Effective Interplay of State Space and CSP Viewsin a Single Planner

Terry Zimmerman & Subbarao Kambhampti
Department of Computer Science & Engineering
Arizona State University, Tempe AZ 85287
Email: {zim,rao} @asu.edu

Abstract

Al planning has made impressve advances under severa different paradigms of the problem sStructure and
search process. Each view bringsits particular strengths to bear on the problem and suffers inherent, relative
weeknesses. This study introduces a versdtile gpproach that effectively melds two methodologies used in
some state-of-the-art planners; CSP and state space search. The resulting system (PEGG) can operatein a
wide range of modes. When set to conduct exhaustive search of it's relevant search space, it produces guar-
anteed optima pardld plans 2 to 20 times fagter than a verson of Graphplan enhanced with CSP speedup
methods. Initid experiments with heurigicaly pruning this search space have demondrated thet, though sac-
rificing the optimality guarantee, PEGG produces plans as short as Graphplan in terms of steps over avariety
of domains. We discuss the reasons for the effectiveness of this gpproach by placing it in perspective to
IDA* search and Graphplan’s dgorithm.

Keywords. planning, search, condraint satisfaction, machine learning, heurigtics



1 Introduction

The Al planning problem can be cast in variety of different forms, some of the most effective currently be-
ing state space search, satisfiability (SAT), and the condraint satisfaction problem (CSP) format. [6,3,5]
These paradigms each bring to bear certain inherent strengths and suffer intrinsc weeknesses in tackling
planning problems. Predictably each system boasts on problems or classes of problems that it excels at and
just as predictably research exposesit’s shortcomings in other classes. There is obvious apped to the idea of
synthesizing two or more to exploit srengths and mitigate the wesknesses of each. Severd investigations
along these lines have been conducted [4,13]. We introduce here perhaps a more radical and versatile go-
proach for effectively combining two of the more powerful planning paradigms of interest in recent years.
dtate gpace and CSP-based search. The resulting system is cagpable of finding pardld plans that are optimal
(or near optimal) in the number of steps and yet does so in run times comparable to some of the fastest plan-
ners currently in use,

State space search (SS), such asis employed by the HSP-r [6] and AltAlt [8] planners, exploits the view
afforded by considering tiered sets of subgoas representing states. Theses planners greedily select the ‘best’
date to expand based on heurigtic values caculated for the subgoas and may move to a solution quickly.
However since the mogt effective heuristics often are not admissible, the solutions obtained may not be op-
tima and the search Strategy may not even be complete [8]. SS systems are dso not effective at building
pardld plans where steps can contain more than one action.

CSP-based planners can readily adopt a more global, non-directiond view in their search. They are not
congirained to working on specific subsets of the problem variables, the *states , in a contiguous fashion but
can leverage globa information about al the variables and their domains to expedite the search for a solu-
tion. Typicaly CSP planners employ a variety of mature speedup techniques such as dependency directed
backtracking (DDB), explanation based learning (EBL), variable and value ordering, and “sticky vaues’
[10]. However, these planners cannot readily leverage the state space view of the subsets of the problem
variables that condtitute ‘states. And unlike most BSS systems, larger problems can cause CSP formula-
tions to confront working memory constraints.

The PEGG planner described herein combines both the CSP and state space views of planning, aternating
CSP-style search facilitated by proven speedup techniques with a state space view that exploits heuristics to
select the most promising set of subgoasto satisfy. The CSP-style search is rooted in Graphplan [1], which
can be viewed as a system for solving “Dynamic CSPs’ (DCSP) [12], and as such, finds pardld plans
guaranteed to be the shortest in terms of number of steps. Graphplan carries out it's search for a problem
solution by interleaving two digtinct phases: a forward phase that builds a tiered “plan graph” structure fol-
lowed by a phase that conducts backward search on that structure. PEGG captures the inter-level ‘ states
generated during the first Graphplan search phase in a concise structure we cdl the ‘pilot explanation’ (PE).
Subsequent search phases are then conducted based on the PE. This pilot explanation affords us a state
gpace view of Graphplan's CSP-style search process and facilitates a wide variety of ways of combining
these dternate views of search. We will show that PEGG (Pilot Explanation Guided Graphplan) can lever-
age the drengths of each formulation without being crippled by their wesknesses. A verson of PEGG
(PEGG-h1) that employs a state space heurigtic finds guaranteed optima plans for a variety of problems well
beyond Graphplan’s reach. PEGG-h1 demonstrates speedups of 20x to over 400x over standard Graph+
plan and 1.5x to 20x compared to an enhanced verson of Gragphplan which was outfitted with dl PEGG
search and graph construction efficiencies that could be ported to it. Furthermore, PEGG-h1 tends to return
sep-optimal plans with fewer actions than Graphplan. Minor modifications gives us a verson of PEGG that



sacrifices the guarantee of optimdity but produces very high qudity plans nonetheless a speeds compara-
ble to state-of-the art heuristic Sate space planners.

The paper is organized as follows. Section 2 discusses the motivation for building, maintaining, and using a
pilot explanation structure to expedite search of Graphplan's plan graph.. Section 3 describes the mgor
modifications made that enable PEGG to overcome the memory-bounded limitations of EGBG [7], the first
system to use a PE.  Section 4 describes the manner in which the PE alows PEGG to directly employ ‘ Sate
gpace’ oriented distance heurigtics and gives results for two of the possible ingtantiations of this hybrid plan-
ning system. Section 5 discusses the relationship of this gpproach to well known search methods and related
work. Section 7 presents our conclusons.

2. Exploiting Plan Graph Redundancy Using a Pilot Explanation

Dueto its high vighility in the planning community snceits introduction by Blum and Furgt in 1995 [1], we
do not describe here the details of the Graphplan dgorithm. Asa DCSP solver, Graphplan exhibits particu-
lar strengths that make it an attractive approach for solving planning problems:

It finds pardld plansif possble (i.e. plansin which actions may appear in pardld). It is guaranteed to
find aplan if one exigs and it's guaranteed to be optimd in terms of number of steps

In serid domains Graphplan returns optima plans in terms of number of actions

The plan graph captures both the relevant actions at each level and a measure of inconsgstent actions
(mutexes). Thisfocuses search in a sound and complete manner during plan congtruction.

Graphplan search naturdly captures (in a lazy yet focused fashion) many inconsstent or unsatisfiable
gates in the form of memos. These condtitute n-ary mutexes amongst propositions.

By posing the planning problem as a CSP, it exploits the internal structure of a Sate such that it effec-
tively handles stuations with heavy interaction between actions and subgoas. Graphplan can aso avall
itself of the arsenal of CSP-based speedup techniques.

The motivation for the first system that employed the ‘pilot explanation’ concept [7] was Smply to speed
up Graphplan’s iterative search process by avoiding certain redundancies and leveraging particular symme-
tries inherent to the plan graph and the search process itsdf. PEGG, the successor to EGBG 4lill bases its
search on the plan graph sructure, but it exploits the PE concept in a number of interesting ways to give it
great flexibility in conducting either state space or CSP-style search as gopropriate in generating step-
optima solutions to planning problems. The following symmetrica or redundant features of the plan graph
inspired development of the pilot explanation used by EGBG to expedite search at each new leve:

1. Theset of actions that can establish a given propostion &t leve k is a subset of the vaid establishing ac-
tionsfor the propogtion at level k+1.

2. The proposition goal st that isto be satisfied at aleve k is exactly the same st that will be searched on
a level k+1 when the plan graph is extended. That is, once the problem goa set is present at leve k it
will be present &t dl future levels.

3. For agiven st of actions and propositions, the “congraints’ (mutexes) that are active a level k+1lisa
ubset of the mutexes active a levd k. (If Al isinitidly non-mutex with A2 a leve Kk it will never ke-
come mutex & higher levels)

4. Two actions in a leve that are “daticaly” mutex (i.e. their effects or preconditions conflict with each
other) will be mutex at all succeeding leves

We will refer to a particular backward search phase on a given length plan graph as a ‘ search episode’.
The search conducted for the final search phase in which a solution is found we call the *solution episode’ .
The above four factors, taken together, are responsible for consderable smilarity (i.e. redundancy) in the
search Graphplan's search for successive search episodes as the plan graph is extended. In fact, the back-



ward search conducted & level k + 1 of the graph is essentidly areplay of the search conducted at the pre-
vious leve k with certain well-defined extensons. The origina impetus behind congtructing a pilot explane-
tion during a search episode that fails to find a solution was to focus search in the next episode on areas of
the search space that had not yet been explored.

Congder Figure 1's depiction of a Graphplan backward search episode in which a plan is sought that sat-
isfies gods XY Z garting from plan graph level k. We ve provided an abstract view of the search in terms of
the various subgod sets that become the target for further regression search at plan graph leve n-1 once the
subgods a level n have been satisfied. The zoom view of the XWQ subgod set reveds the CSP-yle

W
Level k-1 detailed view legend: T
(CSP-style search within a search segment) S

\@ ‘assign of value(action) at to
a1 variable (subgoal) X

a7 i backtrack —-failed assignment <
of a’” to subgoal Q due to W
mutex with previous action T

assianment S

----- PLANGRAPH- - - - -
= HES
| = FEEEN I
n FRE IS
H- ~
1 I ___J
W 7| H :
Init D 2d — N | \ .‘I’.v
N 5
St ate Q \~~. s
A I H : .
Ly
X X
c w A P \ W W
~J " T /
D Q F s Q \
4 X Probl em
E D - Ptad ~ 1 ) D Goal s:
F E E |4 S~f T Y X
J w -—— Q Q ;
1.
K I \ 1 Prad \ i :
E 3 I E E
P E F Y Y ﬁ
3 t+—-—- -—— R Q
K K T
- T /

—
)
m
D
<
o
o

Deepest]| PE evel‘ EE ’ |
k 2 3 Proposition K -2 K -1 _/
Levels

Figure 1. Pilot Explanation (PE) after search on problem goals X, Y, Z at plan graph level k.

search that Graphplan conducts at level k-1 in attempting to satisfy those goals. (Note that it finds two dif-

ferent sets of non-mutex actions satisfying XWQ, thus regressing to the WTS and XWTS subgoa sets)

Rdative to this figure we informaly define the following:
Search segment: a set of plan graph level-specific subgods (i.e. a Sate) generated in regression search
from the god date (which is itsdf the first seerch segment) and tiered according to the leve-by-level re-
gresson. Eachlevel k search ssgment S, contains a pointer to the parent search segment (S, ), thét is, the
date at level k+1 that gaverise to S, after successfully assigning actions establishing dl gods in that Sate.
Thus a search segment represents a date plus some path information but we may use the terms inter-
changeably. In Figure 1, XWQ is one such search segment.
Pilot explanation (PE): the entire linked set of search segments representing the search space vidted in
a Graphplan backward search episode. 1t's convenient to visudize it asin Figure 1. atiered structure with
separate caches for segments associated with search on plan graph leve k, k+1, k+2, etc. We dso
adopt the convention of numbering the PE levels in the reverse order of the plan graph; the top PE levd is
0 (it contains a single search segment whaose gods are the problem gods) and the level number is incre-



mented as we move towards the initid state. When a solution is found the PE will necessarily extend from

the highest plan graph levd to theinitid date.

Armed with these smple definitions and the four plan graph symmetry features described above we can
make these key observations:

The PE, after a search episode ‘n’ on plan graph level k isa lower bound on the set of gates that will

be visited when backward search is conducted in episode n+1 at level k+1. (This bound can be visual-

ized by diding the fixed tree of search segmentsin Figure 1 up onelevd.)

Every sat of subgods (search segment) reached in the backward search of episode n, Sarting at leve k,

will be generated again by Graphplan in episode n+1 starting at level k+1.

Any new search segment that is generated in episode n+1 must be a descendant of at least one of the

search segments dready in the PE after episode n.

Congder segment XWQ generated at level k-1 in search episode n (Figure 1 detailed view). When

Graphplan conducts episode n+1 search on the problem goals at level k+1 this same search segment

(subgod set) will occur at level k. There are only two conditions under which the episode n+1 search

trace for segment XWQ will differ from the episode n search trace:

1. A new action appears for the 1% timein level k that gives X,W, or Q

2. Two actions giving at least two of the XWQ gods were (dynamic) mutex at level k-1 and become
non-mutex & level k.

As long as the backward search dgorithm memoizes a search segment’s goas when they cannot be

consgtently satisfied, no two search segments for a given plan graph level will have the same goals, and

each search segment will have only one parent.

Based on these observations we developed a Graphplan-based planner that builds a pilot explanation
during the first backward search episode, and then uses it to focus search in al subsequent episodes, ex-
tending the PE as warranted. In each successive episode, after the plan graph is extended, the PE -a concise
trace of the previous episode’ s search space- istranslated up one level and the backward search for aplan
is conducted by visiting the search segmentsin the PE in some order. Here we define some processes.

PE trandation: For a search segment in the PE associated with plan graph leved j after search episode n,
associate it with plan graph level j+1 for episode n+1. Iterate over al segmentsin the PE.
Visgiting asearch segment: For segment S, at plan graph level j+1, vidtation is a 3 —step process:
1. Perform amemo check to ensure the subgoals of S, are not anogood at level j+1
2. Initiate Graphplan’s CSP-gyle search to satisfy the segment subgods beginning at leve j+1. A child
search segment is created and linked to S, (extending the PE) whenever S's goas are successfully
assgned entailing anew set of subgodsto be satisfied at leve |.

3. Memoize Sp'sgodsa leved j+1 if dl attempts to congstently assgn them fail.

Aslong as all the ssgments in the PE are vigted in this manner the planner is guaranteed to find an optima
plan in the same search episode as Graphplan. The search process for the resulting planner essentidly dter-
nates selection of a promising state to vigt with dynamic CSP-type search on the stat€'s subgods. If the
DCSP search fails to find a plan, the planner selects another PE search segment to vist.

An important facet of this description of PE-based planning isthat it leaves open the strategy to be used
in visiting the search space represented by the PE. We expand on this in Section 4, but we note here a
somewhat subtle issue associated with the order of search segment vigtation. If a parent segment at level k
isvigted prior to one of itslevel k-1 children (say S), the subgoals of S will be generated again and are-
dundant search segment added to the PE as search at level k-1 proceeds. One means of efficiently avoiding
this inflationary impact on the PE is to dways vist PE search segments in a *bottom up’, level-by-leve fash



ion. In thisway the subgoas of a parent’s child segments will have been memoized prior to the Graphplan-
style search on the parent’s gods, and creation of redundant segments will be blocked by memo checking.
Thiswasthe default strategy of EGBG, the first PE-based planner.

EGBG minimized the redundant search performed within a search segment each time it is visited across
episodes. By storing enough of the intra-segment search trace in a search segment it avoided most of the
redundant mutex-checking and action assgnment each time the segment is revisted. EGBG demongtrated
speedups of 2 — 20x over Graphplan on a variety of modest sized problems [7]. However, as discussed
there, the combined storage requirements of the multi-level plan graph and the pilot explanation pushed
larger problems out of reach for this Lisp-based implementation. Our current PE-guided system, PEGG, not
only solves the memory bound issues, but greetly reduces planning time and extends the system’s reach by
exploiting avariety of techniques made possible by the PE. We discuss these in the next section.

3 Addressing memory limitations and accelerating search

Our work with pilot explanation-based planning has shown how closdly related the reduction in memory
demands is with accderated planning for such systems. A discussion of dl the advances relative to EGBG
that led to the PEGG system is beyond the scope of this paper. However we briefly describe here five ma-
jor techniques or that were implemented ether to reduce memory congtraints or to speedup planning, and
we note that three of them contribute significantly to both gods.

Domain preprocessing and invariant analysis. The speedups attainable through preprocessing of do-
main and problem specifications are well documented [9,16]. For planners that employ a plan graph these
gpproaches aso reduce memory requirements to the extent that they identify propositions that do not need
to be explicitly represented in each leve of the graph. For planners that employ a pilot explanation this
benefit is compounded since it directly impacts the number of subgods that must be saved in each search
segment.  PEGG employs domain preprocessing that is related to but not as extensive as the processing
done by the TIM subsystem used by STAN [9].

Bi-level plan graph: It's been known for some time that the origina multi-level plan graph structure em-
ployed by Graphplan could be represented as an indexed two level structure [9]. For PEGG this has a
three-fold benefit; it reduces the graph’s memory demands, facilitates faster building/extenson of the plan
graph, and reduces PE trandation to smply incrementing each search segment’s graph leve index.

Explanation Based Learning and Dependency Directed Backtracking: Conditions under which EBL
and DDB can accelerate the search process have been well documented [10,11]. Less obvious perhapsis
the rale it can play in dramatically reducing the memory footprint of the pilot explanation. Together EBL and
DDB shortcut the search process by steering it away from aress of the search space that are provably de-
void of solutions. The PE growsin direct proportion to the search space actudly visted, so such techniques
that prune search provide yet another benefit in the form of reduced memory demands for a system such as
PEGG.

Value and Variable Ordering: Vaue and variable ordering are dso well known speedup methods for
CSP solvers. The impact of variable and vaue ordering on Graphplan performance was examined in [8]
where the plan graph was exploited to extract level-based heurigtics for ordering subgoals (‘variables’) and
god edtablishers (‘values). They demonstrated modest speedups for Graphplan under some of the heuris-
tics, though it varied across domaing/problems. We found that using the plan graph based “level” vaue for
both god and action ordering provided significant Speedup in a variety of problems while incurring very little
overhead. This heurigtic assigns to each action and proposition the plangraph level a which it first appears.
We have used it in al PEGG results reported here.



A ‘skeletal’ pilot explanation: EGBG avoided redundant mutex checking to a maxima extent by storing
information about the results of search within each search segment. However, examining EGBG' s perform:
ance revedsthat the lion's share of the credit for its peedup relative to Graphplan seldom goes to it's ability
to avoid the redundant action and proposition mutex checking across successive search episodes. Rather it
springs from the default order in which EGBG processes the search segments in the PE trace. Processing the
PE search segmentsin a ‘bottom up’ fashionisalogicd ‘heurigtic’ to employ since this section of the search
gpace lies closest to theinitid state (in terms of plan steps). This Smple gpproach by itself can have a mgor
impact on search timein the fina search episode where most of the computation time is often logged.

Congder search conducted using the PE in the solution episode of a problem. Suppose we vist search
segments in a bottom up manner and visit one, S, in the lower levels that can be extended to the initid Sate,
thereby finding a solution. We will have completely avoided al the higher level search required to reach S
from the top level problem goas. Heresfter we refer to a PE search segment that is visited in the solution
episode and extended via backward search to find avalid plan as a seed segment. In addition, al segments
that are part of the plan extracted from the PE we cadl plan segments  We now make a somewhat curious
but useful empirical observation:

For all planning problems analyzed to date using a PE-based planner, a seed segment has been found within
the lowest 4 levels of the PE in the solution episode. In other words, when a solution can be extracted from

a given plan graph, EGBG or PEGG have only needed to visit the search segments in the lowest 4 levels of

the PE. (In fact, for the great majority of problems there's a seed segment in the lowest 2 PE levels.)

This suggests a number of search drategies that we will touch on later. It dso motivates the move to a
skeletd PE in which we dragticaly reduce memory requirements by no longer saving the intra-segment CSP
search trace.  PEGG, unlike EGBG, retains only the snapshot of the search space dtates visited in an epi-

sode, at the expense of performing Graphplan’s redundant action assgnment mutex checks within each seg-

ment. As we show in the next section, thisis a good tradeoff. PEGG uses the PE to adopt a state space
view in choosing the best search segments to vist and dternates with Graphplan’s CSP view to quickly ex-

tend the optimal plan tail usng powerful CSP speedup methods.

Table 1 provides some runtime comparisons of standard Graphplan with two versons that have been
augmented with combinations of the techniques discussed above. Seven of the 12 problems can only be
solved by Graphplan when the enhancements have been added. For the 5 problems that standard Graph-

Standard | GP w/ bi-level PG & GP w/ bi-level PG, dom.

Problem GP domain preprocessing preprocessing, EBL/DDB, PEGG SPEEDUP
goal & action ordering (PEGG vs.

Cpu sec Cpu sec Cpu sec Cpu sec column 4 GP)
bw-large-B (18/18) 234.0 219.3 101.0 22.3 4.5x
Rocket-ext-a (7/36) 1131 127.9 39.8 3.0 13.3x
Rocket-ext-b (7/36) 846 99.0 27.6 4.9 5.6x
attlog-a  (11/79) ~ 728.3 318 2.8 11.3x
Gripper-8  (15/23) ~ 83.2 28.8 17.6 1.6x
Tower-7 (127/127) ~ 94.7 114.8 15.0 7.7x
Tower-9 (511/511) ~ ~ ~ 118 >1000x
Mprime-1 (4/6) 738 15.0 4.8 4.9 (1.02x)
8puzzle-1  (31/31) ~ ~ 95.2 64.0 1.5x
8puzzle-2  (30/30) ~ ~ 87.5 41.8 2.1x
8puzzle-3  (20/20) ~ 84.3 19.7 3.0 6.6x
TSP-12 (12/12) ~ 1020 131 10.7 12.2x

Table 1. Comparisons of Graphplan, enhanced Graphplan and PEGG.

Times are for a Pentium 500 mhz machine, Linux, 512 M RAM, Allegro Lisp, (excludinggc time)
Parentheses after problem give Graphplan’s optimal # of steps/ # of actions. (All systemsin table

find equivalent optimal plans) Stnd Graphplan based on Peot & Smith’s Lisp implementation.

Goal & action ordering based on plangraph ‘level’ distance. ~ :means no solution was found in 30 minutes.



plan can solve the speedups exhibited by the fully enhanced version range from ~2x to 154x. Clearly these
enhanced versons sgnificantly raise the performance bar for any comparison with PEGG. The last two col-
umns provide this comparison and show that PEGG speedups range from essentidly O to over 1000x, with a
median for this sampling of problems of about 7x.

Stepping back for a moment, it's worth considering the class(es) of problems for which the pilot explana-
tion will actudly acceerate the solution search. In problems for which a solution can be extracted from the
plan graph at the first level in which the gods dl gppear and are non-mutex, there is only one search epi-
sode. As such, the PE that is built never gets used and the cost of building it serves only to add to the solu-
tion time (though empiricaly PEGG has run only 5— 15% dower for such problems). The Table 1 problems
for which PEGG has a decided advantage are multi-episode problems in which the primary benefit afforded
by the PE accruesin the find search episode. And this advantege is based primarily in the ‘heuristic’ of vis-
iting search segments in the lowest PE levelsfirs. Since the PE dso provides us with a concise sate space
view of PEGG’ s search space we condder in the next section how the ‘ distance based’ heuristics employed
by state space planners such as UNPOP [17], HSP-R [6], and AltAlt [8] might be put to work by PEGG to
further speed up search in problems with multiple search episodes.

4. Exploiting the state space view

We report here on two approaches to applying distance based heurigtics to PEGG' s search: 1) Ordering
al search segments in the PE according to a given state space heurigtic and vigting dl of them in order 2)
Ordering dl search segments in the PE according to a given sate space heuristic and visiting a subset of
them in order. The firg approach maintains Graphplan’s guarantee of step optimdity but focuses sgnificant
speedup only in the find search episode. The second approach sacrifices the guarantee of optimality in favor
of pruning search in all search episodes. Still, we shdl see that there's a high likelihood that optimal plans
are found in spite of the sacrificed guarantee.

As soon as we abandon the Strategy of vidting the PE segments in a bottom-up fashion, we run the risk of
producing an inflated, redundant pilot explanation, as discussed at the end of Section 2. We investigated
several means of handling thisissue, but the details are beyond the scope of this paper. The approach used
by versons of PEGG reported here is to smply alow duplicate segments to be generated and inserted, and
then to prune the original child segments when they are visited later in the episode. These origind segments
can be identified via the memoizing conducted as part of the visitation process, as defined in Section 2.

The heurigtic f-vaue for a tate (search segment) S, isdefined as:
f=g+w*h
where g isthe‘cost’ of reaching S, fromthe problem goals (# of steps or actions for Graphplan)
h is an estimate of the distance to theinitial state
w isaweight parameter

Note that the g value has two possble definitions here. If we define it as the number of Seps, the g-vaue
for asearch segment is just the PE level number. In this case any cost associated with parald actions within
adepisignored and the range of possble g vauesis just the number of levelsin the PE. On the other hand
if g is defined in terms of number of (non-persst) actions we hias the search towards finding a plan with the
fewest number of actions. The range of possble g vaues will in generd be much greater.  Thus given two
search segments (dates) a level k with the same h vaues, the planner would choose to visit the one entailing
the fewest number of actions, paralel or otherwise. So setting g to the number of non-persists actions effec-
tively biases PEGG towards returning a step-optima plan with the fewest number of actions, and we use this
setting for dl heuristic-guided PEGG results reported here. Without actudly conducting a branch and bound



search for the least cost plan in a solution episode, we cannot guarantee we' ve found the step-optimd  plan
with fewest actions, of course. We intend to report on work aong these lines el sewhere.

The h-vadues we consder here are taken from the distance heuristics described in [8]. The authors discuss
the tenson between using an admissible heuridtic that ensures an optima solution vs. a more informed inad-
missible heurigtic that may greetly soeedup the BSS planner a the expense of loosing optimdity (or even
completeness).  Aslong as PEGG vidits the entire PE in each search episode, it can employ an inadmissible
heuridtic to direct it's search space traversa without losing it's guarantee of finding a step-optima plan.
We ve redtricted this andysis to asingle heuridtic that the authors called ‘ adjusted-sum'’ [8]. It isinexpensve
to cdculate for a plan graph based planner and was found to be quite effective for the BSS planners they
tested. A brief overview of the basis of the heurigtic is provided here and the reader is referred to reference
8 for details.

The heurigtic cost h(p) of a single propostion is computed iteratively to fixed point as follows. Each
proposition p is assigned cog O if it'sin the initid date and ¥ otherwise. For each action, a, that adds p,
h(p) isupdated as.  h(p) := min{h(p), 1+h(Prec(a) } where h(Prec(a)) is computed as the sum of the h
vauesfor the preconditions of action a Define lev(p) asthefird leve a which p appears in the plan graph
and lev(S) asthefirg leve in the plan graph in which dl propogtionsin sate S appear and are non-mutexed
with one another. The adjusted-sum heuristic may now be stated:

Ny (S) = é cost(p,) +lev(S) - max lev(p,)
plS !
Thisis essentidly a 2-part heurigtic. The summation estimates the cost of achieving S under the assumption
that the cost of achieving the propositions in a state are independent. The last two terms provide a measure
of the additiona cost incurred by negative interactions in achieving the stat€' s propogtions.

Returning to the expression for f above, we set the value of ‘w’ to 5 based on empirica studies conducted
with gtate space planners [8]. It may well be that there are more effective w vaues for the sort of k-length
plan search conducted by PEGG, but we |leave that as an open issue for now.

4.1 Complete sear ch with distance heuristics

In this ingtantiation of PEGG, which we'll refer to as PEGG-h1, we retain the guarantee of step-optimdity
by vigting al search segments in the PE in each search episode. The adjusted-sum heurigtic vaue is cacu-
lated for each segment in the PE and the entire corpus of segments is then sorted with lowest f-value firg.
Figure 2 provides a high level view of the planning process for the heuristic version of PEGG®. Note that the
date space distance heurigtic is used only to direct the traversal of the search space represented by the
search segments in the pilot explanation. It's feasble to dso employ the heuridtic in the Grgphplan-gtyle
search that ensues when a segment is visited, but we leave that discusson to Section 8, Future Directions.
Anticipated speedups are based on the hope that in the solution episode the heurigtic will direct PEGG to a
seed segment from the PE sooner than the blind, level-by-leve vistation scheme. We' d expect the biggest
payoff in problems such as “bw-large-b” of Table 1, where the lowest level seed segment in the PE lies four
levels above the degpest PE level when the solution episode commences. For that problem, there are some
1500 search segments that the level-by-level PEGG version has to vist before it gets to the seed segment
that extendsto aplan.

The results reported in Table 2 bear out this prediction. In columns 3, 4 and 5 are reported runtimes over
avariety of problems for three planners.  the fully enhanced version of Graphplan described in Table 1, col-

! The optional checks regarding the ‘ heuristic threshold’ apply only to the second approach discussed in this section:
using heuristics to also shortcut search in non-solution bearing episodes.



Figure 2. PEGG pseudo code (state space heuristic version)
1.  Build plan graph to the 1% level having non-mutex goals
2. Conduct the 1% Graphplan style backward search episode using CSP speedup techniques.
In so doing, build the initial PE .
3. IF asolution is reached: DONE
ELSE extend plangraph and use the PE to direct the subsequent search episode as folows:
A. Enqueue search segments from the entire PE according to a given state space heuristic
B. IF f-value of the front (best) segment is below (optional) heuristic threshold visit the segment:
* Perform a memo check on the segment subgoals. If they constitute a nogood remove the
segment from the PE, advance to next segment, return to B.
* Conduct Graphplan-style search on segment subgoals using CSP speedup techniques.
Extend PE structure in the process
IF a solution is reached: DONE
ELSE memoize the segment subgoals, advance to next segment and return to B.
ELSE (optional) heuristic threshold has been exceeded, perform memo check on remaining
segments in queue, removing any with nogood goals.
C. Extend the plan graph one level & Translate the PE up one level
D. Returnto A

umn 4 (which we cal GP-E), PEGG with the same enhancements as GR-E, and PEGG-h1 which has these
same enhancements plus state space search guided by the “adjusted-sum” heuritic.

Examining the actuad PE search trace for these problems reveds that the advantage of PEGG-h1 over
PEGG isindeed expressed clearly in problems for which the lowest seed segment lies ‘above the lowest PE
levels. Table 2 problems in this category include bw-large-b, rocket-ext-b, gripper-15, and eight-puzzle-1.
The gate gpace heurigtic successfully identifies the seed segments, which lie in higher PE levels for these
problems, and orders them in front of many other lower lying segments that PEGG winds up vigting firs.
PEGG-h1, on average, cuts the solution time in haf for these problems while maintaining the guarantee of
returning a sep-optima plan.

Stnd GP | GP-E (enhanced PEGG PEGG-hl PEGG-h2 Alt Alt (Lisp version)

Problem Graphplan) heuristic: adjsum heuristic: adjsum cpu sec (/ acts)
Cpu sec Ccpu sec cpu sec (steps/acts) cpu sec (steps/acts) heuristics:

Cpu Sec (stepsfacts) (steps/acts) adjusum?2 combo
bw-large-B 234.0 101.0 (18/18) 223 (18/18) 12.2 (18/18) 94 (18/18) 87.1(/18) 205 (/28)
bw-large-C 1131 ~ ~ ~ 93.9 (28/28) 738 (/28) 114.9 (/38)
Rocket-ext-a | 846 39.8 (7/36) 3.0 (7/36) 2.8 (7/34) 2.1 (7/34) 436 (/40) 126 (/ 34)
Rocket-ext-b | ~ 276 (7/36) 55  (7/36) 2.7 (7/36) 2.7 (7134) 555(/36)  1.65(/34)
attlog-a ~ 318 (11/79) 28 (1179) 28 (1172 22 (1162) 36.7(/56)  2.27(/64)
att-log-c ~ ~ ~ ~ 410 ( /66) 53.3(/61) 358 (/70)
Gripper-8 ~ 28.8 (15/23) 176  (15/23) 16.6 (15/23) 8.0 (15/23) 14.1(/45) *
Gripper-15 738 ~ ~ 475 (36/45) 16.7 (36/45) 141(/ 45 *
Tower-7 ~ 1148 (127127) [ 150 (127/127) | 143 (1271127) 99 (1277127)

Tower-9 ~ ~ 118 (511/511) 91 (511/511) 42.6 (511/511) * 48.5
Mprime-1 ~ 48 (4/6) 49  (4/6) 36 (4/6) 2.9 (46) *

8puzzle-1 ~ 95.2 (31/31) 64.0 (31/31) 39.1 (31/31) 17.2 (31/31) 1437 (/131) 20.2 (/?)
8puzzle-2 87.5 (30/30) 41.8 (30/30) 31.3 (30/30) 11.0 (30/30) 348.3 (/30) 7.42(/?)
8puzzle-3 19.7  (20/20) 3.0 (20/20) 7 (20/20) 8 (20/20) 62.6 (/20) 11.0 (/?)
grid4 ~ (?21?) 75 (18/18) 5 (18/18) 30.5(/18) 14.5(/18)

Table2 PEGG heuristic guided versions vs. enhanced Graphplan and a BSS heuristic planner
GP-E: Graphplan enhanced with bi-level PG, domain preprocessing, EBL/DDB, goal & action ordering
PEGG: Same enhancements as GP-E
PEGG-h1: complete PE search, guided by adjsum state space heuristic
PEGG-h2: abbreviated PE search, guided by adjsum state space heuristic
Parentheses next to cpu time give # of steps/ # of actionsin solution
All plannersin Allegro Lisp, runtimes (excl. gc time) on Pentium 500 mhz, Linux, 512 M RAM
“adjusum?2” :AltAlt run under the “adusted sum2” heuristic
“combo” :AltAlt run under “combination” heuristic, run using fast plan graph construction routine.
~indicates no solution was found in 30 minutes * indicates problem wasn’t run



The impact of this solution episode heurigtic ordering is even more pronounced with gripper-15 and the
gridworld problem, gridd. Easily bested by PEGG-h1, PEGG cannot solve ether of these in 30 minutes,
even though both planners take roughly the same length of time to get to the search episode in which a solu-
tion can be found. Note aso, that Graphplan guarantee of step-optimality does not extend to finding plans
with the fewest numbers of actions. As such, it's not surprising to find that PEGG-h1, with it's heurigtic g-
vaue based on the number of actions, finds step-optimal plans with fewer actions than that found by Graph-
plan for two problems (rocket-ext-a, att-log-a).

4.2 Abbreviated search with distance heuristics

With an ingantiation of PEGG we call PEGG-h2, we seek an effective dternative to Graphplan’'s search
drategy of exhausting the entire search space in each episode up to the solution bearing levd. It is, of
course, this very drategy that gives the step-optima characteristic to Graphplan’s solutions, but for many
Szesble problems it exacts a high cost to ensure what is, after al, only one aspect of plan qudity. In the
years snce it was developed (1995) many different genres of planners have successfully tackled problems
beyond Graphplan’'s reach [3,4,5,6], and some have demondtrated they can generate plans of comparable
qudity (albeit without any ‘guarantees). PEGG-h2 leverages the state space view afforded it by the PE
aong with asuitable heuridtic, to vist only the most promising search segments in each search episode.

Condder again the dgorithm of Figure 2. For PEGG-h2, exhaudtive search of the PE search space is
truncated in substep B with the heuridtic ‘threshold test”. The intent is to avoid visiting search segments that
hold little promise according to the heuristic used. When the firsg segment exceeding this threshold is
reached on the sorted queue the search episode ends. A memo check is performed on dl the remaining
segments on the queue (to identify redundant segments for pruning) but no search is conducted on them, nor
are their subgoals memoized. If the ranking heurigtic is one that can effect a decrease in a date's f-value as
it trandates to a higher plan graph leve (the adjusted-sum is one such heurigtic) then these unpromising seg-
ments are retained in the PE to be consdered in the next episode. Otherwise they could logicaly be deleted
since they will never pass the threshold test.

The problem of devisng a highly effective threshold test is an interesting one that must reconcile the com-
peting gods of reducing search in nonksolution bearing levels to a minimum while maximizing the likelihood
that a plan segment is visited in the solution episode. The narrower the search window, the more pressure
IS put on the state space heurigtic that ranks the segments to be vidited. But there are two observations that
make the heuridtic task less daunting: 1) PEGG-h2 will return a step-optima plan as long as, a some point
in the firgt solution-bearing episode, its search srategy leadsit to visit any plan segment in any plan latent in
the PE (including the single top segment in the PE). 2) There are many step-optima plans latent at the solu-
tion-bearing level for most problems. We again defer to later work an investigation of the most effective sort
of search segment visitation threshold test and report here the results of using asmple 2-phase test:

If at the Start of a search episode there are less than N in the PE, visit all search segments.
For episodes in which the PE has >N segments, visit the top M% of them, based on f-value

With afew trid runsto characterize a sampling of problems, we set N=100 and M= 50% and report the
resultsin Table 2. We aso report there the performance of AltAlt, one of the faster BSS heurigtic planners,
on the same problems. The last column gives the runtime and plan ‘ qudity’ in terms of number of actions for
what proved to be two of the best heuristics for AltAlt overdl [8]. Like virtudly dl state space heuritic
planners, AltAlt does not find possibly concurrent actions so as to build pardld plans, so the number of
depsin its plansis not reported.

PEGG-h2 (N:100, M:50%) again extends the size of problem that can be handled. Both bw-large-c and
att-log-c could not be solved by previous versons of PEGG or Graphplan. PEGG-h2 solves dl problems



faster than PEGG-h1 (by an average of ~2x) and compares nicely to AltAlt, even bettering the latter’s best
heurigtic in 7 of 13 problems for which data were available. More importantly, we see convincing evidence
that PEGG-h2 can not only return step optimad plans, but it can aso find shorter ones in terms of number of
actions. In every case it returned a plan of the same step-length as Graphplan (or complete PEGG) and for
3 problems it found shorter plansin terms of actions.

5. Discussion and Related Work

The connection between Graphplan's search and solving a “dynamic condraint satisfaction problem”
(DCSP) was made by Kambhampati [13]. Bonet and Geffner [6] were among the first to note that Graph-
plan search can be viewed a0 as state space search, arguing that overdl process is a verson of IDA*
search. These two viewpoints actudly look with different granularities a the search process. A dngle
Graphplan backward search episode is described most completely as a DCSP while Graphplan's iterative
character in solving a problem requiring multiple episodes is akin to IDA* search.  Both views help in i
derstanding PEGG' s effectiveness, so we reference aspects from both here in order to clarify the role of the
pilot explanation in expediting search.

Graphplan solves a planning problem in the direct DCSP fashion described by Mittd & Falkenhainer [15].
Starting with the problem gods as ‘active varidbles it seeks a satisfying assgnment for them subject to the
variable domains and the mutex congraints of the highest plan graph level. Taken by itsdf, this sub-problem
is solved as any CSP; it is non-directiond in nature and can take advantage of a variety of CSP speedup
techniques. WE' | refer to the assignment search for one such set of propositions as an epoch. If successtul,
the assgnments may activate new variables which become the subgod propositions for the next epoch.

Clearly the set of subgods (active variables) to be assgned in any epoch can be viewed as a date. As
such, DCSP can be seen as occupying a middle ground between CSP search and state space search. It
decomposes the overdl problem into a series of sub-problems, each analogous to a state, and then conducts
non-directional CSP-style search on each sub-problem individudly.

The Graphplan connection to IDA* [6], is based on making two mappings between the agorithms:

1. Graphplan's episodic search process in which al nodes generated in the previous episode are regenerated in
the new episode (possibly along with some new nodes), corresponds to IDA*’ s iterative search. Here each
Graphplan nodeisa‘ state’ comprised of the subgoas that result from its regression search.

2. Theupper bound that is ‘iteratively degpened’ dlalDA* isthe heurigtic f-vaue for node-states, where:

g thecost of reaching the node-gtate from the god dtate in terms of number of DCSP epochs (Smply the
difference between the number of the highest plan graph level and the level number a which the node-gtate
subgodls are to be assigned).

h :the distance to theinitid state in terms of DCSP epochs (or again, associated plan graph levels)

The iterative degpening in Graphplan is done implicitly each time the plan graph is extended for another search
episode.

From the IDA* perspective on Graphplan’s search, PEGG directly addresses two important shortcom-
ings. Firg, it's long been recognized that IDA*’ s difficulties in some problem spaces can be traced to using
too little memory. The only information carried over from one iteration to the next is the upper bound on
the f-value. Graphplan partidly addresses this with its memo caches that store learned nogoods for use in
successive episodes. The pilot explanation goes further, reducing IDA*’s redundant regeneration of nodes
by serving as a memory of the states in the visited search space of the previous episode. In this respect
PEGG's search is closdly related to methods such as MREC [17] and SMA* [16] which lie in the middle
ground between the memory intensve A* and IDA*. We have not yet been forced to limit the sze of the



PE in the manner that SMA* prunes its search queue, but it is a straightforward matter to do so should the
demands of a problem dictate.

The second shortcoming of the IDA* nature of Graphplan’s search becomes apparent upon consderation
of the f-value as defined for an episode (mapping #2 above). All node-states generated in a given Graphplan
episode have the same f-value, so that within an iteration (search episode) there' s no discernible preference
for visiting one state over another. Since the PE retains a view of the previous episode’ s state space, PEGG
can gpply any of the powerful state space heurigtics (those derived from the plan graph are obvious choices),
effectivdy layering a 2™-tier of heuristic control onto Graphplan’s search.  This means that PEGG is not as
constrained by the depth-first search nature of Graphplan’s backward search, and can move about the state
space visted in the previous episode according to the assessed desirability of each state. Note that even
though we might employ what are generdly more powerful inadmissible heuridics in traversng the PE
search space, we can retain the guarantee of step-optimdity, if we choose, as long as we enforce Graph-
plan’s encoded admissible heurigtic by visting al the search segments in the PE. Hadum and Geffner [18]
describe an entirdy state space based planner that dso finds optima parald plans by layering an inadmiss-
ble node selection heuristic on top of an IDA* search dgorithm using an admissible heuristic. We hope to
compare performance on similar problemsin future work.

PEGG isthe first system to directly interleave the CSP and state space views in problem search, but inter-
e in synthesizing different views of the planning problem has lead to some related gpproaches. Kautz and
Sdman [14], dternately adopt CSP and SAT views in thelir Blackbox system, converting a k-level plan
graph into a SAT encoding whereupon a k-gtep solution is sought. Do and Kambhampati [4], smilarly d-
ternate between extending a plan graph and converting it, but they transform the structure into CSP format
and search to satisfy the congtraint set in each search phase.

6. Conclusions and Future Work

The planning paradigms devel oped to date each bring to bear specific inherent strengths and suffer intrinsic
wesknesses in tackling problems in the field. We have introduced a flexible gpproach for melding two of the
most effective views of planning, CSP and state space search, and demondirated that it can exploit strengths
of both. Graphplan’s DCSP approach to planning remains perhaps the most robust and efficient method for
finding parald, optima plans. Various studies have demongirated that heuristic State space search is cur-
rently amongst the fastest approaches for generating ‘good quaity’ plans for some of the largest benchmark
problems. The PEGG system captures in its pilot explanation, a state space view of its underlying Graph-
plan, CSP-style search. This enables it to interleave search directed by plan graph based heurigtics with
DCSP extenson of partid plansimplicit in the PE. By varying the portion of the PE search space that isvis-
ited in each search episode the system can exhibit performance ranging from returning guaranteed optimal
plans two or more orders of magnitude faster than Graphplan, to performance comparable to state-of-the-
art state gpace planners while returning very close to optima qudity plans.

PEGG provides avariety of control points for tuning and adapting its performance, including application of
avariety of heurigtics and controls on how much of the PE search space can be pruned without significantly
degrading the qudity of the plans being returned. We intend to further investigate possible domain and/or
problem-specific aspects of such search control and the extent to which they might be automaticaly &
sessed or learned online. Another open question is whether the state space heurigtics, in addition to directing
traversal of the PE, can be exploited in the DCSP phases of PEGG's problem solving process. We are dso
interested in a longer and wider few amed at extending this gpproach to handling resource based and tem:
pora planning problems.



References

[1] A.Blumand M.L. Furg. Fagt planning through planning graph andlysis Artificial Intelligence. 90(1-2).
1997

[2] D. Long and M. Fox. Efficient implementation of the plan graph in STAN. JAIR, 10(1-2) 1999.

[3] H. Kautz and B. Sdman. Pushing the envelope: Planning, prepositiond logic and stochastic search. In
Proc. AAAI-96.

[4] Minh Binh Do and Kambhampeti, S. Solving Planning-Graph by compiling it into CSP. In Proc. AIPS
2000.

[5] Frost, D and Dechter, R. 1994. In search of best congtraint satisfaction search. In Proc. AAAI-94.
[6] Bonet, B. and Geffner, H. Planning as heuristic search: New results. In Proc ECP-99, 1999.

[7] Zimmerman, T. and Kambhampati, S. 1999. Exploiting Symmetry in the Planning-graph via Explanation-
Guided Search. In Proc AAAI-99, 1999.

[8] Nguyen, X. and Kambhampaiti, S. Extracting effective and admissible state space heuristics from the
planning graph. In Proc. AAAI-2000.

[9] Fox, M., Long, D. 1998. The automatic inference of sate invariantsin TIM. JAIR 1999.

[10] Kambhampati, S. 1998. On the relations between Intelligent Backtracking and Failure-driven Expla-
nation Based Learning in Congraint Satisfaction and Planning. Artificial Intelligence. Vol 105.

[11] Kambhampati, S. 1999. Improving Graphplan’s search with EBL & DDB. In Proc. IJCAI-99, 1999.

[12] Kambhampeti, S. 2000. Planning Graph as a (dynamic) CSP. Exploiting EBL, DDB and other CSP
search techniquesin Graphplan. Journd of Artificia Intelligence Research, 12:1-34, 2000.

[13] Kambhampati, S., Parker, E., Lambrecht, E. 1997. Unerganding and extending graphplan. In Pro-
ceedings of 4™ European Conference on Planning.

[14] Kautz, H. and Seman, B. Unifying SAT-based and Graph-based Planning. In Proc of 1JCAI-99, Vol
1, 1999.

[15] Mittd, S, Fakenhainer, B. 1990. Dynamic congraint satisfaction problems. In Proc. AAAI-90

[16] Gerevini , A., Schubert, L. 1996. Accderating Partid Order Planners. Some techniques for effective
search control and pruning. JAIR 5:95-137.

[17] McDermoitt, D. 1999. Using regresson graphs to control search in planning. Artificid Intelligence,
109(1-2):111-160, 1999.

[18] Hadum, P., Geffner, H. 2000. Admissible Heurigtics for Optima Planning. In Proc. of The Fifth
International Conference on Artificial Intelligence Planning and Scheduling, 2000.



