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Abstract in the context of a bibliography mediation system that we are de-
veloping calledBibFinder
Query optimization in data integration requires source cover- ) o )

age and overlap statistics. Gathering and storing the required BiPFinder Scenario: We have been developirgibFinder (Fig-
statistics presents many challenges, not the least of which is con-Ure 2. http://rakaposhi.eas.asu.edu/bibfinder), a publicly “fielded”
trolling the amount of statistics learned. In this paper we intro- COMPUter science bibliography mediatoBibFinder integrates
duce StatMiner, a novel statistics mining approach which automat- S€veral online Computer Science bibliography sources. It cur-
ically generates attribute value hierarchies, efficiently discovers "€ntly coversCSB, DBLP, Network Bibliography, ACM Digital
frequently accessed query classes based on the learned attributd-irary. ScienceDirectand CiteSeer Plans are underway to add
value hierarchies, and leams and stores statistics only with re- Several additional sources includifgEE Xplore ACM Guide
spect to these classes. We describe the details of our method, andMS MathSciNetand Computational Geometry Bibliography
present experimental results demonstrating the efficiency and ef-SINCe its unveiling in December 200BjbFinderhas been get-
fectiveness of our approach. Our experiments are done in the con-tiNg On the order of 200 queries a day. Most of the queries are

text of BibFinder, a publicly available bibliography mediator. “selection” queries on the papers.
The sources integrated [BibFinderare autonomous and par-

tially overlapping. By combining the sources8ibFinder can
present a unified and more complete view to the user. However it
also brings some interesting optimization challenges. The global
schema exported bgibFindercan be modeled in terms of just the
The availability of structured information sources on the web relation: paper(title, author, conference/journal, year) Each of
has recently lead to significant interest in query processing frame-the individual sources may export only a subset of the global rela-
works that can integrate information sources available on the Inter-tion. For example, the sourdgéetwork Bibliographyonly contains
net. Data integration systems [LRO96, ACPS96, LKG99, DGLOO0, publications in NetworksDBLP gives more emphasis to Database
PLOO, NKHO3] are being developed to provide a uniform inter- related publications, whil&cienceDirechas only archival journal
face to a multitude of information sources, query the relevant publications.
sources automatically and restructure the information from differ-
ent sources. In a data integration scenario, a user interacts with dNeed for Statistics: To efficiently answer user queries, it is im-
mediator system via a mediated schema. A mediated schema is #ortant to find and access the most relevant subset of the sources
set of virtual relations, which are effectively stored across multi- for the given query. Suppose, the user asks a selection query
ple and potentially overlapping data sources, each of which only Q(title,author) — paper(title, author, conference/journal, year),
contain a partial extension of the relation. Query optimization in conference/journal =“SIGMOD".
data integration [FKL97, NLF99, NKO01, DHO02 ] thus requires the The naive way of answering this selection query would be to send
ability to figure out what sources are most relevant to the given it to all the data sources, wait for the results, eliminate duplicates,
query, and in what order those sources should be accessed. Faand return the answers to the user. This not only leads to increased
this purpose, the query optimizer needs to access statistics abouguery processing time and duplicate tuple transmission, but also
the coverage of the individual sources with respect to the given unnecessarily increases the load on the individual sources. A more
query, as well as the degree to which the answers they export over<efficient andpolite approach would be to direct the query only to
lap. Gathering these statistics presents several challenges becauske most relevant sources. For example, for the selection query
of the autonomous nature of the data sources. In this paper, weabove,DBLP is most relevant, anletwork Bibliographyis much
motivate and investigate the issues involved in statistics gatheringless relevant. Furthermore, sinb8LP stores records of virtually

1 Introduction



all the SIGMOD papers, a call 1Biteseeis largely redundant. most frequently asketl0% keywords appear in almo60% of all
the selection queries binding attribute Title. Figure 1(b) shows that

Coverage and Overlap Statistics:In order to judge the source the users are much more interested in recently published papers.

relevance howeveBibFindemeeds to know theoverageof each
sourceS with respect to the querg, i.e. P(S|Q), the probability
that a random answer tuple for qué&pbelongs to sourcs. Given

this information, we can rank all the sources in descending order
of P(S|Q). The first source in the ranking is the one we want to
access first while answering que}. Since the sources may be
highly correlated, after we access the souwstwith the maximum
coverageP (S’|Q), the second sourcg” that we access must be
the one with the highesesidual coveragéi.e. provides the max-
imum number of those answers that are not provided by the first
sourceS’). Specifically we need to determine the souethat

has next best rank in terms of coverage but has minowaetlap
(common tuples) witht"’.

(b) Queries binding attribute

(a) Keywords Distribution year

The Costs of Statistics Learning: If we have the coverage and

overlap statistics for every possible query, we can getthe complete  Figure 1. Query Distributions in BibFinder

order in which to access the sources. However it would be very ) . o

costly to learn and store statistics w.r.t. every source-query combi- andling New Queries through Generalization: Once we sub-
nation, and overlap information about every subset of sources with SCiP€ 10 the idea of leaming statistics with respect to a workload
respect to every possible query. The difficulty here is two-fold. query list, it would seem as lf.the problem of stat|st|c§ gathgr|ng
First there is the cost of “learning’—which would involve probing S S0lved. When a new query is encountered, the mediator simply
the sources with all possible queriaspriori, and computing the needs to look into the query list to see the coverage and overlap

coverage and overlap with respect to the queries. The second isstatistics on this query when it was last executed. In reality, we
the cost of “storing’the statistics still need to address the issue of what to do when we encounter

a query that was not covered by the query list. The key here
Motivation for Frequency-based Statistics Learning: One way is “generalization”—store statistic®t with respect to the specific
of keeping both these costs down is to learn statistics only with re- queries in the query list, but rather with respect to query classes.
spect to a smaller set of “frequently asked” queries that are likely The query classes will have a general-to-specific partial ordering
to be most useful in answering user queries. This strategy tradesamong them. This in turn induces a hierarchy among the query
accuracy of statistics for reduced statistics learning/storing costs.classes, with the query list queries making up the leaf nodes of the
In the BibFinderscenario, for example, we could learn statistics hierarchy. The statistics for the general query classes can then be
with respect to the list of queries that are actually posed to the computed in terms of the statistics of their children classes. When
mediator over a period of timéBibFinderfacilitates this by main- a new query is encountered that was not part of the workload query
taining a log of queries, and for each query keeping statistics onlist, it can be mapped into the set of query classes in the hierarchy
how many of the query answers came from which sources. Thethat are most similar, and the (weighted) statistics of those query
motivation of such an approach is that even if a mediator can- classes can be used to handle the new query. Such an organization
not provide accurate statistics for every possible query, it can still of the statistics offers an important additional flexibility: we can
achieve a reasonable average accuracy by keeping more accuralémit the amount of statistics stored as much as we desire by strip-
coverage and overlap statistics for queries that are asked more freping off (and not storing statistics for) parts of the query hierarchy.
quently, and less accurate statistics for infrequent queries. The
effectiveness of this approach is predicated on the belief that in
most real-world scenarios, the distribution of queries posed to a
mediator is nouniform, but rather Zipfian. This belief is amply
validated inBibFinder Figure 1 shows the distribution of the key-
words, and bindings for the Year attribute used in the first 15000
queries that were posed BibFinder Figure 1(a) shows that the

Modeling Query Classes:The foregoing discussion about query
classes raises the issue regarding the way query classes are de-
fined to begin with. For selection queries that bind (a subset of)
attributes to specific values (such as the ones faceslifayindej,
one way is to develop “general-to-specific” hierarchies over at-
tribute values (AV hierarchies, see below). The query classes
themselves are then naturally defined in terms of (cartesian) prod-
Un practice, Citeseeris not completely redundant since it often pro- ~ Ucts over the AV hierarchies. Figure 4 shows an example of AV
vides additional information about papers, such as pdf files and citation hierarchies and the corresponding query classes (see Section 2 for
links, that DBLP does not providdgibFinderhandles this by dividing the deta”s). AV hierarchies could be hand-devek)ped or automatica”y
paper search into two phases—in the first phase, the user is given a Iis“”%}enerated (see Section 3) using clustering techniques. An advan-
of all the papers that satisfy her query. In the second phase, the user Car’Eage of defining query classes through the cartesian product of AV

ask additional details on specific papers. While it is important to call every . N ) L .
potentially relevant source in the second phase, we do not have this (:om-ll"er"’“'Chles is that mapping new queries into the query class hi-

pulsion in the first phase. For the rest of this paper, all our references to €rarchy is straightforward-a selection query binding attributes
BibFinderare to its first phase. and A; will only be mapped to a query class that binds either one




e * B as class-source set association rules are learned. An example of a

BibF nder ot }f_‘i:.,% class-source association rule could be &6V OD — DBLP
B e with confidence 100%, which means information soufeB L P
1 At Orene Aprsc for aag Clsscation ks o Setors 10 At S covers all the paper information f&/G M oD r.elafted queries.
Yandong Cai. Nick Cercone Jawei tan When the mediator encounters a new qu@ryit is first mapped
2 Fromtansitive cosure recursions to single-chain recursions Google 1g09  Abstract Biotex
ot e to a setC of closest least-general query classes. The source cov-
i s B A erage and overlap statistics f@f are computed as a (weighted)
4 RT-Tree: Ankvproved R.Tree I Sruchure for Spatiotemporal Databases Googie 1990 AUSIICL Bibes combination of the statistics of the query classeS.ifNotice that
oot C can be a singleton if the system happens to have statisti¢3 for
fan sl Bivemly dooemenes G PRk 8 B Selecesiizess Beomory SSlomucin,: Cltafer ) directly. In this case we have fully accurate coverage and overlap
Sat Mar 01 10:23:07 GAT-07:00 2003 - statistics abouf). In all other cases, the statistics are approximate.

The rest of the paper is organized as follows. In the next sec-
tion, we define some terminology about query classes and AV hier-
archies. Section 3 describes the details of learning AV hierarchies.
Section 4 describes how query classes are formed by taking the
product of AV hierarchies and efficiently pruning the infrequent
ones. Section 5 describes how coverage and overlap statistics are
learned for the query classes that are retained. Section 6 describes
how a new query is mapped to the appropriate query classes, and
how the combined statistics are used to develop a query plan (i.e.
the plan of accessing the sources). Section 7 describes the setting
for the experiments we have done witatMinerandBibFinderto
evaluate the effectiveness of our approach. Section 8 presents the
experimental results. Section 9 discusses related work and possi-
ble extensions, and Section 10 presents our conclusions.

Figure 2. The BibFinder User Interface
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i 2 AV Hierarchies and Query Classes

AV Hierarchy: As we are considering selection queries, we can
classify the queries in terms of the selected attributes and their
values. To abstract the classes further we assume that the medi-
ator has access to the so-called “attribute value hierarchies” for a
subset of the attributes of each mediated relationA¥mierarchy

(or attribute value hierarchy) over an attributeis a hierarchical
classification of the values of the attribute The leaf nodes of

the hierarchy correspond to specific concrete valued ofvhile

the non-leaf nodes are abstract values that correspond to the union
of values below them. Figure 4 shows two very simple AV hier-
archies for the “conference” and “year” attributes of the “paper”
relation. Note that hierarchies do not have to exist for every at-
tribute, but rather only for those attributes over which queries are
classified. We call these attributes tblassificatory attributes.

Figure 3. StatMiner Architecture

The approach to statistics learning described and motivated in
the foregoing has been implementedStatMiner and has been
evaluated in the context d@ibFinder In this paper, we describe
the details of theStatMinerapproach, and its use iBibFinder
Figure 3 shows the high-level architectureSiatMiner StatMiner
starts with a list of workload queries. The query list is collected
from the logs of queries submitted BibFinder, and not only gives
the specific queries submitted BibFinder but also coverage and  \ye can choose as the classificatory attributes the/batttibutes
ovgrlap statistics on how ”?a”Y tuples of each qqery came from whose values differentiate the sources the most, where the number
which source. The query list is used to automatically learn AV ;. i¢ jecided based on a tradeoff between prediction performance
hierarchies. The space of query cllasses is then defined in Mg the computational complexity of learning the statistics by us-
of the product of these AV hierarchies. The query classes are fur-j, yheser. attributes. The selection of the classificatory attributes
ther pruned such thatlonly thos.e. classes that subsume more than ﬁ1ay either be done by the mediator designer or using automated
given number of queries (specified by a frequency threshold) areye .pniques. Similarly, the AV hierarchies themselves can either be
retained. For each of these remaining classes, class-source as Wq”and-coded by the designer, or can be learned automatically. In

2This also explains why we don’t cluster the query list queries directly— Section 3, we give details on how we learn them automatically.

there is no easy way of deciding which query cluster(s) a new query should e . . .
be mapped to without actually executing the new query and using its cov- Query Classes:Since a typical selection query will have values

erage and overlap statistics to compute the distance between that query an@f Some set of attributes bound, we group such queries into query
all the query clusters! classes using the AV hierarchies of the classificatory attributes. A
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Figure 4. AV Hierarchies and the Correspond-
ing Query Class Hierarchy

Figure 5. A Query List Fragment

queryfeature is defined as the assignment of a classificatory at-

tribute to a specific value from its AV hierarchy. A feature is “ab- Coverage and Overlap w.r.t Query ClassesThe coverageof a
stract” if the attribute is assigned an abstract (non-leaf) value from data sources with respect to a querg), denoted byP(S|Q), is

its AV hierarchy. Sets of features are used to define query classesthe probability that a random answer tuple of quérys present
Specifically, a query class is a set of (selection) queries that all in sourceS. Theoverlapamong a sef of sources with respect to
share a particular set of features. The space of query classes is just queryQ, denoted byP(§|Q), is the probability that a random
the cartesian product of the AV hierarchies of all the classificatory answer tuple of the quer§ is present in each sourcee S. The
attributes. Specifically, lef; be the set of features derived from overlap (or coverage wheshis a singleton) statistics w.r.t. a query
the AV hierarchy of the'” classificatory attribute. Then the set of Q are computed using the following formula

all query classes (calledassSet) is simply Hi x Hz X ... x Hn. =N

The AV hierarchies induce subsumption relations among the query PEIQ) = Nq(5)

classes. A clas§'; is subsumed by class; if every feature inC; Ng

is equal to, or a specialization of, the same dimension feature in ~ )

C;. A queryQ belongs to a clas€’ if the values of the classi- Here NQ(S) is the number of answer tuples ¢f that are in all
ficatory attributes inQ are equal to or are specializations of the SOUrCes ofS, N is the total number of answer tuples fa.
features defining>. Figure 4 shows an example class hierarchy We assume that the union of the contents of the available sources
for a very simple mediator with the two example AV hierarchies. Within the system covers 100% of the answers of the query. In
The query classes are shown at the bottom, along with the sub- other words, coverage and overlap is measured relative to the avail-

sumption relations between the classes. able sources.
The coverageof a sourceS w.rt. a classC, denoted by

Query List: We assume that the mediator maintains a query list P(S|C), is the probability that a random answer tuple of a ran-
QList, which keeps track of the user queries, and for each query dom query belonging to the clag$is present in sourcé. The
saves statistics on how often it is asked and how many of the queryoverlapamong a sef of sources with respect to a cla€s de-
answers came from which sources. In Figure 5, we show a querynoted byP(§\C), is the probability that a random answer tuple of
list fragment. The statistics we remember in the query list are: (1) a random query belonging to the classs present in each source
query frequency, (2) total number of distinctive answers from all S ¢ S. The overlap (or coverage whéhis a singleton) statis-
the sources (i.g/Answerg) and (3) number of answers from each tics w.r.t. a query clas€’ can be computed using the following
source set which has answers for the query. The query list is keptformula:

as a XML file which can be stored on the mediator’s hard disk or
other separate storage devices. Only the learned statistics for the
frequent query classes will remain in the mediator's main memory
for fast access. We ugdéR to denote the access frequency of a
query@, and F'R to denote the total frequency of all the queries
in QList. Thequery probabilityof a queryQ, denoted byP(Q),

is the probability that a random query posed to the mediator is
the query@. It can be computed using the formul®(Q) =
FRQ . Theclass probabilityof a classC, denoted byP(C), is the Class-Source Association RulesA class-source association rule
probablllty that a random query posed to the mediator is subsumedrepresents strong associations between a query class and a source
by the clasg”'. Itis computed asP(C) = ZQEC P(Q). set (which is some subset of sources available to the mediator) .

P(CNS) _ 2gecP (SIQP(Q)
P(C) P(C)

P(S|C) =

The coverage and overlap statistics w.r.t. a cladgs used to
estimate the source coverage and overlap for all the queries that
are mapped int@'. These coverage and overlap statistics can be
conveniently computed using an association rule mining approach.



Specifically, we are interested in the association rules of the form
C — S, whereCis a query class, anfl is a source set (possibly
singleton). Thesupportof the classC' (denoted byP(C')) refers

to the class probability of the clags and the overlap (or coverage
whenS'is a singleton) statistiP(§|C) is simply thecclnfidence)f

such an association rule(denoted ByS|C) = PLEs)). Exam-

ples of such association rules includéAAI — Sy, AT — 54,
AI&2001 — S; and2001 — S1 A Ss.

3.1 Generating AV Hierarchies

For now we will assume that all attributes have a discrete set of
values, and we will also assume that the corresponding coverage
and overlap statistics are available (see the last two paragraphs in
this subsection for detailed discussion). We now introduce GAVH
(Generating AvHierarchy, see Figure 6), an agglomerative hier-
archical clustering algorithm ([HK00]), to automatically generate
an AV Hierarchy for an attribute.

3 Generating AV Hierarchies Automatically

In this section we discuss how to systematically build AV Hier-
archies based on the query list maintained by the mediator. We firg
define the distance function between two attribute values. Nex
we introduce a clustering algorithm to automatically generate AV

Hierarchies. Then we discuss the complications of our basic clust

tering algorithm: preprocessing different types of attribute values|
from the query list and estimating the coverage and overlap statis
tics for queries with low selectivity binding values. Finally we

discuss how to flatten our automatically generated AV Hierarchies

Distance Function: The main idea of generating an AV hierar-

chy is to cluster similar attribute values into classes in terms of
the coverage and overlap statistics of their corresponding seleg
tion queries binding these values. The problem of finding similar
attribute values becomes the problem of finding similar selection
queries. In order to find similar queries, we define a distance func
tion to measure the distance between a pair of selection querie

(@Q1,Q2)

S

Algorithm GAVH()
for (each attribute value)
generate a cluster node

N
feature vector. fuo = (P(S|Q), P(Q));
childrenC'.children = null,
put cluster nod€’ into AVQueue;

end for

while (AVQueue has more than two clusters)
find the most similar pair of clusters; andCs;
generate a new clustér,

P(C1) ><P(§|C1)+P(Cz)><P(§|C2)
P(C1)+P(C2))

C.fvo=(
P(C2));
i C.children = (Cy,Cy);
put clusterC into AVQueue;
remove cluste€’; andC, from AVQueue;
end while
End GAVH,

,P(C1)+

d(Q1,Q2) = \/Z[P(Sin) — P(5i|Q2))?

2

WhereS; denotes theé'” source set of all possible source sets

in the mediator. Although the number of all possible source sets is
exponential |n_ terms of the numper of available squrces, we only ture vector is defined aiP(§|C)y P(C))
need to consider source sets with answers for either of the two

queries to computé(Q1, Q2)3. The interpretation of the distance
function is that we consider two queries similar if their source cov-

erage and overlap statistics are similar. Similarly we define a dis-

Figure 6. The GAVH algorithm

The GAVH algorithm will build an AV Hierarchy tree, where
each node in the tree has a feature vector summarizing the infor-
mation that we maintain about an attribute value cIAuster. The fea-
, while P(S|C) is the
coverage and overlap statistics vector of the cluétdor all the
source sets anB(C) is the class probability of the clustér. Fea-
ture vectors are only used during construction of AV hierarchies
and can be removed afterwards. As we can see from Figure 6, we

tance function to measure the distance between a pair of query..n, incrementally compute a new cluster's coverage and overlap
—_—

classesy, C2):

d(C1,Cs) = \/Z[P(ﬁicl) — P(8|Cy))?

i

We compute a query class's coverage and overlap statistics

P(S|C) according to the definition of the overlap (or coverage)

w.rt. to a class given in Section 2. The coverage and overlap

statisticsP(S|Q) for a specific query are computed using the
statistics from the query list maintained by the mediator.

3For example, suppose QuaBi gets tuples form only sourcésl and
S5, andQ@?2 gets tuples fromb'5 andS7, we will only consider source set
{S1}{S5}{S1, S5},{S7}, and{S5, ST}.

statistics vectorP(g\C) by using the feature vectors of its chil-
dren clusterg’;, Cs:

_ P(C1) x P(S]|Ch) + P(Cs) x P(5|C5)

P(SIC) = P(Ch) + P(Ca))

Attribute Value Preprocessing: The attribute values for gener-
ating AV hierarchies are extracted from the query list maintained
by the mediator. Since the GAVH algorithm assumes that all at-
tributes have discrete domains, we may need to preprocess the



values of some types of attributes. For continuous numerical at-
tributes, we divide the domain of the attribute into small ranges.
Each range is treated as a discrete attribute value. For keyword- /\
based attributes such as attribute TitleBibFinder we learn the

C2 D(C1,C2)<=1 /T(C1) C2

frequently asked keywords using an item set mining algorithm. c "

Keyword sets that are rarely asked will not be remembered as at- \ AL A2 A3
tribute values. Each frequent keyword set will be treated as a dis- A: 2

crete attribute value. Flattened AV Hierarchy

Handling Low Selectivity Attribute Values: If an attribute value

(i.e. a selection query binding value) is too general, some sources
may only return a subset of answers to the mediator, while oth-
ers may not even answer such general queries. In such cases the
mediator is unable to figure out the real number of tuples in these - -
sources, and thus cannot know the coverage and overlap statis-Al90rithm FAVH(clusterNode”) //Starting from root;
tics of these queries to generate AV hierarchies. Hence we have if(C has children)

to use the coverage statistics of more specific queries to estimate ~ for (each child nod€’.,;;q in C)

Figure 7. An example of Flattening AV Hierar-
chy

the source coverage and overlap of the original queries. Specifit put Cepiiq into Children_Queue
cally, we treat the original general queries as query classes, andthe  for (each nodeCy;;q4 In Children_Queue)
statistics of their sub-queries will be used to estimate the coverage if (d(Cenita, C) <= ﬁ)

child

of the sources for these query classes using the following formula put (Copira)-children into Children_Queue;

-~ removeC,;;q from Children_Queue;
P(§\C) - ZQEC and (Q is speci fic) P(SIQ)P(Q) end if it
2 0cc and (Q is specific) P(Q) for (each children nodé€,,;14 in Children_Queue)
FAVH(C.pita);

As we can see there is a slight difference between this formulg .
and the formula for the definition of the overlap (or coverage) w.r.t. end if
to classC. The difference is that here we only consider the overlap End FAVH,
(or coverage) of specific sub-queries for the class and ignore the
influence of the general sub-queries.

Figure 8. The FAVH algorithm
3.2 Flattening Attribute Value Hierarchies

_ _ _ _ while d(Q, C) is the distance between the quépyand the cluster.
Since the nodes of the AV Hierarchies generated using our  |fthe distanced(C.nita, C), between the cluster and its parent
GAVH algorithm contain only two children each, we may get a cjysterC is not larger than=——, then we consider the cluster

hierarchy with a large number of layers. One potential problem s ynnecessary and put all 6F 4 children directly into its parent
of such kinds of AV Hierarchies is that the levels of abstractions ¢|yster.

may not actually increase when we go up the hierarchy. For exam-
ple, in Figure 7, assuming the three attribute values have the same
(or very similar) coverage and overlap statistics, then we should4  Discovering Frequent Query Classes

not put them into separate clusters. If we put these attribute val-

ues into two cluster€’; andCs, these two clusters are completely As we discussed earlier, it may be prohibitively expensive to

(or almost) in the same level of abstraction. Therefore we may |earn and keep in memory the coverage and overlap statistics for

waste our memory space on remembering the same (or very simi-every possible query class. In order to keep the number of asso-

lar) statistics multiple times. ciation rules low, we would like to prune query classes which are
In order to prune these unnecessary clusters, we use anothefarely asked. We use a threshold on the support of a class (i.e.

algorithm called FAVH (Fattening AV Hierarchy, see Figure 8).  percentage of total frequency of queries that use the statistics of

FAVH starts the flattening procedure from the root of the AV Hi-  that class), callechinfreq to identify frequent query classes. Cov-

erarchy, then recursively checks and flattens the whole hierarchy. erage and overlap statistics are learned only with respect to these
To determine whether a clustéf...ia should be preserved in  frequent classes.

the hierarchy, we compute thightnesf the cluster, which mea-

sures the accuracy of its statistics. Thyhtness(C), of acluster ~ Candidate Frequent Classes and Class Access Probabilityve
C, is calculated as following: use the terncandidate frequent clage denote any class with class

probability more than the minimum frequency threshwilihfreq
The example classes shown in Figure 4 with solid frame lines are

1
ZQE # (Q,0) candidate frequent classes. As we can see some queries may have

#HO) =




multiple lowest level ancestor classes which are candidate fret Algorithm DFC(QList; min freq : minimum supportn : # of
quent classes and not subsumed by each other. For example, thelassificatory attributes)
query (or class) (ICDE,01) has both the class (DB,01) and class classSet = {};
(ICDE,RT) as its parent class. For a query with multiple ancestor| for(k = Lik <=n; k + +)
classes, we ne_ed to map the query into a set of least-general _ance S- LetclassSet, = {};
tor classes which are not subsumed by each other (see Section 6).
We will combine the statistics of these mapped classes to estimate
the statistics for the query.

We also define thelass access probabilitgf a classC, de-
noted by P,..,(C), to be the probability that a random query

for (each quen®@ € QList)
Cq = genClassSet(k,Q,...);
for(each class € Cg)
if(c ¢ classSets)

posed to the mediator is actually mapped to the cf@sdt can then classSety, = classSety, U {c};
be computed using the following formula: c.frequency = c.frequency +
Q.frequency;
Prnap(C) = _ Z P(@) end for
Q is mapped ta> end for
classSet, = {c € classSeti|c.frequency >=

4.1 Discovering Candidate Frequent Classes ) .
minfreq};

classSet = classSet U classSety;

Since the class access probability of a candidate frequent clag d
end for

will be affected by the distribution of other candidate frequent
classes, in order to identify the classes with high class access prolp- ~ "€turn classSet;
ability, we have to discover all the candidate frequent classes first, End DFC;
In this subsection, we will introduce an algorithm to discover can-
didate frequent classes. In the next subsection, we will then dis-
cuss how to prune candidate frequent classes with low class access Figure 9. The DFC algorithm
probability.

We now present an algorithm, DFC id2overing Candidate
Frequent @asses), (see Figure 9), to efficiently discover all the
candidate frequent classes. The DFC algorithm dynamically Example: Assume we have a que9={ICDE, 2001, 50 (here
prunes classes during counting and usesatitemonotone prop- 50 is the query frequency) ankl = 2. We first extract the
erty* ([HKOO)) to avoid generating classes which are supersets of feature(binding) value§A,, = ICDE, A., = 2001} from the
the pruned classes. query. Then for each feature, we generate a feature set which

Specifically the algorithm makes multiple passes over the jcjydes all the ancestors of the feature (see the corresponding
query listQList It first finds all the candidate frequent classes ay Hierarchies in Figure 4) . This leads to two feature sets:
with just one feature, then it finds all the candidate frequentclassesftset1 = {ICDE, DB} and ftSet, = {2001}. Suppose the
with two features using the previous results and the anti-monotonegass with the single feature “ICDE” is not a frequent class in
property to efficiently prune classes before it starts counting, and i, previous results, then any class with the feature “lICDE” can
so on. The algorithm continues until it gets all the candidate fre- (5t pe a frequent class according to the anti-monotone property.
quent classes with all the features (where: is the total number  \ye can prune the feature “ICDE” fronfitSet,, then we get the
of classificatory attributes). For each quépyin the k-th pass, the candidate 2-feature class set for the query
algorithm finds the set of feature classes the query falls in, and candidateSet = ftSet; x ftSety = {DB&2001}.
for each clas€ in the set, it increases the class probabiit{C)
by the query probability?(Q). The algorithm prunes the classes
with class probability less than the minimum threshold probability

%)

In the DFC algorithm, we assume that the number of classes
will be high. In order to avoid considering a large number of

minfreq. _ _ ) _ classes, we prune classes during counting. By doing so, we have
The algorithm finds all the candidate ancestor classes with to scan the datasettimes, where: is the number of classifactory
k features for a quen®@ = {A.,,..., Ac,, frequency} by attributes. The number of classes we can prune will depend on the

proceduregenClassSesee Figure 10), wherdl., is the feature  reghold. A very low threshold will not benefit too much from
value of thei" classificatory attribute. The procedure prunes o pruning. In the worst case where the threshold is equal to zero,
infrequent classes using the frequent classcietsSet found in we still have to preserve all the class§§'(, | H;|, whereH; is

the previoug(k — 1) passes. In order to improve the efficiency of e ;tn Ay hierarchy.). However if the number of classes is small
the algorithm, it dynamically prunes infrequent classes during the and the cost of scanning the whole dataset is very expensive, then
cartesian product procedure. _ we can use a one pass algorithm. For each q@ertpe algorithm

We explain the procedure using the following example. has to generate a complete candidate class 38t ahd increase

41 a set cannot pass a test, all of its supersets will fail the same test asthe frequency of each class in the set. By doing so, we have to
well. remember the frequencies for all the possible classes during the




Procedure genClassSet( : number of features) : the query; Procedure PLC(QList; classSet: frequent classes from
classSet : discovered frequent class set; AV hierarchies) DFC; minfreq)
for (each featuref; € Q) for (eachC € classSet)
ftSet; = {fi}; initialize FR = 0,andFRc =0 ;
ftSet; = ftSet; U ({ancestor(fi)} — {root}); for (each queryQ)
end for Map @ into a set of least-general classeS$et;
candidateSet§}; for(eachC € mSet)
for (eachk feature combinatiortftSet;,, ..., ftSet;, )) FRc +— FRe + FRg;
tempSet = ftSet;, ; FR=FR+ FRqg,
for i = 1;7 < k;i+ +) end for
remove any clas§' ¢ classSet; from tempSet; end for
tempSet = tempSet x ftSet;,, ; for (each clasg”)
end for class access probabilifg),, ., (C) — £ ;
remove any clas§' ¢ classSeti—1 from tempSet; while ((3C € classSet) Ppap(C) < minfreq)
candidateSet = candidateSet U tempSet; Delete the class with the smallest class acgess
end for probability,C’, from classSet;
return candidateSet; Re-map the queries which are mappedto
End genClassSet for (new mapped class,,cyrrapped)
recompUteID'rrzap (Cnewhfapped) ;
end while
Figure 10. Ancestor class set generation pro- End PLC;
cedure
Figure 11. The PLC procedure
counting.
N
4.2 Pruning Low Access Probability Classes using the query’s coverage and overlap statistics vebl(df|Q)
—— Y P(51Q)xP@
The DFC algorithm will discover all the candidate frequent through the formulaP(S|C) = =< . When

classes, which unfortunately may include many infrequently the mapping and updating procedure is completed, we simply need
mapped classes. Here we introduce another algorithm, PLC!O prune the overlap statistics which are smaller than the threshold
(Pruning Low Access Probability sses), (see Figure 11) to as- minoverlap. One potential problem of this naive approach is the
sign class access probability and delete the classes with low accesB0SSibility of running out of memory, since the system has to re-
probability. The algorithm will scan the query list once, and map member the coverage and overlap statistics for each source set and
each query into a set of least-general candidate frequent ancestof!ass combination. If the mediator has access sources and has
classes (see Section 6). It then computes the class access profliscoveredn frequent classes, then the memory requirement for
ability for each class by counting the total frequencies of all the '€arning these statistics s, x 2" x k, wherek is the number
queries mapped to the class. The class with the lowest class acces¥ bytes needed to store a float numberk I= 1, m = 10000,
probability (less thamnin freg) will be pruned, and the queries and the total number of memory availableli§ B, this approach
of the pruned classes will be re-mapped to other existing ancestofvould not scale well when the number of sources is greater than
classes. The pruning process will continue until there is no class 16.
with access probability less than the threshalih freq. In order to handle scenarios with large number of sources, we
use a modified Apriori algorithm ([AS94]) to avoid considering
any supersets of an uncorrelated source set.

We first identify individual sources with coverage statistics

bt I i th gi I more thanminoverlap and keep coverage statistics for these
For each frequent query class in the mediator, we learn Cover-q, \-co5 Then we discover allsourceSet ® with overlap more

age and overlap statistics. We use a minimum support thresholdy, o, minoverlap and keep only overlap statistics for these source
minoverlap to prune overlap statistics for uncorrelated source geis  This process continues until we have the overlap statistics
sets. for all the correlated source sets. This procedure can use the anti-

. A simple Wgy of learning the coyerage and overlap St‘?‘t'St'CS monotone property to avoid considering any supersets of an un-
is to make a single pass over tigList, map each query into correlated source set.

its ancestor frequent classes, and update the corresponding cov-

5 Mining Coverage and Overlap Statistics

— =
erage and overlap statistics vectét&S|C) of its ancestor classes Sk-sourceSet denotes the source sets with only k sources.



6 Using Learned Coverage and Overlap according to their coverages, whilgreedy Selectelects sources
Statistics with high residual coverages calculated using both the coverage
and overlap statistics.
Specifically we discuss how we compute the residual cover-

With the learned statistics, the mediator is able to find rele- ages in order to rank the sources for the new qu@nysing the
vant sources for answering a coming query. In order to access the
estimated statistics. In order to find a plan with fopources, we

learned statistics efficiently, both the learned AV hierarchies and start by selecting the source with the highest coverage as the first

the statistics for frequent query classes are loaded into hash tables

2ource. We then we use the overlap statistics to compute the resid-
in the mediator's main memory. In this section, we discuss how ual coverages of the rest of the sources to find the second best,
réjlven the first; the third best, given the first and second, and so on,
statistics for a new query, and how these statistics are used to 98N il we get a plan with the desired coverage.
erate query plans. In particular, after selecting the first and second best sources

. S1 andS; for the clasg’,, the residual coverage of a third source

6.1 Query Mapping: S5 can be computed as:

P(Sg A=S1 A _‘32‘0) = P(S3|C) — P(Sg A\ 51‘0)—

Given a new query), we first get all the abstract values (fea- P(S3 N S2|C)+ P(S3A\S2AS1|C)
tures) from the AV hierarchies corresponding to the binding values (where,P(S; A—S;) is the probability that a random tuple belongs
(features) in@. Both the binding values and the abstract values to S; but not toS;). In the general case, after we had already
are used to map the query into query classes with statistics. Forselected the best sourcesS = {81, 52, ..., Sx}, the residual

each attributed; with bindings, we generate a feature gefet 4, coverage of an additional sourSecan be expressed as:
which includes the corresponding binding value and abstract val-
ues for the attribute. The mapped classes will be a subset of theP(SA-S|C) = P(S|C) +Z > P(SASHO)]

candidate class sefet: Skchgk‘:k
cSet = ftSeta, X ftSeta, x ... x ftSeta, (whereP(S A ﬂ§|C) is shorthand fo?(S A —=S1 A =Sa A ... A
—8|C) ).
wheren is the number of attributes with bindings in the query. Let A naive evaluation of this formula would requi®® accesses
sSet denote all the frequent classes which have learned statisticsg the database of learned statistics, corresponding to the overlap
andmSet denote all the mapped classes of qu@ryThen the set  of each possible subset of thesources with sourcs. It is how-

of mapped classes is: ever possible to make this computation more efficient by exploit-
mSet = cSet — {/C|(C € cSet) N (C ¢/556t)} ing the structure of the stored statistics. Specifically, recall that we
—{C|(3C" € (sSet N cSet))(C" C C)} only keep overlap statistics for correlated source sets with suffi-

In other words, to obtain the mapped class set we remove all thecjent number of overlap tuples, and assume that source sets with-
classes which do not have any learned statistics as well as theyt overlap statistics are disjoint (thus their probability of overlap
classes which subsume any class with statistics from the candi-jg zero). Furthermore, if the overlap is zero for a source&set
date class set. The reason for the latter is because the statistics Qfe can ignore looking up the overlap statistics for superseﬁs of
the subsumed class are more specific to the query. _ since they will all be zero by the anti-monotone property.

Once we have the relevant class se/t\, we compute the estimated 14 ?Ilustrate the above, supposk,S»,Ss andS, are sources
coverage and overlap statistics veclofS|Q) for the new query  exporting tuples for clas§’. Let P(S1|C), P(S2|C) P(Ss|C)
Q using the coverage and overlap statistics vectors of the mappedandP(S4|C) be the learned coverage statistics, &{&$1 A S2|C)

—

classesP(S|C;) and their corresponding tightness information andP(S2/.55|C') be the learned overlap statistics. The expression

t(Cy). for computing the. residual coveragesy¥ given thatS; andsS; are
—_— already selected is:
Z Z P(S\C ) P(S3 A =81 A =S5|C) = P(85]C) — P(S5 A S1|C) —
N————
Since the classes with Iarge tightness values are more likely P(S3A82|C)+ p(SS:;)\ Sy A Ss|C)

to provide more accurate statistics, we give more weight to query

~—_— ————
. . =0 since {S3,51}C{S2,51,5
classes with large tightness values. since {53,51}C{52,51,52)

We note that once we knoR(S3AS1|C) is zero, we can avoid
. o looking upP(S3 A S1 A S2|C), since the latter set is a superset of
6.2 Using Coverage and Overlap Statisticsto Gen-  ihe former.
erate Query Plans: In Figure 12, we present an algorithm that uses this structure
to evaluate the residual coverage in an efficient fashion. In partic-
Once we have the coverage and overlap statistics, we useular, this algorithm will cut the number of statistics lookups from
the Simple Greedy and Greedy Selectalgorithms described in 2" to R + n, whereR is the total number of overlap statistics
[FKL97] to generate query plans. Specificallgimple Greedy remembered for clag§ andn is the total number of sources al-
generates plans by greedily selecting thekmources ranked only  ready selected. This consequent efficiency is critical in practice



Algorithm residualCoverage (s: sourcé,s: selected sources;
S.: constraint source set)
n = the number of sources i
if (S # 0)
then p = the position o@c’s last source in/S\S;
elsep=0;
Let resCoverage = 0;
if the overlap statistics for the source SetU {s}
are present in the learned statistics;
/[This means their overlap is 7.
for(t=p+1;i<n;i++4)
Let S’ = S, U {the i*" source inS, };
/lkeep order of sources nﬁg same as i,
resCoverage =
resCoverage+residualCoveragg, S., :9\2:);
end for R
resCoverage = resCoverage + (—1)‘Sc‘overlap;
end if
returnresCoverage;
End residualCoverage

Figure 12. Algorithm for computing residual
coverage

since computation of residual coverage forms the inner loop of
any query processing algorithm that considers source coverage.

The inputs to the algorithm in Figure 12 are the sourder
which we are going to compute the residual coverage, and the cur
rently selected set of sourcés. The auxiliary datastructurs.,
initially set to@, is used to restrict the source overlaps considered
by theresidualCoveragealgorithm. In each invocation, the algo-
rithm first looks for the overlap statistics fdrs} U Se. If this
statistic is among the learned (stored) statistics, the algorithm re-
cursively invokes itself on supersets £f} U S.. Otherwise, the
recursion stops in that branch (eliminating all the redundant super-
set lookups).

7 Experimental Setting

We now describe the data, algorithms and metrics of our exper-
imental evaluation.

7.1 Database Set

To evaluate our approach, we use two kinds of databases
"Controlled” databases that we assembled locally and that allowed
us to control the levels of correlations among those data sources
and the real "Web” data sources integratedBigFinder.

Controlled Data Set We designed a simple mediator which only
exports data for the paper relation (see the Motivating Example).
In Figure 13, we show the two hand-coded AV hierarchies we

[CID| Source | Count]
1 | (5,5) | 10
2 | (51,5%,5;) | 0.38
2 | (5,8) | 02
2 Ss3 0.09

Table 1. Tuples in the table sourcelnfo

use. We setup 20 data sources each of which contains data for the
global relationpaper. The data of the sources are the papers in
DBLP published by computer science researchers in Database and
Artificial Intelligence. The sources have different concentration of
the data. For example, one source may contain only papers pub-
lished in SIGMOD after 1996. Some of the sources are highly cor-
related for some queries. The queries can be selection query with
conference and/or year attribute bound. The query list we used
to discover frequent query classes was generated manually. The
frequency of the queries are assigned proportionally to the statis-
tics provided by NEC Research Index. We combine the statistics
about the impact of the conferences and the most frequently ac-
cessed papers in Research Index to simulate the query frequency
of our experimental system. We setup a one second delay for an-
swering each query sent to a source to simulate the probing cost.
Since there are no real users, we have to probe the sources to get
the coverage and overlap statistics for the queries in the query list.

In the BibFinderscenario, we record and analyze these results
as the queries are being asked, so no probing is needed there. How-
ever for some mediator without a maintained query list, probing
sources could be very costly. So we also evaluated our proposed
probing strategies using our controlled data set. In order to reduce
the probing cost while still maintaining reasonable overall accu-
racy, for each class we only probe the sources using a small num-
ber of probing queries with high query probabilities. The probing
queries are chosen in the descending order of their query proba-
bility from queries for the class and @ List. We use a threshold
minprobeto decide when to stop probing. The thresholchprobe
controls the minimum percentage of the total query frequency of
all the queries in the class covered by the chosen probing queries.
For example, for the clas®C' D E& RT' in example 2, since query
ICDE&2001 covers&3.3% of the total query frequency of the
class, while quernf CDE&RT only coversl6.7%. So we will
select query C D E&2001 as the first probing query, and we will
not select queryy CDE&RT as probing query until the thresh-
old minprobeis larger thang3.3%. The probing results of the
class will be stored in a tablgourcelnfo(CID, Source, Count),
which keeps track of which answer tuples for the probing queries
come from which sources. Each of the discovered frequent classes
are given a class identifier, CID. For each class, we remember the

weighted sumd_, P(Q) * N]?,;S) for each source sef with at

least one common answer for all the probing quefjés the class.

-~

Here N, (S) is the number of common tuples from the sources in
the source sef for the query@ which are not reported for any
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Figure 13. AV Hierarchies

superset ofS. Since the probing queries may be subsumed by statistics.

multiple frequent query classes, we keep the results for each of We also measure thabsolute errorbetween the estimated
these classes in tr@ourcelnfotable too to avoid re-probing. A  statistics and the real coverage and overlap values.abkelute
class will not have any entry in treourcelnfatable until we have error is computed using the following formula:

some probing results for that class. In table 1, we give an example - -
sourcelnfo table. ZQET%tQuwysa \/Zi[P/(Si‘Q) — P(S:1Q)]?

Real Data Set inBibFinder: Five structured Web bibliography [TestQuerySet|

data sources iBibFinderare used in our experimental evaluation: R

DBLP, CSB, ACM DL, Science Direct and Network Bibliography. wheres; denqtes the'" source set of all possible source sets in the
We used the recent 25000 real queries askeBlibfinderusersas ~ Mediator,P’(S;|Q) denotes the estimated overlap (or coverage) of
the query list. Among them, we randomly chose 4500 queries asthe source sef; for queryQ, andT'estQuerySet refers to the set
test queries and the others were used as training data. The AVOf all test queries.

Hierarchies for all of the four attributes were learned automati-

cally using our GAVH algorithm. The learned Author hierarchy 8 Experimental Results

has more than 8000 distinct values, the Title hierarchy keeps only

1200 frequently asked keyword itemsets, the Conference hierarchyg 1  Results over the Controlled Data Set
has more than 600 distinct values, and the Year hierarchy has 95

distinct values. Note that we consider a range query (for example: | Figure 14(a), we observe the number of candidate frequent

">1990") as a single distinct value. query classes and the number of frequent query classes. As we can
) see from the figure, as we increase the threshofdreq the num-
7.2 Algorithms: ber of candidate frequent classes and frequent classes will both

decrease, and there is a sharp drop for the small thresholds. We
In order to evaluate the effectiveness of our learned statistics, also see, for almost all the minfreq thresholds, we always prune

we implemented th&imple Greedy and Greedy Selectalgo- more than a half of the candidate frequent class discovered from

rithms described in [FKL97] to generate query plans using the DFC with low class access probability.

learned source coverage and overlap statistics. A siRafelom In Figure 14(b), we observe the statistics learning time which

Selectalgorithm is also used to randomly choose k sources as theincludes the time for discovering frequent query classes, probing

top k sources. the sources and computing the coverage and overlap statistics. As
you can see as we increase the minfreq, the total learning learning

7.3 Evaluation Metrics: time decreases. In the experiment, we just probe the sources with

a very small number of queries whose total frequency cawvémns
We generate plans using the learned statistics and the algorobe=20% of the total frequency of all the queries in the class.

rithms mentioned above. The effectiveness of the statistics is es-The thresholdninoverlapis set to 0.5%.

timated according to how good the plans are. The goodness of In Figure 14(c), we observe the average number of answers
the plan is evaluated by calling the sources in the plan and all theby executing the plans generated by the three algorithms for the
other sources available to the mediator. We defineptieeision 100 randomly generated queries. In Figure 14(d), we observe the
of a plan to be the fraction of sources in the estimated plan, which average precision of the plans. As we can see the plans generated
turn out to be the real top sources after we execute the query. Let Using our learned statistics are much better both in terms of the
TopK refer to the real tof sources, an@elected(p) refertothe ~ number of answers we get and in terms of the precision of the

k sources selected in the planThen theprecision of the planp plans for these queries than the ones generated without using any
is: statistics.
precision(p) = |TopK N Selected(p)| Altogether the experiments show that our association rule min-
|Selected(p)| ing approach can effectively control the number of statistics re-

The average precision and number of answers returned by exequired by a mediator to deal with the tradeoff between the accu-
cuting the plan are used to estimate the accuracy of the learnedacy of the statistics and the cost of leaning and remembering these
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Figure 15. The total number of classes
learned

statistics. As we can see, the number of statistics and the learning
time drop dramatically as we increase the threshailufreq while
the average accuracy of the learned statistics drops smoothly.

8.2 Results ovemBibFinder

Space Consumption for Different minfreq and minoverlap
Thresholds In Figure 15 and Figure 16, we observe the reduc-
tion in space consumption (and number of classes) when we in
crease theninfreqand minoverlapthresholds. As we can see in
Figure 15, slightly increasing theminfreqthreshold from 0.03%

to 0.13% causes the number of classes to drop dramatically from
approximately 10000 classes to 3000. As we increasanrtine

freq threshold, the number of classes decreases, however the de-
crease rate becomes smaller as the threshold becomes larger. In
Figure 16, we observe the size of the memory requirement for dif-
ferent levels of abstraction of the statistics. Clearly, as we increase
any of these two thresholds the space consumption drops, however
the pruning power drops simultaneously. Note that for a better
readability of our plots, we did not include the number of classes
and memory consumption when thenfreqthreshold is equal to
zero, as the corresponding values were much larger than those ob-

Average Error
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Figure 19. Precision for query plans with top
2 sources.

tained for other threshold combinations. In fact, the total num-
ber of classes when thainfreqis equal to zero is about 540000,
and the memory requirement when batinfreqand minoverlap
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Figure 20. Precision for query plans with top
3 sources.

the absolute error of threshold combinationin freq = 0.13%
andminoverlap = 0.1 is almost the same as thatwfin freq =
0.33% andminoverlap = 0, while the former uses onl§0% of

the memory required by the latter. This fact tells us that keeping
very detailed overlap statistics of uncorrelated source sets for gen-
eral query classes would not necessarily increase the accuracy of
our statistics while requiring much more space.

Effectiveness of the Learned Statistics We test the effective-
ness of the learned statistics by actually testing these statistics in
BibFinderand observing the precision of the query plans and the
number of distinct answers returned from the Web sources when
we execute these plans to answer user queries.

Note that in all the figures described below, RS refers to Ran-
dom Select algorithm, SGO refers to Simple Greedy algorithm
with minoverlap = 0, GSO refers to Greedy Select algorithm
with minoverlap = 0, SG0.3 refers to Simple Greedy algorithm
with minoverlap = 0.3, and GS0.3 refers to Greedy Select algo-
rithm with minoverlap = 0.3.

In Figure 18, we observe how thminfreq and minoverlap
thresholds influence the average number of distinct answers re-
turned by BibFinder for the 4500 test queries when executing
query plans with top 2 sources. As indicated by the graph, for all
the threshold combinations, we always get on average more than
50 distinct answers when using our learned statistics and query

are equal to zero is about 40MB. Although in our current experi- plans selected by Simple Greedy and Greedy Select, while we
ment setting 40MB is the maximal memory space needed to keepcan only get about 30 distinct answers by randomly selecting 2

the statistics (mainly becaugbFinderis at its beginning stage),

sources. In Figure 19 and Figure 20, we observe the average pre-

memory requirement could become much larger as the number ofcision of the top 2 and top 3 sources ranked using statistics with

users and the number of integrated sources grow.
Accuracy of the Learned Statistics for Different minfreq and

different level of abstraction for the test queries. As we can see,
the plans using our learned statistics have high precision, and it

minoverlapThresholds Figure 17 plots the absolute error of the decreases very slowly as we change tthiafreqand minoverlap
learned statistics for the 4500 test queries. The graph illustratesthresholds. Another fact we need to point out is that the perfor-
that although the error increases as any of these two thresholdsnance of the plans using Simple Greedy and Greedy Select al-
increase, the increase rates remain almost the same. There is ngorithm are very close (although Greedy Select is a little better
dramatic increase after the initial increases of the thresholds. If wemost of the time). This is not as we expected, since the Sim-
looked at both Figure 16 and Figure 17 together, we can see thatple Greedy only uses the coverage statistics, while Greedy Select



once, it still is not a major drawback. Since it is the most time

0® —O-RS consuming phase, we can consider incrementally updating the hi-
= 05 o-se erarchy as new queries come in (see Section 9).
g 04 9 Discussion and Related Work
§ 03 i . . i
2 In our discussion we assume that queries asked by the users in
E 02 future will have the same distribution as the past queries. Since the
; users’ interests may change over different time periods, an impor-
% o1 L° tant extension is to incrementally update the learned statistics w.r.t.
S the users’ most recent interests. We are currently considering an
& incremental statistics updating approach to incrementally update
0.003 013 023 033 043 053 063 073 AV Hierarchies and modify the existing class hierarchy by split-
minfreq (%) ting, merging and deleting existing classes (and their respective
statistics) in the class hierarchy.
Figure 21. The percent of the total source- In this paper, we only discussgd how to learn coverage and
calls that are irrelevant for query plans with overlap statistics of Select and Project queries. We concentrate on

Select queries as those are the sort of queries askBibkinder,
and use a single universal relation ([Nau02]) as it is a well-known
assumption in Web data integration scenarios. The techniques de-

h | . h . scribed in this paper can however be extended to join queries.
uses both coverage and overlap statistics. When we studied man3Specifically, we consider the join queries with the same subgoal

queries asked by thBleleerusers and the correspondlr.]g €OV relations together. For the join queries with the same subgoal re-
erage and overlap statistics, we found that the sources mtegrateqiations’ we can classify them based on their bound values and use
by Blel()deraImost follow independence fissumptlon for.most of similar techniques for selection queries to learn statistics for fre-
the queries asked by the users. However in other scenarios Greed}ﬁuent join query classes
Select can perform considerably better than Simple Greedy. For Another assumption we have made was to assume the media-
instance, in our previous experiment with a controlled data set, tors will maintain a query lis) List. However theQ List may
where we set ZQ artificial sources including some highly correlated not be available for mediators at their beginning stages, the pa-
sourcgs, ‘_N_e did find that the plans generated by.Greedy S9|ecber [NNVKO2] introduces a size-based approach to learning statis-
were significantly better than those generated by Simple Greedy. tics in such beginning scenarios. [NNVKO02] assumes that query
Figure 21 shows the possibility of a source call being a com- ¢jasses with more answer tuples will be accessed more frequently,
pletely irrelevant source call (i.e. the source has no answer for 5 |earns coverage statistics w.r.t. large query classes. Although
the query asked). The graph reveals that the most relevant sourcgne size-based approach can be seen as complementary to the
selected using our algorithm has only 12% possibility of being frequency-based approach introduced in this paper, it's worth men-

an irrelevant source call, while the randomly picked source has tjoning that the underlying technical details of the approaches are
about 46% possibility. This illustrate that by using our statistics significantly different.

BibFindercan significantly reduce the unnecessary load onitsin-  There has been some previous work on using probing tech-
tegrated sources. niques to learn database statistics both in multi-database litera-
Efficiency Issues We now discuss the time needed for learning tyre and data integration literature. Zhu and Larson [ZL96] de-
and using the coverage and overlap statistics. From the experi-scribe techniques for developing regression cost models for multi-
ments, we found that using the learned statistics to generate queryjatabase systems by selective querying. Adali et. al [ACPS96]
plans for a new query is very fast (i.e. always less than 1 millisec- giscuss how keeping track of rudimentary access statistics can help
ond). Additionally discovering frequent query classes and learning in doing cost-based optimizations. More recently, the work by
statistics is also fairly inexpensive (i.e. always less than 100 sec-Gryser et. al. [GRZ00] considers mining response time statistics
onds). The most expensive phase is learning the AV Hierarchies.for sources in data integration scenario. Given that both coverage
During the experiments we found that our GAVH algorithm can and response time statistics are important for query optimization

be very time-COnSuming when the number of attribute values gets(c_f_ [NKO]_’DHOZ]), our work can be seen as Comp|ementary to
larger. Specifically, it takes us 719ms to learn the Year hierarchy, 1 theirs.

minute to learn the Conference hierarchy, 25 minutes to learnthe  The utility of quantitative coverage statistics in ranking the
Title keywords hierarchy, and 2.5 hours to learn the Author hier- soyrces was first explored by Florescu et. al. [FKL97]. The pri-
archy’. However since GAVH runs offline and only needs to run  mary aim of both these efforts was however on the “use” of cover-
age statistics, and they do not discuss how such coverage statistics

top 1 sources.

6Since the number of attribute values for the Title attribute is 8000, it
is too large for GAVH to learn upon it directly. We first group these 8000 (O(n) complexity), and use GAVH to generate a hierarchy for these 2300
values into 2300 value clusters using a radius based clustering algorithmvalue clusters.




could be learned. In contrast, our main aim in this paper is to Using Query Feedback and Application in Query Optimization.
provide a framework for learning the required statistics. VLDB Journal 9(1): 18-37 (2000)

There has also been some work .on ranking text databasgs Ir[HKOO] Jiawei Han and Micheline Kamber. Data Mining: Con-
the context of keyword queries submitted to meta-search engines. ) .
Recent work (WMYO00], [IGS01]) considers the problem of clas- cepts and Techniques. Morgan Kaufmman Publishers, 2000.
sifying text databases into a topic hierarchy. While our approach is [IGS01] P. Ipeirotis, L. Gravano, M. Sahami. Probe, Count, and
similar to these approaches in terms of using concept hierarchiesClassify: Categorizing Hidden Web DababasesPioceedings of
and using probing and counting methods, it differs in several sig- SIGMOD-01 2001.

nificant ways. The text database work uses a single topic hierarchyLKGQQ E Lambrecht. S. Kambh tiandS. G K
and does not have to deal with computation of overlap statistics.[ ] E. Lambrecht, S. Kambhampati and S. Ghanaprakasam.

In contrast we deal with classes made up from the cartesian prod-OptImIZIng recursive information gathering plans. Roceeding

uct of multiple AV hierarchies, and are also interested in overlap of the International Joint Conference on Artificial Intelligence (13-

statistics. This makes the issue of space consumed by the statisticg:Al)’ 1999.
quite critical for us, necessitating our threshold-based approacheg§LRO96] A. Levy, A. Rajaraman, J. Ordille. Query Heterogeneous

for controlling the resolution of the statistics. Information Sources Using Source DescriptionsVLtDB Confer-
ence 1996.
10 Conclusions [Nau02] F. Naumann. Quality-Driven Query Answering for In-

tegrated Information Systems. Volume 2261 of LNCS, Springer
In this paper we motivated the need for automatically mining Verlag, Heidelberg, 2002.

the coverage and overlap statistics of sources w.r.t. frequently ac'[NLF99] F. Naumann, U. Leser, J. Freytag. Quality-driven Inte-

cess.ed query f:lasses for efficient query processing in a data .|nte- ration of Heterogeneous Information SystemsvLiDB Confer-
gration scenario. We then presented a set of connected technique ncel999

that automatically generate AV Hierarchies, efficiently discover

frequent query classes and learn coverage and overlap statistics fofNKO01] Z. Nie and S. Kambhampati. Joint optimization of cost
only these frequent classes. We described the details and impleand coverage of query plans in data integration. In ACM CIKM,
mentation of our approach. We also presented an empirical eval-Atlanta, Georgia, November 2001.

:.13“02 Z'ﬂéﬁ?ee:'z?gv?;ess z:e?;tifprga?hem eBrI'tr)r::;,rr‘ss,erc’i:mF;unb- [NKHO3] Z. Nie, S. Kambhampati and T. Hernandez.
Icly aval follography lator. ur exper! BibFinder/StatMiner:  Effectively Mining and Using Cover-

§trate that (i) We can §y§temat|cally trade the statistics Iearn!ng age and Overlap Statistics in Data Integration. In Proceedings of
time and number of statistics remembered for accuracy by varying, ' e 5003

the frequent class thresholds. (ii) The learned statistics provide

tangible improvements in the source ranking, and the improve- [NNVKO2] Z. Nie, U. Nambiar, S. Vaddi and S. Kambhampati.
ment is proportional to the type (coverage alone vs. coverage andMining Coverage Statistics for Websource Selection in a Mediator.
overlap) and granularity of the learned statistics. Proc. CIKM 2002.
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