e

20.2

20.2.1

e e

944 Chapter 20, Learning Undireéted Model;

global acyclicity constraint in undirected models. Recall (see theorem 18.5) that the acyclicity
constraint couples decisions regarding the family of different variables, thereby making the
structure selection problem much harder. The lack of such a global constraint in the undirected
case eliminates these interactions, allowing us to choose the local structure locally in different
parts of the network. In particular, it turns out that a particular variant of the structure learning
task can be formulated as a continuous, convex optimization problem, a class of problemg
generally viewed as tractable. Thus, elimination of global acyclicity removes the main reason for
the A'P-hardness of structure learning that we saw in Bayesian networks. However, this doeg
not make structure learning of Markov networks efficient; the convex optimization process. (as
for parameter estimation) still requires multiple executions of inference over the network.

A final important issue that arises in the context of Markov networks is the overwhelmingly
common use of these networks for settings, such as image segmentation and others, where
we have a particular inference task in mind. In these settings, we often want to train a
network discriminatively (see section 16.3.2), so as to provide good performance for our particular
prediction task. Indeed, much of Markov network learning is currently performed for CRFs,

The remainder of this chapter is structured as follows. We begin with the analysis of the
properties of the likelihood function, which, as always, forms the basis for all of our discussion
of learning. We then discuss how the likelihood function can be optimized to find the maximum
likelihood parameter estimates. The ensuing sections discuss various important extensions to
these basic ideas: conditional training, parameter priors for MAP estimation, structure learning,
learning with missing data, and approximate learning methods that avoid the computational
bottleneck of multiple iterations of network inference, These extensions are usually described as
building on top of standard maximum-likelihood parameter estimation. However, it is important
to keep in mind that they are largely orthogonal to each other and can be combined. Thus, for
example, we can also use the approximate learning methods in the case of structure learning
or of learning with missing data. Similarly, all of the methods we described can be used with
maximum conditional likelihood training. We return to this issue in section 20.8,

We note that, for convenience and consistency with standard usage, we use natural logarithms
throughout this chapter, including in our definitions of entropy or Kl-divergence.

The Likelihood Function

As we saw in earlier chapters, the key component in most learning tasks is the likelihood
function. In this section, we discuss the form of the likelihood function for Markov networks,
its properties, and their computational implications. '

An Example

As we suggested, the existence of a global partition function couples the different parameters
in a Markov network, greatly complicating our estimation problem. To understand this issue,
consider the very simple network A—B—C, parameterized by two potentials ¢;: (4, B) and
¢2(B,C). Recall that the log-likelihood of an instance {a,b, ¢} is

InPla;b,e) =Ind(a,b) + Inga(h,c) —~InZ,

dodels

clicity
g the
rected
fferent
arning
blems
on for
s does
ess (as

mingly

where
train a
rticular
Fs.

of the
cussion
ximum
ions 1o
>arning,
tational
ribed as
|portant
hus, for
learning
ed with

arithms

kelihood

ietworks,

rameters
his issue,

, B) and

e e e e

20.2. The Likelihood Function 945

S .
T Z el S
o A e
ar i 7 T
s N R TR N

%
A 27 T P R 3 s
LA 277 27 2 A A T i e S
S L Al A A e
A R R L A o e SR et
it Sy I B WAL ==
A 3 B
W A R
W e i
P

R
e

3 SRS
ST

¢, &Y

Figure 20.1 Log-likelihood surface for the Markov network A—DB—C, as a function of In ¢1 (a*, b")
(z-axis) and In ¢2(8°, c*) {y-axis); all other parameters in both potentials are set to 1. The data set D
has M = 100 instances, for which M{a®,b] = 40 and M[p°, c'] = 40. (The other sufficient statistics
are irrelevant, since all of the other log-parameters are ()

where Z is the partition function that ensures that the distribution sums up to one. Now,
consider the log-likelihood function for a data set D containing M instances:

£0:D) = Y (ingi(alm],b[m]) +Ina(blm], cm]) — n2)

= 3 Mg, ludi(ab)+ Y Mb,dIngs(b,¢) — M Z(9).
ab b,c

Thus, we have sufficient statistics that summarize the data: the joint counts of variables that -
appear in each potential. This is analogous to the situation in learning Bayesian networks, where
we needed the joint counts of variables that appear within the same family. This likelihood
consists of three terms. The first term involves ¢, alone, and the second term involves ¢ alone.
The third term, however, is the log-partition function In Z, where:

Z(8) = ¢:(a,b)¢a(b;c).

a,b,e

Thus, In Z{8) is a function of both ¢, and ¢;. As a consequence, it couples the two potentials
in the likelthood function.

Specifically, consider maximum likelihood estimation, where we aim to find parameters that
maximize the log-likelihood function. In the case of Bayesian networks, we could estimate each
conditional distribution independently of the other ones. Here, however, when we change one
of the potentials, say ¢, the partition function changes, possibly changing the value of ¢ that
maximizes —In Z(8). Indeed, as illustrated in figure 20.1, the log-likelihood function in our
simple example shows clear dependencies between the two potentials.

In this particular example, we can avoid this problem by noting that the network A—B—C
is equivalent to a Bayesian network, say A — B — C. Therefore, we can learn the parameters

e T e TN

log-linear modet

Example 20.1

Proposition 20.1

946 Chapter 20. Learning Undirected Models

of this BN, and then define ¢ (A, B) = P{A)P(B | A) and ¢2(B,C) = P(C | B). Because
the two representations have equivalent expressive power, the same maximum likelihood ig
achievable.in both, and so the resulting parameterization for the Markov network will also be
a maximum-likelthood solution. In general, however, there are Markov networks that do not
have an equivalent BN structure, for example, the diamond-structured network of figure 413
(see section 4.5.2). In such cases, we generally cannot convert a learned BN parameterization
into an equivalent MN; indeed, the optimal likelihood achievable in the two representations is
generally not the same.”

Form of the Likelihood Function

To provide a more general description of the likelihood function, it first helps to provide a
more convenient notational basis for the parameterization of these models. For this purpose,
we use the framework of log-linear models, as defined in section 4.4.1.2. Given a set of leatures
F = {fi(D;)}:_|, where f;(D;) is a feature function defined over the variables in D;, we
have:

k
P(X1,.. Xn: 0)= %g)exp {Zeifi(pi)}. (201
i=1

As usual, we use f;(£) as shorthand for f;(£(D;)). The parameters of this distribution corre-
spond to the weight we put on each feature. When #; = 0, the feature is ignored, and it has no
effect on the distribution,

As discussed in chapter 4, this representation is very generic and can capture Markov networks
with global structure and local structure. A special case of particular interest is when f;(D;) is
a binary indicator function that returns the value 0 or 1. With such features, we can encode a
“standard” Markov network by simply having one feature per potential entry. In more general,
however, we can consider arbitrary valued features.

As a specific example, consider the simple diamond network of figure 3.10¢, where we take all four
wiriables to be binary-valued. The features that correspond to this network are sixteen indicator
Junctions: four for each assignment of variables to each of our four clusters. For example, one such
Jeature would be:

fﬂ",b(’(a,b) = I{a = ao}I{b o bU},

With this representation, the weight of each indicator feature is simply the natural logarithm of the
corresponding potential entry. For example, 8,0 g0 = In ¢ (a®, 8Y). [

Given a model in this form, the log-likelihood function has a simple form.

Let D be a data set of M examples, and let F = {f, 1 i = 1,...,k} be a set of features that
define a model. Then the log-likelihood is

(O:D)=> "0 (Z fi(g[m])) — MInZ(8). {20.2)

dels

Ise
d is
y be
not
413
tion
15 is

le a
0se,
ures
, We

200

OITE-
S NO

rorks
;) is
de a
1eral,

 four
icator
- stch

of the

s that

(20.2)

sufficient
statistics

20.2,3

convex partition
functiont

Hessian

Proposition 20.2

20.2. The Likelihood Function 947

- The sufficient statistics of this likelihood function are the sums of the feature values in the
instances in D. We can derive 2 more elegant formulation if we divide the log-likelihood by the
niimber of samples M.,

ﬂ-e (8:D) = Ze Ep(fi(d:)] —In Z(8), : _- ©(203)
where Ep|f;(d;)] is the empirical expectation of f;, that is, its average in the data set.

Properties of the Likelihood Function

The formulation of proposition 20.1 describes the likelihood function as a sum of two functions.
The first function is linear in the parameters; increasing the parameters directly increases this
linear term. Clearly, because the log-likelihood function (for a fixed data set) is upper-bounded
{the probability of an evént is at most 1), the second term In Z (@) balances the first term.

Let us examine this second term in more detail. Recall that the partition function is defined
as _ _. :

InZ(@) = aneXp {Z Qifi(E)} :

One important property of the partition function is that it is convex in the parameters 8. Recall
that a function f(Z) is convex if forevery 0 > a > 1,

flaZ+ (1 - a)f) < af(@)+ (1 - o) f(@).

In other words, the function is bowl-like, and every interpolation between the images of two
points is larger than the image of their interpolation. One way to prove formally that the function
f 1s convex is to show that the Hessian — the matrix of the function’s second derivatives — is
positive semidefinite. Therefore, we now compute the derivatives of Z(8).

Let F be a set of features. Then,

0
a0;
B2
8939 ll'lZ(O) = Covg[f@;fj],

where Eg|fi] is a shorthand for Epx.e)|f;].

nZz(0) = Eelfi

Proor The first derivatives are computed as:

8 1 13,
5@1112(9) = mga—eiexp ;%fj(ff}

-1
= m%:fi(é)exp Zj:ajfj(g)
= Bplfi]-

Corollary 20.1

&

redundant
parameterization

948 _4 Chapter 20. Learning Undirected Mogej,
We now consider the second derivative:
| aeiei mZ(8) = 5‘3; _Z%,—) ; Fi{&) exp {Zk: kak(ﬁ)}
- _5615)7 (%Z(f))) ;fi(g) exp {% Qkfk(é)}
+%6) ; Fi(€) £5(8) exp {‘éﬂkﬁv(@}

1

= 5l OBl Y HOPE:)
£

+%9) ; 15 (&P - 0)
= —Eolfy] g fil&)P(6:6)
+3HEFOPE:6)
Ep| ﬁfj]£w Ep[fi]Epf;]
Covplf3; 15]-

Thus, the Hessian of In Z(#) is the covariance matrix of the features, viewed as random
variables distributed according to distribution defined by 8. Because a covariance matrix is
always pesitive semidefinite, it follows that the Hessian is positive semidefinite, and hence that
In Z(8) is a convex function of 8. N

Because In Z(8) is convex, its complement (—In Z(8)) is concave. The sum of a linear
function and a concave function is concave, implying the following important result:

The log-likelihood function is concave.

This result implies that the log-likelihood is unimodal and therefore has no local op-
tima. It does not, however, imply the uniqueness of the global optimum: Recall that a
parameterization of the Markov network can be redundant, giving rise to multiple representa-
tions of the same distribution. The standard parameterization of a set of table factors for a
Markov network — a feature for every entry in the table — is always redundant. Tn our simple
example, for instance, we have:

fao,bo =1- .ful.o,b1 - fal,bc' - .}Eﬂ_l,bl-

We thus have a continuum of parameterizations that all encode the same distribution, and
(necessarily) give rise to the same log-likelihood. Thus, there is a unique globally optimal value
for the log-likelthood function, but not necessarily a unique solution. In general, because the
function is concave, we are guaranteed that there is a convex region of continuous global optima.

E)

s random
matrix is
ence that

n

[a linear

local op-
all that a
presenta-
tors for a
ur simple

tion, and
mal value
cause the
a1 optima.

20.3

20.3.1

Theorem 20.1

expected
sufficient
statistics

moment
matching

MLE consistency

&

20.3. Maximum (Conditional) Likelihood Parameter Estimation 949

it is possible to eliminate the redundancy by removing some of the features. However, as we
discuss in section 20.4, that turns out {o be unnecessary, and even harmful, in practice.

We note that we have defined the likelihood function in terms of a standard log-linear param-
eterization, but the exact same derivation also holds for networks that use shared parameters,
as in section 6.5; see exercise 20.1 and exercise 20.2.

Maximum (Conditional) Likelihood Parameter Estimation

We now move to the question of estimating the parameters of a Markov network with a fixed
structure, given a fully observable data set D. We focus in this section on the simplest variant
of this task — maximum-bkelihood parameter estimation, where we select parameters that
maximize the log-likelihood function of equation (20.2). In later sections, we discuss alternative
objectives for the parameter estimation task.

Maximum Likelihood Estimation

As for any function, the gradient of the log-likelihood must be zero at its maximum points. For
a concave function, the maxima are precisely the points at which the gradient is zero. Using
proposition 20.2, we can compute the gradient of the average log-likelihood as follows:

a%i%f(" . D) = Ep[fi(X)] - Eolf. 20.4)

This analysis provides us with a precise characterization of the maximum likelihood parameters

Let F be a set of features. Then, 8 is a maximum-likelithood parameter assignment if and only if
Ep|fi(X)] = Ep[fi] for all 4.

In other words, at the maximal likelihood parameters &, the expected value of each feature
relative to P matches its empirical expectation in D. In other words, we want the expected
sufficient statistics in the learned distribution to maich the empirical expectations, This type of
equality constraint is also called moment matching. This theorem easily implies that maximum
likelihood estimation is consistent in the same sense as definition 18.1: if the model is suffi-
ciently expressive to capture the data-generating distribution, then, at the large sample limit, the
optimum of the pseudolikelihood objective is the true model; see exercise 20.3.

By itself, this criterion does not provide a constructive definition of the maximum likelihood
parameters. Unfortunately, although the function is concave, there is no analytical form for
its maximum. Thus, we must resort io iterative methods that search for the global opti-
mum. Most commonly used are the gradient ascent methods reviewed in appendix A.5.2,
which iteratively take steps in parameter space to improve the objective. At each iteration,
they compute the gradient, and possibly the Hessiar, at the current point 8, and use those
estimates to approximate the function at the current neighborhood. They then take a step in the
right direction (as dictated by the approximation) and repeat the process. Due to the convexity
of the problem, this process is guaranteed to converge to a global optimum, regardless of our
starting point.)

[ogrljkelihuud

Hessian

1-BFGS algorithm

20.3.2

discriminative
training
conditional
random field

conditional
likelihood

950 Chapter 20. Learning Undirected Mod,ls

To apply these gradient-based methods, we need to compute the gradient. Fortunately, equa-
tion {20.4) provides us with an exact formula for the gradient: the difference between the
feature’s empirical count in the data and its expected count relative to our current parame.
terization @. For example, consider again the fully parameterized network of example 203
Here, the fedtures are simply indicator functions; the empirical count for a feature such g
fao (0, b) = Ka = a’}1{b = b"} is simply the empirical frequency, in the data set D, of the
event a”, b0, At a particular parameterization 8, the expected count is simply Pp(a®, %), Very
naturally, the gradient for the parameter associated with this feature is the difference betweer
these two numbers,

However, this discussion ignores one important aspect: the computation of the expected
counts. In our example, for instance, we must compute the different probabilities of the form
Pyt{a,b). Clearly, this computation requires that we run inference over the network. As for the
¢ase of EM in Bayesian networks, a feature is necessarily part of a factor in the original network,
and hence, due to family preservation, all of the variables involved in a feature must occur
together in a cluster in a clique tree or cluster graph. Thus, a single inference pass that calibrates
an entire cluster graph or tree suffices to compute all of the expected counts. Nevertheless,
a full inference step is required at every iteration of the gradient ascent procedure,
Because inference is almost always costly in time and space, the computational cost of
parameter estimation in Markov networks is usually high, sometimes prohibitively so. In
section 20.5 we return to this issue, considering the use of approximate methods that reduce

* the computational burden.

Our discussion does not make a specific choice of algorithm to use for the optimization. In
practice, standard gradient ascent is not a particularly good algorithm, both because of its slow
convergence rate and because of its sensitivity to the step size. Much faster convergence is
obtained with second-order methods, which utilize the Hessian to provide a quadratic approx-

"imation to the function. However, from proposition 2(.2 we can conclude that the Hessian of

the log-likelihood function has the form:

o
———#H8 : D)= —-MC o5 il : 205
26,08,) el i w0
To compute the Hessian, we must compute the joint expectation of two features, a task that
is often compuidtionally infeasible. Currently, one commonly used solution is the L-BFGS al
gorithm, a giadient-based algorithm that uses line search to avoid computing the Hessian (see
appendix A.5.2 for some background).

Conditionally Trained Models

As we discussed in section 16.3.2, we often want to use a Markov network to perform a par-
ticular inference task, where we have a known set of observed variables, or features, X, and
a predetermined set of variables, ¥, that we wdnt to query. In this case, we may prefer to
use discriminative training, where we train the network as a conditional random field (CRF) that
encodes a conditional distribution P(Y | X} .

More formally, in this setting, our training set consists of pairs D = {(y[m], z{m])}}_,
specifying assignments to ¥, X. An appropriate objective function to use in this situation
is the conditional likelthood or its logarithm, defined in equation (16.3). In our setting, the

odels

qua-
the
me-
201
h as
f the
Very
Neer

scted
form
r the
work,
ceur
rates
eless,
dure.
st of
0. In
sduce

n. In
. slow
1ce is
PIox-
an of

(20.5)

k that
GS al
n (see

a par-
7, and
fer to
F) that

‘ }M
m=1

uation

17, the

Corollary 20.2

20.3. Maximum (Conditional} Likelithood Parameter Estimation 951

log-conditional-likelihood has the form:

. M
byix(8:Dy=InPy[l,...,M]| z[1,...,M],0) = > InP(y[m] | x{m],0). (0.6

m=1

In this objective, we are optimizing the likelihood of each observed assignment y[m] given the
corresponding observed assignment x[m]. Each of the terms In P(y[1,..., M] | x[1,...,M],8)
is a log-likelihood of a Markov network model with a different set of factors — the factors in
the original network, reduced by the observation &:[1, ..., M] — and its own partition function.
Each term is thereby a concave function, and because the sum of concave functions is concave,
we conclude:

The log conditional likelihood of equation (20.6) is a concave function.

" As for corollary 20.1, this result implies that the function has a global optimum and no local op-

tima, but not that the global optimum is unique. Here also, redundancy in the parameterization
may give rise to a convex region of contiguous global opiima.

The approaches for optimizing this objective are similar to those used for optimizing the
likelihood objective in the unconditional case. The objective function is a concave function,
and so a gradient ascent process is guaranieed to give rise to the unique global optimum, The
form of the gradient here can be derived directly from equation (20.4). We first observe that
the gradient of a sum is the sum of the gradients of the individual terms. Here, each term is,
in fact, a log-likelihood — the log-likelthood of a single data case y[m] in the Markov network

. obtained by reducing our original model to the context ®[m]. A reduced Markov network is

itself a Markov network, and so we can apply equation (20.4) and conclude that:

a%fmx(ﬁ’ :D) =) (fulylm],zlm]) — Eq[f; | [m]]}. (207

This solution looks deceptively similar to equation (20.4). Indeed, if we aggregate the first
component in each of the summands, we obtain precisely the empirical count of f; in the data
set D. There is, however, one key difference. In the unreduced Markov network, the expected
feature counts are compuied relative to a single model; in the case of the conditional Markov
network, these expected counts are computed as the summation of counts in an ensemble of
models, defined by the different values of the conditioning variables x[m]. This difference
has significant computational consequences. Recall that computing these expectations involves
running inference over the model. Whereas in the unconditional case, each gradient step
required only a single execuiion of inference, when training a CRF, we must {in general)
execute inference for every single data case, conditioning on x[m|. On the other hand, the
inference is executed on a simpler model, since conditioning on evidence in a Markov

. network can only reduce the computational cost. TFor example, the network of figure 20.2

is very densely connected, whereas the reduced network over Y alone (conditioned on X) is a
simple chain, allowing linear-time inference.

Discriminative training can be particularly beneficial in cases where the domain of X is very
large or even infinite. For example, in our image classification task, the partition function in the

collective
classiftcation

sequence labeling

activity
1ecognition

hidden Markov
model
maximum
entropy Markov
model

conditional
randq;p field

Figure 20.2 A highly connected CRF that allows simple inference when conditioned: The edges
that disappear in the reduced Markov network after conditioning on X are marked in gray; the remaining
edges form a simple linear chain.

generative setting involves summation (or integration) over the space of all possible images; if
we have an /N x N image where each pixel can take 256 values, the resulting space has 256~ :
values, giving rise to a highly intractable inference problem (even using approximate inference
methods).

Box 20.A — Concept: Generative and Discriminative Models for Sequence Labeling. One
of the main tasks to which probabilistic graphical models have been applied is that of taking
a set of interrelated instances and jointly labeling them, a process sometimes called collective clas-
sification. We have already seen examples of this task in box 4B and in box 4E many other
examples exist. Here, we discuss some of the trade-offs between different models that one can apply
to this task. We focus on the context of labeling instances organized in a sequence, since it is simpler
and allows us to illustrate another important point.

In the sequence labeling task, we gef as input a sequence of observations X and need to label
each of them. For example, in text analysis (box 4.B), we might have a sequence of words each
of which we want to label with some label. In a task of activity recognition, we might obtain a
sequence of images and want to label each frame with the activity taking place in it (for example,
running, jumping, walking). We assume that we want to construct a model for this task and to
train it using fully labeled training data, where both Y and X are observed.

Figure 20.A.1 illustrates three different types of models that have been proposed and used for
sequence labeling, all of which we have seen earlier in this book (see figure 6.2 and figure 414). The
first model is a hidden Markov model (or HMM), which is a purely generative model: the model
generates both the labels Y and the observations X. The second is called @ maximum entropy
Markov model {or MEMM). This model is also directed, but it represents a conditional distribution
P(Y | X); hence, there is no attempt to model a distribution over the X'5. The final model
is the conditional random field {or CRF) of section 4.6.1 This model also encodes a conditional
distribution; hence the arrows from X to Y. However, here the interactions between the Y are
modeled as undirected edges.

These different models present interesting trade-offs in terms of their expressive power and learn-
ability. First, from a computational perspective, HMMs and MEMMs are much more easily learned.
As purely directed models, their parameters can be computed in closed form using either maximum-
likelihood or Bayesian estimation (see chapter 17} conversely, the CRF requires that we use an

The edges
remaining

mages; if
2

as 2567

inference

ing. One
of taking
ctive clas-
any other
can apply
- is simpler

od fo label
yords each
t obtain a
r example,
sk and fo

d used for
e 4.14), The
the mode!
m entropy
listribution
inal model
randitional
the Y are

and learn-
ily learned.
maximum-
we use an

label bias
problem

(b) MEMM

Figure 20.A.1 — Different models for sequence labeling: HMM, MEMM, and CRF

iterative gradient-based approach, which is considerably more expensive (particularly here, when
inference must be run separately for every training sequence; see section 20.3.2).

A second important issue relates to our ability to use a rich feature set. As we discussed in
example 16.3 and in box 4.E, our success in a classification task often depends strongly on the
qualily of our features. In an HMM, we must explicitly model the distribution over the features,
including the interactions between them. This type of model is very hard, and often impossible,
to construct correctly. The MEMM and the CRF are both discriminative models, and therefore they
avoid this challenge enfirely.

The third and perhaps subtler issue relates to the independence assumptions made by the model.
As we discussed in section 4.6.12, the MEMM makes the independence assumption that (¥; L X, |
X _;) for any § > i. Thus, an observation from later in the sequence has absolutely no effect on
the posterior probability of the current state; o, in other words, the model does not allow for any
smoothing. The implications of this can be severe in many settings. For example, consider the task
of activity recognition from a video sequence; here, we generally assume that activities are highly
persistent: "if a person is running in one frame, she is also extremely likely to be running in the
next frame. Now, imagine that the person starts running, but our first observation in the sequence
is ambiguous and consistent with both running and walking. The model will pick one — the one
whose probability given that one frame is highest, a decision that may well be wrong. Assuming
that activities are persistent, this choice of activity is likely to stay high for a large number of steps;
the posterior of the initial activity will never change. In other words, the best we can expect is
a prediction where the initial activity is running, and then (perhaps) transitions to walking. The
model is incapable of going back and changing its prediction about the first few frames. This
problem has been called the label bias problem,

To summarize, the trade-offs between these different models are subtle and non-
definitive. In cases where we have many correlated features, discriminative models are
probably better; but, if only limited data are available, the stronger bias of the generative
model may dominate and allow learning with fewer samples. Among the discriminative
models, MEMMs should probably be avoided in cases where many transitions are close to
deterministic. In many cases, CRFs are likely to be a safer choice, but the computational
cost may be prohibitive for large data sets.

process

20.1

Learning Undirected Models

Overview

In previous chapters, we developed the theory and algorithms for learning Bayesian networks
from data. In this chapter, we consider the task of learning Markov networks. Although many of
the same concepts and principles arise, the issues and solutions turn out to be quite different.

Perhaps the most important reason for the differences is a key distinction between
Markov neiworks and Bayesian networks: the use of a global normalization constant
(the partition function) rather than local normalization within each CPD, This global
factor couples all of the parameters across the network, preventing us from decomposing
the problem and estimating local groups of parameters separately. This global parameter
coupling has significant computational ramifications. As we will explain, in contrast to the
situation for Bayesian networks, even simple {maximum-likelihood) parameter estimation with
complete data cannot be solved in closed form (except for chordal Markov networks, which
are therefore also Bayesian networks). Rather, we generally have to resort to iterative methods,
such as gradient ascent, for optimizing over the parameter space. The good news is that the
likelihood objective is concave, and so these methods are guaranteed to converge to the global
optimum. The bad news is that each of the steps in the iterative algorithm requires that we
run inference on the network, making even simple parameter estimation a fairly expensive, or
even intractable, process. Bayesian estimation, which requires integration over the space of
parameters, is even harder, since there is no closed-form expression for the parameter posterior.
Thus, the integration associated with Bayesian estimation must be performed using approximate
inference {such as variational methods or MCMC)}, a burden that is often infeasible in practice.

As a consequence of these computational issues, much of the work in this area has gone into
the formulation of alternative, more tractable, objectives for this estimation problem. Other work
has been focused on the use of approximate inference algorithms for this learning problem and
on the development of new algorithms suited to this task.

The same issues have significant impact on structure leaming. In particular, because a
Bayesian parameter posterior is intractable to compute, the use of exact Bayesian scoring for
model selection is generally infeasible. In fact, scoring any model (computing the likelihood)
requires that we run inference to compute the partition function, greatly increasing the cost of
search over model space. Thus, here also, the focus has been on approximations and heuristics
that can reduce the computational cost of this task. Here, however, there is some good news,
arising from another key distinction between Bayesian and Markov networks: the lack of a

