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Abstract
Exogenous events appear in many practical planning and
scheduling problems but until recently only the latter method-
ology has explicitly dealt with them. While exogenous events
are commonly viewed as instantaneous actions occurring at
specific time points and interacting with actions, they can
sometimes be seen as enforcing earliest starting time and
latest finishing time constraints on actions. Such constraints
are common in scheduling, suggesting that exploiting related
techniques from the scheduling community might be effective
in a planning context. In this paper, we look at heuristic tech-
niques from both the planning and scheduling fields that are
relevant to this problem, and consider combined approaches
that may be more effective when planning in the presence of
the type of constraints imposed by exogenous events.

Introduction
An exogenous event can be defined as a happening that oc-
curs at a specific point along a conceptual time-line and
changes the world state by altering the value of one or more
state variables. In the context of automated planning, ex-
ogenous events may affect the planning process by either en-
abling or interfering with the execution of certain domain ac-
tions. In this sense, they impose additional time constraints
on action execution.

Examples of exogenous events and their potential interac-
tions with actions in a plan are:
• Electricity will be available at 10 AM. Thus, actions that

need electricity will only be able to execute after 10 AM.
• The store will be closed starting next month. Purchase

actions requiring the store cannot be executed thereafter.
Exogenous events can also occur in counteracting pairs

and make up time windows. Some examples of time win-
dows are:
• A satellite can communicate with an earth station only

between 8-10 AM or 9-11 PM.
• At a certain waypoint X on Mars, it’s sunny (thus allowing

the Rover to recharge its battery at that location) between
10-11 AM.

• The bus operates between ASU and downtown Phoenix in
the period between 5 AM and 11 PM.
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Automated planning deals explicitly with causal and in-
terference relations between actions, so a natural interpre-
tation of exogenous events is as instantaneous actions that
interact with actions in the plan. From the scheduling point
of view, a subclass of exogenous events (especially in the
case of time-windows) can be seen as providing the earliest
starting time (est) and latest finishing time (lft) constraints
to activities in the plan. The est and lft constraints are fun-
damental to scheduling, suggesting that effective handling
of exogenous events in temporal planning problems might
benefit by combining techniques from both the planning and
scheduling communities.

A critical component in the performance of any given
planner is often the quality of the heuristic(s) guiding its
search. Many of the top-performing planners such as HSP
(Bonet & Geffner 1997), FF (Hoffmann & Nebel 2001),
AltAlt (Nguyen et. al. 2001), Sapa (Do & Kambhampati
2003) use heuristic estimation based on propagating reach-
ability information either directly or via the planning graph
structure (Blum & Furst 1997), then follow up with a sec-
ond phase that extracts a ”relaxed plan” from the graph. By
ignoring negative interactions between actions, the relaxed
plan idea quickly produces approximate (but not provably
correct) plans for achieving candidate goal sets. In this paper
we discuss how the interactions between exogenous events
and other actions in the plan affect this two-phase heuris-
tic framework. Given the two different views of exoge-
nous events (instantaneous actions vs. est/lft constraints) we
also discuss how effective heuristic techniques in schedul-
ing such as slack-based (Smith & Cheng 1993) or texture-
based (Beck et. al. 1997) can be used to improve the quality
of the relaxed plan based heuristic extracted from the plan-
ning graph. Thus, this paper examines how scheduling tech-
niques can be adapted to improve planning heuristics and
performance in the presence of exogenous events.

The remainder of this paper is organized as follows: We
start with a view of exogenous events as instantaneous ac-
tions that should be included in any plan and how they af-
fect the current planning search framework, especially the
heuristic estimation process. We then look at different ap-
proaches of using scheduling techniques to improve relaxed-
plan based heuristics guiding the planners. We end with a
section on future work and our conclusions.



Representing Exogenous Events
In general an exogenous event might change the value of a
state variable or a function value (e.g. room temperature),
or it might maintain some state variable or function value
during some period (e.g. fuel level should be kept higher
than 5 during [t1, t2]). In this paper, we only concentrate on
exogenous events that change the value of certain state vari-
ables from true to false or vice versa. In the PDDL2.2 lan-
guage for expressing temporal planning domains (to be used
in this year’s International Planning Competition (IPC4)),
an exogenous event is referred to as timed initial fact. Ex-
amples of PDDL2.2 exogenous event syntax include: (at 10
(open-station city0)) and (at 20 (not (open-station city0))).
At an abstract level, an exogenous event is represented as
a tuple e = {p, o, t} in which p is the predicate affected
by e, o = +/− is an operation on p, and t is the time
point at which e occurs. If o = +, then p changes value
from false to true; if o = −, then p changes from true
to false. Combinations of two counteracting instantaneous
events that happen at different time points t1 and t2 consti-
tute a time window. They may occur repetitively, as in the
case of the visibility time windows for satellite communica-
tion and bus schedules.

Normally, exogenous events affect state variables whose
values cannot be changed by actions in the domains. For ex-
ample, the agent (planner) is not likely to be able to change
the satellite’s communication time windows, which is de-
cided by the geometric position alignment between the satel-
lite and the communication center. Similarly, the planner is
not likely to be able to change the time when tickets are on
sale or the time schedule of the bus. This type of exogenous
events has been discussed in the HSTS planning/scheduling
system (Muscettola et. al. 1992) and was refered to as non-
controllable state variables. However, throughout this pa-
per, we make no assumption concerning the planners ability
to change the state variables affected by exogenous events.
Nevertheless, if the problem only involves exogenous events
that do not affect state variables changed by other actions,
then fewer constraints (action interactions) are involved.
Example: We will take here the sample problem provided
by the organizers of the IPC4 in which we need to move
passengers between different cities (ZenoTravel domain)
and have airplanes that can fly at two different speeds.
Actions in the domain are: board(person, airplane, city),
debark(person, plane, city), fly(plane, city1, city2),
zoom(plane, city1, city2) (fly faster), and
refuel(plane, city, flevel1, flevel2).

Exogenous events (or timed-initial facts) are represented
as follows:
e1: (at 25 (open-station city0))
e2: (at 75 (not (open-station city0)))
e3: (at 275.02 (open-station city1))
e4: (at 375.03 (not (open-station city1)))
e5: (at 475.05 (open-station city2))
e6: (at 575.06 (not (open-station city2)))

These exogenous events impact the refuel actions,
which are described as follows:

(:durative-action refuel

:parameters ( ?a - aircraft ?c - city ?l ?l1 - flevel)
:duration (= ?duration 50)
:condition

(and (at start (fuel-level ?a ?l)) (at start (next ?l ?l1))
(over all (at ?a ?c)) (over all (open-station ?c)))

:effect
(and (at end (not (fuel-level ?a ?l)))
(at end (fuel-level ?a ?l1)))))

The description shows that exogenous events are rep-
resented as instantaneous actions that change the val-
ues of predicates (openstation cityX). Positive
events (e1, e3, e5) appear to satisfy a precondition of
refuel(aircraft, cityX) and negative events (e2, e4, e6)
delete a precondition and prevent it from executing.

From a different point of view, pairs of the exogenous
events can be seen as defining the est − lft time win-
dows familiar in scheduling. Thus, in this case, we can
discard the precondition (overall (open − station ?c))
from the description of the refuel() action along with
the exogenous events and replace them with temporal con-
straints such as: est(refuel(aircraft, city0)) = te1

and
lft(refuel(aircraft, city0)) = te2

. From this perspective,
the possibility of using techniques from the scheduling com-
munity, where those constraints are very common, becomes
more apparent.

Heuristic Estimation with Exogenous Events
Most of the current automated planners find a valid plan by
incrementally selecting and adding actions to a partial plan
which is initially empty (contains no actions). Syntactically,
exogenous events are like instantaneous actions that change
the values of state variables. However, unlike other actions
in the problem, the planner has no choice over whether or
not to select an exogenous event. There are at least two fea-
sible approaches to handling such events: (i) Compile the
exogenous events down to normal actions in a manner that
forces the planner to choose all exogenous events related
to actions needed to reach the problem goals; (ii) Reason
explicitly about exogenous events and extend the notion of
initial state or initial plan to include them. With respect to
the first approach, Fox & Long (2003) present polynomial
transformations to compile down exogenous events into nor-
mal actions in PDDL2.1. An extension of the LPGP planner
(Cresswell & Coddington 2003) implemented this approach.

Alternatively, the second approach entails extending the
capability of a planning system to reason directly with ex-
ogenous events, and we argue that this is the more promising
of the two. Here the planner is provided a non-empty initial
plan containing fixed-time actions representing the exoge-
nous events. We have extended the initial state/plan repre-
sentation in the forward temporal planner Sapa to include
exogenous events and the planner is able to solve the sample
example problem discussed above in roughly 10 seconds on
a Pentium IV machine. Nevertheless, without any modifica-
tion to its heuristic estimation, the planner searches through
more than 22000 nodes before succeeding. It is evident that
solving larger problems will quickly become infeasible un-
less the quality of the heuristic estimates guiding the planner
can be improved to account for exogenous events. We con-
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Figure 1: Temporal planning graph with/without exogenous
events

sider here the effects of exogenous events on the heuristic
approach of extracting an effective relaxed plan from the re-
laxed planning graph.

The framework consists of 2 steps: (i) building the (re-
laxed) planning graph; and (ii) using it to extract the relaxed
plan. When extracting a relaxed plan, we ignore interfer-
ence relations between actions that arise from negative in-
teractions (i.e. one action deletes the precondition, or effect
of another) or from two actions competing for the same re-
source. We will first look at the problem of how to build the
planning-graph in the presence of exogenous events, then
consider where scheduling techniques can help to improve
the quality of heuristics generated via relaxed-plan extrac-
tion.

Building the Planning Graph with Exogenous
Events
Both the classical planning graph (Blum & Furst 1997) and
the temporal planning graph (Smith & Weld 1999) are built
by adding all actions and facts at their optimistically esti-
mated earliest possible execution times. Starting from the
initial state and going forward in time, the graph alternates
between possible executable actions and possible achieved
facts, and represents the estimated earliest time at which we
can achieve each goal as well as the causal relations between
actions and fact at each time point. The estimation can be
improved if we also propagate mutual exclusion relations be-
tween actions when building the planning graph. In addition
to normal actions, we can also have noop (or persistent) ac-
tions that carry forward a fact from its earliest achieved time
to infinity.

One key feature in this type of approach is that when
a given action/fact appears in the planning graph at a cer-
tain level or time point, then it can persist through all later
levels/time-points1. Distance-based heuristics such as the

1This enables an efficient bi-level implementation of the plan-
ning graph structure wherein each action/fact is only associated
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(a) No exo-event: monotonic function
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Figure 2: Cost functions with/without exogenous events

relaxed plan heuristic depend heavily on determining the
level/time-points at which goals first appear non-mutex or
alternately, the set of relaxed actions that optimistically
achieve goals at the earliest time or with lowest cost. When
exogenous events are introduced, this determination be-
comes much more complicated. Facts appearing in the plan-
ning graph may later be deleted by exogenous events, and
thus actions supported by those facts will no longer be exe-
cutable.

Exogenous events behave like actions in that they change
the values of predicates, but unlike normal actions they must
automatically be included in any plan. In terms of a standard
planning graph semantics, if separate actions establish fact f
and f at time point t, we assume that it may still be possible
to achieve f at t because there may exist a plan that does not
include the action deleting f . (This follows from the fact that
each level of the planning graph is a disjunctive representa-
tions of all facts/actions possible at that level.) However, if
there is an exogenous event e that deletes f at t, then f can-
not be achieved at time point t, regardless. The effects of
exogenous events overwrite effects of all other actions, and
accounting for such negative events greatly complicates the
difficulty of incorporating such events in a (relaxed) plan-
ning graph. Given a relaxed plan extracted from such a plan-
ning graph, there is no informedness loss incurred due to the
fact that we’ve ignored negative effects from (relaxed) ac-
tions that do not appear in the (relaxed) plan. However, the
negative effects associated with any exogenous ’actions’ that
are ignored in building a relaxed planning graph may seri-
ously degrade heuristic informedness since they are guaran-
teed to exist in the final plan.

Figure 1 illustrates one portion of the planning graph with
and without exogenous events. Without exogenous events,
actions and facts are represented by their earliest possible
achievement time. With exogenous events, the times at
which actions and facts appear in the planning graph are rep-
resented as disconnected intervals, depending on the actual
causal relations between actions in the plan and the exoge-
nous events.

In addition to time, we can estimate the cost to achieve

with the earliest level/time-point at which it first appears.



the goals by propagating the (reachability) cost of achieve-
ment while building the planning graph (Do & Kambham-
pati 2003). Reasoning over cost in planning is similarly
complicated by the introduction of exogenous events. As-
sume that the cost of executing action zoom(city1, city2)
doubles the cost of action fly(city1, city2) and takes half
the time to finish. Figure 2 shows the cost function of one
fact at(city2) assuming that the aircraft is at city1 in the
initial state. When exogenous events are present actions and
facts introduced in the planning-graph can be deactivated
later, so the cost functions for some actions and facts will
no longer have the property of monotonically decreasing.
Actions and facts may disappear from the planning graph
or their achievement costs can be reset after some certain
durations (this problem has also been discussed in (Smith
2003)).

In Figure 2, we show only the simple case of the fact
open station(city0) which is directly affected by exoge-
nous events. A slightly more complicated example would
be a given exogenous event disables action A, which is the
current (estimated) best supporter for a fact f . Thus, the
best action that can support f is changed from A to the next
best action A′ and thus the cost to achieve f increases. As
a result, the cost function of f is no longer monotonically
decreasing. In general, cost functions can increase and de-
crease in a complicated manner depending on the interac-
tions between actions and exogenous events. We will show
later that it becomes harder to reason about action selection
when extracting a relaxed plan based on the cost functions if
they are not monotonically decreasing.

After constructing cost functions by propagating the cost
information when building the planning graph, they can be
used to extract the relaxed plan during the final heuristic esti-
mation. The relaxed plan is extracted by first picking a goal,
then by looking at the cost function of the goal, we can pick
the most promising action to achieve that goal. For exam-
ple, if the goal is at(city2) then the cost function in Figure 2
shows that the lowest cost action to achieve it at time t ≥ 50
is fly(city1, city2) but if t < 50 then the most promis-
ing one is zoom(city1, city2). When an action is picked,
its preconditions are added to the goal list. Thus, if action
zoom(city1, city2) is picked to support goal at(city2) at
time t, then its precondition at(city1) is added as a new
goal at time t−Dur(zoom(city1, city2). Going backward
and ignoring (relaxing) any interferences between actions),
the relaxed plan extraction routine is guaranteed to finish in
linear time without backtracking. The resulting action set
along with its causal structure can be used as an estimate of
the real set of actions (ie. the plan) that achieves the goals.

As mentioned above, without exogenous events the cost
functions monotonically decrease, and thus to support a goal
g at time tg , we only need to choose the (lowest cost) ac-
tion A supporting g at tg because A gives a lower cost and
allows more time to achieve its preconditions. With non-
monotonic cost functions engendered by the presence of ex-
ogenous events, the lowest cost that we can achieve g at tg

may not be the lowest overall cost. There can be a time point
t < tg at which C(g, t) < C(g, tg) because an exogenous
event reset the cost of g after t. If we choose the lowest cost
action A′ that supports g at t, the cost-function indicates that

it can be better cost-wise choice. However, because we have
less time to achieve the precondition of A′ than A it may
not be the best choice when we take the interference rela-
tion into account and have to order mutual exclusive actions
(due to logical or resource contention constraints) one after
another.

The cost-functions can provide effective guidance in se-
lecting actions that lead to a relaxed plan with least cost.
However, to select actions that are less likely to violate
the temporal constraints (and thus constitute a better re-
laxed plan), we will next consider heuristic techniques from
the scheduling community such as slack-based and texture
based approaches.

Exogenous events as est and lft time constraints
As we discussed in the earlier part of the paper, exogenous
events can be seen as providing the time constraints on ac-
tions in the plan. We showed that in the sample problem
(provided by the IPC4 organizers), all the exogenous events
that are in the form of e = (at 10 (open-station city0)) and
e’ = (at 20 (not (open-station city0))) can be discarded and
replaced by the est/lft constraints on actions that have the
predicates P = (open-station city0) as preconditions. Thus,
for a given action A = refuel(planX,city0), the precondition
P can be discarded and the interactions between e, e′ and A
can be represented as the time constraints est(A) = 10 and
lft(A) = 20. Those types of constraints are common in de-
riving slack-based and texture-based scheduling heuristics.
From that point of view, we can use scheduling techniques
to improve the heuristic estimation framework in planning,
specifically the relaxed-plan extraction routine.

Scheduling Heuristics for Relaxed-plan Extraction
The key to the relaxed plan heuristic approach is to derive a
relaxed plan that is as close to a good quality valid plan as
possible. Extracting such a relaxed-plan from the planning
graph involves (i) finding a good quality action set accord-
ing to the user’s objective function (e.g. if the user wants a
low-cost plan, then the actions selected in the relaxed plan
should be biased towards lower costs); and (ii) minimizing
constraint violations.

With respect to the first criterion, the previous section has
discussed how to change the time-sensitive cost functions
guiding the relaxed-plan extraction in the presence of
exogenous events. For the second criterion, constraint
violations arise from the relaxed negative effects. Actions
in the relaxed plan may contradict each other or compete
for the same resources. Without the est and lft constraints
imposed by the exogenous events, all of the pair-wise
interactions between actions in the relaxed plan can be
solved by ordering two interacting actions one after the
other. However, with the new est and lft constraints,
some orderings may lead to violations of those temporal
constraints. To reduce the number of constraint violations
while extracting the relaxed plan, we can guide the process
via some scheduling heuristic techniques.

Slack-based Heuristic: Let S = {A1, ...Ak} be the set of
actions that have been selected so far in the relaxed-plan ex-
traction process. Because there is no backtracking in this



process, all the actions in S will be included in the final re-
laxed plan. Suppose that g is the next goal that we need to
support at time tg . Assume that the set of actions that can
support it is Sg = {Ag

1
, Ag

2
, ...Ag

m} (which can be sorted
according to their execution cost estimated by the cost func-
tions). We would like to select greedily one action from
Sg such that if included in S, it will minimize the chance
of a temporal constraint violation in the final relaxed plan.
Unlike a standard scheduling problem in which the goal is
to allocate as many tasks as possible in the plan, we have
several choices of actions in Sg and only one of them will
be included in the final relaxed plan, while all of the others
will be discarded. In the following paragraph, we discuss
the selection criterion based on the slack value. To facili-
tate the discussion, for each action A in S or Sg , the ear-
liest starting and latest finishing times are: estA and lftA.
Because the selected action from Sg needs to achieve the
goal g at tg, the latest finishing time of action A ∈ Sg is
lftA ← min{lftA, tg}.

To calculate the slack values, for each action A in Sg, we
first identify a subset SA, of actions in S that must be or-
dered with regard to A. Each action in SA either logically
interferes with A or competes with A for some resource. In
scheduling, feasible orderings between two resource com-
peting actions depends only on whether the slack(i → j)
and slack(j → i) are positive or negative. However, in a
temporal planning problem, feasible orderings between two
interfering actions depend on whether an action deletes a
causal link instituted by the other. Therefore, possible or-
derings in planning problems involving exogenous events
depend on both the causal relationships between actions and
the temporal constraints on action starting times. Thus, per
(Smith & Cheng 1993), the ordering Ai → Aj is possible
if slack(i → j) ≥ 0, while in a temporal planning prob-
lem Ai → Aj is possible if slack(i → j) ≥ 0 and Aj

does not interfere with any causal relation started from Ai

(e.g. Aj deletes p, and there is a causal link Ai →
p Ak).

Using such conditions, we can eliminate violating candidate
actions from Sg .

Now, assume that for each action A in Sg and Ai

in SA ⊂ S, the slack value of slack(A → Ai) and
slack(Ai → A) can be calculated if A → Ai or Ai → A is
possible according to the two constraints listed above, then:

slack(A, Ai) = min{slack(A→ Ai), slack(Ai → A)}
(1)

We have a choice between actions in the Sg set as
to which is the most suitable to support the subgoal g.
Therefore, we define an additional slack value:

slack(A, SA) = minAi∈SA
slack(A, Ai) (2)

If A is the next action to be selected to support g and
thus definitely be included in the final relaxed-plan, then
equation (2) can be used to select the most constrained
action with regard to A and the slack heuristic. However, A
is only one of the candidate actions in Sg supporting g: we
wish to compare all such actions with respect to their slack
values. The goal is to select the least constrained actions

A1

A2

A3

est lft

SA4

SA5

Partial

Relaxed Plan

Candidate Actions
A4

A5

G

Figure 3: Relaxed-plan heuristic example

among all those in Sg. Based on the slack(Ai, SAi
) values

of all actions Ai ∈ Sg, we then can choose support for g
such that it has minimal chance of leading to a temporal
constraint violation later. Thus we can choose an action A
such that:

slack(A, S) = maxAi∈Sslack(Ai, S) (3)

Unlike traditional slack based variable ordering in
scheduling where the interest lies with the most constrained
pair of actions based on the smallest slack value between
them (most constrained variable first heuristic), the process
of extracting a relaxed plan with no backtracking motivates
selecting the action with highest slack slack(A, S) value to
minimize the chance of an eventual temporal constraint vio-
lation. In other words, if we consider g as a variable, Sg as
its domain and actions A ∈ Sg as values, then equation (3)
is used to select the least constrained value. In this sense,
the max equation is used over the top of min equation (2) to
be the value ordering for variable g. From this point of view,
we can even use the overall slack values calculated in equa-
tion (3) as the mean to select most-constrained variables by
selecting g in all the remaining goals that lead to the smallest
slack value calculated by (3).
Example: Figure 3 shows one example that will illustrate
the procedure discussed above. Assume that the current
relaxed-plan contains 3 actions S = {A1, A2, A3} and
there are two actions that can support the goal g in
Sg = {A4, A5}. Among actions in S, SA4

= {A1, A2}
are actions that need orderings with A4 (competing for the
same resource or logical interference), and SA5

= {A2, A3}
are actions interacting with A5. To choose between A4

and A5, we first compute the slack values between A4 and
actions in SA4

= {A1, A2}) and slack values between A5

and actions in SA5
= {A2, A3}) using equation (1) for

individual pair of actions. Then, we will use equation (2)
to compute the slack value slackA4

= slack(A4, SA4
)

and slackA5
= slack(A5, SA5

). Those values indicate the
worse case scenario if we select A4 or A5 to add to the
current relaxed plan. Then, we select the maximum value
among slackA4

and slackA5
to choose the better of the two.

Texture-based Heuristics: Besides the slack-based heuris-
tic another popular heuristic in scheduling such as texture
measurement (Fox et. al. 1989; Beck et. al. 1997) based



heuristic can also be used to guide the action extraction
process. This approach may be particularly effective in a
planning problem involving multi-capacity resources. Such
problems entail reasoning beyond the causal relations and
interference relations associated with pairs of actions.

Individual and aggregated resource demand curves can be
built for all actions in the partial relaxed plan at any stage.
Then, for each action A in the Sg that can potentially sup-
port subgoal g, we can build the individual demand curve
for A and see how the aggregated demand curve changes
when A is included in the action set S of actions already
selected. Based on the aggregated curves for all individual
actions in Sg, we can use variations of texture-based heuris-
tics discussed by Beck et. al. (1997) to find the action that
is least likely to lead to resource contention failure. One ex-
ample could be to select an action in Sg such that if it is
included in S then resulting aggregated demand curve has
the smallest maximum height increase. The hope is that this
will minimize the chances of eventually exceeding resource
capacity. We will use the same example shown in Figure 3,
to illustrate briefly how it can be done.
Example: Adopting the same assumptions , A4 and A5 are
two candidate actions that we need to choose one from to
support a goal g; S = {A1, A2, A3} are actions already se-
lected in the relaxed-plan. SA4

= {A1, A2} is the set of
actions that use a resource R4 which is also used by A4,
and similarly, SA5

= {A2, A3} contain actions sharing re-
source R5 with A5. Note that unlike the slack-based heuris-
tic where we only consider one set of actions that have to be
ordered with regard to a candidate action, there can be mul-
tiple sets of actions for each candidate action in the texture-
measurement approach. For example, if A5 uses both re-
sources R5 and R4 then we need to consider both SA4

and
SA5

when we calculate the effect of A5 on the resource de-
mand curves of the relaxed plan.

Now assume that A4 only uses resource R4 and A5 only
uses R5. We first build the aggregated demand curves for
R4 using actions in S4 (within their est/lft constraints) and
for R5 using actions in S5. After building the individual
demand curve of R4 for A4 and of R5 for A5, we will in-
corporate them into the overall aggregated demand curves
of R4 (i.e. the aggregated curve of R4 for {A1, A2, A4})
and R5 (aggregated demand curve for {A2, A3, A5}). We
then can decide which of the actions A4 or A5 has the lesser
effect (increases the maximum height of the demand curve
the least) and select that one to support g. If a given candi-
date action A uses multiple resources, then we can take the
maximum effect height increment for those resources in the
presence of A as its texture-effect measurement. We then
take action with the minimum value among all the candidate
actions as the next one to be included in the relaxed plan.

Conclusion and Future Work
Exogenous events are a natural component of real world
planning problems and have been introduced into the stan-
dard planning language PDDL2.2 for the ICAPS planning
competition this year. In this paper, we have examined ex-
ogenous events from both planning and scheduling points of
view. From the planning side, exogenous events appear as
instantaneous actions that change the state description of the

world and thus interact with other actions in the plan. From
the scheduling point of view, we can consider an important
class of exogenous events as imposing earliest starting time
and latest finishing time to other actions in the plan. Such
constraints are seldom considered in the planning field but
are quite common from the scheduling perspective.

Looking at the problem from both planning and schedul-
ing sides, we discussed approaches for combining heuristic
techniques from both fields to solve temporal planning prob-
lems involving exogenous events, especially in cases where
actions also compete for resources.

Our future work involves first, identifying classes of prob-
lems most suitable for the techniques discussed in this paper,
and then implementing the approaches and testing on a set
of planning problems involving exogenous events.
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