
Chapter 3

Disjunctive Sources

We examine the query planning problem in data integration systems in the presence of sources that

contain disjunctive data. We show that datalog, the language of choice for representing query plans

in data integration systems, is not su�ciently expressive in this case. We prove that disjunctive

datalog with inequality, on the other hand, is su�ciently expressive by presenting a construction of

query plans that are guaranteed to extract all available information from disjunctive sources.

3.1 Introduction

We examine the query planning problem in data integration systems in the presence of sources that

contain disjunctive data. The query planning problem in such systems can be formally stated as the

problem of answering queries using views as described in Chapter 2. View de�nitions describe the

data stored by sources, and query planning requires rewriting a query into one that only uses these

views. In this chapter we are going to extend the algorithm for answering queries using conjunctive

views introduced in Section 2.3 so that it can handle disjunction in the view de�nitions as well.

Example 3.1.1 Assume a data source stores ight information. More precisely, the source stores

nonstop ights by United Airlines (ua) and Southwest Airlines (sw), and ights out of San Francisco

International Airport (sfo) with one stopover. The data stored by this source can be described as

being a view over a database with a relation ight that stores all nonstop ights. The view de�nition

that describes this source is the following:

v(ua,From,To) :� ight(ua,From,To)

v(sw,From,To) :� ight(sw,From,To)

v(Airline,sfo,To) :� ight(Airline,sfo,Stopover),

ight(Airline,Stopover,To)

A user might be interested in all cities that have nonstop ights to Seattle (sea):

Q: q(From) :� ight(Airline,From,sea)

43



44 CHAPTER 3. DISJUNCTIVE SOURCES

If hua,jfk,seai is a tuple stored by the data source, then there is clearly a nonstop ight from New

York (jfk) to Seattle. On the other hand, if the tuple hua,sfo,seai is stored by the data source then a

nonstop ight from San Francisco to Seattle does not necessarily exist. Indeed, this tuple might be

stored because there is a ight with one stopover from San Francisco to Seattle. The task of query

planning in data integration systems is to �nd a query plan, i.e. a query that only requires views,

that extracts as much information as possible from the available sources. All ights to Seattle stored

by the data source with the exception of ights departing from San Francisco International Airport

are nonstop ights. Therefore, the query plan is the following:

P: q(From) :� v(Airline,From,sea), From 6= sfo

Note that without the use of the inequality constraint \From 6= sfo" it wouldn't be possible to

guarantee that all cities returned by the query plan indeed have nonstop ights to Seattle. 2

In Chapter 2, we showed that the expressive power of datalog is both required and su�cient

to represent \good" query plans in data integration systems when view de�nitions are restricted to

be conjunctive. As we have seen in Example 3.1.1, the presence of disjunctive sources in addition

requires the use of inequality constraints in query plans. So far, there are no algorithms that

generate query plans with inequality constraints. But the di�erences between conjunctive sources and

disjunctive sources are much more extensive. We will see in Example 3.1.2 that the expressive power

of datalog, even with inequality, is insu�cient to represent query plans that extract all available

data from disjunctive sources.

Example 3.1.2 Assume that there are two data sources available which are described by the fol-

lowing view de�nitions:

v1(X) :� color(X; red)

v1(X) :� color(X; green)

v1(X) :� color(X; blue)

v2(X;Y ) :� edge(X;Y )

View v1 stores vertices that are colored red, green, or blue. View v2 stores pairs of vertices that are

connected by an edge. Assume a user wants to know whether there is a pair of vertices of the same

color that are connected by an edge:

Q: q(0yes0) :� edge(X;Y ); color(X;Z); color(Y; Z).

Consider the graphs G1, G2, and G3 in Figure 3.1. All of these graphs are not three-colorable, i.e. for

every possible coloring of the vertices with at most three colors, there will be one edge that connects

vertices with the same color. Therefore, every graph that contains G1, G2, or G3 as a subgraph

contains an edge that connects two vertices with the same color if the vertices in G1, G2, and G3 are

colored by at most three colors. Query plans P1, P2, and P3 output 'yes' exactly when the input

graph contains G1, G2, or G3 respectively as a subgraph and when the vertices in G1, G2, and G3

respectively are colored by at most three colors:



3.1. INTRODUCTION 45

G:2G:1 :3G

Figure 3.1: Examples of graphs that are not 3-colorable.

P1: q(0yes0) :� v1(X1); v1(X2); v1(X3); v1(Y ); v2(X1; X2); v2(X2; X3);

v2(X3; X1); v2(X1; Y ); v2(X2; Y ); v2(X3; Y )

P2: q(0yes0) :� v1(X1); v1(X2); v1(X3); v1(X4); v1(X5); v1(Y );

v2(X1; X2); v2(X2; X3); v2(X3; X4); v2(X4; X5); v2(X5; X1);

v2(X1; Y ): v2(X2; Y ); v2(X3; Y ); v2(X4; Y ); v2(X5; Y )

P3: q(0yes0) :� v1(X1); v1(X2); v1(X3); v1(X4); v1(X5); v1(X6); v1(X7);

v1(Y ); v2(X1; X2); v2(X2; X3); v2(X3; X4); v2(X4; X5);

v2(X5; X6); v2(X6; X7); v2(X7; X1); v2(X1; Y ): v2(X2; Y );

v2(X3; Y ); v2(X4; Y ); v2(X5; Y ); v2(X6; Y ); v2(X7; Y )

It follows that query plans P1, P2, and P3 are contained in query Q. More generally, every query

plan that checks that the input graph contains a not three-colorable subgraph, and that all the

vertices in the subgraph are colored by at most three colors, is contained in Q.

It is well known that deciding whether a graph is three-colorable is np-complete [31]. Because

the problem of evaluating a datalog program has polynomial data complexity [56], this shows that

there is no datalog query plan that contains all the query plans that are contained in Q. Intuitively,

the reason is that for every datalog query plan P that is contained in Q, an additional conjunctive

query that tests for one more not three-colorable graph can be added to create a query plan that is

still contained in Q, but that is not contained in P. 2

Example 3.1.2 showed that the expressive power of datalog is insu�cient to represent query

plans that extract all available data from disjunctive sources. In this chapter, we will present a

construction of query plans formulated in disjunctive datalog with inequality that do guarantee to

extract all data. Example 3.1.3 shows the query plan resulting from our construction when applied

to the query planning problem in Example 3.1.2.

Example 3.1.3 Let us continue Example 3.1.2. The disjunctive datalog query plan that contains

all query plans contained in query Q is the following:

P: q(0yes0) :� v2(X;Y ); c(X;Z); c(Y; Z)

c(X; red) _ c(X; green) _ c(X; blue) :� v1(X)


