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Abstract

We introduce the community to a new construction principle whose practical implications
are very broad. Central to this research is the idea to improve the presentation of algorithms
in the literature and to make them more appealing. We define a new notion of capacity for
data sets and derive a methodology for selecting from them. The experiments show that
even for not so good algorithms, you can show that they are significantly better than all the
others. We give some experimental results, which are very promising.

1 Introduction

Learning is a marvellous subject. A year spent in artificial intelligence is enough to make one
believe in God. Unfortunately, so far it has been handled only from a particular one-sided
point of view. The VC-theory known only by some people does not offer what we would
be in right to ask from such a theory: we want good bound for our algorithms. We offer
with this article a brand new approach that allows you to present your algorithm in a much
more principled and rigorous way that has been done before. Many researchers, especially
in publications at NIPS, have tried to show when their algorithms are better (in some sense)
than some other given set of algorithms. To do this they have employed techniques of data
set selection. It is strange then that learning theorists, as they call themselves, over the
last 50 years have concentrated on the model selection problem and not the data selection
problem which is what people actually do. The two problems can in some sense be seen as
the dual of each other, but it is not because you solve one that you can solve the other one.
And vice-versa. In this article we lay down the foundations and introduce to the community
of machine learning peers and other engineers a new induction principle: structural dataset
minimization. Essentially we begin to formalize the sometimes ad hoc engineering approach
of the selection procedure that everyone already practiced. In doing so we find concrete
bounds for when the data selected really is better than other datasets and implement less
ad hoc algorithms for finding such datasets. We show our approach outperforms the classical
approach.

The structure of the paper contrarily to its content follows a classical trend: section 1
presents some nice bounds you can use in lots of situations, section 2 shows how to use
these bounds by designing new algorithms. Section 3 describe some experiments which, of
course, 2are good.! Section 4 concludes the article with smart thoughts and future work we
will do.

2 Bounds

Let us introduce some notations. Assume a researcher has invented an algorithm A* and he
wishes to show that his pride and joy is superior with respect to some loss function ¢ to a

!Contrarily to other people, we have put all of our experiments in this paper, even the bad ones, but well, we did
not get any bad ones.
2If (and only if) the paper is accepted.



given fixed set of algorithms® A1, .., 4,, that other researchers have made. For this purpose,
the researcher selects some data sets using what is called an empirical data set minimization
method. The latter consists in taking some fixed set of data sets D1, .., D4 and find a data
set D* in Dy, .., Dy so that:

(A", D*) < min ((A;,D")

i=1,..,

Note that this problem is ill-posed. A natural generalization would be to find more than one
data set in which your algorithm performs well but this is a difficult problem that has not
been solved so far by the community. Current efforts in solving this problem have focussed
on producing more artificial data sets rather than algorithms to achieve this goal.
We have the following theorem:

Theorem 1 Let D be a set of training sets, then assume that the space of algorithms is
endowed with a fized distribution P (which could be anything a priori), then with probability
1 —n over a sampling on the algorithm, and for all v > 0, we have:

VD €D, Ryen[D] < Remy’y (D) + O ( (D) 10g(1/17)>

m
where ®(D) is the capacity of the set of training set defined as:

®(D) = max{m s.t. A1, .., A algorithms s.t. Y(r11,..,7ij, ., Tmm) € [0, 1]mm=1)/2,
AD € D, Vi#jlt(D,A;) —U(D,Aj)| <ry } (1)
We are proud now to supply the following elegant proof.

Proof: Let us denote by m the number of points in the training set, we see that introducing
a ghost algorithm A’:

Py (sup |Remp™[D] = Rygen'[D]] > e> <Paa (sup \RempA[D] — Remp” [D]\ > e>
DeD DeD
which is trivially insensitive to permutations so that we can condition over the algorithm
A and A’. Then we also have the right to play with the swapping permutation as it has
been done in the theoretical but practically not used VC framework, which means that
we work only with the values of (01,02). After some more states which we admit for
brevity, this leads to the vanishing of the supremum. We are then left with a sum of two
random variables whose sum can be controlled using the Bennett-bernstein inequality.
This is here where the tricky part begins. It is known that averaging over two random
variables does not gives you a good control of their expectation. But this can be overcome
if we consider many exact replica of the first two variables. Then we have plenty of them,
as much as we want! And we can then control the expectation because now the value
of m is big. We call this trick, the replica trick. Note the replica trick has been used
many times in the invention of algorithm: when exploring the space A of all possible
algorithms, the same algorithm has been visited many times but with negligible variations
so that if you use an e-insensitive loss functions, these algorithms appear to be equivalent.* O

The theorem we just proved should be considered as the dual of the theorem of Vapnik
and Chervonenkis. And this should be the case because it is just the dual of it. And we
believe this is the more natural setting for your every day design of algorithms. Maybe our
approach is complementary to the one of Vladimir and Alexei but we are one step forward
because we can infer/compute the probability over the data sets just by looking at the UCI
repository database. Just try to do the same with your set of functions and we will talk.
Anyway, we insist that our approach shares a lot of common properties with the classical
VC framework. One of them is that unfortunately we cannot say much but we try to, or
say differently we have our own "no free lunch” theorem but we try to forget it. Here is our
no free brunch!! theorem:

3Normally, a small set so that he does not have to do too many experiments.

*In fact, embedding nips papers into a vector space, we found a big cluster where all the points were close to each
other at a distance less than 0.05 which is the classical significant threshold used in statistics. We ran k-means 50
times but kept coming up with the same single big cluster.



Theorem 2 (No Free Brunch!!) The generalization error of two datasets for all algo-
rithm s the same:
Ea[Ryen”[D]] = Eal[Ryen” [D']

so that there is no better dataset than the one you already have.

The consequences of the theorem are very hard: it means that if you don’t do well, then you
are not very skilled. We still have not worked out what the researchers had for breakfast
(of course, in this remark we retain some hilarity). This leads to the natural consequence
that to say anything one should restrict the set of algorithms to some natural set, in a
companion paper we prove that the set of datasets restricted to all Bayesian algorithms
has infinite dimension. The same is true for the set of all kernel algorithms if you leave
the the following free parameters: loss function (hinge loss, pound loss, epsilon-insensitive
loss, £1, {5, {2+, Huber, hyperbolic tangent, Bregman, Breiman, etc.), regularizer (RKHS,
l|lw]?, >, af, >, a;, KL divergence, relative entropy, log(max; ;) etc.) and the set of
functions (we do not list here all possible kernels, this will future work to examine the kernel
set selection phenomena) and the optimization procedure (perceptron, gradient descent,
chunking, quadratic, linear, stochastic, simulated annealing, analytic, random)®.

The second major contribution is that our bound has exposed one of the major problems
of empirical dataset minimization: the previous de facto method over ten years of nips®
publications. Clearly, the second term in the bound (which is the confidence interval over
the set of datasets) is not taken into account. This leads us to proposing a new construction
principle called the Structural Data Sets Minimization (SDSM).

3 Structural Data Sets Minimization

In order to appreciate the following section, we ask the reader for a little patience and to
concentrate a little. Assume you have a increasing set of datasets Di,.., Dy (e.g USPS,
NIST, REUTERS 1, REUTERS 2, ...) which are roughly included in each other:

D CDyC...C Dy

Then we would like to apply the theorem of the previous section and choose the best datasets
for our algorithms (i.e. the one that will be used in the paper presenting these potentially

new algorithms). Using the union bound, we found that with probability 1 — Ele n;, for
all D € UD;:

®(D;)

Rgen[D] < Dnéijr)li Remp:j(D) +0 ( 10g(1/m)> (2)

~ ~
e

(i)

So that we can pick the ¢* such that ¥(¢) is minimized over ¢ and choose then the best data
set on D;-. The consistency of this procedure can be ensured by a theorem.

This section means that to find the best data set for your algorithm, you can consider
many datasets and compute their capacity and then pick the best one not only in terms of
empirical errors (which is strangely often called test error in many papers) but also in terms
of this capacity.

Here is a nice picture (Figure 1).

4 Algorithm Ordering Machine

We have now prescribed a formal method for choosing between real datasets. However, we
don’t really know the capacity of these real world datasets, only approximations can be
calculated (although empirical observations show that most published algorithms do well,
so the capacity must be quite high). For that reason, we suggest to use toy problems. It
turns out that we can prescribe an efficient algorithm for searching for the best toy problem
for a given algorithm A.

5We do not cite the individual papers, we refer the interested reader to the NIPS volumes.
Swww.nips.com
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Figure 1: Graphical depiction of the strucural data sets minimization construction principle.

The highly successful and efficient algorithm prescribed is the following. Once again, assume
a researcher has invented” an algorithm A* and he wishes to show that it is superior with
(dis)respect to some loss function ¢ to a given fixed set of algorithms Ay, .., A, that other
researchers have made. Let us try to choose a fixed class of artificial datasets D, for example
artificial data that is generated by a mixture of £ Gaussians with covariance matrixes ci,.
in a d dimensional space with a noise model e and f extra noisy features. Let us define
w = (¢,d, e, f), we have the following theorem:

Theorem 3 The capacity ®(D) is bounded by:
&(D) < min (RJul*,n)

where n is the number of parameters (sum of dimensions of the vectors ¢,d,e and f) and R
is the largest possible value of any coordinates of any vectors in the data sets.

Some people would argue that this theorem is valid only for data sets parameterized by
gaussian distribution, but actually it can model a lot of real life problems. The interested
reader can read the literature about gaussian processes.

Now, the task is to optimize these parameters such that the algorithm A appears much
better than the other ones. Let us choose A=Bruto, 4;=SVM, A>=MARS, A3=k-NN,
A4=C4.5 and we embed this set of algorithms with a uniform distribution to ensure no bias.
This can be done with the following minimization:

min (I)(gc,d,e,f)

c,dye,

subject to : Remp?[D] < Remp™[D] —¢, i=1,..,4
which is equivalent to:

min  |lwl|?
w=(c,d,e,f)

"i.e, slightly altered someone else’s.



| Algorithms [[ Without noise [  With noise |
Lincar SVM 0.5 (0.005) 0.5 (0.00)
Poly-2 SVM 0.5 (0.1) 05 (0.2
Poly-5 SVM 0.7 (0.2) 0.7 (0.1)
Poly-10 SVM 0.9 (0.8) 0.8 (0.6)
Mars 0.2 (0.2) 0.4 (0.1)
Bruto 0.001 (0.00009) | 0.002 (0.0001)

Figure 2: Results for w = (0.00001, 50000154839, 34,3.14159,2.755,1,2,3,4,5,6,7,8,9,—1,—2,-3...). w
corresponds to the parameters of the generated data set. Unfortunately, we have difficulties interpreting w.

subject to : Remp?[D] < Remp™[D] —¢, i=1,..,4

If you wish to find a dataset where your algorithm does not achieve 0% test error you can
easily generalize this algorithm to the linearly inseparable case by introducing slack variables
&i-

The closeness to SVM is striking. Note that we are maximizing the margin between the
algorithms to ensure a paper is accepted. The relation with statistical tests is open and has
not been analyzed rigorously yet, but an upcoming work is statistical test selection so that
even with small margin you can have a strong result.

5 Experiments

We proceed to prove our methodology by showing we can always find a good solution even
for bad algorithms So we proceed with the example given above. We must admit that it has
already been done in the literature but we provide a deeper analysis and also better margin.
In table 2, we present the results we got with the best value for w.

Note that it is very difficult to discriminate between a linear SVM and a poly-2 SVM, both
of them seem to have a similar behavior and we were not able to worsen the results of the
poly-2 SVM although it would have been nice. Poly-2 SVM performs well on a large number
of data sets so the optimization was difficult, this may explain why we got strange value
for w. On the other hand, it is quite clear in the table that Bruto is much better than
all the other algorithms even much better than MARS although MARS has some common
properties with Bruto. Thus our algorithm was able to discriminate between € distances in
the space of A. We omit our other experiments for brevity but the results were good.

6 Conclusion

We will now reiterate what we said before, we repeat the abstract and introduction. The
problem with any unwritten law is that you don’t know where to go to erase it. This is the
same for other matters by the way. Consider for instance the notations, it is assumed that
m or £ always refer to the number of training examples. Sometimes, it is n also but this
occurs mainly when the authors are new in the field. Note that we also are new in the field
but we did not use n. On the other hand, we have handled quite in a nice way the use of
greek letters. Anyway, the question we are discussing right now is to know when and how
to stop an unwritten law. We believe this could be the place and the time, and, as a mark
of courage, we will not reiterate the introduction. This may then sound weird that we, as
outsiders, put a stone in the sea of nips paper. We do not know the hydrodynamics laws of
such a sea. We do not who discovered water but we’re pretty sure that it wasn’t a fish. Not
even a big fish with a latin name.

Let us stop being polemic for a while and come back to our contribution. Central to our
new research is the idea to improve the presentation of algorithms in literature and to make
them more appealing. We defined a new notion of capacity for data sets and derived a
methodology. The experiments showed that even for not so good algorithms, you can show
that they are significantly better than all the other ones. The message is strong and may
not be understood at a first reading so we insist here to avoid any confusion: we emplore
all researchers to dig out their old failed algorithms and turn them into successful ones.



To be complete, we present in this last paragraph the future works we plan to do one day. We
will make the link between dataset selection and the human neural information processing
which so far researchers have shown happens, in females, in the human brain®. We will
consider whether dataset selection is implemented via chemical stimulation of the neurons,
possibly in the hippycampus. In humans it could consist of, when failing to learn a task,
buggering off and learning something else instead®.

At last, we would like to say a mild word of caution. We hope that the community learns
from this break-through and applies our methodology in their future research or they will
get left behind: our algorithms will far outperform theirs.'°
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8Note that for males, some people conjectures it should be in some unknown other place, others yet conjecture it
doesn’t exist at all. We will refer to this as the D-spot and note that at the least it is very hard to find, at least if
the guy is fat.

“Notice how many people learn to juggle around exam time.

Pinding the occasional straw of truth awash in a great ocean of confusion and bamboozle requires intelligence,
vigilance, dedication and courage. But if we don’t practice these tough habits of thought, we cannot hope to solve
the truly serious problems that face us — and we risk becoming a nation of suckers, up for grabs by the next charlatan
who comes along.



