmap(C) =
∑

Q is mapped toC

P (Q)

4.1 Discovering Candidate Frequent Classes

Since the class access probability of a candidate frequent class
will be affected by the distribution of other candidate frequent
classes, in order to identify the classes with high class access prob-
ability, we have to discover all the candidate frequent classes first.
In this subsection, we will introduce an algorithm to discover can-
didate frequent classes. In the next subsection, we will then dis-
cuss how to prune candidate frequent classes with low class access
probability.

We now present an algorithm, DFC (Discovering Candidate
Frequent Classes), (see Figure 9), to efficiently discover all the
candidate frequent classes. The DFC algorithm dynamically
prunes classes during counting and uses theanti-monotone prop-
erty4 ([HK00]) to avoid generating classes which are supersets of
the pruned classes.

Specifically the algorithm makes multiple passes over the
query list QList. It first finds all the candidate frequent classes
with just one feature, then it finds all the candidate frequent classes
with two features using the previous results and the anti-monotone
property to efficiently prune classes before it starts counting, and
so on. The algorithm continues until it gets all the candidate fre-
quent classes with all then features (wheren is the total number
of classificatory attributes). For each queryQ in thek-th pass, the
algorithm finds the set ofk feature classes the query falls in, and
for each classC in the set, it increases the class probabilityP (C)

by the query probabilityP (Q). The algorithm prunes the classes
with class probability less than the minimum threshold probability
minfreq.

The algorithm finds all the candidate ancestor classes with
k features for a queryQ = {Ac1 , ..., Acn , frequency} by
proceduregenClassSet(see Figure 10), whereAci is the feature
value of theith classificatory attribute. The procedure prunes
infrequent classes using the frequent class setclassSet found in
the previous(k − 1) passes. In order to improve the efficiency of
the algorithm, it dynamically prunes infrequent classes during the
cartesian product procedure.
We explain the procedure using the following example.

4If a set cannot pass a test, all of its supersets will fail the same test as
well.

Algorithm DFC(QList; minfreq : minimum support;n : # of

classificatory attributes)

classSet = {};
for (k = 1; k <= n; k + +)

Let classSetk = {};
for (each queryQ ∈ QList)

CQ = genClassSet(k, Q, ...);
for (each classc ∈ CQ)

if (c /∈ classSetk)

then classSetk = classSetk ∪ {c};
c.frequency = c.frequency +

Q.frequency;
end for

end for
classSetk = {c ∈ classSetk|c.frequency >=

minfreq};
classSet = classSet ∪ classSetk;

end for
return classSet;

End DFC;

Figure 9. The DFC algorithm

Example: Assume we have a queryQ={ICDE, 2001, 50} (here
50 is the query frequency) andk = 2. We first extract the
feature(binding) values{Ac1 = ICDE, Ac2 = 2001} from the
query. Then for each feature, we generate a feature set which
includes all the ancestors of the feature (see the corresponding
AV Hierarchies in Figure 4) . This leads to two feature sets:
ftSet1 = {ICDE, DB} andftSet2 = {2001}. Suppose the
class with the single feature “ICDE” is not a frequent class in
the previous results, then any class with the feature “ICDE” can
not be a frequent class according to the anti-monotone property.
We can prune the feature “ICDE” fromftSet1, then we get the
candidate 2-feature class set for the queryQ,

candidateSet = ftSet1 × ftSet2 = {DB&2001}.

In the DFC algorithm, we assume that the number of classes
will be high. In order to avoid considering a large number of
classes, we prune classes during counting. By doing so, we have
to scan the datasetn times, wheren is the number of classifactory
attributes. The number of classes we can prune will depend on the
threshold. A very low threshold will not benefit too much from
the pruning. In the worst case where the threshold is equal to zero,
we still have to preserve all the classes (

∏n

i=1
|Hi|, whereHi is

the ith AV hierarchy.). However if the number of classes is small
and the cost of scanning the whole dataset is very expensive, then
we can use a one pass algorithm. For each queryQ, the algorithm
has to generate a complete candidate class set ofQ, and increase
the frequency of each class in the set. By doing so, we have to
remember the frequencies for all the possible classes during the



Procedure genClassSet(k : number of features;Q : the query;

classSet : discovered frequent class set; AV hierarchies)

for (each featurefi ∈ Q)

ftSeti = {fi};
ftSeti = ftSeti ∪ ({ancestor(fi)} − {root});

end for
candidateSet={};
for (eachk feature combination(ftSetj1 , ..., ftSetjk ))

tempSet = ftSetj1 ;
for (i = 1; i < k; i + +)

remove any classC /∈ classSeti from tempSet;
tempSet = tempSet× ftSetji+1 ;

end for
remove any classC /∈ classSetk−1 from tempSet;
candidateSet = candidateSet ∪ tempSet;

end for
return candidateSet;

End genClassSet;

Figure 10. Ancestor class set generation pro-
cedure

counting.

4.2 Pruning Low Access Probability Classes

The DFC algorithm will discover all the candidate frequent
classes, which unfortunately may include many infrequently
mapped classes. Here we introduce another algorithm, PLC
(Pruning Low Access Probability Classes), (see Figure 11) to as-
sign class access probability and delete the classes with low access
probability. The algorithm will scan the query list once, and map
each query into a set of least-general candidate frequent ancestor
classes (see Section 6). It then computes the class access prob-
ability for each class by counting the total frequencies of all the
queries mapped to the class. The class with the lowest class access
probability (less thanminfreq) will be pruned, and the queries
of the pruned classes will be re-mapped to other existing ancestor
classes. The pruning process will continue until there is no class
with access probability less than the thresholdminfreq.

5 Mining Coverage and Overlap Statistics

For each frequent query class in the mediator, we learn cover-
age and overlap statistics. We use a minimum support threshold
minoverlap to prune overlap statistics for uncorrelated source
sets.

A simple way of learning the coverage and overlap statistics
is to make a single pass over theQList, map each query into
its ancestor frequent classes, and update the corresponding cov-

erage and overlap statistics vectors
−−−−−→
P (Ŝ|C) of its ancestor classes

Procedure PLC(QList; classSet: frequent classes from
DFC; minfreq)

for (eachC ∈ classSet)
initialize FR = 0, andFRC = 0 ;

for (each queryQ)
MapQ into a set of least-general classesmSet;
for (eachC ∈ mSet)

FRC ← FRC + FRQ;
FR = FR + FRQ;

end for
end for
for (each classC)

class access probabilityPmap(C) ← FRC

FR ;
while ((∃C ∈ classSet) Pmap(C) < minfreq)

Delete the class with the smallest class access
probability,C ′, from classSet;

Re-map the queries which are mapped toC ′;
for (new mapped classCnewMapped)

recomputePmap(CnewMapped);
end while

End PLC;

Figure 11. The PLC procedure

using the query’s coverage and overlap statistics vector
−−−−−→
P (Ŝ|Q)

through the formula
−−−−−→
P (Ŝ|C) =

∑
Q∈C

−−−−−→
P (Ŝ|Q)×P (Q)

P (C)
. When

the mapping and updating procedure is completed, we simply need
to prune the overlap statistics which are smaller than the threshold
minoverlap. One potential problem of this naive approach is the
possibility of running out of memory, since the system has to re-
member the coverage and overlap statistics for each source set and
class combination. If the mediator has access ton sources and has
discoveredm frequent classes, then the memory requirement for
learning these statistics ism × 2n × k, wherek is the number
of bytes needed to store a float number. Ifk = 1, m = 10000,
and the total number of memory available is1GB, this approach
would not scale well when the number of sources is greater than
16.

In order to handle scenarios with large number of sources, we
use a modified Apriori algorithm ([AS94]) to avoid considering
any supersets of an uncorrelated source set.

We first identify individual sources with coverage statistics
more thanminoverlap, and keep coverage statistics for these
sources. Then we discover all2-sourceSet 5 with overlap more
thanminoverlap, and keep only overlap statistics for these source
sets. This process continues until we have the overlap statistics
for all the correlated source sets. This procedure can use the anti-
monotone property to avoid considering any supersets of an un-
correlated source set.

5k-sourceSet denotes the source sets with only k sources.



6 Using Learned Coverage and Overlap
Statistics

With the learned statistics, the mediator is able to find rele-
vant sources for answering a coming query. In order to access the
learned statistics efficiently, both the learned AV hierarchies and
the statistics for frequent query classes are loaded into hash tables
in the mediator’s main memory. In this section, we discuss how
to use the learned statistics to estimate the coverage and overlap
statistics for a new query, and how these statistics are used to gen-
erate query plans.

6.1 Query Mapping:

Given a new queryQ, we first get all the abstract values (fea-
tures) from the AV hierarchies corresponding to the binding values
(features) inQ. Both the binding values and the abstract values
are used to map the query into query classes with statistics. For
each attributeAi with bindings, we generate a feature setftSetAi

which includes the corresponding binding value and abstract val-
ues for the attribute. The mapped classes will be a subset of the
candidate class setcSet:

cSet = ftSetA1 × ftSetA2 × ...× ftSetAn

wheren is the number of attributes with bindings in the query. Let
sSet denote all the frequent classes which have learned statistics
andmSet denote all the mapped classes of queryQ. Then the set
of mapped classes is:

mSet = cSet− {C|(C ∈ cSet) ∩ (C /∈ sSet)}
−{C|(∃C′ ∈ (sSet ∩ cSet))(C′ ⊂ C)}

In other words, to obtain the mapped class set we remove all the
classes which do not have any learned statistics as well as the
classes which subsume any class with statistics from the candi-
date class set. The reason for the latter is because the statistics of
the subsumed class are more specific to the query.

Once we have the relevant class set, we compute the estimated

coverage and overlap statistics vector
−−−−−→
P (Ŝ|Q) for the new query

Q using the coverage and overlap statistics vectors of the mapped

classes
−−−−−→
P (Ŝ|Ci) and their corresponding tightness information

t(Ci). −−−−−→
P (Ŝ|Q) =

∑
Ci

t(Ci)∑
t(Ci)

−−−−−→
P (Ŝ|Ci)

Since the classes with large tightness values are more likely
to provide more accurate statistics, we give more weight to query
classes with large tightness values.

6.2 Using Coverage and Overlap Statistics to Gen-
erate Query Plans:

Once we have the coverage and overlap statistics, we use
the Simple Greedy and Greedy Selectalgorithms described in
[FKL97] to generate query plans. Specifically,Simple Greedy
generates plans by greedily selecting the topk sources ranked only

according to their coverages, whileGreedy Selectselects sources
with high residual coverages calculated using both the coverage
and overlap statistics.

Specifically we discuss how we compute the residual cover-
ages in order to rank the sources for the new queryQ using the
estimated statistics. In order to find a plan with topk sources, we
start by selecting the source with the highest coverage as the first
source. We then we use the overlap statistics to compute the resid-
ual coverages of the rest of the sources to find the second best,
given the first; the third best, given the first and second, and so on,
until we get a plan with the desired coverage.

In particular, after selecting the first and second best sources
S1 andS2 for the classC,, the residual coverage of a third source
S3 can be computed as:
P (S3 ∧ ¬S1 ∧ ¬S2|C) = P (S3|C)− P (S3 ∧ S1|C)−

P (S3 ∧S2|C)+ P (S3 ∧S2 ∧S1|C)

(where,P (Si∧¬Sj) is the probability that a random tuple belongs
to Si but not toSj). In the general case, after we had already
selected the bestn sourcesŜ = {S1, S2, ..., Sn}, the residual
coverage of an additional sourceS can be expressed as:

P (S∧¬Ŝ|C) = P (S|C)+

n∑
k=1

[(−1)k
∑

Ŝk⊆Ŝ∧|Ŝk|=k

P (S∧Ŝk|C)]

(whereP (S ∧ ¬Ŝ|C) is shorthand forP (S ∧ ¬S1 ∧ ¬S2 ∧ ... ∧
¬Sn|C) ).

A naive evaluation of this formula would require2n accesses
to the database of learned statistics, corresponding to the overlap
of each possible subset of then sources with sourceS. It is how-
ever possible to make this computation more efficient by exploit-
ing the structure of the stored statistics. Specifically, recall that we
only keep overlap statistics for correlated source sets with suffi-
cient number of overlap tuples, and assume that source sets with-
out overlap statistics are disjoint (thus their probability of overlap
is zero). Furthermore, if the overlap is zero for a source setŜ,
we can ignore looking up the overlap statistics for supersets ofŜ,
since they will all be zero by the anti-monotone property.

To illustrate the above, supposeS1,S2,S3 andS4 are sources
exporting tuples for classC. Let P (S1|C), P (S2|C) P (S3|C)

andP (S4|C) be the learned coverage statistics, andP (S1∧S2|C)

andP (S2∧S3|C) be the learned overlap statistics. The expression
for computing the residual coverage ofS3 given thatS1 andS2 are
already selected is:
P (S3 ∧ ¬S1 ∧ ¬S2|C) = P (S3|C)− P (S3 ∧ S1|C)︸ ︷︷ ︸

=0

−

P (S3∧S2|C)+ P (S3 ∧ S1 ∧ S2|C)︸ ︷︷ ︸
=0 since {S3,S1}⊆{S2,S1,S2}

We note that once we knowP (S3∧S1|C) is zero, we can avoid
looking upP (S3 ∧S1 ∧S2|C), since the latter set is a superset of
the former.

In Figure 12, we present an algorithm that uses this structure
to evaluate the residual coverage in an efficient fashion. In partic-
ular, this algorithm will cut the number of statistics lookups from
2n to R + n, whereR is the total number of overlap statistics
remembered for classC andn is the total number of sources al-
ready selected. This consequent efficiency is critical in practice



Algorithm residualCoverage (s: source;̂Ss: selected sources;

Ŝc: constraint source set)

n = the number of sources in̂Ss;
if (Ŝc 6= ∅)
then p = the position ofŜc’s last source in̂Ss;
elsep=0;

Let resCoverage = 0;
if the overlap statistics for the source setŜc ∪ {s}
are present in the learned statistics;

//This means their overlap is> τo.
for (i = p + 1; i ≤ n; i + +)

Let Ŝ′c = Ŝc ∪ {the ith source inŜs};
//keep order of sources in̂S′c same as in̂Ss

resCoverage =

resCoverage+residualCoverage(s, Ŝs, Ŝ
′
c);

end for
resCoverage = resCoverage + (−1)|Ŝc|overlap;

end if
returnresCoverage;

End residualCoverage;

Figure 12. Algorithm for computing residual
coverage

since computation of residual coverage forms the inner loop of
any query processing algorithm that considers source coverage.

The inputs to the algorithm in Figure 12 are the sources for
which we are going to compute the residual coverage, and the cur-
rently selected set of sourceŝSs. The auxiliary datastructurêSc,
initially set to∅, is used to restrict the source overlaps considered
by theresidualCoveragealgorithm. In each invocation, the algo-
rithm first looks for the overlap statistics for{s} ∪ Ŝc. If this
statistic is among the learned (stored) statistics, the algorithm re-
cursively invokes itself on supersets of{s} ∪ Ŝc. Otherwise, the
recursion stops in that branch (eliminating all the redundant super-
set lookups).

7 Experimental Setting

We now describe the data, algorithms and metrics of our exper-
imental evaluation.

7.1 Database Set

To evaluate our approach, we use two kinds of databases:
”Controlled” databases that we assembled locally and that allowed
us to control the levels of correlations among those data sources,
and the real ”Web” data sources integrated byBibFinder.
Controlled Data Set: We designed a simple mediator which only
exports data for the paper relation (see the Motivating Example).
In Figure 13, we show the two hand-coded AV hierarchies we

CID Source Count

1 (S2, S7) 1.0
2 (S1, S2, S3) 0.38
2 (S1, S2) 0.2
2 S3 0.09

Table 1. Tuples in the table sourceInfo

use. We setup 20 data sources each of which contains data for the
global relationpaper. The data of the sources are the papers in
DBLP published by computer science researchers in Database and
Artificial Intelligence. The sources have different concentration of
the data. For example, one source may contain only papers pub-
lished in SIGMOD after 1996. Some of the sources are highly cor-
related for some queries. The queries can be selection query with
conference and/or year attribute bound. The query list we used
to discover frequent query classes was generated manually. The
frequency of the queries are assigned proportionally to the statis-
tics provided by NEC Research Index. We combine the statistics
about the impact of the conferences and the most frequently ac-
cessed papers in Research Index to simulate the query frequency
of our experimental system. We setup a one second delay for an-
swering each query sent to a source to simulate the probing cost.
Since there are no real users, we have to probe the sources to get
the coverage and overlap statistics for the queries in the query list.

In theBibFinderscenario, we record and analyze these results
as the queries are being asked, so no probing is needed there. How-
ever for some mediator without a maintained query list, probing
sources could be very costly. So we also evaluated our proposed
probing strategies using our controlled data set. In order to reduce
the probing cost while still maintaining reasonable overall accu-
racy, for each class we only probe the sources using a small num-
ber of probing queries with high query probabilities. The probing
queries are chosen in the descending order of their query proba-
bility from queries for the class and inQList. We use a threshold
minprobeto decide when to stop probing. The thresholdminprobe
controls the minimum percentage of the total query frequency of
all the queries in the class covered by the chosen probing queries.
For example, for the classICDE&RT in example 2, since query
ICDE&2001 covers83.3% of the total query frequency of the
class, while queryICDE&RT only covers16.7%. So we will
select queryICDE&2001 as the first probing query, and we will
not select queryICDE&RT as probing query until the thresh-
old minprobeis larger than83.3%. The probing results of the
class will be stored in a tablesourceInfo(CID, Source, Count),
which keeps track of which answer tuples for the probing queries
come from which sources. Each of the discovered frequent classes
are given a class identifier, CID. For each class, we remember the

weighted sum
∑

Q
P (Q) ∗ N′Q(Ŝ)

NQ
for each source set̂S with at

least one common answer for all the probing queriesQ in the class.
HereN ′

Q(Ŝ) is the number of common tuples from the sources in

the source set̂S for the queryQ which are not reported for any
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Figure 13. AV Hierarchies

superset of̂S. Since the probing queries may be subsumed by
multiple frequent query classes, we keep the results for each of
these classes in thesourceInfotable too to avoid re-probing. A
class will not have any entry in thesourceInfotable until we have
some probing results for that class. In table 1, we give an example
sourceInfo table.
Real Data Set inBibFinder : Five structured Web bibliography
data sources inBibFinderare used in our experimental evaluation:
DBLP, CSB, ACM DL, Science Direct and Network Bibliography.
We used the recent 25000 real queries asked byBibFinderusers as
the query list. Among them, we randomly chose 4500 queries as
test queries and the others were used as training data. The AV
Hierarchies for all of the four attributes were learned automati-
cally using our GAVH algorithm. The learned Author hierarchy
has more than 8000 distinct values, the Title hierarchy keeps only
1200 frequently asked keyword itemsets, the Conference hierarchy
has more than 600 distinct values, and the Year hierarchy has 95
distinct values. Note that we consider a range query (for example:
”>1990”) as a single distinct value.

7.2 Algorithms:

In order to evaluate the effectiveness of our learned statistics,
we implemented theSimple Greedy and Greedy Selectalgo-
rithms described in [FKL97] to generate query plans using the
learned source coverage and overlap statistics. A simpleRandom
Selectalgorithm is also used to randomly choose k sources as the
top k sources.

7.3 Evaluation Metrics:

We generate plans using the learned statistics and the algo-
rithms mentioned above. The effectiveness of the statistics is es-
timated according to how good the plans are. The goodness of
the plan is evaluated by calling the sources in the plan and all the
other sources available to the mediator. We define theprecision
of a plan to be the fraction of sources in the estimated plan, which
turn out to be the real topk sources after we execute the query. Let
TopK refer to the real topk sources, andSelected(p) refer to the
k sources selected in the planp. Then theprecision of the planp
is:

precision(p) =
|TopK ∩ Selected(p)|

|Selected(p)|
The average precision and number of answers returned by exe-
cuting the plan are used to estimate the accuracy of the learned

statistics.
We also measure theabsolute errorbetween the estimated

statistics and the real coverage and overlap values. Theabsolute
error is computed using the following formula:

∑
Q∈TestQuerySet

√∑
i
[P ′(Ŝi|Q)− P (Ŝi|Q)]2

|TestQuerySet|
whereŜi denotes theith source set of all possible source sets in the
mediator,P ′(Ŝi|Q) denotes the estimated overlap (or coverage) of
the source set̂Si for queryQ, andTestQuerySet refers to the set
of all test queries.

8 Experimental Results

8.1 Results over the Controlled Data Set

In Figure 14(a), we observe the number of candidate frequent
query classes and the number of frequent query classes. As we can
see from the figure, as we increase the thresholdminfreq, the num-
ber of candidate frequent classes and frequent classes will both
decrease, and there is a sharp drop for the small thresholds. We
also see, for almost all the minfreq thresholds, we always prune
more than a half of the candidate frequent class discovered from
DFC with low class access probability.

In Figure 14(b), we observe the statistics learning time which
includes the time for discovering frequent query classes, probing
the sources and computing the coverage and overlap statistics. As
you can see as we increase the minfreq, the total learning learning
time decreases. In the experiment, we just probe the sources with
a very small number of queries whose total frequency coversmin-
probe=20% of the total frequency of all the queries in the class.
The thresholdminoverlapis set to 0.5%.

In Figure 14(c), we observe the average number of answers
by executing the plans generated by the three algorithms for the
100 randomly generated queries. In Figure 14(d), we observe the
average precision of the plans. As we can see the plans generated
using our learned statistics are much better both in terms of the
number of answers we get and in terms of the precision of the
plans for these queries than the ones generated without using any
statistics.

Altogether the experiments show that our association rule min-
ing approach can effectively control the number of statistics re-
quired by a mediator to deal with the tradeoff between the accu-
racy of the statistics and the cost of leaning and remembering these
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Figure 14. Experiment results
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Figure 15. The total number of classes
learned

statistics. As we can see, the number of statistics and the learning
time drop dramatically as we increase the thresholdminfreq, while
the average accuracy of the learned statistics drops smoothly.

8.2 Results overBibFinder

Space Consumption for Different minfreq and minoverlap
Thresholds: In Figure 15 and Figure 16, we observe the reduc-
tion in space consumption (and number of classes) when we in-
crease theminfreqandminoverlapthresholds. As we can see in
Figure 15, slightly increasing theminfreq threshold from 0.03%
to 0.13% causes the number of classes to drop dramatically from
approximately 10000 classes to 3000. As we increase themin-
freq threshold, the number of classes decreases, however the de-
crease rate becomes smaller as the threshold becomes larger. In
Figure 16, we observe the size of the memory requirement for dif-
ferent levels of abstraction of the statistics. Clearly, as we increase
any of these two thresholds the space consumption drops, however
the pruning power drops simultaneously. Note that for a better
readability of our plots, we did not include the number of classes
and memory consumption when theminfreqthreshold is equal to
zero, as the corresponding values were much larger than those ob-
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Figure 19. Precision for query plans with top
2 sources.

tained for other threshold combinations. In fact, the total num-
ber of classes when theminfreq is equal to zero is about 540000,
and the memory requirement when bothminfreqandminoverlap
are equal to zero is about 40MB. Although in our current experi-
ment setting 40MB is the maximal memory space needed to keep
the statistics (mainly becauseBibFinderis at its beginning stage),
memory requirement could become much larger as the number of
users and the number of integrated sources grow.

Accuracy of the Learned Statistics for Different minfreq and
minoverlapThresholds: Figure 17 plots the absolute error of the
learned statistics for the 4500 test queries. The graph illustrates
that although the error increases as any of these two thresholds
increase, the increase rates remain almost the same. There is no
dramatic increase after the initial increases of the thresholds. If we
looked at both Figure 16 and Figure 17 together, we can see that
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Figure 20. Precision for query plans with top
3 sources.

the absolute error of threshold combination:minfreq = 0.13%

andminoverlap = 0.1 is almost the same as that ofminfreq =

0.33% andminoverlap = 0, while the former uses only50% of
the memory required by the latter. This fact tells us that keeping
very detailed overlap statistics of uncorrelated source sets for gen-
eral query classes would not necessarily increase the accuracy of
our statistics while requiring much more space.
Effectiveness of the Learned Statistics: We test the effective-
ness of the learned statistics by actually testing these statistics in
BibFinderand observing the precision of the query plans and the
number of distinct answers returned from the Web sources when
we execute these plans to answer user queries.

Note that in all the figures described below, RS refers to Ran-
dom Select algorithm, SG0 refers to Simple Greedy algorithm
with minoverlap = 0, GS0 refers to Greedy Select algorithm
with minoverlap = 0, SG0.3 refers to Simple Greedy algorithm
with minoverlap = 0.3, and GS0.3 refers to Greedy Select algo-
rithm with minoverlap = 0.3.

In Figure 18, we observe how theminfreq and minoverlap
thresholds influence the average number of distinct answers re-
turned byBibFinder for the 4500 test queries when executing
query plans with top 2 sources. As indicated by the graph, for all
the threshold combinations, we always get on average more than
50 distinct answers when using our learned statistics and query
plans selected by Simple Greedy and Greedy Select, while we
can only get about 30 distinct answers by randomly selecting 2
sources. In Figure 19 and Figure 20, we observe the average pre-
cision of the top 2 and top 3 sources ranked using statistics with
different level of abstraction for the test queries. As we can see,
the plans using our learned statistics have high precision, and it
decreases very slowly as we change theminfreqandminoverlap
thresholds. Another fact we need to point out is that the perfor-
mance of the plans using Simple Greedy and Greedy Select al-
gorithm are very close (although Greedy Select is a little better
most of the time). This is not as we expected, since the Sim-
ple Greedy only uses the coverage statistics, while Greedy Select
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Figure 21. The percent of the total source-
calls that are irrelevant for query plans with
top 1 sources.

uses both coverage and overlap statistics. When we studied many
queries asked by theBibFinderusers and the corresponding cov-
erage and overlap statistics, we found that the sources integrated
by BibFinderalmost follow independence assumption for most of
the queries asked by the users. However in other scenarios Greedy
Select can perform considerably better than Simple Greedy. For
instance, in our previous experiment with a controlled data set,
where we set 20 artificial sources including some highly correlated
sources, we did find that the plans generated by Greedy Select
were significantly better than those generated by Simple Greedy.

Figure 21 shows the possibility of a source call being a com-
pletely irrelevant source call (i.e. the source has no answer for
the query asked). The graph reveals that the most relevant source
selected using our algorithm has only 12% possibility of being
an irrelevant source call, while the randomly picked source has
about 46% possibility. This illustrate that by using our statistics
BibFindercan significantly reduce the unnecessary load on its in-
tegrated sources.
Efficiency Issues: We now discuss the time needed for learning
and using the coverage and overlap statistics. From the experi-
ments, we found that using the learned statistics to generate query
plans for a new query is very fast (i.e. always less than 1 millisec-
ond). Additionally discovering frequent query classes and learning
statistics is also fairly inexpensive (i.e. always less than 100 sec-
onds). The most expensive phase is learning the AV Hierarchies.
During the experiments we found that our GAVH algorithm can
be very time-consuming when the number of attribute values gets
larger. Specifically, it takes us 719ms to learn the Year hierarchy, 1
minute to learn the Conference hierarchy, 25 minutes to learn the
Title keywords hierarchy, and 2.5 hours to learn the Author hier-
archy6. However since GAVH runs offline and only needs to run

6Since the number of attribute values for the Title attribute is 8000, it
is too large for GAVH to learn upon it directly. We first group these 8000
values into 2300 value clusters using a radius based clustering algorithm

once, it still is not a major drawback. Since it is the most time
consuming phase, we can consider incrementally updating the hi-
erarchy as new queries come in (see Section 9).

9 Discussion and Related Work

In our discussion we assume that queries asked by the users in
future will have the same distribution as the past queries. Since the
users’ interests may change over different time periods, an impor-
tant extension is to incrementally update the learned statistics w.r.t.
the users’ most recent interests. We are currently considering an
incremental statistics updating approach to incrementally update
AV Hierarchies and modify the existing class hierarchy by split-
ting, merging and deleting existing classes (and their respective
statistics) in the class hierarchy.

In this paper, we only discussed how to learn coverage and
overlap statistics of Select and Project queries. We concentrate on
Select queries as those are the sort of queries asked inBibFinder,
and use a single universal relation ([Nau02]) as it is a well-known
assumption in Web data integration scenarios. The techniques de-
scribed in this paper can however be extended to join queries.
Specifically, we consider the join queries with the same subgoal
relations together. For the join queries with the same subgoal re-
lations, we can classify them based on their bound values and use
similar techniques for selection queries to learn statistics for fre-
quent join query classes.

Another assumption we have made was to assume the media-
tors will maintain a query listQList. However theQList may
not be available for mediators at their beginning stages, the pa-
per [NNVK02] introduces a size-based approach to learning statis-
tics in such beginning scenarios. [NNVK02] assumes that query
classes with more answer tuples will be accessed more frequently,
and learns coverage statistics w.r.t. large query classes. Although
the size-based approach can be seen as complementary to the
frequency-based approach introduced in this paper, it’s worth men-
tioning that the underlying technical details of the approaches are
significantly different.

There has been some previous work on using probing tech-
niques to learn database statistics both in multi-database litera-
ture and data integration literature. Zhu and Larson [ZL96] de-
scribe techniques for developing regression cost models for multi-
database systems by selective querying. Adali et. al [ACPS96]
discuss how keeping track of rudimentary access statistics can help
in doing cost-based optimizations. More recently, the work by
Gruser et. al. [GRZ+00] considers mining response time statistics
for sources in data integration scenario. Given that both coverage
and response time statistics are important for query optimization
(c.f. [NK01,DH02]), our work can be seen as complementary to
theirs.

The utility of quantitative coverage statistics in ranking the
sources was first explored by Florescu et. al. [FKL97]. The pri-
mary aim of both these efforts was however on the “use” of cover-
age statistics, and they do not discuss how such coverage statistics

(O(n) complexity), and use GAVH to generate a hierarchy for these 2300
value clusters.



could be learned. In contrast, our main aim in this paper is to
provide a framework for learning the required statistics.

There has also been some work on ranking text databases in
the context of keyword queries submitted to meta-search engines.
Recent work ([WMY00], [IGS01]) considers the problem of clas-
sifying text databases into a topic hierarchy. While our approach is
similar to these approaches in terms of using concept hierarchies,
and using probing and counting methods, it differs in several sig-
nificant ways. The text database work uses a single topic hierarchy
and does not have to deal with computation of overlap statistics.
In contrast we deal with classes made up from the cartesian prod-
uct of multiple AV hierarchies, and are also interested in overlap
statistics. This makes the issue of space consumed by the statistics
quite critical for us, necessitating our threshold-based approaches
for controlling the resolution of the statistics.

10 Conclusions

In this paper we motivated the need for automatically mining
the coverage and overlap statistics of sources w.r.t. frequently ac-
cessed query classes for efficient query processing in a data inte-
gration scenario. We then presented a set of connected techniques
that automatically generate AV Hierarchies, efficiently discover
frequent query classes and learn coverage and overlap statistics for
only these frequent classes. We described the details and imple-
mentation of our approach. We also presented an empirical eval-
uation of the effectiveness of our approach in BibFinder, a pub-
licly available bibliography mediator. Our experiments demon-
strate that (i) We can systematically trade the statistics learning
time and number of statistics remembered for accuracy by varying
the frequent class thresholds. (ii) The learned statistics provide
tangible improvements in the source ranking, and the improve-
ment is proportional to the type (coverage alone vs. coverage and
overlap) and granularity of the learned statistics.
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