
Universal Classical Planner: An algorithm for unifying
State-space and Plan-space planning

Subbarao Kambhampati� & Biplav Srivastava
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

email: frao,biplavg@asu.edu
WWW: http://rakaposhi.eas.asu.edu:8001/yochan.html

Appears in Current Trends in AI Planning: EWSP '95, IOS Press

Abstract

We present a plan representation and a generalized algorithm template, called UCP,
for unifying the classical plan-space and state-space planning approaches within a single
framework. UCP models planning as a process of refining a partial plan. The plan-space
and state-space planning approaches are cast as complementary refinement strategies
operating on the same partial plan representation. UCP has the freedom to arbitrarily
and opportunistically interleave plan-space and state-space refinements within a single
planning episode. This allows it reap the benefits of both state-space and plan-space
planning approaches. We discuss the coverage, completeness and systematicity of
UCP. We also present some preliminary empirical results that demonstrate the utility of
combining state-space and plan-space approaches.

1 Introduction
Domain independent classical planning techniques fall into two broad categories-- state
space planners which search in the space of states, and plan space planners which search
in the space of plans. Although most current research in planning is rooted in plan-space
planning [1, 15, 10], it is believed that the ‘‘state’’ information provided by the state-space
planners could be advantageous in some situations either for improving planning performance
(c.f. [18]), or for combining general purpose planners with specialists [13]. Unfortunately,
however, there has not been a systematic analysis of when state-space planning could be
more advantageous over plan-space planning. This is partly due to the fact that plan-space
and state-space planners have been seen as ‘‘competing’’ (rather than ‘‘complementary’’)
approaches involving search in fundamentally different search spaces [1, 18]. A more fruitful
way of understanding the relative tradeoffs between plan-space and state-space planners
would be to develop a unifying planning framework that encompasses them both.

�Authors names are listed in alphabetical order. This research is supported in part by NSF research initiation
award (RIA) IRI-9210997, NSF young investigator award (NYI) IRI-9457634 and ARPA/Rome Laboratory
planning initiative grant F30602-93-C-0039. We thank Laurie Ihrig and Craig Knoblock for helpful comments.

0

Previously, we have shown that viewing planning as a process of refinement search
provides a powerful framework for unifying the large variety of plan-space planning
approaches [10, 8, 9]. In this paper, we show that the same framework can be extended to
unify state-space planning and plan-space planning approaches. In particular, we present UCP,
a generalized algorithm for classical planning. UCP covers classical planning approaches
through three complementary refinement strategies, corresponding respectively to the plan-
space, forward state-space and backward state-space planning approaches. If it chooses to
always use plan-space refinements, it becomes a pure plan-space planner, and if it chooses
to always use state-space refinements, it becomes a pure state-space planner. Since all
three refinement strategies operate on the same general partial plan representation, UCP also
facilitates opportunistic interleaving of the plan-space and state-space refinements within
a single planning episode. Such interleaving could produce a variety of hybrid planners
(including the traditional means-ends analysis planners such as STRIPS and PRODIGY [4]),
and can thus help us reap the benefits of both state-space and plan-space approaches in a
principled manner. The traditional question ‘‘when should a plan-space planner be preferred
over state space planners?’’ [1, 18] can now be posed in a more sophisticated form: ‘‘when
should a plan-space refinement be preferred over a state-space refinement (or vice versa)
within a single planning episode?.’’

The rest of this paper is organized as follows. In Section 2, we review the preliminaries
of refinement planning. Section 3 describes the representation and semantics for partial
plans used in UCP. In Section 4, we describe the UCP algorithm and illustrate its operation
through an example. Section 5 discusses the coverage, completeness and systematicity of the
UCP algorithm. Section 6 describes several heuristic control strategies for UCP. Section 7
empirically demonstrates the utility of opportunistic interleaving of refinements in UCP.
Section 8 discusses the related work and Section 9 presents the conclusions.

2 Planning as Refinement Search: Overview
A planning problem is a 3-tuple hI;G;Ai, where I is the description of the initial state, G is
the (partial) description of the goal state, and A is the set of actions (also called ‘‘operators’’).
An action sequence (also referred to as ground operator sequence) S is said to be a solution
for a planning problem, if S can be executed from the initial state of the planning problem,
and the resulting state of the world satisfies all the goals of the planning problem.

Refinement planners [10, 8, 9] attempt to solve a planning problem by navigating the
space of sets of potential solutions (ground operator sequences). The potential solution sets
are represented and manipulated in the form of ‘‘partial plans.’’1 Syntactically, a partial plan
P can be seen as a set of constraints (see below). Semantically, a partial plan is a shorthand
notation for the set of ground operator sequences that are consistent with its constraints. The
latter set is called the candidate set of the partial plan, and denoted by hhPii.

Refinement planning consists of starting with a ‘‘null plan’’ (denoted by P;), whose
candidate set corresponds to all possible ground operator sequences, and successively refining
the plan (by adding constraints, and thus splitting their candidate sets) until a solution is
reached. Semantically, a refinement operator R maps a partial plan P to a set of partial
plans fP 0

ig such that the candidate sets of each of the children plans are proper subsets of the
candidate set ofP (i.e., 8P 0

i
hhP 0

iii � hhPii). Refinement planning involves repeatedly applying
refinement operators to a partial plan until a solution can be picked up from the candidate set

1For a more formal development of the refinement search semantics of partial plans, see [8, 10]

1

of the resulting plan.
A refinement operator R is said to be complete if every solution belonging to the

candidate set of P belongs to the candidate set of at least one of the children plans. R
is said to be systematic if the candidate sets of children plans are non-overlapping (i.e.
8P 0

i
;P 0

j
;i6=j hhP

0
iii \ hhP

0
jii = ;). It is easy to see that as long as a planner uses only refinement

operators that are complete, it never has to backtrack over the application of a refinement
operator. Similarly, if all the refinement operators are systematic, the search space of the
planner will be systematic in that no ground operator sequence will belong to the candidate
sets of plans in more than one branch of the search tree [12].

In what follows, we will show that state-space planning and plan-space planning
approaches can essentially be modeled as two different varieties of refinement operators
operating on the same partial plan representation.

3 Representation of partial plans in UCP
In this section, we will develop the syntactic and semantic representation of partial plans that
is adequate to support both state-space and plan-space refinements.

A partial plan is a 5-tuple hT;O;B;ST ;Li where: T is the set of steps in the plan; T
contains two distinguished step names t0 and t1. ST is a symbol table, which maps step
names to actions. The special step t0 is always mapped to the dummy operator start, and
similarly t1 is always mapped to finish. The effects of start and the preconditions of
finish correspond, respectively, to the initial state and the desired goals of the planning
problem. O is a partial ordering relation over T . B is a set of codesignation (binding) and non-
codesignation (prohibited binding) constraints on the variables appearing in the preconditions
and post-conditions of the operators. A ground linearization ofP is a permutation on its steps
that is consistent with O, with all variables instantiated to values that are consistent with B. L
is a set of auxiliary constraints that restrict the allowable orderings and bindings among the
steps. Three important types of auxiliary constraints are:
Interval Preservation Constraints: An interval preservation constraint (IPC) is specified
as a 3-tuple: ht; p; t0i. Syntactically, it demands that the condition p be preserved between t

and t0 in every ground linearization of the plan. Semantically, it constrains the candidates of
the partial plan such that in each of them, p is preserved between the operators corresponding
to steps t and t0.
Point Truth Constraints: A point truth constraint (PTC) is specified as a 2-tuple: hp; ti.
Syntactically, it demands that the condition p be necessarily true [2] in the situation before
the step t. Semantically, it constrains all solutions of the partial plan to have p in the state in
which the operator corresponding to t is executed.
Contiguity Constraints: A contiguity constraint is specified as a relation between two steps:
ti � tj . Syntactically, it demands that no step intervene between ti and tj in any ground
linearization of P . Semantically, it constrains all candidates of the partial plan to have no
operators intervening between the operators corresponding to ti and tj . From the definition, if
ti is immediately before tj , it also means that ti � tj . Further, since ti and tj are contiguous,
there cannot be any step t0 such that ti � t0 � tj , or ti � t0 or t0 � tj .

Readers who are familiar with the refinement search view of partial order planning
developed in [10, 8, 9] may note that the only extension to the plan representation is the
addition of the new type of auxiliary constraints called contiguity constraints. We will see
that this extension is enough to handle state space refinements. The contiguity constraints are
first described by Ginsberg in [5].

2

hr@t1i

hv@t1i
hw@t1i

hu@t1it0 t1:o1

t2:o2 t3:o3

t4:o4

t5:o5 t1

(p)

(q) (s)

+s

+r, +p

+r

:r , +u

ht3, r , t1i

ht1,q, t2i

t0*t1 t5*t1

+w, +v

(r, u , v , w)

: r, +q

Figure 1: Example Partial Plan PE. The effects of the steps are shown above the steps, while
the preconditions are shown below the steps in parentheses. The ordering constraints between
steps are shown by arrows. The interval preservation constraints are shown by arcs, while
the contiguity constraints are shown by thick dotted lines. The PTCs are used to specify the
goals of the plan

Safe Ground Linearizations: A ground linearization is said to be a safe ground linearization
if it syntactically satisfies all the contiguity constraints, and the interval preservation
constraints [10]. The semantic notion of the candidate set of the partial plan is tightly
related to a syntactic notion of safe ground linearization [10, 8]. Specifically, safe ground
linearizations correspond to minimal length candidates of the partial plan [10]. If a partial
plan has no safe ground linearizations, it has an empty candidate set.
Example: Figure 1 illustrates these definitions through an example plan PE , which contains
the steps ft0; t1; t2; t3; t4; t5; t1g, the symbol table ft0 ! start; t1 ! end; t1 ! o1; t2 !
o2; t3 ! o3; t4 ! o4; t5 ! o5g, the ordering constraints ft1 � t2; t2 � t3; t3 � t5; t1 �
t4; t1 � t5; t4 � t5g, the contiguity constraints ft0 � t1; t5 � tGg, the interval preservation con-
straintsfht1; q; t2i; ht3; r; t1ig, and the point truth constraintsfhr; t1i; hu; t1i; hv; t1i; hw; t1ig.
The ground operator sequence o1o2o4o3o2o2o5 is a candidate of the plan PE , while the ground
operator sequences o3o1o2o3o3o5 and o1o2o3o4o5 are not candidates ofPE (the former violates
the contiguity constraint t0 � t1, and the latter violates the interval preservation constraint
ht3; r; t1i). t0t1t2t4t3t5t1 is a safe ground linearization, while t0t1t2t3t4t5t1 is not a safe
ground linearization (since the interval preservation constraint ht3; r; t1i is not satisfied
by the linearization). The safe ground linearization corresponds to the minimal candidate
(ground operator sequence) o1o2o4o3o5.

We will now define some derived attributes of a partial plan, which will be useful in
describing the UCP algorithm. Given a plan P , a step tH is said to be the head step of the
plan if there exists a sequence of steps t1 � � � tn such that t0 � t1 � t2 � � � tn � tH and there is no
step t0 such that tH � t0. The sequence of steps t0; t1; � � � tn; tH is called the header of the plan.
The state resulting from the application of the operators corresponding to the header steps, in
sequence, to the initial state, is called the head state. The head fringe of a plan P is the set
of all steps t that can possibly come immediately after the tH in some ground linearization of
the plan (i.e., all t such that tH � t and there is no step t0 such that 2(tH � t0 � t)).

Similarly, a step tT of a plan P is said to be the tail step of the plan if there exists a
sequence of steps t1 � � � tn such that tT � t1 � t2 � � � tn � t1 and there is no step t0 such that
t0 � tT . The sequence of steps tT ; t1; � � � tn; t1 is called the trailer of the plan. The state
resulting from the backward application of the operators corresponding to the trailer steps, in
sequence, to the goal state, is called the tail state. The tail fringe of a plan P is the set of all
steps t that can possibly come immediately before the tail step tT in some ground linearization
of the plan (i.e., all t such that t � tT and there is no step t0 such that 2(t � t0 � tT)).
Example: In the example plan PE shown in Figure 1, t1 is the head step and t5 is the tail

3

Algorithm UCP(P) /*Returns refinements of P */

Parameters: sol: the routine for picking solution candidates from the candidate set of the partial plan
pick-refinement: a strategy for picking refinements

0. Termination Check: If sol(P) returns a ground operator sequence that solves the problem, return it
and terminate.

1. Refinement: Using pick-refinement strategy, do any one of (not a backtrack point):

� Refine-plan-forward-state-space(P)

� Refine-plan-backward-state-space(P)

� Refine-plan-plan-space(P) fCorresponds to a class of refinements g

2. Consistency Check: (Optional) If the partial plan is inconsistent (i.e., has no safe ground linearizations),
or non-minimal (e.g. has state loops) prune it.

3. Recursive Invocation: Call UCP on the the refined partial plan (if it is not pruned).

Figure 2: UCP: A generalized algorithm template for classical planning

Algorithm Refine-plan-Forward-State-space (P) /*Returns refinements of P */

1.1 Operator Selection: Nondeterministically select one of the following (choice point):

1. Nondeterministically select a step told from head-fringe of P, such that all preconditions of the
operator ST (told) are satisfied in head-state of P. (If told is the tail step, then select it only if
the tail state is a subset of head-state.) or

2. Nondeterministically select an operator o from the operator library, such that all preconditions
of the operator o are satisfied in head-state of the plan. Make a step name tnew, and add the
mapping [tnew ! o] to ST .

1.2 Operator Application: Let tsel be the step selected above. Add the auxiliary constraint tH � tsel. (This
implicitly updates the head step to be tsel, and head state to be the result of applying ST (tsel) to head
state).

Figure 3: Forward State Space Refinement

step. t0t1 is the header and t5t1 is the trailer. ft2; t4g is the head fringe, and ft3; t4g is the tail
fringe. Head state is p ^ q while the tail state is r ^ u.

4 The UCP planning algorithm
The UCP algorithm uses the plan representation developed in the previous section to combine
plan-space and state-space approaches under one framework. Figure 2 shows the top
level control strategy of UCP. In step 1, UCP chooses among three different refinement
strategies. corresponding, respectively, to the forward state-space planning, backward state-
space planning and plan-space planning approaches. We shall refer to them as FSS, BSS
and PS refinements respectively. The refinements themselves are described in Figures 3, 4
and 5. UCP accepts an arbitrary control strategy pick-refinement as a parameter. In
each iteration, this control strategy is used to select one of the three refinement strategies
(see below). The selected refinement strategy is applied to the partial plan to generate the
refinements. Since all three refinements are complete (see Section 5), UCP never has to
backtrack on the choice of the refinement strategy.

Informally, the FSS refinement involves advancing the header state by applying an
operator to it (which involves putting a contiguity constraint between the current head step
and the new step corresponding to the operator that we want to apply). A step is considered

4

Algorithm Refine-plan-backward-state-space (P) /*Returns refinements of P */

1.1 Operator Selection: Nondeterministically select one of the following (choice point):

1. Nondeterministically select a step told from tail-fringe of the plan, such that (a) none of the
effects of the operator ST (told) are negating the facts in the tail state and (b) at least one effect
of the operator ST (told) is present in the tail state. (If told is the head step, then select it only if
the tail state is a subset of head-state.) or

2. Nondeterministically select an operator o from the operator library, such that (a) none of the
effects of the operator o are negating the facts in the tail state and (b) at least one effect of the
operator ST (told) is present in the tail state of P. Make a step name tnew, and add the mapping
[tnew ! o] to ST .

1.2 Operator Application: Let tsel be the step selected above. Add the auxiliary constraint tsel � t1. (This
implicitly updates the tail step and tail state).

Figure 4: Backward State Space Refinement

Algorithm Refine-plan-plan-space (P) /*Returns refinements of P */
Parameters: pick-open: the routine for picking open conditions.

pre-order: the routine which adds orderings to the plan to make conflict resolution tractable.
conflict-resolve: the routine which resolves conflicts with auxiliary constraints.

1.1 Goal Selection: Using the pick-open function, pick an open prerequisite hC; ti (where C is a
precondition of step t) from P to work on. Not a backtrack point.

1.2. Goal Establishment: Non-deterministically select a new or existing establisher step t0 for hC; ti.
Introduce enough constraints into the plan such that (i) t0 will have an effect C, and (ii) C will persist
until t. Backtrack point; all establishers need to be considered.

1.3. Bookkeeping: (Optional) Add interval preservation constraints noting the establishment decisions, to
ensure that these decisions are not violated by latter refinements. This in turn reduces the redundancy
in the search space.

2. Tractability Refinements: (Optional)These refinements help in making the plan handling and consistency
check tractable. Use either one or both:

2.a. Pre-Ordering: Use some given static ordering mechanism, pre-order, to impose additional
orderings between steps of the partial plans generated by the establishment refinement. Backtrack
point; all interaction orderings need to be considered.

2.b. Conflict Resolution: Add orderings and bindings to resolve conflicts between the steps of the
plan, and the plan’s auxiliary constraints. Backtrack point; all possible conflict resolution
constraints need to considered.

Figure 5: Plan Space Refinement

to be applicable if all its preconditions are satisfied in the head state of the partial plan.
Completeness is ensured by considering both the steps in the head fringe of the plan, and the
operators in the operator library. One exception arises in the case when the tail step of the
plan is one of the steps on the head fringe. In this case, the tail step is applied to head state
only when all the conditions in the tail state (rather than the preconditions of the tail step) are
present in the head state. This is because, once the tail step is introduced into the header, no
further steps can be added to the partial plan.

BSS refinement (Figure 4) is very similar to the FSS refinement, except that it regresses
the tail state by backward-applying new operators to the tail state. An operator is considered
to be backward-applicable to a state if it does not delete any conditions in the state, and adds
at least one condition in the state (this latter part makes it goal-directed). The state resulting

5

from the backward application of the operator O contains all the conditions of the previous
state, minus the conditions added by O, plus the preconditions of O.

Finally, the PS refinement, given in Figure 5, is more involved than the two state space
refinements. As we showed in [8, 9, 10], a general PS refinement involves an establishment
refinement phase, and an optional tractability refinement phase. In the establishment phase,
a precondition p of a step s is selected, and a sufficient number of step, ordering and binding
constraints are added to ensure that p will be necessarily true at s. The choice of which
precondition to achieve does not have to be backtracked over, but all possible ways of
establishing the selected precondition must be considered. Thus PS refinement corresponds
to a family of complete refinements, each distinguished by the precondition that is considered
for establishment. An optional bookkeeping step can add auxiliary (interval preservation)
constraints to protect the establishment decisions. In the presence of interval preservation
constraints, checking whether the plan is consistent (i.e., contains ground linearizations that
are safe with respect to all the interval preservation constraints) is in general intractable. To
make this tractable, the optional tractability refinement phase introduces additional orderings
between the steps of the plan. Pre-ordering and conflict resolution are two common strategies
used in this regard. For a more elaborate discussion of the details of the PS refinement, the
reader is urged to consult [10, 9, 8].
Termination Check: At each refinement cycle, the UCP algorithm checks to see if the
search can be terminated successfully. As we mentioned earlier, termination can occur on a
partial plan whenever we can pick a solution from the candidate set of the partial plan. Since
enumerating the full candidate set is infeasible, most planners restrict their attention to the
minimal candidates corresponding to the safe ground linearizations of the partial plan, and
check if any of them are solutions for the planning problem. Notice that this termination check
is enough to successfully terminate UCP whether it uses only state space refinements, only
plan-space refinements, or a combination of both. There may of course be more specialized
realizations of the termination check that are more efficient for specific instantiations of
UCP. For example, pure plan space planners using causal links can use a causal link based
termination check used in SNLP [12, 10]. Similarly, if we are using only the FSS and BSS
refinements, then the plan can terminate as soon as the head step is introduced into the trailer,
or vice versa.
Consistency Check: At each refinement cycle, UCP uses an optional consistency check
to prune out unpromising refinements. One important type of unpromising refinements are
those partial plans which have no safe ground linearizations (and thus have empty candidate
sets). In addition, in the presence of FSS and BSS refinements, we can also check for and
prune plans containing state looping. Forward state looping occurs when there are two steps
t1 and t2 in the header of the plan such that t1 precedes t2, and the state after t1 contains all
the conditions that are present in the state after t2. Similarly, backward sate looping occurs
when there are two steps t0 and t00 in the trailer of the plan such that t0 precedes t00 and the
state preceding t0 is contains all the conditions that are present in the state preceding t00. In
either case, it can be shown that the candidate sets of the corresponding partial plans will not
contain any minimal solutions2, and the partial plans can thus be pruned.

4.1 An example planning trace of UCP

Figure 6 illustrates UCP’s planning process on a simple example. The problem has the initial
state fi0g and the goal state fG0g. The operators in the domain are described in the table

2A solution is minimal, if no ground operator sequence derived by deleting some elements from it is also a
solution.

6

[P1] t0 � t1:Oi � t1

[P;] t0 � t1

[P2] t0�t1:Oq �t1

[P3]t0�t1:Oi � t2:O0 � t1

[P4]t0�t1:Oi �t3:Op1 � t2:O0 �t1 [P5] t0�t1:Oi �t3 :Op2 � t2:O0 �t1

[P6] t0�t1:o1�
�
t3:Op1
t4:Oq

�
� t2:O0�t1

PS hq@t2i

PS hp@t2i

FSS

BSS

Oi i1i0 -
Op1 i1 p -
Op2 i2 p -

Oq q --

add delPrec

O0 p,q G0 -

Figure 6: An example illustrating the refinement process of UCP. The domain description is
provided in the table on the right. The problem is specified with the initial state fi0g and the
goal state fG0g. The partial plans are shown in terms of their steps, ordering and contiguity
constraints.

on the right in the figure. The search starts with the null plan P; in which t0 precedes t1.
Suppose the pick-refinement function suggests FSS refinement in the first iteration
(such a suggestion may be based on the expected cost of the refinement; see below). There are
only two library operators that are applicable to the header state (the tail fringe consists only
of the tail step t1 which is not applicable). Two refinements, P1 and P2, each corresponding
to the application of the respective operator to the header of P;, are produced. Next, suppose
UCP picks P1 from the search queue. At this point, a BSS refinement strategy is chosen.
This produces a single refinement P3, involving the application of the library operator O0

to the trailer. Next, P3 is chosen from the search queue, and the PS refinement is selected,
with the precondition hp; t2i to be established. (To make discussion simple, we assume a PS
refinement that does not impose any optional bookkeeping constraints.) Two refinements,
P4 and P5 result. UCP chooses P4 from the search queue and refines it further with another
PS refinement with hq; t2i as the precondition to be established. This results in a single
refinement, P6 which satisfies the termination test (it has a single safe ground linearization
which is a solution for the problem). The search ends successfully when P6 is picked up from
the search queue in the next iteration (note that in P6, the steps t3 and t4 are unordered with
respect to each other).

5 Coverage, Completeness and Systematicity of UCP
Coverage: It is easy to see that by choosing thepick-refinement function appropriately,
we can model the pure state space planners, as well as the pure plan-space planners as
instantiations of UCP. In particular, in [10, 8, 9], we showed that the plan space refinement
template, given in Figure 5 covers the complete spectrum of plan space planners, including
UA, TO [15], SNLP [12], and TWEAK [2]. What is more interesting, as shown in Section 4.1,
the UCP algorithm also allows hybrid planners that can opportunistically apply plan-space as
well as state-space refinements within a single planning episode. For example, the classical
means-ends analysis planners such as STRIPS [3], or their descendents such as PRODIGY
[4] can be modeled by a pick-refinement such as the following: If there is a step in

7

the head-fringe of the plan that is applicable to the head-state, pick forward state space
refinement. Else, pick plan-space refinement. Finally, it is also possible to use a more
ambitious pick-refinement strategy: pick the refinement that has the least expected
cost (see below) [6].

Completeness: It is fairly straightforward to show that the three refinement strategies
FSS, BSS are individually complete in that they do not lose any potential solutions. The
completeness of PS refinement follows from the results of Pednault [16, 10]. Since all three
refinements are individually complete, any instantiation of UCP that uses these refinements
will also be complete (see Section 2).3

Systematicity: It is possible to prove that any instantiation of UCP that uses a systematic
PS refinement is systematic, regardless of the way it chooses to interleave the FSS, BSS and
PS refinements. Recall that as pointed out by McAllester (see [12, 10]), PS refinement is
systematic as long as the book-keeping step uses contributor protections (that is, whenever
a precondition p of a step t is established through the effects of another step t0, two IPCs
ht0; p; ti and ht0;:p; ti are added to the list of auxiliary constraints of the plan [10]). Since
the systematicity claim may not be obvious at first glance, we will provide a proof sketch in
Appendix A.

6 Controlling UCP
In this section, we will consider the types of control strategies (heuristics, pruning techniques,
selection strategies etc.) that are appropriate for UCP. In general, UCP requires heuristic
guidance in selecting a partial plan to be refined next, and in picking the refinement strategy
to apply to the selected partial plan. Additionally, if a plan-space refinement strategy is
chosen, UCP needs guidance regarding which goal to select for establishment. The first is a
backtrackable decision, while the latter two don’t need to be backtracked.

For plan selection, in addition to the heuristics that are applicable to pure plan space
and state space planners, UCP can also use hybrid heuristics tailored to its partial plan
representation. For example, its plan selection heuristics could prefer FSS refinements that
correspond to applying head fringe operators (rather than new operators from library) to the
header; or evaluate the promise of the plan in terms of the set difference between the tail state
and the head state.

The selection of refinement strategy can be done in many ways, and the tradeoffs offered
by the various strategies is still an open question. In our preliminary studies (reported in
the next section), we experimented with three hybrid strategies. The first, called UCP-MEA
prefers FSS whenever a head fringe step is applicable to the head state, and PS otherwise.
UCP-MEA has a generalized means-ends analysis flavor and thus simulates planners such as
STRIPS and PRODIGY. The second, called UCP-MBA is similar to UCP-MEA, with the
exception that before picking PS, it checks to see if a step on tail-fringe is applicable to the
tail state, and if so, picks BSS. The third one, called UCP-LCFR, estimates the number of
refinements generated by each of the three refinement strategies and selects the one that has
the least number of refinements. This strategy is inspired by the least cost flaw refinement
strategy, that was recently suggested by Joslin and Pollack [6].

If a PS refinement is selected, UCP still faces the decision of which goal to achieve (each
choice corresponds to a complete PS refinement with respect to that goal). In addition to the

3This is true as long as UCP uses a termination criterion that effectively checks to see if a safe ground
linearization of the plan corresponds to the solution (see [10]).

8

goal selection strategies used by pure plan space planners, UCP could also use the head state
information. For example, it might prefer those goals that are not already true in the head
state, or give preference to the preconditions of operators on the head fringe that have least
number of unsatisfied preconditions.

7 Preliminary empirical studies on the utility of interleaving
refinements

We have implemented the UCP algorithm on top of the Refine-Plan implementation described
in [10]. Since UCP provides a framework to interleave the three different refinements within
a single problem episode, we conducted several preliminary experiments to evaluate the
advantages of such interleaving.
Experimental Setup: We considered six different instantiations of UCP. The first three,
UCP-PS, UCP-FSS and UCP-BSS, always pick the same type of refinement, and correspond
respectively to plan-space, forward state-space and backward state-space planners. The other
three, UCP-MEA, UCP-MBA and UCP-LCFR correspond to the three hybrid refinement
strategies described in the previous section.

Although the plan space refinement can have considerable variation [10] based on the
protection strategies and goal selection strategies used, in our experiments, we kept it
constant. We used a simple LIFO strategy for selecting the open-condition to be established,
contributor protections for bookkeeping, and conflict resolution for tractability refinements.
This is equivalent to the refinement strategy used by SNLP [12, 10]. (In [10] we discuss the
performance tradeoffs offered by the other ways of instantiating the plan-space refinement).

All the experiments used best-first search, with the ranking function defined as the sum of
number of steps, open conditions, unsafe links, and the number of conditions of tail state that
are not present in the head state. Additionally, partial plans that are inconsistent, or contain
state looping (see Section 4) are pruned. Each planner was given a cpu time limit of 120
seconds for solving any problem. The time limit was increased to 300 seconds in the case of
UCP-LCFR as our simple implementation estimates the branching factors of each refinement
by actually simulating the refinement (other more efficient approximate estimation methods
are of course possible; see [6]).
Domains and Results: We conducted experiments both in blocks world and in a variety
of artificial domains designed by various researchers to showcase the advantages of one
planning approach over another. Our intent was to show that appropriate hybrid instantiations
of UCP may do well in all such domains.

The first domain, called link-chain domain, was designed by Veloso & Blythe [18]
to showcase the advantages of state space means-ends analysis planners over plan-space
planners. This domain contains ten actions A1 to A10. Each action Ai requires the
preconditions G1; G2; � � �Gi�1, adds Gi, and G1; G2; � � �Gi�2 and deletes Gi�1. The leftmost
plot in Figure 7 shows the results of our experiments in this domain. We note that UCP-
MBA and UCP-LCFR outperform all the other planners including UCP-MEA. (the plots of
UCP-MBA, UCP-LCFR and UCP-FSS are all together as their performance was very close).
The first plot in Figure 8 shows the fraction of times the three individual refinements were
employed by UCP-LCFR during planning. We note that as the problem size increases the
relative frequency of FSS increases with respect to BSS. This correlates well with the fact
that UCP-LCFR tracks the performance of UCP-FSS in terms of number of partial plans
refined, while UCP-BSS worsens its performance as the problem size increases.

The second domain, called �2D
mS1, is one of the domains designed by Barrett & Weld

9

1.0 3.0 5.0 7.0 9.0
goals

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

Link Chain domain
of Veloso & Blythe

UCP-PS
UCP-FSS
UCP-BSS
UCP-MEA
UCP-LCFR
UCP-MBA

1.0 3.0 5.0 7.0 9.0
goals

0.0

1000.0

2000.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

Theta2-DmS1 Domain
of Barrett & Weld

UCP-PS
UCP-FSS
UCP-BSS
UCP-MEA
UCP-LCFR
UCP-MBA

1.0 3.0 5.0 7.0
goals

0.0

1000.0

2000.0

3000.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

R-Theta2-DmS1 Domain

UCP-PS
UCP-FSS
UCP-BSS
UCP-MEA
UCP-LCFR
UCP-MBA

Figure 7: Plots illustrating the performance of various instantiations of UCP (measured in
terms of the number of refinements made). Each point in the plot corresponds to the average
over ten problems of a given number of goals. Missing points in a plot signify that the planner
could not solve some of the ten problems within the allotted cpu time.

1.0 3.0 5.0 7.0 9.0
goals

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o
 o

f
re

fi
n

em
en

t

Link Chain domain
LCFR ratio

FSS
BSS
PS

1.0 3.0 5.0 7.0 9.0
goals

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o
 o

f
re

fi
n

em
en

ts

Theta2-Dms1 Domain
LCFR ratio

FSS
BSS
PS

1.0 3.0 5.0 7.0
goals

0.0

0.2

0.4

0.6

0.8

ra
ti

o
 o

f
re

fi
n

em
en

t

R-Theta2-DmS1 Domain
LCFR ratio

FSS
BSS
PS

Figure 8: Plots showing the fractions of various refinements used by UCP-LCFR

[1] to demonstrate the advantages of plan space planning over state space planning. In this
domain, each top level goal Gi can be achieved by either of two actions A1

i or A2
i . All actions

of type A1
i require P� while all actions of type A2

1 require P� as a precondition. The initial
state contains either P� or P� (but not both). The results of our experiments in this domain
are shown in the second plot in Figure 7. Once again, we note that a hybrid instance of UCP,
viz., UCP-LCFR, outperforms UCP-PSS. An analysis of the pattern of refinements used by
UCP-LCFR, shown in the second plot in Figure 8 reveals that it outperforms UCP-PSS by
opportunistically using BSS and FSS refinements in a small percentage of iterations. In other
words, even a domain that motivates pure plan-space planning over pure state space planning
[1], can benefit from a proper mix of the two types refinements!

Finally, Figure 9 compares the performance of pure and hybrid instantiations of UCP
in the standard blocks world domain (which, unlike the three artificial domains, is a non-
propositional domain). The problems were generated using the random blocks world problem
generator described in [14]. Each data point represents the average over 10 random problems

10

2.0 4.0 6.0
blocks

0.0

20.0

40.0

60.0

80.0

100.0

120.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

Blocks World domain
random problems

UCP-PS
UCP-FSS
UCP-BSS
UCP-LCFR

2.0 4.0 6.0 8.0 10.0
blocks

0.0

0.2

0.4

0.6

0.8

ra
ti

o
 o

f
re

fi
n

em
en

ts

Blocks World domain
LCFR ratio (random problems)

FSS
BSS
PS

Figure 9: Performance of the instantiations of UCP in blocks world

containing a specified number of blocks. The data points in the graph correspond to situations
where all 10 random problems were solved by the specific instantiation of UCP. UCP-BSS
failed to achieve 100% solvability anywhere in this problem population, while UCP-FSS
does quite well. Moreover, the performance of UCP-LCFR is close to that of UCP-FSS. The
second plot shows the distribution of individual refinements used by UCP-LCFR. We note
that UCP-LCFR achieves its performance by judiciously combining a small fraction of FSS
and BSS refinements with a majority of PS refinements.
Discussion: Our results show that hybrid instances of UCP, that opportunistically interleave
state space and plan space refinements, can do better than either the pure plan space or
the pure state space refinements. They thus demonstrate the potential benefits of finding
appropriate strategies for interleaving different refinements. Although our hybrid control
strategies showed some promise, we believe that the question of right control strategy is
still an open one. In particular, even though UCP-LCFR did well in both link-chain and
�2D

mS1 domains, we found that it is by no means infallible. Our experiments with a variant
of �2D

mS1, called R�2D
mS1, results of which are shown in the third plots in Figures 7 and

8 demonstrate that UCP-LCFR can be mislead under some circumstances4 as the branching
factor of a refinement is not a fool-proof indicator of its heuristic utility. We are currently
exploring other features that are may be more indicative of the cost of a refinement.

8 Related Work
Earlier work on unifying classical planning approaches includes Rosenchien’s work [17] on
bigression planner, which combines a forward state space search and a backward state space
search; and our own more recent work [10, 8, 9] unifying a variety of plan-space planning
frameworks into one algorithm template. The plan-space refinement in Figure 5 is directly
taken from this latter work. To our knowledge, this paper is the first to rationally place the
plan-space and state-space refinements in one unifying framework.

Fink and Veloso [4] describe the PRODIGY 4.0 planner which does an interesting
combination of forward state space refinement combined with means-ends analysis. There
are several differences between the PRODIGY 4.0 algorithm and the approach presented

4In this domain, the initial state contains either Q� or Q�. There are two sets of five actions each of which,
when done in sequence will convert Q� into P� and Q� into P�. Finally, there are a set of dummy actions
which add P� or P� but their preconditions are never satisfied.

11

here. To begin with, PRODIGY 4.0 does not employ a complete plan-space refinement. It
has to backtrack on the decision to apply an operator to the header, and it will terminate only
when the header state reaches the goal state. The tail part of the PRODIGY 4.0’s plan does
not have any well-defined semantics and does not constrain the solutions represented by the
partial plan. For example, the fact that a set of steps occurs in the tail of a partial plan does not
mean that any eventual solution under that partial plan will contain those steps. In contrast,
steps that are part of the UCP partial plan must be present in any candidate of that partial
plan. Further, based on the set of refinements it selects, UCP can act as a pure plan-space,
pure state-space or a hybrid planner.

9 Conclusion and Future Work
In this paper, we presented a generalized algorithm template, called UCP, which allows
plan-space and state-space refinements on a single partial plan representation. UCP provides
a parameterized planner template whose completeness and systematicity are ensured by the
corresponding properties of the individual refinements. It thus provides a framework for
opportunistically combining plan-space and state-space refinements within a single planning
episode. Depending upon the control strategy used, instantiations of UCP correspond to
pure state-space, pure plan-space as well as hybrid planners that facilitate strategies such
as means-ends analysis. We have discussed the issues of coverage, completeness and
systematicity of the instantiations of UCP. Apart from its significant pedagogical advantages,
our unified framework also promises considerable algorithmic advantages. To begin with, our
implementation of UCP provides a normalized substrate for comparing the various refinement
strategies. Our experiments with this implementation also demonstrate the potential benefits
of opportunistically interleaving the plan-space and state-space refinements.

In the immediate future, we plan to concentrate on designing better control strategies for
interleaving the different refinements in UCP. Several other extensions are planned for the
long term. First, although we concentrated on unifying state space and plan-space planning
approaches in this paper, our framework is powerful enough to also include the task reduction
planning approach. In particular, in [11], we describe how task reduction planning and
plan-space planning can be put in a common refinement planning framework. That approach
can be used to extend UCP in a straightforward way to cover task reduction planners. Finally,
although our original motivation has been to find a framework that unifies plan-space and
state-space refinements, and allows them to be interleaved, the representation of partial plans
that we discussed in this paper also facilitates novel forms of refinements other than PS,
FSS and BSS. For example, we could refine partial plans by ‘‘blocking’’ some steps in the
plan together so that they are constrained to come immediately next to each other.5 Our
preliminary studies show that such a refinement strategy can be used to reduce some of the
wasteful conflict detection and resolution effort expended by the plan-space refinements.

References
[1] A. Barrett and D. Weld. Partial Order Planning: Evaluating Possible Efficiency Gains. Artificial

Intelligence, Vol. 67, No. 1, 1994.

[2] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333--377, 1987.

[3] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving to problem
solving. In Readings in Planning. Morgan Kaufmann, 1990.

[4] E. Fink and M. Veloso. Formalizing the Prodigy Planning Algorithm. CMU CS Tech. Report, Fall 1994.

5FSS and BSS refinements can be seen as blocking steps to the prefix and suffix of the plan

12

[5] M. Ginsberg. Approximate Planning. Artificial Intelligence, Special Issue on Planning, Scheduling and
Control. 1995.

[6] D. Joslin and M. Pollack. Least-cost flaw repair: A plan refinement strategy for partial order planning.
Proceedings of AAAI-94, 1994.

[7] S. Kambhampati and B. Srivastava. Universal Classical Planner: The details ASU CSE Tech. Report.,
1995 (in preparation).

[8] S. Kambhampati. Refinement search as a unifying framework for analyzing planning algorithms. In Proc.
KR-94, May 1994.

[9] S. Kambhampati. Design Tradeoffs in Partial Order (Plan Space) Planning. In Proc. 2nd Intl. Conf. on AI
Planning Systems (AIPS-94), June 1994.

[10] S. Kambhampati, C. Knoblock and Q. Yang. Planning as Refinement Search: A Unified framework for
evaluating design tradeoffs in partial order planning. Artificial Intelligence special issue on Planning and
Scheduling. Vol. 76. 1995.

[11] S. Kambhampati. A comparative analysis of partial-order planning and task reduction planning. ACM
SIGART Bulletin, Special Section on Evaluating Plans, Planners and Planning agents, Vol. 6., No. 1,
January, 1995.

[12] D. McAllester and D. Rosenblitt. Systematic Nonlinear Planning. In Proc. 9th AAAI, 1991.

[13] D. McDermott. Invited talk, AIPS-94, June 1994.

[14] S. Minton. Learning Effective Search Control Knowledge: An Explanation-Based Approach. PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA, 1988.

[15] S. Minton, J. Bresina and M. Drummond. Total Order and Partial Order Planning: a comparative analysis.
Journal of Artificial Intelligence Research 2 (1994) 227-262.

[16] E.P.D. Pednault. Generalizing nonlinear planning to handle complex goals and actions with context
dependent effects. In Proc. IJCAI-91, 1991.

[17] S. Rosenchien. Plan Synthesis: A logical perspective. Proc. IJCAI-81, 1981.

[18] M. Veloso and J. Blythe. Linkability: Examining causal link commitments in partial-order planning.
Proceedings of AIPS-94, 1994.

[19] D. Weld. Introduction to Partial Order Planning. AI Magazine, Vol. 15, No. 4, 1994.

A Proof of Systematicity of UCP

In this appendix, we sketch the proof of systematicity of any instantiation of UCP that
uses a PS refinement with contributor protections. To make exposition simple, we will
concentrate on the systematicity of FSS refinement both in isolation, and in the presence of
other refinements. Similar arguments hold for the systematicity of BSS and PS refinements.

If UCP uses only FSS refinement, its head fringe will always consist only of the goal step
t1, and thus the only way FSS refines the plan is by introducing operators from library into
the header. Since each FSS refinement will have a different library operator instance added
to the end of the header, and since the operators in the header of a partial plan will form the
prefix of each candidate of that partial plan, the candidate sets of different FSS refinements
will be disjoint.

The above argument about differing prefixes may not hold when FSS is being used in
conjunction with BSS and PS since in such cases FSS refinements will involve transferring
steps from both the library and the head fringe into the header. It is possible in such cases
to have the same operator instance (say O) introduced into the header in more than one
refinement-- once from the head fringe and once from the library. We will now show that
systematicity still holds as the candidates of different refinements differ in terms of the

13

(every cand. contains exactly

two instances of O)

(every cand. contains at least three

instances of O)

t0 * t1 : O� to : O� t2 : O2 * t1

p

[P1] t0 * t1:O * to : O� t2 : O2 * t1

O from Fringe

O from Library

[P2] t0 * t1: O * tn :O� to : O� t2 :O2 * t1

O from LibraryO from Fringe
FSS

t0 * t1:O� to : O * t1

[P1] t0 * t1 : O * to : O * t1

(Every candidate contains

exactly two instances of O)

(every candidate contains at least

three instances of O)

O from Library

[P2] t0 * t1 : O * tn : O� to : O * t1 p

p

Figure 10: Examples illustrating the systematicity of UCP. The curved lines on the right
correspond to IPC constraints on the plan.

number of instances of the operator O. We need to consider two cases -- one in which the
instance of O on header fringe has been introduced by a previous PSS refinement, and the
other in which it is introduced by a previous BSS refinement.
Case 1 O introduced by BSS: The illustration on the left hand side of Figure 10 shows a
scenario where the step to : O on the head fringe has been introduced by BSS (and thus it is
part of the trailer). Now consider two refinementsP1 andP2 generated by FSS by introducing
to : O from the fringe, and tn : O from library, respectively into the header. It is easy to see
that every candidate of P1 will have at least one instance of O less than every candidate of
P2 (in this example, candidates of P1 will have exactly two instances of O, while candidates
of P2 will have three or more instances of O.
Case 2 O introduced by PS: The illustration on the right hand side of Figure 10 shows
a scenario where the step to : O on the head fringe has been introduced by PSS (using
contributor protection, as per the premises of the theorem). Suppose without loss of
generality that to : O was introduced to give some condition p to t1. This means that the
partial plan contains two IPCs hto; p; t1i and hto;:p; t1i. Now consider two refinements
P1 and P2 generated by FSS by transferring an instance of O from the fringe, and from the
library, respectively to the header. Once again the candidates ofP1 and P2 will differ in terms
of the number of instances of O. In the example plan shown in Figure 10, every candidate of
P1 will have exactly two instances of O (no new instances O can come after the header since
they will violate the IPC hto;:p; t1i), whereas every candidate of P2 will at least have three
instances of O.

14

