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Abstract

Given the intractability of domain-independent planning, the ability to control the search
of a planner is vitally important. One way of doing this involves learning from search
failures. This paper describes SNLP+EBL, the first implementation of explanation based
search control rule learning framework for a partial order (plan-space) planner. We will
start by describing the basic learning framework of SNLP+EBL. We will then concentrate
on SNLP+EBL’s ability to learn from failures, and describe the results of empirical studies
which demonstrate the effectiveness of the search-control rules SNLP+EBL learns using
our method.

We then demonstrate the generality of our learning methodology by extending it to
UCPOP [39], a descendant of SNLP that allows for more expressive domain theories. The
resulting system, UCPOP+EBL, is used to analyze and understand the factors influencing
the effectiveness of EBL. Specifically, we analyze the effect of (i) expressive action
representations (ii) domain specific failure theories and (iii) sophisticated backtracking
strategies on the utility of EBL. Through empirical studies, we demonstrate that expressive
action representations allow for more explicit domain representations which in turn
increase the ability of EBL to learn from analytical failures, and obviate the need for
domain specific failure theories. We also explore the strong affinity between dependency
directed backtracking and EBL in planning.
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1 Introduction

Domain independent planners come in two main varieties -- state-space planners
that search in the space of world states, and partial order (plan-space) planners
that search in the space of partial plans. Several recent studies demonstrate that
searching in the space of plans provides a more flexible and efficient framework
for planning [1,34]. Despite their many perceived advantages, plan-space planners
are not a panacea for computational intractability of domain-independent planning.
In particular, it is widely realized [21,47,40,26] that effective search control is
critically important for getting efficient planning capabilities out of these planners.

A promising way of controlling the search of a planner is to let the planner learn
dynamically from its own failures. There are two complementary ways of doing
this. First, the planner can use the information about the failure to decide what
part of the search tree to backtrack to. Second, and perhaps more ambitious, it can
also learn to avoid similar failures in the future. Both these capabilities can be
provided by the general analysis of explanations of the failures encountered by the
planner. Explanation based learning techniques (EBL), studied in machine learning
[35,10,32], offer significant promise in this direction.

The general idea behind explanation based learning (see Figure 1) is as follows:
given a problem the planner searches through the space of possible solutions and
returns a solution. The learner then explains the failures and successes in the search
tree explored by the planner and, uses these explanations to generate search control
rules that may be used to guide the planner to avoid the failing paths and bias it
toward the successful paths. The performance of the planner may thus be improved
by the use of these learned rules.

Although there has been a considerable amount of research towards applying EBL
techniques to planning, almost all of it concentrated on the state-based models of
planning, as against the partial-order (plan space) models of planning [31,2]. One
of the reasons for the concentration of explanation based learning (EBL) work on
state-space planners has been the concern that a sophisticated planner may make
the learning component’s job more difficult (c.f. [32]). However, given the current
status of plan-space planning as the dominant planning paradigm, it is important
to adapt the speed-up learning techniques to the plan-space planners. In this paper
we present an explanation based learning framework for a partial order plan-space
planner, that is both clean and elegant. We also show that the framework is capable
of significantly improving the performance of a plan-space planner.

First, we will describe SNLP+EBL [29,28], a system that learns search control rules
for SNLP, a causal-link partial order planner [30,1]. Learning is initiated whenever
the planner detects a failure or crosses the depth limit. In either case, SNLP+EBL
explains the failure by isolating a minimal subset of the constraints on the partial plan
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Fig. 1. EBL in Planning

that are together inconsistent. This explanation is then regressed over the planner
decisions, and propagated up to compute explanations at the ancestors of the failing
plan that are predictive of the failure. These explanations are then generalized and
converted into search control rules to avoid similar failures. The regression process
is facilitated by formally characterizing all the planner decisions in terms of the
constraints that should be present in the partial plan for them to be applicable, and
the constraints that are added by them. Apart from facilitating control rule learning,
the regression and propagation processes also form the basis for a powerful and
efficient form of dependency directed backtracking for the planner. We describe
the details of the construction of failure explanations, regression, propagation,
control rule generation and rule generalization. We will also discuss the soundness
of the control rules generated by SNLP+EBL, and empirically demonstrate their
effectiveness in improving the efficiency of the planner.

Although our empirical studies with SNLP+EBL show that control rule learning
is an effective way of improving the performance of a plan space planner, they
also bring up the critical dependencies between the effectiveness of control rule
learning, and a variety of other factors, including the expressiveness of the action
representation used by the planner, the types of backtracking strategies being
employed by the planner as well as the types of goal selection heuristics used. For
example, in our empirical studies with SNLP+EBL, we found that it sometimes had
to rely on the presence of a domain specific theory of failure (usually in the form of
domain axioms). This brings up the importance of domain representation, and poses
the question as to whether a more expressive action description language might
allow richer domain representations and thereby reduce the dependence on outside
failure theories. Similarly, we noted that the analysis done in learning control rules is
very similar to the analysis required to support dependency directed backtracking.
Since dependency directed backtracking itself can improve the performance of
planning to some extent, it is important to understand how it interacts with the use
of learned control rules.

To facilitate the analysis, we started by extending our control rule learning
framework to UCPOP, a partial order planner that is can handle a larger class
of planning domains including those that contain actions with conditional and
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quantified effects, as well as quantified and disjunctive preconditions. The resulting
system, UCPOP+EBL [44,42], is used here as the basis for a systematic empirical
investigation of the effect of (i) expressive action representations (ii) domain
specific failure theories and (iii) sophisticated backtracking strategies on the utility
of EBL. We will show that expressive representations allow us to make the
relations between the preconditions and effects of the actions more explicit, thereby
increasing the effectiveness of learning control rules from analytical failures alone.
This in turn reduces the need for domain specific failure theories to guide EBL. We
will also demonstrate the strong affinity between dependency directed backtracking
and explanation based learning, and clarify as to when EBL can provide savings
over and above those offered by dependency directed backtracking.

1.1 Overview

The rest of this paper is organized as follows. Section 2 provides an overview of
the architecture of SNLP+EBL. Section 3 reviews the SNLP planning algorithm.
Section 4 is the heart of this paper and describes the EBL framework that
is used in SNLP+EBL: it classifies the failures encountered by SNLP during
the planning process, and describes how explanations are constructed for them.
Section 4.2 describes how failure explanations are regressed over planning decisions
to propagate the failure explanations to ancestor levels. Section 4.3 explains the
propagation process that is used to collect explanations that are emerging from
various refinements of a partial plan and take the conjoined explanation up the
search tree. It also explains how search control rules are constructed from failure
explanations. Section 5 discusses the issues regarding the soundness of the search
control rules learned by SNLP+EBL. Section 6 describes how learning from
analytical failures alone is sometimes not sufficient, and it describes a novel
strategy for learning from depth-limit failures using domain axioms. Section 7
describes the experiments conducted to evaluate the effectiveness of search control
rules learned by SNLP+EBL. Section 8 discusses the extensions needed to adapt
the explanation-based learning framework to UCPOP, and Section 9 describes an
empirical evaluation of the performance of UCPOP+EBL. Section 10 describes the
results of a focussed empirical study to analyze the factors affecting the performance
of UCPOP+EBL. Section 11 discusses the related work. Finally, Section 12 presents
our conclusions, and discusses possible future directions. Appendix A provides the
list of symbols used in the paper along with a short description of their intended
meanings.

One final note about the organization is in order. Since there is a wide variation
in the EBL literature in terms of terminology and architectures used, and since the
planning researchers may not be aware of much of this terminology, in this paper,
we will attempt to provide a self-contained description. Readers already familiar
with EBL techniques may thus find some of the exposition redundant.
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2 Architecture of the SNLP+EBL system

In this section we will provide a broad overview of our control rule learning
framework. The SNLP+EBL system consists of two main components: the plan
space partial order planner, SNLP, and the learning component for doing EBL.
Search consists of selecting a partial plan from the search queue, and refining it by
considering a flaw (an unachieved subgoal, or a violation of a previous commitment;
see below) in the partial plan, and generating children plans corresponding to all
possible ways of resolving the flaw. A partial plan is said to be a solution to
the planning problem when it contains no unresolved flaws. The planner does a
depth-limited depth first search. 2 During the learning phase, SNLP+EBL invokes
the learning component whenever the planner encounters a failure. Figure 2 shows
a schematic of the EBL process.

A failure is encountered when SNLP produces a partial plan that cannot be refined
further, or the search crosses the depth limit. Once a failure is encountered,
SNLP+EBL generates an initial explanation from the failed partial plan. The
explanation of failure is a subset of constraints on the partial plan that are together
inconsistent (in that as long as they hold, the partial plan cannot be refined into
a solution). The failure explanations of the leaf nodes are back-propagated to the
ancestor nodes by regressing them over the planner decisions that led to the failing
nodes. A partial plan at an intermediate node of the search tree is considered to
be failing if all the branches below it are failing. The explanation of failure for
the partial plan is the conjunction of the regressed explanations of failures of all
its children nodes, along with the description of flaw that they were attempting to
resolve (see Figure 2(b)).

Learning is done incrementally and in-step with planning. Specifically, whenever,
a partial plan fails, its failure explanation is constructed, regressed over the decision
leading to it, and stored at the parent plan. Search resumes at the other unexplored
children of the parent plan. When all the children are explored and are found to be
failing, the explanation of failure of the parent node is constructed and propagated
up to its parent node.

Given the explanation of failure of a partial plan, a search control rule can be
generated that recommends rejecting any partial plan produced in the future, if it
satisfies the failure explanation. To increase the coverage of the rule, the steps and
objects comprising the failure explanation are generalized (so that other steps and
objects can take their place), without leading to a loss of completeness. The search

2 Note that the standard implementations of both SNLP and UCPOP use best first search,
with a user given heuristic. We implemented depth-first search, along with the ability
to EBL and dependency directed backtracking, as described in this paper. Note also that
although depth first search is useful for learning search control rules in the first place, once
learned, the rules can be used in non-depth-first search regimes also.
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Fig. 2. Schematic overview of control rule learning process in SNLP+EBL and
UCPOP+EBL

control rules thus generated are used to improve either the remaining search of the
current problem, or the search in the future problems.

In addition to generating the control rules, the regression and propagation processes
also facilitate a general and efficient way of dependency directed backtracking,
which can significantly improve the performance of the underlying planner. In the
next two sections, we discuss the details of the planning and learning processes.

3 The base level planner : SNLP

SNLP is a partial order planner that uses causal links to keep track of its
commitments [30,1]. Given a planning problem in terms of a completely specified
initial state I , a set G of goals, and a set of legal operators/actions in the domain,
the objective of SNLP is to come up with a sequence of operators drawn from the
given set, which, when executed from the initial state, give rise to a state where
the conditions specified in G are all true. The domain operators are specified in
the STRIPS operator formalism [36], involving precondition, add and delete lists.
Typically, a family of operators are specified compactly as an operator schema,
such that any instance of the schema gives rise to a legal operator. Figure 3
shows the example of an operator schema, Puton(x; y; z) in blocks world. In some
planners, the add and delete lists are combined into a single list of effects (with the
delete list literals appearing negated). For a specification of Puton(x; y; z) in this
way, see Figure 16.

SNLP searches in the space of partial plans. Roughly speaking, partial plans are
a partially ordered set of actions. SNLP starts with a null plan that consists of a
dummy initial and final steps. The effects of the initial step correspond to conditions
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Puton (x from y to z)
Preconditions : Clear(z); Clear(x); On(x; y)
Add : On(x; z); Clear(y);
Delete: Clear(z); On(x; y)
Bindings: (z 6� Table); (x 6� z)

Fig. 3. A blocks world operator schema

true in the initial state of the problem. Similarly, the preconditions of the final
step correspond to the conditions required in the goal state of the problem. The
planning process consists of repeatedly picking up a precondition of a step and
‘‘establishing’’ it (making it true), or alternatively resolving conflicts between
different establishments. Both establishment and conflict resolution operations are
‘‘refinement’’ operations in that they only add further constraints to the partial
plan, without deleting any existing constraints.

3.1 Plan Representation

Formally, each partial plan in SNLP is a 7-tuple:

hS; O;ST ;B;L; E; Ci

where:

-- S is the set of actions (step-names) in the plan; S contains two distinguished
step names s0 and s1, called the initial and final step of the plan respectively (in
the paper s0 is also referred to as the step 0 or step I , and the s1 is also referred
to as G).

-- ST is a symbol table, which maps step names to domain operators. The special
step s0 is always mapped to the dummy operator start, and similarly s1 is
always mapped to fin. The formal reason ST needs to be separate from S is
to allow for the fact that more than one step in the plan may correspond to the
same action. However, for simplicity, we will often omit ST field from the plan
specification in this paper.

-- O is a partial ordering relation, representing the ordering constraints over the
steps in S . Ordering constraints between steps are denoted by the relation ‘‘�’’.
For example, (s1 � s2) 2 O means that the step s1 is constrained to precede s2

in the plan. Apart from the direction ordering constraints, O is also implicitly
assumed to contain all the transitive ordering constraints that follow from them.
Thus, given two ordering constraints s1 � s2 and s2 � s3 that belong to O, the
ordering relation s1 � s3 is considered to be present inO.

-- B is a set of codesignation (binding) and non-codesignation (prohibited bindings)
constraints on the variables appearing in the preconditions and postconditions
of the operators. The codesignation constraints between variables x and y are
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denoted as x � y while the non-codesignation constraints between variables
are denoted x 6� y. The notation mgu(p; q) stands for the minimal set of
variable bindings that are needed to make the conditions p and q necessar-
ily codesignate. For example, given a partial plan with empty binding set,
mgu(On(x; y); On(u;B)) = (x � u) ^ (y � B). Like the set of ordering con-
straints, all the codesignation binding constraints that transitively follow from
those present in B are also implicitly assumed to belong to B.

-- E is the set of effects of the plan, i.e., tuples s e
! such that s 2 S and e belongs

to the add list (or:e belongs to the delete lis)t of the operator corresponding to s.
The assertions true in the initial state of the planning problem are treated as the
effects of the initial step. We use the special notation initially�true(e) to
denote that e is an effect of the initial step (i.e., initially�true(e) � s0

e
!).

-- C is the set of preconditions of steps of the partial plan, i.e, tuples c@s such that
c is a precondition of step s 2 S (or to be more precise, the preconditions of the
operator corresponding to step s). The assertions in the goal state of the planning
problem are treated as the preconditions of the final step s1 of the plan.

-- L is a set of causal links of the form s
p
! w where s;w 2 S and p is an effect

of s and a precondition of w. The steps s and w are called, respectively, the
source and the destination (or alternately producer and consumer) of the causal
link. The causal link s

p
! w is said to support the precondition constraint p@w.

This constraint is satisfied as long as ‘‘s comes before w and gives p to w, and
no step in the plan that can possibly come in between s and w is allowed to
delete p.’’ 3

A solution to the planning problem is a sequence of actions, which when executed
from the initial state, results in a state of the world that satisfies all the goals. A
partial plan is best understood as a shorthand notation for the set of action sequences
that are consistent with the constraints specified in the partial plan. A partial plan is
said to be complete (i.e., planning can terminate on it) if every topological sort of
the partial plan is a solution to the planning problem. The steps, effects, bindings,
orderings, causal links, and preconditions can all be seen as constraints on the
partial plan in that they constrain the set of solution plans consistent with the partial
plan. (For more on the semantics of partial plans, see [25]).

3 The original description if SNLP [30] also ensures that no intervening step can delete all
the condition supported by the causal link. This is however not required for completeness
[25].
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3.2 The planning process

SNLP starts its planning process with the ‘‘null’’ plan

*
S: fs0; s1g;O: fs0 � s1g; C: fgi@s1jgi 2 goal stateg;

E: fs e
! je 2 initial stateg;L: ;

+

where C is initialized with the top level goals of the problem (which, by convention
are the preconditions of s1, initial state conditions are the effects of s0).

The goal of planning is to add binding constraints to the null plan until it becomes a
complete plan (as defined earlier). This process is called plan refinement. To guide
the refinement, the incompleteness of a partial plan is characterized in terms of
entities called ‘‘flaws’’. Flaws can be seen as the symptoms of incompleteness of
the plan; when all the flaws are resolved, the plan becomes complete. There are two
types of flaws. The plan is said to contain an open condition flaw, if it contains a
precondition constraint, that is not supported by any causal link. It is said to contain
an unsafe link flaw if it contains a causal link constraint, and a step (called a threat)
that can possibly come between the producer and consumer of the causal link and
delete the condition being supported by the causal link.

It is important to note that flaws can be formally stated in terms of the constraints
on the partial plan. For example, an open condition flaw involving the precondition
p@s can be described as:

p@s 2 C^ 6 9s02S s
0 p
! s 2 L

Similarly, an unsafe causal link flaw involving a link s0
p
! s and a threatening step

st can be described as:

s0
p
! s 2 L ^ st

:q
!2 E ^mgu(p; q) 2 B ^ (st � s0) 62 O ^ (s � st) 62 O

It can be easily shown that a partial plan that contains no open condition flaws
or unsafe link flaws is complete (i.e., all of its topological sorts correspond
to solutions). The planning process thus consists of selecting a flaw from an
incomplete partial plan and resolving it by adding constraints to the partial plan.
A flaw gets resolved when the constraints comprising its description are no longer
true. Notice that since flaw descriptions contain ‘‘62’’ constraints, flaws can be
resolved by adding constraints to the plan. 4

4 From a formal view point, this differentiation between flaws and ordinary partial plan
constraints is important. In refinement planning, constraints on a partial plan never go
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If the flaw is an open condition c@s, SNLP establishes it by either using an effect
q of an existing step (simple establishment) or by a newly introduced step se (step
addition). In either case, the O and B fields of the partial plan are updated to
make se precede s, and q codesignate with c. Finally, to remember this particular
establishment commitment, a causal link of the form se

c
! s is added to L. In

addition to this, in the case of step addition, the E; C and B fields of the partial plan
are updated with the effects, preconditions and binding lists of the new step. Notice
that in either case the specific flaw will no longer be present since the causal link
is added by the establishment operation.

If the flaw is an unsafe link involving the causal link s
p
! w and the threatening

step st, it is resolved by either promoting st to come afterw, or demoting it to come
before s (in both cases, appropriately updating O). 5 In either case, the flaw will
not be present in the partial plans after the promotion/demotion refinement, since
the threat is no longer unordered with respect to the producer and consumer step.
A threat for a causal link is said to be unresolvable if both these possibilities make
eitherO or B inconsistent.

SNLP does not have to backtrack over the selection of a flaw to maintain
completeness, but has to backtrack over the different ways of resolving the flaw
(e.g. it has to consider all possible establishment options for each open condition,
and both promotion and demotion options for a threat).

We can now summarize the various types of decisions taken by SNLP:

-- If the flaw is an open condition, possible decisions are:
� Simple Establishment: Establish the condition by using an effect of an existing

step in the partial plan.
� Step Addition: Establish the condition by selecting an operator in the domain

which can give that condition, and introducing that step into the plan.
-- If the flaw is an unsafe link, possible decisions are:
� Promotion: Order the threatening step to come after the consumer of the causal

link.
� Demotion: Order the threatening step to come before the contributor of the

causal link.

All these decisions are ‘‘refinements’’ to the partial plan in the sense that they add
additional constraints to the partial plan, without removing any existing constraints.
It is straightforward to formalize these decisions as STRIPS-type operators whose

away, they only accumulate. However, ‘‘flaws’’ do go away during planning. This can be
reconciled by the fact that flaws go away as constraints are added.

5 Readers familiar with SNLP algorithm in [1] will note that by defining a threat in
terms of necessary codesignation, rather than possible codesignation, we obviate the need
for separation as a way of resolving unsafe links. Empirical studies [40] show that this
strategy tends to improve the efficiency of SNLP.
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Fig. 4. Demotion decision in STRIPS representation

Action Precond Add Dele

Roll(ob) - Cylindrical(ob) Polished(ob) ^ Cool(ob)

Lathe(ob) - Cylindrical(ob) Polished(ob)

Polish(ob) Cool(ob) Polished(ob) -

Fig. 5. Description of a simple job-shop scheduling domain

preconditions and effects are stated in terms of the constraints on the partial plan.
For example, demotion decision can be formally represented as shown in the
Figure 4. The preconditions of the decision consist of the set of constraints on the
plan that give rise to an unsafe link flaw. The effect of the decision is to add a new
ordering constraint to the partial plan. In Section 4.2, we will see that this view of
planning decisions will be useful in understanding the regression process.

Example: We shall now illustrate SNLP’s planning algorithm with an example
from a simplified job-shop scheduling domain (which will be used as a running
example throughout the discussion of SNLP+EBL). The operators describing this
domain are shown in Figure 5 The shop consists of several machines, including a
lathe and a roller that are used to reshape objects, and a polisher which is used to
polish the surface of a finished object. Given a set of objects to be polished, shaped,
etc., the planner’s task is to schedule the objects on the machines so as to meet
these requirements.

Our planning problem is to polish an object A and make its surface cylindrical.A’s
temperature is cool in the initial state. Figure 6 shows the complete search tree for
the problem. SNLP starts with the null plan, and picks up the open condition flaw
Cylindrical(A)@G. This flaw is resolved by adding the step 1:Roll(A) which
has an effect Cylindrical(A). SNLP then resolves the other open condition flaw
Polished(A)@G with the step 2:Polish(A). Since the step 1:Roll(A), deletes
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Fig. 6. Search Tree illustrating SNLP planning process. The figure uses a lisp like notation
for the plan constraints. Causal link constraints are shown as three element lists, and open
conditions and preconditions are shown as two element lists.

Polished(A), it is now a threat to the link 2
Polished(A)
! G. This threat is resolved by

demoting step 1:Roll(A) to come before 2:Polish(A). The step 2:Polish(A)
also introduces a new open condition flaw Cool(A)@2. SNLP establishes it using
the effects of the initial step 0. Since Roll(A) also deletes Cool(A), it threatens
this last establishment. When SNLP tries to resolve this threat by demoting step
1 to come before step 0, it fails, since 0 already precedes 1. SNLP backtracks
chronologically until the point where it has unexplored alternatives -- node A

in this example and explores other possible alternative. It achieves Cool(A)@G

using Lathe(A) and then achieves Polished(A) using the operator Polish(A).
It succeeds in this path and returns a solution.

4 Explanation based learning

As illustrated in the job shop scheduling example, when SNLP encounters an
inconsistent plan, it considers the search branch passing through that partial plan
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to be failing, and backtracks. SNLP+EBL analyzes the failure and generates search
control rules that guide the planner to avoid similar failures in future. A search
control rule may either be in the form of a selection rule or a rejection rule. Since
SNLP+EBL concentrates on learning from failures, it focuses on learning rejection
rules.

Search control rules aim to provide guidance to the underlying problem solver at
critical decision points. As we have seen, for SNLP these decision points are the
selection of flaws (open conditions, unsafe links), establishment choice, including
simple-establishment and step-addition (operator selection); threat selection; and
threat resolution, including promotion, demotion. Of these, it is not feasible to learn
goal-selection and threat-selection rules using the standard EBL analysis since
SNLP does not backtrack over these decisions. 6 SNLP+EBL learns search control
rules for the other decisions.

In this section, we will describe the process of control rule learning in SNLP+EBL,
starting with the initial detection and explanation of failures, and continuing through
regression and propagation of leaf node failure explanations to intermediate nodes,
and finally learning and generalizing search control rules from these failure
explanations.

4.1 Failures and Initial Explanation Construction

SNLP+EBL flags a partial plan to be a failing plan in three situations:

Analytical Failures: These failures are flagged when the planner detects order-
ing or binding inconsistencies in the partial plan, or finds that there are no
establishment choices for resolving an open condition flaw.

Depth Limit Failures: These failures are flagged whenever the search crosses the
depth-limit. The idea here is to stop the planner from searching in fruitless paths.

Search Control Rule Failures: These failures are flagged whenever a (previously
learned) search control rule rejects the search branch.

In each case, SNLP+EBL attempts to ‘‘explain’’ the failure by listing a set of
constraints on the failing partial plan that are together inconsistent. This constraint
set is called the explanation of the failure of the partial plan. Failure explanations
constructed this way are ‘‘sound’’ in that partial plans that contain these constraints
can never be refined into a solution for the problem.

6 This doesn’t however mean that threat selection and goal selection order do not affect
the performance of the planner. It merely means that the best order cannot be learned
through failure based analysis.
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We will start by describing the failure explanations for various types of analytical
failures:

Ordering failures: These arise when there is a cycle among the orderings of two
steps in a partial plan. For example, whenever two steps s1, and s2 are ordered
such that (s1 � s2) 2 O ^ (s2 � s1) 2 O, then this represents an inconsistency
in the partial plan. The explanation for the ordering inconsistency is simply the
conjunction of inconsistent constraints: (s1 � s2) ^ (s2 � s1) (for simplicity, we
avoid mentioning that these constrains are present in the O part of the partial
plan; s1 � s2 is understood as the constraint (s1 � s2) 2 O).

Binding failures: These arise when there is an inconsistency in the bindings; for
example, if there exists a variablex in the partial plan such that (x� A)^(x 6� A).
The explanation for this binding inconsistency is: (x � A) ^ (x 6� A)

Establishment Failures: This failure occurs when the planner encounters an open
condition p@s in a partial plan P , which has no simple establishment or step-
addition possibilities. 7 In this case, the failure explanation needs to capture two
facts: (i) there are no operators in the domain which can give the condition p

and (ii) p is not true in the initial state. Of these two, the first clause will remain
true even if we change to a new problem (since the domain specification remains
the same), and thus does not have to be made part of the failure explanation. In
contrast, the second clause may not remain true in a new problem (since the initial
state may change from problem to problem), and should thus be a part of the
failure explanation. Accordingly, the explanation of failure given by SNLP+EBL
for P will be: p@s ^ :initially�true(p), where initially�true(p)
is true if p is part of the initial state of the problem. 8

In contrast to analytical failures, failures flagged at depth limits do not have direct
failure explanations. Simply saying that the plan crossed the depth limit does not
suffice, and we need to isolate the subset of constraints on the plan that may together
be inconsistent. Sometimes, this can be done by analyzing the partial plan at the
depth limit with respect to a set of strong consistency checks. In section 6, we will
explain an instance of this strategy which uses domain-axiom based consistency
checks to explain the implicit failures at depth limits, and construct explanations
for these failure.

Finally, SNLP+EBL may reject a specific search branch outright because a
previously learned search control rule recommends rejecting this branch. In such a
case, the antecedent of the control rule serves as the explanation of failure.

7 Note that not having establishment possibilities is different from having establishment
possibilities all of which eventually end up in failing plans.

8 Note that it is possible that even if p were true in the initial state, we may still not have
been able to use it to establish p at s (perhaps due to interactions with other goals). Thus,
by adding :initially�true(p), we may sometimes be taking a failure explanation
that is more specific than necessary; see Section 5 for further discussion on this.
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Node: n

Node: n’

Plan: P

Plan: P’

FAIL

Decision: d

Fig. 7. A part of a failure branch to explain the regression process

4.2 Regression

Consider the scenario shown in Figure 7, where a partial plan P is flagged as failing
at the search node n. Suppose SNLP+EBL gave E as the explanation of failure
for P . Suppose further that P was produced by refining P 0 with the decision d.
Given that P is failing, ideally we would have liked to avoid generating it in the
first place. To do this, we need to isolate the constraints in P 0 that are predictive
of the failure of P . Specifically, we would like to know what is the minimal set of
constraintsE0 that must be present in P 0 such that after taking the decision d, SNLP
will generate a failing plan. Since we know that P is failing because it contains the
constraints E, E0 must be such that if E0 is true before decision d is taken, then E
will be true in the resulting partial plan. This process of back-propagating a failure
explanation over a decision is called regression.

Formally, regression of a constraint c over a decision d is the set of constraints that
must be present in the partial plan before the decision d, such that c is present after
taking the decision. 9 Regression of this type is typically studied in planning in
conjunction with backward application of STRIPS-type operators (with add, delete,
and precondition lists), and is quite well-understood (see [36]).

In state based planners, the planner decisions correspond closely to applying
domain operators to world states, and thus regression over a decision is very close

9 Note that in regressing a constraint c over a decision d, we are interested in the weakest
constraints that need to be true before the decision so that c will be true after the decision is
taken. The preconditions of the decisions must hold in order for the decision to have been
taken any way, and thus do not play a part in regression.
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S3 S1 S2 S4

Fig. 8. An example showing transitive constraints

to regression over operators. In contrast, the decisions in partial order planners
convert a partial plan to another partial plan. Even here, it is quite easy to formalize
regression once we recall (see Section 3.2) that the planning decisions taken by
SNLP can be seen as STRIPS-type operators with preconditions and effects that
consist of constraints on the partial plan.

Simply put, regressing a constraint c over a decision d results in True if the
constraint c is added by d, and c itself if d does not add this constraint.

Regress(c; d) = True, If c 2 add(d) (clause (i))
= c otherwise (clause (ii))

One exception to this rule occurs when the constraint being regressed belongs to
a constraint family that has transitivity property. A constraint family is said to be
transitive if the presence of two constraints c1 ^ c2 of that family together imply
the presence of a third constraint c3 (i.e., c1 ^ c2 ` c3). Ordering and codesignation
constraints in a partial plan are transitive constraints. For example, two ordering
constraints s1 � s2 and s2 � s3 imply a third ordering constraint s1 � s3. In
contrast, causal links, effects and preconditions are not transitive constraints.

When a planning decision adds a transitive constraint c to the plan, it is in effect
adding a set of all the constraints that transitively follow. For example, in Figure 8,
steps s3 and s4 are not ordered with respect to each other. But if a decision orders
steps s1 and s2, it also transitively orders steps s3 and s4, and this needs to be taken
into account in regressing ordering constraints.

Specifically, regression of a transitive constraint c over a decision d has to consider
the case where the plan before d has constraint c0 and d adds the constraint c00 such
that c0 and c00 transitively entail c. Thus,

Regress(c; d) = c0 if c00 2 add(d) ^ (c00 ^ c0) ` c (clause (iii))

It is possible that there could be multiple different sets of constraints c0 such that
each set of constraints along with c00 could entail c. In such cases, regression of a
constraint c over a decision d results in disjunction of all such sets of constraints c0.
For the example in Figure 8, the regression of (s3 � s4) over the ordering decision
(s1 � s2) results in (s3 � s4) _ [(s3 � s1) ^ (s2 � s4)] (with the first part coming
from the second clause of the regression, and the second part coming from the third
clause).
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Demote(s1
:p00

! ; s2
p0

! s3)

Resolve the conflict between the link s2
p0

! s3 and the effect p00 of step s1

Preconditions:s2
p0

! s3 2 L

p00
s1!2 E

mgu(p0; p00) 2 B
(s1 � s2) 62 O
(s3 � s1) 62 O

Effects: O O + (s1 � s2)

Constraint Result Reason

(s0 � s00) True if (s0 � s1) ^ (s00 � s2) clause(i)

(s0 � s00)_ clause (ii)

[(s0 � s1) ^ (s2 � s00) ] clause (iii)

Fig. 9. Regression of various constraints over demotion decision. The precondition, effect,
binding and causal link constraints are unaffected.

Figure 9 shows the regression of various constraints over the demotion decision.
Since the demotion decision adds only ordering constraints, regression of all the
other constrains such as open conditions and causal links over a demotion decision
leaves them unchanged (clause (ii)). Since demotion decision adds (s0 � s00), the
regression of (s0 � s00) over the demotion decision is True (clause (i)). Like any
ordering decision, the demotion decision also orders all the steps that precede s1 to
come before all the steps that follow s2. As shown in Figure 8, say (s0 � s1) and
(s2 � s00) belong to a partial plan that is present before taking the above demotion
decision. After taking the demotion decision to order s1 to come before s2, s0 is
also ordered to come before s00. Since

[(s0 � s1) ^ (s2 � s00)] ^ (s1 � s2)) (s0 � s00);

the result of the regression of the ordering (s0 � s00) over the demotion decision
is [(s0 � s1) ^ (s2 � s00)] _ (s0 � s00). Regression of constraints over a promotion
decision is very similar.

Similarly, Figure 10 shows a step addition decision, stepadd(s1
p00

!; s2@p0), (which
adds a step s1 into a partial plan to achieve the precondition p0@s2) as well as how
various constraints are regressed over it. As shown in the decision, step addition
augments the steps, links, orderings, bindings, preconditions as well as effects of
the partial plan. In the case of orderings, in addition to ordering the new step to
precede the step where the precondition is required, a special ordering is added to
make the new step follow the initial step (so as to maintain the invariant that all steps
need to follow the initial step, and precede the goal step). In the case of bindings,
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in addition to adding enough bindings to make sure that p0 and p00 will necessarily
codesignate, any pre-specified bindings of the operator (given in its ‘‘bindings’’
field) corresponding to the new step are also added to the plan. For example, if
the new step is the blocks world operator puton(x; y; z), then the internal binding
constraints of the operator may be x 6� y; y 6� z; x 6� z and z 6� Table; all of these
are added to the bindings list of the plan.

It is interesting to note the regression of ordering decisions, especially the ordering
constraints s � sn in the fifth row of the table in the figure. In this case, regressing
s � sn over the step addition decision results in the condition init�step(s)
(where init�step() is a predicate that evaluates to true if s is the initial step of
the plan). This is because the step addition decision automatically adds a precedence
relation between s1 and the initial step of the plan.

Regression over the other two planning decisions, viz., promotion and simple
establishment, are similar, respectively to regression over demotion and step
addition.

Using Regression in EBL: Now that we have discussed regression of indi-
vidual constraints over the planning decisions, regression of failure explanations
is straightforward. In particular, since the failure explanation is a collection of
constraints on the partial plan (Section 4.1), regressing it over a decision simply in-
volves individually regressing each of the constraints comprising it, and conjoining
the results. Formally, if E = c1 ^ c2 ^ :::^ ci, then

Regress(E; d) = Regress(c1; d) ^Regress(c2; d) ^ ::: ^Regress(ci; d)

One further clarification is needed regarding the use of regression in EBL. As
noted above, regression of E over a decision d sometimes results in a disjunction
of E 0 _ E00 _ ::. Since the motivation for using regression is to find out what
part of the parent plan is responsible for generating the failure, we use only that
part of the regressed explanation which is present in the parent partial plan.
In Figure 8, when (s3 � s4) is regressed over the decision to add (s1 � s2), it
results in (s3 � s4) _ [(s3 � s1) ^ (s2 � s4)]. However, SNLP+EBL considers
[(s3 � s1) ^ (s2 � s4)] as the result of regression because the constraints (s3 � s1)
and (s2 � s4) are present in the partial plan before the ordering decision.

4.3 Propagation of Failure Explanations

In the previous section, we have explained how failure explanations are back-
propagated over a single decision. We will now describe how the regressed
explanations are combined and propagated up the search tree.
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StepAddition(sn
p00

!; p0@sd)
Use the effect p00 of sn to support the precondition p0@sd

Preconditions: p0@sd 2 C

s0
p0

! sd 62 L
p00 2 effects of sn

Effects: S  S + sn

L  L + sn
p0

! sd
O  O + (sn � sd)
O  O + f(s0 � sn)jinit�step(s0)g (***)
B  B + mgu(p0; p00) + Internal bindings of sn
C  C + fp@snjp 2 preconditions of sng
E  E + fsn

e
! je 2 effects of sng

Constraint Result Reason

q0@s0 True if s0 � sn

q0@s0 otherwise

s0
q0

! True if s0 � sn

s0
q0

! otherwise

s0
q
! s00 True if s0 � sn

s0
q
! s00 otherwise

(s0 � s00) True if s0 � sn ^ s00 � sd

[(s0 � sn) ^ (sd � s00)]_ if s0 6� sn ^ s00 6� sd

(s0 � s00) otherwise

(s � sn) init�step(s)_ If s = s0

(s � sn) otherwise

x � y True if x � y 2 mgu(p0; p00) [ bindings(sn)

(x � u) ^ (y � v) if u � v 2 mgu(p0; p00) [ bindings(sn)

x � y otherwise

x 6� y True if x 6� y 2 bindings(sn)

x 6� y otherwise

Fig. 10. Regression of constraints over step addition decision that adds a step sn to achieve
a condition p0 at step sd. The top part describes the step addition decision in terms of its
preconditions and effects. The table below shows how individual constraints are regressed.
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Node: n1

Explanation: E1 Explanation: E2FAIL!! FAIL!!

Node: n2

Node: n

Node: m

Decision: d1 Decision: d2

Regress(E1, d1) = E1’ Regress(E2, d1) = E2’

Explanation: E
Decision: d’

Plan: Pm

Plan: Pn1 Plan: Pn2

Plan: Pn

Decision: d

Fig. 11. An example for propagation

Consider the search tree fragment shown in Figure 11, where node m has a
descendant n which then leads to two failing nodes n1 and n2. Since both children
of n failed, we would like the planner to avoid generating n in future by rejecting
the decision leading to it. To facilitate this, however, we need to compute the
constraints in the partial plan Pm at node m that are responsible for failure of node
n. In order to compute the failure reasons at node m, we regress the explanation
of failure at node n over the decision d, as explained earlier. To do this, we first
need to compute the explanation of failure at node n. Suppose that n1 and n2 have
the failure explanations E1 and E2 respectively. Suppose further that these nodes
are generated from node n to resolve a flaw, say F , by taking decisions d1 and
d2 respectively. Assume that these are the only two ways of resolving the flaw.
Suppose the result of regressing E1 and E2 over the decisions d1 and d2 are E10

and E20 respectively.

To compute the failure explanation E at node n, we note that as long as the flaw F

exists at node n, the decisions d1 and d2 will be taken and both these will lead to
failure. Thus the explanation of the failure at node n is:

E(n) =Constraints describing the F law^
Regress(E1; d1) ^Regress(E2; d2)

More generally, the propagation rule for computing an explanation at node n,
which has a flaw F and m search branches for resolving it, corresponding to the
decisions d1 � � � dm, and the resulting search nodes n1 � � � nm, and failure explanation
E1 � � �Em is:

E(n) = Constraints describing the flaw F ^8ni Regress(Ei; di)

It is interesting to note that we conjoin the failure explanations of the children
branches with the description of the flaw that is being resolved by all those
branches, rather than the preconditions of the decisions that attempt to resolve it.
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Fig. 12. A partial analysis of failures in the Job-shop Scheduling example. Negated effects
are shown with

This makes sense because as long as the flaw is present, these decisions will be used
to resolve it, thus resulting in a failure. 10 This method also gives rise to a more
general failure explanation than would be obtained by conjoining the preconditions
of the decisions with the failure explanations of the corresponding branches. This
is because the preconditions of the individual decisions are all supersets of the flaw
description.

Coming back to the example in Figure 11, the failure explanation E computed at
node n can now be regressed over the decision d leading to n, to compute the
constraints under which the decision d will necessarily lead to a failure from the
node m.

Example: Let us consider the search tree described in the Figure 12, which
shows the lower part of the failure branch of the example in Figure 6. When SNLP
failed at node H and I in the Figure 12, EBL explains these failures in terms of
ordering inconsistencies as shown in the figure. When we regress the explanation

of node H over the demotion(1
:Cool(A)
! ; 0

Cool(A)
! 2), it results in the ordering

constraint (0 � 1). Similarly when we regress the explanation of node I over the

promotion(1
:Cool(A)
! ; 0

Cool(A))
! 2), it results in the ordering constraint (1 � 2).

Now, at node G, we have the explanations for the failure of the branches H and I .
Thus, the explanation at node G (also shown in Figure 12) is:

E(G) = Constraints describing the Unsafe link flaw ^ (0 � 1) ^ (1 � 2)

10 Alert readers might note that this is a simplified model, as the number of resolution
possibilities for an open condition flaw depends on the current partial plan. See Section 5
for a discussion of why soundness is preserved depite this.
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Fig. 13. An example for dependency directed backtracking

= (0
Cool(A)
! 2) ^ 1

:Cool(A)
! ^(1 6� 0) ^ (2 6� 1) ^ (0 � 1) ^ (1 � 2)

= (0
Cool(A)
! 2) ^ 1

:Cool(A)
! ^(0 � 1) ^ (1 � 2)

The last step follows from the simplification (s1 6� s2) ^ (s2 � s1)‘equiv(s2 � s1)
(since (s2 � s1) implies (s1 6� s2) in any consistent plan). This explanation
can be interpreted as follows: if there are three steps s0, s1 and s2 such that

(s0 � s1) ^ (s1 � s2) and if a causal link s0
Cool(A)
! s1 is threatened by the step s1,

prune the node from search space. This failure explanation is sound, because as
long as the unsafe link flaw exists in the partial plan, the planner will take demotion

and promotion which will lead to failure.

4.4 Avoiding over-specific explanations in propagation

The propagation process as described above may sometimes give over-specific
explanations. To see this, consider the example described in Figure 13. Here, both
the children of node B fail to resolve an open condition flaw Q2@O1, since Q2
is not given by either the domain operators or by the initial state. Recall from our
discussion in Section 4.1, that SNLP+EBL constructs initial explanations for these
failures as shown in the Figure 13. According to the propagation rule described
earlier, the explanation at node B will be:

E(B)=Q1@O1^Regress(E1; stepadd(O3
Q1
!; Q1@O1))

^Regress(E2; stepadd(O4
Q1
!; Q1@O1))

(where E1 = E2 = Q2@O1 ^ :initially�true(Q2)

=Q1@O1 ^ Q2@O1 ^ :initially�true(Q2)
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When computed this way, the explanation at node B has the constraint Q1@O1.
This is clearly redundant since nodeB will fail as long as the preconditionQ2@O1
exists in the plan and Q2 is not given by the initial state. Inclusion of Q1@O1 is
thus going to make the failure explanation over-specific. When this constraint is
removed, the failure explanation at node B becomes the same as that at node D.
This is reasonable since when the failure explanation at D is regressed over the step
addition decision leading from B to D, the failure explanation remains unchanged.

To handle this formally, we change the propagation method such that when
regression does not change the explanation of a failure of a node n, the complete
explanation of failure at the parent node of n will be the same as explanation of
failure of node n. Specifically,

E(n) = E1 If Regress(E1; d1) = E1
= Constraints describing the flaw^ Regress(E1; d1) ^ Regress(E2; d2) Otherwise

More generally, the propagation rule for computing an explanation at node n,
which has a flaw F and m search branches for resolving it, corresponding to the
decisions d1 � � � dm, and the resulting search nodes n1 � � � nm, and failure explanation
E1 � � �Em is:

E(n) = Ei If Regress(Ei; di) = E(ni)
= Flaw resolved at n ^8ni Regress(Ei; di) Otherwise

Notice that we do not conjoin results of regression of explanations of other siblings
of node ni, if the regression does not change the explanation Ei over the decision
di. To see why this is justified, we start by noting that since SNLP+EBL considers
only sound failure explanations, Ei, which is the failure explanation of ni must
already be an inconsistent constraint set. When the regression of Ei over di leaves
Ei unchanged, it implies that Ei is present in the partial plan at node n. This means
that the partial plan at node n is already inconsistent and Ei is a sound explanation
of failure for n. Thus, n cannot be refined into a solution and consequently there is
no point in exploring its other refinements.

4.4.1 Dependency directed backtracking

In the context of on-line learning (i.e., doing learning along with planning),
the preceding discussion suggests an elegant methodology for exploiting the
explanation and regression procedures to do dependency directed backtracking.
If an explanation of a node n, E(n), does not change after regressing it over a
decision d(n), then the planner can safely prune all other siblings of node n. Thus,
we can effectively backtrack over n’s parent node, without losing completeness.
Furthermore, we can continue the propagation process by regressing E(n) over
the decision leading to n’s parent, and see if further backtracking is possible. This
process stops only when we encounter a decision such that regressing E(n) over it
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Procedure Propagate(ni)

A co-routine with search that recursively propagates the failure explanation
of the node ni over the decision taken to reach that node,
restarting search appropriately.
parent(ni): The partial plan that was refined to get ni.
d(ni): decision taken get to node ni from its parent node;
E(ni): explanation of failure at ni. It is initially set for the leaf nodes.

Computed recursively for the non-leaf nodes.
F (ni): The flaw that was resolved at this node.

0. Set d d(ni)
1. E0 Regress(E(ni); d)
2. If E 0 = E, then (dependency directed backtracking)
E(parent(ni)) E 0; Propagate(parent(ni))

3. If E 0 6= E(ni), then
3.1. If there are unexplored siblings of ni

3.1.1 Make a rejection rule rejecting the decision d(ni), with E0

as the rule antecedent. Generalize it and store it in the rule set
3.1.2. E(parent(ni)) E(parent(ni)) ^ E 0 (Update parent’s explanation)
3.1.3. Restart search at the first unexplored sibling of node ni

3.2. If there are no unexplored siblings of ni,
3.2.1. Set E(parent(ni)) E(parent(ni)) ^ E 0 ^ F (parent(ni)

(where F is the set of constraints that describe the flaw
that the decision d(ni) is resolving)

3.2.3. Propagate(parent(ni))

Fig. 14. The complete procedure for propagating failure explanations

results in a failure explanation that is not the same as E(n).

Example: In the example described in Figure 13, since the explanation of failure
at node D did not change after regression over the step addition decision, the
planner can prune the other sibling of the node D, i.e. node E, and continue the
propagation of explanation above node B with the failure explanation of B set to
the same as that of D.

Our implementation of SNLP+EBL folds the propagation into the search process
to provide a default dependency directed backtracking. Figure 14 shows the full
description of the propagation algorithm.

From the description of the Propagate procedure in Figure 14, we note that when
DDB occurs, i.e., when the failure explanation E of a plan P regresses unchanged
over the decision d leading to that plan, the parent P 0 of P will have its failure
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explanation set to E. This is so even if P is not the first child of P 0 that has been
refined. The the results of regressing the failures of the other children of P 0 will
be discarded as soon as DDB occurs under P . This makes sense because E is in
and of itself a set of inconsistent constraints, and can thus completely explain the
failure of P 0.

4.5 Rule Construction

SNLP+EBL generates search control rules as a part of the propagation of explana-
tions up the search tree. Since SNLP+EBL currently considers only explanations
of failure, only rejection rules are learned. The simplest type of search control rules
are the pruning rules, which prune a partial plan after it is generated. Suppose,
during the propagation process, SNLP+EBL reaches a node n and computes its
failure explanation as E. It can then make a pruning rule of the form:

If E holds in the partial plan
then Reject the plan.

Another closely related class of rules reject decisions before they are taken. In the
example above, suppose the failure explanation E is regressed over a decision d,
resulting in an explanation E0. Then we can form a decision rejection rule:

If E0 holds in the partial plan
then Reject decision d

A rejection rule is said to be sound (or correct) if for every partial plan P such that
P is either pruned by that rule, or a decision d leading to P is rejected by that rule,
P cannot be refined further to give rise to a solution for the planning problem. It is
easy to see that the rejection rules described above are sound as long as the node
failure explanations, on which they are based, are sound. The soundness of failure
explanations depends in turn on the soundness of the regression and propagation
processes; we will discuss this issue further in Section 5. Presently, we shall
illustrate the rule construction process in the context of the job-shop scheduling
problem described in Figure 6. Figure 15 illustrates the failure explanations and
the control rules learned from the failing subtree in this example. In this example
after constructing an initial explanation for node H , a rule can be learned to reject
a node, as shown below:

if (s0 � s1) ^ (s1 � s0) holds in a plan
then reject the plan

This rule states that if there exists an ordering cycle in a partial plan of a node,
then reject the node. At this point, the planner regresses the explanation over the
demotion decision to explain the failure of branch H . After regression, a decision
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Fig. 15. A complete analysis of failures in the Job-shop Scheduling example

rejection rule can be generated as:

if (s0 � s1)

then reject demotion(s0
Cool(A)
! s2; s1)

Of course the two rules above are not particularly useful since the planner is going
to check the inconsistency in the plan as a matter of course anyway. Specifically,
the cost of matching the antecedent of the rule with the current partial plan may
offset any possible savings in the search.

However, rules learned from intermediate nodes of a search tree could be more
useful. For example, SNLP+EBL could learn a rule at node B to reject a plan in
the search tree if the explanation at node B holds in that plan. In other words:

If (s0 � s1) ^ (s1 � G) ^
Polished(A)@G^

s1
:Cool(A)
! ^
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s1
:Polished(A)
! ^

:initially�true(Polished(A))
then Reject the plan

This rule says that if there is a step s1 in a given partial plan which deletes
Cool(A) ^ Polished(A) and it comes in between two steps s0 and G, and G

requires a precondition Polished (A), and Polished(A) is not true in the initial
state, then reject the node.

Similarly, the explanation regressed over the establishment decision at B can be
used to learn a useful step establishment rejection rule at A (since A still has
unexplored alternatives):

If Polished(A)@G ^
:initially�true(Polished(A))
then reject stepadd(Roll(A); Cylindrical(A)@G)

This rule states that Roll should be rejected as a choice for establishing
Cylindrical(A) at G, if (Polish A) is also a goal at the same step.

4.6 Generalization

Consider the step addition rejection rule discussed at the end of the previous section.
This rule states that if the object A needs to be Polished and it is not Polished
initially, then the planner should not consider Roll to achieve Cylindrical(A) at
step G. If the planner is given the same problem again, SNLP can use the advice
of the above rule and avoid adding the step Roll to achieve (CylindricalA),
which is guaranteed to fail. Since the planner is left only with one other operator,
Lathe, it applies this operator and succeeds. Thus, a rule advises the planner not
to generate branches that will lead to failures and, consequently improves the
planner’s performance.

Now, assume that the planner is given a new problem which involves making an
object B Cylindrical and Polished. This new problem has the same goals as the
earlier problem but it involves a different object B instead of the object A. SNLP
cannot take the advice from the rule above because it is applicable only if we are
making the object A,Cylindrical and Polished (and only if these are the top-level
goals of the plan). However, it is clear that the rule can advice the planner not to add
the operator Roll to achieve (Cylindrical B), even if we are dealing with object
B. To make this rule applicable in cases where we are dealing with other objects,
we need to remove the specific object names such as A, and step names such as G
from the rule and replace it with variables, while preserving the correctness of the
rule.
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An object variable matches with any object of the domain and a step variable with
any step of a partial plan as long as all the other constraints of a rule hold in the
partial plan. A variablized rule can thus have different instantiations corresponding
to different possible substitutions of constants for variables. For a generalized rule
to be correct (i.e. taking its advice will not affect the completeness of the underlying
planner), all of the instances of the generalized rule must be sound.

The more variables a rule contains, the more applicable it can be in new situations.
Thus, ideally, we would like to remove all the step-names and object-names from
a rule and replace these names with variables. This strategy works fine in the
case of the job-shop scheduling rule above. In particular, it is easy to see that all
instantiations of this following rule will be sound

If Polished(x)@s^
:initially�true(Polished(x))

then reject stepadd(Roll(x); Cylindrical(x)@s)

The rule states that we should never attempt to achieve the precondition
Cylindrical(x) at a step s through the operator Roll(x) if Polished(x) is re-
quired at s and Polished(x) is not true in the initial state. 11

Unfortunately however, variablizing every constant is not guaranteed to preserve
the soundness of a rule, since some specific constants (objects, steps), may have
to be present in the rule for the failure to occur. To see this, consider a blocks
world problem where the table is clear in the initial state, and the goal is to achieve
:Clear(Table). SNLP+EBL fails on this problem since a Table is always clear.12

Using the standard failure explanation for unestablishable goals discussed earlier,
SNLP+EBL constructs the failure explanation:

:Clear(Table)@G^ initially�true(Clear(Table))

and a control rule:

If :Clear(Table)@G^ initially�true(Clear(Table))

11 Recall that the rule is qualified with :initially�true(Polished(x)) because the
planner did not consider simple establishment from initial state in its original search. In this
case, this qualification turns out to be unnecessary as the rule holds even if Polished(x)
was true in the initial state. However, we could not have avoided this qualification without
further hypothetical reasoning during learning phase.
12 Although the standard implementation of SNLP does not handle negated preconditions,
it is quite easy to extend it to do so. In particular, we allow a goal :p@s to be established
by the effect q of a step s0 if q is in the delete list of s0 and q can be made to necessarily
codesignate with p. In case where s0 happens to be the initial step, we make the closed
world assumption with respect to the initial state, and thus can support p as long as the
initial state does not contain a condition r that can necessarily codesignate with p.
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then prune the plan

It is easy to see that we can variablize the specific step G to be any step (since
the planner will fail as long as :Clear(Table) is a precondition of any step in the
plan. However, we cannot generalize the constant Table to, say, an object variable
x, since Clear(x) can then match Clear(A) where A happens to be a block. It will
thus wrongly prune a partial plan with a precondition Clear(A)@G, leading to a
loss of completeness.

The generalization process also needs to generalize step names occurring in the
failure explanation. Since the explanations qualify the steps in terms of their effects
and conditions, and their relations to other steps, in most cases, the step names,
including the final step, can be variablized. The only exception arises in the case of
the initial step, which may or may not be generalized based on the specifics of the
situation.

The standard EBL methodology for ensuring correct generalization is to use a
two-pass process. In the first pass, a proof is constructed for the target concept.
In the second pass the structure of the proof tree is retained, the operations in the
proof tree are variablized (the specific instances are replaced by fresh copies of the
corresponding operation schemas), the proved target concept is variablized, and
regressed through the generalized proof tree to compute the weakest conditions
under which the variablized target concept can be proved again [31,35,45]. In the
context of SNLP+EBL, the ‘‘proof tree’’ is the part of the search tree that terminates
in failing nodes, and the operations are the planner decisions, and the generalization
process will involve variablizing the planner decisions in the failing search tree,
starting with variablized failure explanations of the leaf nodes and regressing them
through the decisions. While this can be done (see [29]), it turns out to be more
cumbersome than is necessary for our purposes. In the following we will discuss
two simpler ways in which we can ensure that generalization is done correctly in
the context of SNLP+EBL.

4.6.1 Correct Generalization through name-insensitive theories

The simplest way to ensure that objects will not be variablized incorrectly is to
use domain theories that are name insensitive. A domain theory is considered
name insensitive if none of the operators in the domain refer to specific objects by
name. 13 If a domain operator needs to qualify an object, it can do so by listing
the properties that the object needs to possess. Figure 16 describes two ways of
writing the Puton operator in the standard blocks world. The operator on the left
is name sensitive as it names the specific constant Table. The one on the right is

13 Similar constraints should also apply to any other components of domain theory such
as domain axioms; see Section 6.
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Puton (x from y to z)
Preconditions : Clear(z); Clear(x); On(x; y)
Effect : :On(x; y); Clear(y);

:Clear(z); On(x; z)
Bindings: (z 6� Table); (x 6� z)

(a) A name-sensitive version of Puton operator

Puton(x from y to z)
Preconditions : Clear(z); Clear(x);:IsTable(z)
Effect : :On(x; y); Clear(y);

:Clear(z);:On(x; z)
Bindings: (x 6� z)

(b) A name-insensitive version of Puton operator

Fig. 16. Examples of Name Sensitive vs. Name Insensitive operators

name insensitive. Instead of naming a specific constant, it qualifies x through the
precondition :IsTable(x).

The example also shows that even if a domain theory is not name-insensitive as
given, it can be easily transformed into one which is name-insensitive (by inventing
appropriate unary property predicates, and using them to augment the preconditions
of the operators).

The advantage of name-insensitive domain theories is that any specific objects
in the failure explanations computed by SNLP+EBL using such theories will be
fully qualified in terms of the properties of the objects that are important. Because
of this, during generalization phase we can variablize every specific object in
the failure explanation. Coming back to the blocks world problem with the goal
:Clear(Table)@G discussed earlier, if SNLP+EBL uses the name insensitive
Puton operator (See Figure 16), then it can be verified that the failure occurs
when SNLP+EBL tries to establish :IsTable(Table) for this step. The failure
explanation will be:

:IsTable(Table)@Puton(x; y; Table)^ initially�true(IsTable(Table))

When this is regressed over the step addition decision involving Puton operator,
and conjoined with the flaw description, we get the explanation of the failure at the
root node as:

:Clear(Table)@G| {z }
F law resolved

^initially�true(IsTable(Table))

At this point, the objects in this explanation can be variablized without loss of
soundness, resulting in a generalized failure explanation:

:Clear(x)@G^ initially�true(IsTable(x))

This explanation is sound because something that is a block cannot match x in this
explanation.
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Until now we talked about name-insensitivity with respect to object names. To
handle proper generalization of step names, we need to ensure that the planner
decisions are also expressed in a name-insensitive fashion. In particular, the planner
decision should not name any specific steps without qualifying them. It turns out
that the decisions are already name insensitive. We already noted that SNLP
uses four types of decisions -- promotion, demotion, step addition and simple
establishment. Of these, the only decision that could be name sensitive turns out to
be the step addition decision, since it adds an ordering between the new step and
the distinguished initial step of the plan. However, from Figure 10, we note that
step addition is made name-insensitive by qualifying the initial step with the unary
predicate init�step().

Thus, when an ordering (0 � sn) is regressed over a step addition decision that adds
a new step sn, it regresses to the constraint init�step(0). This then becomes
part of the final explanation (since no planning decision has an effect related to
init�step), and appropriately qualifies any role played by the specific step 0
in the final explanation. Thus, we can generalize all the step names, secure in
the guarantee that if the step 0 is playing an important part, then the constraint
init�step() would be there to properly qualify the variablized version of this
step.

4.6.2 Correct generalization in name-sensitive theories

In the previous section, we showed that name-insensitive domain theories make
generalization very simple, as generalization simply involves replacing all the
constants in the failure explanation with variables. We also noted that (a) the
planner decisions are already name-insensitive and (b) the domain operators can
easily be made name-insensitive by typing objects. However, SNLP+EBL does
have the ability to correctly generalize explanations even if the domain theories
are name-sensitive. The process is slightly more complex, and involves keeping
track of which constants can be generalized and which cannot be. SNLP+EBL does
this by flagging objects ‘‘special’’ if they cannot be generalized. Given a failure
explanation, all the objects that are not flagged special can be variablized without
losing correctness.

An object is flagged special when:

(i) A constraint c involving that object is regressed over a step-addition decision
and

(ii) The constraint c is present in the operator schema of the operator added by the
step-addition decision.

In the above, only step-addition decision is considered since it is the only decision
that brings in new operators, and only operators can violate name-sensitivity
property with respect to objects. This method can be shown to produce the same
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results as the 2-pass generalization methods used by the EBG systems [35]. To see
how this works, consider the example of attempting to achieve :Clear(Table).
Suppose we are using the name sensitive Puton operator in Figure 16. In this case,
the step addition decision of adding Puton(u; v; w) to achieve :Clear(Table)@G

fails due to a binding inconsistency, and the failure explanation will be:

(w � Table)^ (w 6� Table)

When this is regressed over the step addition decision, we note that the constraint
w � Table is added directly by the step addition decision, and thus regresses to
true. The constraint (w 6� Table) is added indirectly by the step addition decision,
since this was a part of the Puton operator schema. While this constraint clearly
disappears after the regression, we need to note that it was specifically added
only with respect to the object Table. Thus, SNLP+EBL flags Table special. This
ensures that if Table appears in the failure explanation of any ancestor node, it will
not be generalized. In particular, as discussed earlier, the failure explanation at the
rootnode will be:

:Clear(Table)@G^ initially�true(Clear(Table))

and SNLP+EBL will rightly avoid generalizing Table.

This approach flags objects as special only when it is clearly necessary. To see
this, consider a slightly different blocks world example. Suppose we have a goal to
make On(A;Table)^ On(A;B), and the initial state has On(A;Table). Suppose
SNLP+EBL first makes On(A;Table) true by simple establishment, and then
makes On(A;B) true by adding a step Puton(A;Table;B). At this point, the
partial plan will fail due to an unresolvable unsafe link, and the explanation of
failure will be:

0
On(A;Table)
! G ^ (0 � Puton() � G) ^ Puton()

:On(A;Table)
!

When this explanation is regressed over the step addition decision involving Puton
operator, Table will not be flagged special since none of the constraints in the
failure explanation are added indirectly by the operator Puton. Thus, we will
rightly be able to generalize Table, and learn a rule which says that a partial plan
will fail if it has two preconditions On(x; y)@s ^On(x; z)@s

4.7 Rule Storage

Once a rule is generalized, it is entered into the corpus of control rules available to
the planner. These rules thus become available to the planner in guiding its search
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in the other branches during the learning phase, as well as subsequent planning
episodes. In storing rules in the rule corpus, SNLP+EBL makes some bounded
checks to see if an isomorphic rule is already present in the stored rules. In this
research, we ignored issues such as monitoring the utility of learned rules, and
filtering bad rules. Part of the reason for this was our belief that utility monitoring
models developed for state-space planners [20,33] will also apply for plan-space
planners. Another reason is that since we only learn rejection rules based on search
failures, in general we have fewer search control rules compared to planners such
as PRODIGY [31] that learn from a variety of target concepts.

5 On the Soundness of Search control rules learned by SNLP+EBL

As explained in chapter 4.6, a rule is said to be sound if it does not affect the
completeness of the underlying planner. Formally, a search control rule is said to
be sound if and only if whenever the rule prunes a partial plan P , it is necessarily
the case that P could not have been refined into a solution. In this section, we shall
argue that the rules learned by SNLP+EBL are sound.

In order to preserve soundness, a rule should guarantee that it is not removing any
solution from the search space. In the case of partial plans at the leaf nodes of the
search tree, which are flagged by SNLP+EBL as failing, SNLP+EBL constructs
their failure explanations as the set of inconsistent constraints present in the failing
plans. Since a plan with inconsistent constraints cannot be refined to a successful
plan, rules that are constructed from the initial explanations are sound.

The situation is more complex for rules that are learned from the intermediate nodes
in the search tree. A rule that is learned from an explanation at an intermediate
node of the search tree is sound only if the explanation of the node accounts for the
failures of all possible branches under that node. This is complicated by the fact that
sometimes, the possible branches will vary when the problem details change. For
example, when the initial state changes, there may be more possible establishment
opportunities from the initial state. The issue thus becomes one of ensuring that
all possible and potential search branches are properly accounted for in generating
a failure explanation. In the following paragraphs, we explain how this is done in
SNLP+EBL.

A failing intermediate node in the search tree of SNLP+EBL may be classified into
two types. The node is of conflict resolution type when all the branches below it
correspond to resolution of some unsafe link flaw. The second type of nodes, called
establishment type nodes are such that all the branches under than correspond to
different ways of establishing a goal.

In the case of conflict resolution type nodes, the planner has only two choices to
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order the threat by promotion or by demotion. To ensure that both possibilities
are always explicitly considered, we simply modified SNLP such that it always
generates two branches to account for promotion and demotion irrespective of the
constraints in the partial plan. If this leads to an ordering cycle, it is then detected
and the resulting plan is flagged as a failing plan.

In the case of establishment type nodes, there are two types of branches: step
addition branches or simple establishment branches. Since the number of operators
available in the domain are fixed, the number of branches that are generated by the
step addition choices are fixed irrespective of the details of the current problem. It
should be noted that we need to explicitly consider all failing operators, even if their
internal binding constraints turn out to be inconsistent with the current plan. Since
standard implementation of SNLP avoids generating such branches; we changed
it such that the steps are first introduced, and then the failures are flagged. Note
that this is reasonable, since the binding constraints on an operator can be seen as a
form of preconditions that need to be satisfied, and as as such should be worked on
after the operator is introduced.

The number of simple establishment branches under a node are however not fixed
since the number of steps in a partial plan that can give an open condition depends
on the constraints in the partial plan. Simple establishments can be separated into
two categories, (i) establishments from initial state and (ii) establishments from
steps other than initial state. We will treat these two cases in turn.

Simple establishments from initial state: Since the initial state changes from
problem to problem, the number of simple establishment branches from the initial
state may vary too. For example, suppose we are trying to establish a condition P
at a step s and we fail. Suppose further that in the current partial plan, P is not true
in the initial state. It is possible that had initial state given p, the failure would have
been avoided. To handle this, we can do one of two following things:

-- Qualify the Explanation: Qualify the failure explanation with a constraint,
:initially�true(P ). This essentially states that any rule learned here will
only be applicable if P is not true in the initial state.

-- Counterfactual Reasoning: The approach of qualifying explanations may lead us
sometimes to over specific explanations. For example, it may be that the simple
establishment from initial state to achieve P at s would have failed even if P
were true in the initial state. In such cases, we can get more general but sound
explanations by doing counterfactual reasoning i.e. assume that P is given by
initial state and check the simple establishment from initial state still fail. If it
fails, the qualification is not necessary.

Since counterfactual reasoning can be expensive, we use the first approach of
qualifying the explanation in our current implementation.
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The approach of qualifying the explanation may not work well in cases where
the failed condition is non-propositional. For example, suppose we were trying to
achieve P (x) at a step s. Suppose that initial state currently has P (A) and we fail
to achieve P (x) at s under these conditions. Now, to ensure soundness, we need
to qualify that the initial state gives only P (A) and not P (B), P (C) etc. In other
words, the qualification constraint is

x 6� A) :initially�true(P (x))

While this is possible to do, the resulting explanations may become too specific
and expensive to match. In our current implementation, we simply avoid learning
from any failure branches corresponding to uninstantiated goals. Fortunately,
efficient planning anyway demands that the planner prefer working on maximally
instantiated open conditions since such goals will have least number of possible
establishment branches [21]. Therefore, this restriction does not seem to affect the
efficiency of the learner.

Simple establishments from steps in the partial plan: In order to generate a
sound explanation at a node, simple establishment branches pose a problem since
the number of simple establishments from existing steps (other than the initial
state) can depend on the current ordering and binding constraints in the plan.
In SNLP+EBL, we consider only those simple establishment branches that are
generated by the planner.

At first glance, this looks insufficient. Specifically, since some of the simple
establishment possibilities are not considered by the planner because of the existing
constraints, the question arises as to whether we need to consider them too (using
explanation qualification or counterfactual reasoning techniques as above) to make
a sound explanation.

Let us illustrate this issue with an example. Suppose we want to achieve a condition
P at a step s1, and the current plan has an instance of operator O (say with
step name s2) which gives P except that it is coming after s1. Suppose we find
that all the other establishment choices are failing, and SNLP+EBL computes the
explanation of failure propagated from those branches. Our worry is whether we
need to qualify this explanation in some way to take care of the fact that P could
have been achieved at s1 by s2, had s2 not been following s1.

Although it is not too hard to take the failures of impossible simple establishments
into account (similar to the way we explicitly consider impossible promotion and
demotion decisions), this is not required to ensure soundness. Even though certain
simple establishments are not generated by the planner because of the constraints
in the partial plan, the planner considers all the step-addition possibilities involving
the same operators. If it fails to establish an open condition, it must be because it can
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Fig. 17. A search tree showing depth limit failures

not do so even if it were allowed to have fresh copies of all the operators. The failure
explanations from the step addition branches will subsume the failure explanations
that could have been produced from the impossible simple establishments.

6 Learning from Depth Limit Failures

In earlier sections, we described the framework for learning search control rules
from failures that are recognized by SNLP. The rules learned from analytical
failures detected by SNLP+EBL were successful in improving performance of
SNLP in some synthetic domains (such as DmS2� described in [1]). Unfortunately
however, learning from analytical failures alone turned out to be less useful in many
domains. 14 The reason is that often the planner crosses the depth limit, without
encountering any failure (see Figure 17). An important reason for this turns out
to be that, in many cases, SNLP goes into an unpromising branch and continues
adding locally useful, but globally useless constraints (steps, orderings, bindings)
to the plan, without making any progress towards a solution [26].

An example here might help to see why SNLP gets into infinite loops. In Figure
18, SNLP achieves On(A;B) at G by establishing it from initial state. Then it
tries to achieve On(B;C) at G by introducing a new step s1 (which corresponds
to an operator Puton(B; y;C)), and ordering s1 to come in between initial state
S0 and goal state G. But the newly added step s1 requires Clear(B) as one of its
preconditions. Intuitively, it is clear that this plan is doomed to failure since we
cannot both protect On(A;B) and achieve Clear(B), as required by the plan in the
situation before step s1.

Since there are no ordering or binding inconsistencies in the partial plan, SNLP
tries to continue refining the plan, possibly crossing depth limit before attempting

14 UCPOP+EBL did overcome this problem to a certain extent when the operator
representation is beefed up to make explicit some of the implicit domain characteristics;
see Section 10
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Fig. 18. An example showing a branch of a search tree that may possibly cross depth limit

Clear(B). In this section, we will describe how SNLP+EBL explains implicit
failures at depth limits and learn from these failures.

In general, if a branch of a node crosses a depth limit, the partial plan at the depth
limit is assumed to be unpromising and is removed from consideration. But when
a branch crosses a depth limit, there is no obvious failure explanation. As noted in
Section 4.3, an explanation at an intermediate node in a search tree is the conjoined
explanation of all the possible children explanations and the constraints describing
the flaw. If we do not explain the reason for pruning the partial plan at depth limit,
then we cannot construct an explanation for a node which has some branches that
failed analytically, and some that crossed a depth limit. This limits EBL to learn
effective search control rules.

As mentioned in Section 4.1, sometimes it is possible to use strong consistency
checks based on the domain-theory as well as the meta-theory of the planner to
show that the partial plan at the depth-limit contains a failure that the planner’s
consistency checks have not yet detected. Consider the previous example, the
partial plan at node C is shown below:
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START

(ON A B)

(CLEAR B)

(ON B C)

PUTON(B,T,C) GOAL

Given the blocks world domain axiom that no block can have another block on top
of it, and be clear at the same time, and the SNLP meta-theory that a causal-link,
s1

c
! s2, once established, will protect the condition c in every situation between s1

and s2, we can see that the above partial plan can never be refined into a successful
plan. To generalize and state this formally, we define the np�conditions, or
necessarily persistent conditions, of a step s0 in a plan P to be the set of conditions
supported by any causal link, such that s0 necessarily intercedes the source and
destination of the causal link.

np�conditions(s0) = fcjs1
c
! s2 2 L ^ s1 � s0 ^ s0 � s2g

Given the np�conditions of a step, we know that the partial plan containing it can
never be refined into a complete plan as long as precond(s0)[ np�conditions(s0) is
inconsistent with respect to domain axioms. 15 However, SNLP’s local consistency
checks will not recognize this, leading it sometimes into an indefinite looping
behavior of repeatedly refining the plan in the hopes of making it complete. In the
example above, this could happen if SNLP tries to achieve Clear(B) at step 1 by
adding a new step s3 : Puton(x;B; z), and then plans on making On(x;B) true
at s3 by taking A off of B, and putting x on B. When such looping makes SNLP
cross depth-limit, SNLP+EBL uses the np�conditions based consistency check, to
detect and explain this implicit failure, and learn from that explanation.

To keep the consistency check tractable, SNLP+EBL utilizes a restricted represen-
tation for domain axioms (first proposed in [11]): each domain axiom is represented
as a conjunction of literals, with a set of binding constraints. The table below lists
a set of domain axioms for the blocks world. The first one states that y cannot have

15 In fact the plan will also fail if effects(s0)[np�conditions(s0) is inconsistent. However,
given any action representation which makes STRIPS assumption, (i.e., every literal whose
truth value is affected by an action must necessarily occur in the effects list of the action)
these inconsistencies will any way be automatically detected by the normal threat detection
and resolution mechanisms.
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x on top of it, and be clear, unless y is the table.16

On(x; y) ^ clear(y)[y 6� Table]

On(x; y) ^On(x; z)[y 6� z]

On(x; y) ^On(z; y)[x 6� z; y 6� Table]

A partial plan is inconsistent whenever it contains a step s such that the conjunction
of literals comprising any domain-axiom are unifiable with a subset of conditions
in np�conditions(s)[ precond(s). Given this theory, we can now explain and learn
from the blocks-world partial plan above. The initial explanation of this failure is:

0
On(A;B)
! G ^ (0 � 1) ^ (1 � G) ^ Clear(B)@1^ (B 6� Table)

This explanation can be regressed over the planning decisions to generate rules. The
type of analysis described above can be used to learn from some of the depth-limit
failures. In the blocks world, use of this technique enabled SNLP+EBL to produce
several useful search control rules. Figure 19 lists a sampling of these rules. The
first one is an establishment rejection rule which says that if On(x; y) ^ On(y; z)
is required at some step, then reject the choice of establishing On(x; y) from the
initial state, if initial state is not giving On(y; z). Note the presence of the constant
Table in the antecedent of this rule. This is in accordance with our description
in the generalization section (since the constraint y 6� Table, which is part of
the initial failure explanation, is regressed over the step addition decision that
adds Puton() step, making Table a special, non-generalizable constant). 17 Notice
also that all the first and the third rules qualify the step s with the constraint
init�step(s). Once again this makes sense since learning those rules involves
regressing a constraint of the form 0 � Puton() over the step addition decision,
giving rise to init�step(0), which later gets variablized to init�step(s).

Handling Multiple Failure Explanations: When we learn by analyzing plans
at depth-limits, it is sometimes possible that the analysis unearths multiple failure
explanations. In this case, a question arises as to which explanation should be

16 Note that this particular domain axiom is not name insensitive (From the point of view
of generalization, this particular domain axiom is not name-insensitive. It can however
be made name insensitive by converting Table into a unary predicate as discussed in
Section 4.6.1
17 Note that the the constraint y 6� Table can be dropped without affecting the correctness
of the rule. The constraint comes in because the initial explanation with respect to domain-
axiom based failure says that On(x; y) and Clear(y) can’t be true simultaneously unless
y 6� Table. It turns out that we can simplify this constraint away since On(y; z) is one of
the other goal conjuncts, and if y were equal to Table, then the problem could anyway not
have been solved. In our current system, we do not do this type of simplification.
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(1) Reject Simple establishment s
On(x;y)
! s1

If init�step(s) ^On(y; z)@s1^
:initially�true(On(y; z))^ (y 6� Table)

(2) Reject promotion s1 � s3

If clear(x2)@s3^

s1
On(x1;x2)
! s2^

(s3 � s2) ^ (x2 6� Table)

(3) Reject step addition puton(x0; y)
Clear(z)
! s1

If s
On(x;y)
! s2 ^ init�step(s)^

(s1 � s2)^ (y 6� Table)

Fig. 19. A sampling of rules learned using domain-axioms in Blocks world domain

Test Set SNLP SNLP+EBL SNLP+Domax

% Solv C. time % Solv C. time % Solv C. time

I (30 prob) 60% 1767 100% 195 97% 582

II (100 prob) 51% 6063 81% 2503 74% 4623

Table 1
Results from the blocks world experiments

preferred. SNLP+EBL handles this by preferring the explanations containing steps
introduced at shallower depths (in our case, smaller step numbers). This allows the
failure explanation to regress to higher levels in the search tree, thereby learning
more effective control rules. As a side effect, it also helps the dependency directed
backtracking component during the learning phase.

7 Experimental evaluation of SNLP+EBL

To evaluate the effectiveness of the rules learned by SNLP+EBL, we conducted
experiments on random problems in blocks world. The problems all had randomly
generated initial states consisting of 3 to 8 blocks (using the procedure outlined
in Minton’s thesis [31]). The first test set contained 30 problems all of which
had random 3-block stacks in the goal state. The second test set contained 100
randomly generated goal states (using the procedure in [31]) with 2 to 6 goals . For
each test set, the planner was run on a set of randomly generated problems drawn
from the same distribution (20 for the first set and 50 for the second). Any learned
search-control rule, which has been used at least once during the learning phase,
is stored in the rule-base. This resulted in approximately 10 stored rules for the
first set, and 15 stored rules for the second set. In the testing phase, the two test
set problems were run with SNLP , SNLP+EBL (with the saved rules) as well as
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Fig. 20. Cumulative performance curves for Test Set 2

SNLP+Domax, a version of SNLP which uses domain axioms to prune inconsistent
plans as soon as they are generated. A cpu time limit of 120 seconds was used in
each test set.

Table 1 describes the results of these experiments. Figure 20 shows the cumulative
performance graphs for the three methods in the second test set. Our results clearly
show that SNLP+EBL was able to outperform SNLP significantly on these problem
populations (p-value for this was .24 for sign test and .00 for signed rank test [15]).
A closer analysis of the second set revealed that SNLP+EBL outperformed SNLP
in 36 problems, resulting in a cumulative saving of 3,587 cpu. sec. SNLP on the
other hand outperformed SNLP+EBL in 43 instances, but the cumulative difference
in this case was a mere 27 sec. Similarly between SNLP+Domaxand SNLP+EBL,
SNLP+EBLdoes better 76 of the problems, with a 2120 cumulative difference, while
SNLP+Domaxout performs SNLPin 3 problems with 1 sec difference The results
about SNLP+Domax also show that learning search-control rules is better than
using domain-axioms directly as a basis for stronger consistency check on every
node during planning (p-value for this was .00 for both sign test and signed rank
test). This is not surprising since checking consistency of every plan during search
can increase the refinement cost unduly. EBL thus provides a way of strategically
applying stronger consistency checks. Finally, the fact that SNLP+EBL fails to
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BW-quant 

Operator: PUTON

:effect (:and (on ?x ?y) (:not (on ?z ?x))))

:precondition 
Operator: PUTON
:precondition (and (on ?x ?z) (clear ?x) (clear ?y)

:effect (and (on ?x ?y) (not (on ?x ?z)) 

BW-cond 

Operator: NEWTOWER
:precondition (and (on ?x ?z) (clear ?x) (neq ?x ?z)

:effect (and (on ?x Table) (clear ?z) (not (on ?x ?z)))))

Operator: PUTON

:effect  (and (on ?x ?y) (not (on ?x ?z)) (clear ?z) (:not (clear ?y)))))

:precondition (and (on ?x ?z) (clear ?x)  (clear ?y) (neq ?x ?y) (neq ?x ?z)

BW-prop

            (and (on ?x ?z) (neq ?x ?y) (neq ?x ?z) (neq ?y ?z)

           (or (tab ?y)

                 (:forall (block ?b) (:not (on ?b ?y))))

           (:forall (block ?c) (:not (on ?c ?x))))

                               (neq ?x ?z) (neq ?x ?z)

                               (neq ?x ?y) (block ?x))

                   (when (block ?z) (clear ?z))

                   (when (block ?y) (not (clear ?y)))))                               (neq ?y ?z) (block ?x) (block ?y) (block z))

                               (block ?x) (block ?z) (Tab Table))

Fig. 21. Three different encodings of the Blocks world domain

solve 19% of the test problems in the second set shows that there may be other
avenues for learning search control rules.

8 Extensions needed to support EBL in UCPOP

In this section, we will describe how the EBL framework is extended to UCPOP,
giving rise to UCPOP+EBL. This discussion will also demonstrate that it is
relatively straightforward to extend our framework to other plan space planners.

Like SNLP [30], UCPOP [39] searches in a space of partial plans, refining (adding
constraints to) a partial plan until it becomes a complete solution to the planning
problem. Figure 22(a) shows the description of a simple example domain for
UCPOP called the briefcase domain [39,38], which involves moving objects from
one location to another with the help of a briefcase. Note that the actions contain
conditional and quantified effects (e.g. 8obj(x) [in(x) ; at(x;m) ^ :at(x; l))]).
Similarly, it is also possible for actions to have quantified preconditions (e.g.
8block(x)Clear(x)) or disjunctive preconditions (e.g Clear(x)_On(x; Table)). The
ability to handle quantified (universal or existential) and disjunctive preconditions,
and universally quantified and conditional effects 18 allows UCPOP to represent
many domains more compactly, and to introduce more of the domain physics into
the operator description explicitly. As an example, Figure 21, shows three different
descriptions of blocks world domain theory that make use of the expressiveness of
the UCPOP operator language to varying extents. Note that in contrast to the first
description which requires two different operators, and four different predicates,
the third one requires only three predicates and a single operator.

The presence of more expressive preconditions and postconditions also means
that the flaw resolution procedure used by SNLP needs to be extended to work
for UCPOP. This in turn may require extensions to the EBL framework. In the
following sections, we shall discuss these differences in detail and explain the

18 UCPOP, which is based on Pednault’s ADL theory of planning, [37], does not allow
non-deterministic postconditions. This means that disjunctive and existentially quantified
effects are not allowed.
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mov-b(l;m) ;; Move B from l to m
precond: m 6= l ^ at(B; l)
eff: at(B;m) ^ :at(B; l)
8obj(x)in(x)) at(x;m) ^ :at(x; l)

take-out(o) ;;Take out o from B
precond: in(o)
eff: :in(o) ^ :closed(B)

close-b() ;; Close the briefcase
precond: :closed(B)
eff: closed(B)

(a) The Briefcase Domain

pick-a-flaw

no-flaw Terminate

forall goal
Yes

Groundify

No

flaw   type

Promotion Demotion Confront     Simple
Establishment

Step Add

unsafe-link open-goal

(b) Flowchart of refinement process
in UCPOP

Fig. 22. Example domain and Flowchart of UCPOP

extensions made to the EBL framework to handle them. Figure 22(b) shows a flow
chart of the plan-refinement process in UCPOP.

8.1 Operator preconditions

As we remarked, UCPOP operators can have quantified and disjunctive precondi-
tions. They necessitate changes to the way open condition flaws are resolved. We
shall see that the only significant change to EBL is necessitated by the treatment of
universally quantified preconditions.

8.1.1 Universally quantified preconditions

When we have operators with universally quantified preconditions of the form
8type(x)cond(x), they give rise to universally quantified open conditions of the form
8type(x)cond(x)@s. UCPOP handles such preconditions by making the assumption
that the domains have finite and static universes (static universe assumption
means that the operators do not create new objects). Under these assumptions, a
quantified formula is just a shorthand notation for a conjunction involving individual
objects. Thus, universally quantified open conditions are handled by converting
the quantified formula into a conjunction over the objects that are spanned by the
quantification, and treating the individual non-quantified open-conditions in the
same way as SNLP.

In particular, the open condition 8type(x) cond(x)@s, is converted into an equivalent
set of unquantified preconditions of the form cond(o1)@s ^ cond(o2)@s � � � ^
cond(on)@s (where o1 � � � on are the only objects of category ‘‘type’’). Notice
that once the quantified conditions are instantiated this way, the filter condition
(‘‘type’’) does not appear in the partial plan.
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From the EBL point of view, the only thing that is required is that the search
tree explicitly model this instantiation process, so that explanations of failures
containing precondition constraints can be appropriately regressed. Since the
instantiation process occurs at the time the step is first introduced into the plan, the
logical place to model it would be in the step addition decision. Specifically, the
effects of the step addition decision are changed to include:

C  C +

8><
>: cond(x)@s

�������
8type(x)cond(x) 2 preconditions of s

^initially�true(type(x))

9>=
>;

where s is a new step being added, which contains the quantified precondition. From
this, we note that when an open condition cond(A)@s is regressed over the step
addition decision that introduced the operator having the quantified precondition
8type(x)cond(x)@s, it results in cond(A)@s _ initially�true(type(A)) (the
idea being that the precondition constraint would have been automatically added
by the instantiation decision if x is an object of type type). As before (Section 4.2),
UCPOP+EBL picks the disjunct that holds in the current example.

Example: To illustrate how EBL can handle regression over universally quan-
tified decisions, consider a variant of the blocks world domain, that contains, in
addition to the predicates clear and on, a predicate allpainted. Suppose that the
goal allpainted can only be achieved by operator spraypaint, with precondi-
tion 8block(x) clear(x). Consider the problem of achieving the conjunctive goal:
on(A;B) ^ allpainted, given that in the initial state we have A on top of B. Fig-
ure 23 shows the search tree explored by UCPOP+EBL in attempting to solve this
problem. UCPOP+EBL first establishes On(A;B) through simple establishment
from the initial state. Then, it adds the step s1: spraypaint to the plan. Next, it
works on the quantified precondition 8block(x)Clear(x)@s1, and instantiates it into
non-quantified goals clear(A)@s1 ^ clear(B)@s1 (since A and B are the only
blocks in the problem). We know that the resulting plan is inconsistent since it is
impossible to both protect On(A;B) and achieve Clear(B) in the situation before
s1. Suppose this failure is discovered (either by further planning, or by the use
of the domain-axiom based consistency checks discussed in Section 6), and the
following failure explanation is provided:

E3 = 0
on(A;B)
! G ^ clear(B)@s1 ^ (0 � s1) ^ (s1 � G)

When this explanation is regressed over the quantification instantiation decision, the
constraint clear(B)@s1 regresses to initially�true(block(B)). Continuing
this process, the failure explanation at P2 becomes:

E2 = 0
on(A;B)
! G ^ initially�true(block(B))^ allpainted@G ^ init�step(0)
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G0

ON(A,B)

SIMPLE ESTABLISHMENT ON(A,B)@G

G0

0

ON(A,B)

S1

allpainted

GOAL STATEINITIAL STATE

ON(A,B) BLOCK(B)

ON(A,B)CLEAR(A) BLOCK(A)

allpainted

STEP-ADDITION

SIMPLE ESTABLISHMENT STEP ADDITION

  allpaintedL@G

P1

P2

P3

LINK:(0 ON(A,B) G)

EXPLANATION AT P2:

INIT-TURE(BLOCK(B))

LINK:(0 ON(A,B) G)

OPEN-GOAL: CLEAR(B)@S1

EXPLANATION AT P3:

ORDER 0<S1<G

OPEN: allpainted@G

Fig. 23. Regression of quantified precondition over quantification instantiation decision in
blocks world domain

Regressing E2 over the simple establishment decision, we can learn the simple
establishment rejection rule:

If allpainted@G ^ initially�true(block(B))^ init�step(0)

then Reject Simple establishment(0
On(A;B)
! G)

Which states that the simple establishment of On(A;B) from initial state can be
rejected as long as allpainted is a precondition to be achieved, and B is a block.
Using the same generalization framework as that used by SNLP+EBL, this rule can
be generalized to

If allpainted@s0 ^ initially�true(block(y))^ init�step(s)

then Reject Simple establishment(s
On(x;y)
! s0)

To see that this process gives rise to sound rules, note that in a different situation, if
we want the goals On(A;Table)^ allpainted (with On(A;Table) being initially
true), then the planner can in fact succeed through the simple establishment
branch. Thus, we do not want the rejection rule above to be applicable in such
a case (as it would then wrongly reject the decision). Indeed, the qualification
initially�true(block(y)) ensures that the explanation will not be applicable
in this situation (since if y is a table, then initially�true(block(table)) will
not hold.

8.1.2 Disjunctive preconditions

UCPOP operators can have disjunctive preconditions of the form (p _ q), which
give rise to open condition flaws of the form (p _ q)@s. As UCPOP assumes a
completely specified initial state, and deterministic actions, it can handle disjunctive
preconditions by planning to make either of the preconditions true. Thus, given an
open condition flaw (p _ q)@s, UCPOP makes two partial plans, one containing
the flaw p@s and another containing the flaw q@s, and puts both plans on the
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search queue.

From the point of view of EBL, disjunctive preconditions do not create any special
problems. Specifically, if both the search branch containing p@s and the search
branch containing to q@s fail with failure explanationsE1 andE2 respectively, then
the combined failure explanation for the node containing (p _ q)@s is computed
as:

(p _ q)@s ^ E1 ^ E2

8.1.3 Existentially Quantified Preconditions

Finally, UCPOP operators can have existentially quantified preconditions such
as 9type(x)cond(x), which give rise to open conditions of type 9type(x)cond(x)@s.
Although existentially quantified preconditions can be handled as large disjunctive
preconditions, there is another easier method. Specifically, they can be handled just
as any other partially instantiated open conditions. For example, the existentially
quantified open condition9type(x)cond(x)@s is equivalent to (type(x)^cond(x))@s,
which even SNLP can handle (an open condition cond(x)@s can be established by
the effect cond(y) of a step s0 if y can be bound to x). Thus, once again, existentially
quantified preconditions do not necessitate any changes to EBL.

Since existentially quantified preconditions are treated as partially instantiated open
conditions, they will inherit the soundness problems associated with the failures
involving the latter (see Section 5). In particular, the number of establishment
possibilities for an existentially quantified goal, and consequently its failure
explanation, can be dependent on the number of objects of that type in the domain.
For example, if the initial state has two blocks, A and B, then it is not possible
to satisfy the conjunctive goal on(A;B)^ 9block(x)On(x; Table)^Clear(x). But if
there is another block C , then the failure will not happen.

To ensure the soundness of failure explanations learned through search trees
involving establishment of existentially quantified goals, we could either qualify
the failure explanation with a constraint stating that no more objects of that type
will be available, or do some counterfactual reasoning (as explained in Section 5).
No such problem arises in the case of universally quantified preconditions since for
a universally quantified condition to fail, it is enough that any one of the instantiated
preconditions fail.

8.2 Operator effects

We will now discuss the changes brought about by the fact that UCPOP operators
can have quantified and conditional effects.
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8.2.1 Conditional effects

In UCPOP, the effects of an operator are represented in the form of [prec ;
effect]. While the preconditions of an operator should be true for it to be applicable,
a particular effect [prec; effect] will be true only when the antecedent conditions
prec are true in the state proceeding the operator (these are thus called the secondary
preconditions; [37]). As a special case, we can think of non-conditional effects
used by SNLP as effects with secondary precondition ‘‘True’’. The presence of
conditional effects has direct ramifications on establishment and threat resolution
processes of the planner. It also has indirect ramifications on the type of analytical
failures encountered by the planner.

Consequence of Conditional Effects on Establishment: Because of the con-
ditional effects, unlike SNLP, which selects an operator to support a link in the
establishment decision, UCPOP selects an effect of an operator to support a link,
and to make sure that this conditional effect will occur it adds the antecedent of the
conditional effect as an extra precondition for the plan. Specifically, if UCPOP is
establishing the precondition p@s with the help of the conditional effect [r; q] of
step s0, it not only ensures that s0 comes before s, and that q necessarily codesignates
with p, but it also adds an additional precondition r@s0 to the plan. This is treated
as any other open condition flaw in subsequent iterations.

From EBL point of view, the presence of conditional effect changes the char-
acterization of the establishment decisions, (both simple establishment and step
addition), which in turn leads to changes on regression of failure explanations
over establishment decisions. Figure 24 shows the the description of simple
establishment decision in UCPOP and SNLP. The main differences are that in
the case of UCPOP, the establishment decision also augments the precondition
constraints of the plan (by adding the secondary preconditions of the conditional
effect used in the establishment), and this needs to be taken into account during
regression. For example, when the precondition constraint r@s1 is regressed over

the establishment decision establish(s1
[r;q]
! ; q@s2), it results in True.

Consequence of Conditional Effects on Threat Resolution: The presence of
conditional effects also affects the way threats are resolved. For example, suppose
the effect [r ; :q] of a step st is threatening the causal link s1

q
! s2. In addition

to the standard promotion and demotion possibilities, we can also resolve this
threat by ensuring that st does not delete q. This can be done by simply adding
:r@st as an additional precondition of st. This way of resolving a threat is called
on‘‘confrontation.’’

From the EBL point of view, confrontation is an additional planning decision,
and failure explanations will have to be appropriately regressed over this decision.
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Decision: Establish (s1
q
!; p@s2)

(Establish condition p@s2 with an effect of s1)
Preconditions : p@s2 2 C

s1
q
!2 E

Effects: O  O + s1 � s2

B  B + mgu(p; q)
L  L + s1

p
! s2

(a) Simple Establishment Decision in SNLP

Decision: Establish (s1
[r;q]
! ; p@s2)

(Establish condition p@s2 using the effect [r ; q] of s1)
Precondition: C@s2 2 C

s1
[r;q]
! 2 E

Effects : O  O + s1 � s2

L  L + s1
p
! s2

B  B + mgu(p; q)
C  C + r@s1 /* secondary precondition */

(b) Simple Establishment Decision in UCPOP

Fig. 24. Comparison of Simple establishment Decisions in SNLP and UCPOP

Decision: Confront(st
[r;:q]
! ; s1

p
! q)

Preconditions: s1
p
! s2 2 L

[r ; :q] 2 E
mgu(p; q) 2 B
(st � s1) 62 O

(s2 � st) 62 O

Effects: C  C + :r@st
O  O + (s1 � st) + (st � s2) (optional)

Fig. 25. Confrontation Decision

Figure 25 characterizes the preconditions and effects of the confrontation decision.
Note that from the point of view of completeness, it is not strictly necessary to
order st between s1 and s2 during confrontation. But, doing so will help in reducing
the redundancy in the search space.

Consequence of Conditional Effects on Analytical Failures: Presence of oper-
ators with conditional effects has an indirect ramification on the types of analytical
failures detected by the planner. In addition to ordering, binding and establishment
failures that are automatically detected by SNLP, UCPOP can also detect failures
involving inconsistent precondition constraints. For example, suppose a step s has

two conditional effects s
[p;q]
! and s

[p;:r]
! . It is possible that during planning,

UCPOP attempts to use the first effect to establish the precondition q of some step,
thereby adding a precondition constraint p@s. Suppose later UCPOP finds that
there is a conflict between the second effect and some causal link, and decides to
resolve it by confrontation. This leads it to add a precondition constraint :p@s.
Now the two constraints p@s and :p@s are mutually incompatible, and UCPOP
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can thus singal a failure, with the failure explanation being p@s ^ :p@s.

8.2.2 Universally quantified conditional effects

Operators in UCPOP can have universally quantified effects of the form

s
8type(x) [p(x);e(x)]

! . Universally quantified effects are treated by UCPOP as if
they are a shorthand notation for a conjunction of non-quantified effects of the form

s
[p(o1);e(o1)]
! ^� � � ^ s

[p(on);e(on)]
! ;

where o1; � � � ; on are all the objects of type type.

From the EBL point of view, regression over step-addition decisions that add steps
with universally quantified effects can be handled in a way that is very similar
to the handling of regression over steps with universally quantified preconditions.

Specifically, when an effect s
[p(a);e(a)]
! is regressed over a step addition decision

that added a step having a universally quantified effect s
8type(x) [p(x);e(x)]

! , it regresses
to initially�true(type(a)).

8.3 Example

We shall now pull together the discussion regarding UCPOP+EBL, through an
example problem from the briefcase domain described in Figure 22. The problem
involves getting an empty briefcase to the office, while leaving everything else
at home. Suppose the pay check P is in the briefcase, and the briefcase is at
home in the initial state. The goal for this problem is specified by the formula
8obj(x)at(x;H)^ at(B;O)^ closed(B). Figure 26 shows a trace of UCPOP solving
this problem (for now ignore the explanation boxes on the right). The process starts
with UCPOP selecting the precondition 8obj(x)at(x;H) for establishment. Since this
is a quantified condition, and since P is the only object in the domain, the condition
at(P;H) is added in place of the quantified condition. Next, UCPOP picks up the
open conditions closed(B)@G, and at(P;H)@G and establishes them with the
help of the effects of the initial state. The condition at(B;O)@G is established by
adding a step move�B(H;O). At this point, the effect 8obj(x)in(x;B)) :at(x;H)

of the move�B(H;O) action threatens the link 0
at(P;H)
! G. This is handled by

the confrontation choice, which adds the secondary precondition :in(P;B) to the
move�B step. To establish this condition, the action take�out(P ) is added to

the plan. The effect :closed(B) of this action threatens the link 0
closed(B)
! G. This

threat cannot be resolved since the promotion, demotion and confrontation choices
all fail. The search process will eventually backtrack over the decision to establish
closed(B) from initial state, and find a solution in other branches.
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CLOSED(B) AT(P,H)

S1

AT(B,O)

PROMOTION CONFRONTATIONDEMOTION

FAIL CLOSED(B)
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IN(P) CLOSED(B)

AT(B,H) AT(P,H)
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AT(B,O) CLOSED(B)
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Fig. 26. Trace of UCPOP+EBL solving a problem in the briefcase domain: A failing path.
(used as the Running Example)

Since all the branches under the plan P7 fail, the partial plan P7 itself fails. The
failure explanation is constructed by conjoining the regressed failure explanations
of the three branches with the description of the flaw in P7 that is being removed.
Specifically, we get the failure explanation of P7 as

E7 :

8>>>>><
>>>>>:

0
closed(B)
! G ^ (s2 6� 0) ^ (G 6� s2) ^ has�effect(s2;:closed(B))| {z }

unsafe link flaw

^ (0 � s2) ^ (s2 � G)| {z }
regressed from children

(The ordering constraints simplify to 0 � s2 � G.) This explanation is then
regressed over the step addition decision that adds take�out(P ), and the process
continues as shown in Figure 26, eventually computing the failure explanation of
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P3 as

E3 :

8>>>>><
>>>>>:

0
closed(B
! G ^ at(B;O)@G ^ at(P;H)@G

^init�true(in(P ))

^init�true(:at(B;O))

When E3 is regressed over the simple establishment decision under P2, we get

at(B;O)@G ^ at(P;H)@G ^ init�true(in(P ))
^init�true(:at(B;O))^ init�true(closed(B)).

This leads to a useful control rule, shown at the top right corner of Figure 26,
which states that simple establishment of closed(B)@G should be avoided when
the paycheck is in the briefcase, briefcase is not at office, and we want the briefcase
to be at the office and paycheck to be left at home. The generalized form of the rule
learned at P2 will be:

if at(B;xo)@s ^ at(xp; xh)@s ^ (xo 6� xh)
^initially�true(in(xp)) ^ initially�true(:at(B;xo))
then Reject simple establishment of closed(x)@s from initial state.

9 Experimental Evaluation of UCPOP+EBL

To evaluate the performance of UCPOP+EBL we conducted experiments in two
different domains -- the first one is a variant of the briefcase domain (Figure 22(a))
that has multiple locations, and multiple objects to be transported among those
locations using the briefcase. This domain is similar in character to the logistics
transportation domains, except with conditional and quantified effects. We gener-
ated 100 random problems containing between 3 to 5 objects, 3 to 5 locations and
between 3 to 5 goal conjuncts. The second domain is the blocks world domain called
BW-quant described in Figure 21. We generated 100 random problems using the
procedure described in [31]. The problems contained between 3 to 6 blocks, and 3 to
4 goals. In each domain, we compared the performance of the from-scratch planner
with that of the planner using the search control rules generated by UCPOP+EBL.
Table 2 shows the results of these experiments. As can be seen, UCPOP+EBL
achieves significant savings in performance in both the domains, both in terms of
the number of problems solved, and the speedup obtained. To gauge the cost of
learning itself, we also ran UCPOP+EBL in an ‘‘online learning’’ mode, where it
continually learns control rules and uses them in the future problems. The statistics
in the online learning column show that the cost of learning does not outweigh its
benefits.
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Domain From-scratch Online Learning Using learned rules

% Solv cpu % Solv cpu % Solv cpu

Brief Case Dom 49% 6568 92% 1174 (5.6X ) 98% 1146 (5.6X )

Blocks World 53% 7205 100% 191(38X ) 100% 190 (38x)

Table 2
Performance of UCPOP+EBL in Blocks world (BW-quant) and Briefcase Domain

Fig. 27. Plots summarizing the performance of UCPOP+EBL in Blocks world (BW-quant)
and Briefcase domain. Note that both the time taken for solving the problems, as well as
the number of problems solved in within the resource limits improve through EBL. The
plots labeled ‘‘learning’’ show the total cost for learning the rules and using them in an
on-line fashion, while the plots labeled ‘‘using rules’’ show the cost of using the previously
learned rules

10 Factors influencing the effectiveness of EBL in Planning

Although learning search control rules is an attractive way of improving planning
performance, there are a variety of factors that can affect the utility of control rule
learning in a given domain. In particular, the nature of the domain theory, and the
nature of the base level search strategy used by the planner can have a significant
impact on the effectiveness of learning control rules from analytical failures.
Furthermore, as discussed elsewhere, the ability of EBL to learn control rules
crucially depends on detecting and explaining failures in the partial plans before
they cross depth limits [28]. This in turn depends on the nature of the domain theory
(viz, how much information is left implicit and how much is represented explicitly),
and the availability of domain specific theories of failure (c.f. [28,2]). Finally,
the availability of sophisticated dependency directed backtracking strategies can
directly compete with the performance improvements produced through learned
control rules.
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We have used our implementation of UCPOP+EBL to investigate the effect of
these factors. In this section, we will describe the results from these studies, and
analyze them.

Domains: To evaluate the effect of expressive representations on the performance
of EBL systems, we tried three different domain theories of the blocks world domain,
as shown in Figure 21. The first, called BW-prop, contains two types of predicates,
On and Clear, and two actions, puton and newtower with no conditional effects.
The second, called BW-cond, contains the same two predicates, but with a
single puton action with conditional effects. The third domain, called BW-quant,
contains a single predicate On, with the condition Clear(x) replaced by the
quantified formula Table(x)_8y:On(y; x). Note that BW-prop is forced to make
a choice between its two actions, while BW-cond and BW-quant don’t have to
make such premature commitment. Similarly, because of their restricted language,
BW-cond and BW-prop are forced to hide the relation between Clear and On,
while the expressive language of BW-quant allows it to make the relation explicit.

Experimental setup: The experiments consisted of three phases, each corre-
sponding to the use of one of the three domain descriptions above. In each phase,
the same set of 100 randomly generated blocks world problems were used to test the
from-scratch and learning performance of UCPOP+EBL, and statistics regarding
the number of problems solved and the cumulative cpu time were collected. To
understand the effect of domain specific failure theories on the performance, we ran
UCPOP+EBL in three different modes. In the first mode, UCPOP+EBL’s learning
component was turned off, and the problems were solved from scratch by the base
level planner, UCPOP. In the second mode, UCPOP+EBL was trained over the
problems, and the control rules it learned from the analytical failures alone were
used in solving the test set. The third mode was similar to the second mode except
that UCPOP+EBL was also provided domain specific theories of failure in the form
of domain axioms (such as the one stating that 8x;yclear(x) � :On(y; x)), which
could be used to detect and explain failures that would otherwise not be detected
by the base level planner.

Since it is well-known that the performance of a plan-space planner depends
critically on the order in which open condition flaws are handled (goal selection
order) [21], we experimented with two goal-selection strategies -- one which
corresponds to a LIFO strategy and one that works on goals with the least number
of variables left uninstantiated, called MIGF strategy. 19

19 Since partially instantiated goals have larger number of establishment possibilities, this
goal selection strategy approximates the least-cost flaw refinement strategy, [21]
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Domain I. Scratch II. EBL with analytical failures III. EBL with dom. spec. fail. theories

% Solv cpu % Solv cpu # rules. % Solv cpu # rules.

Achieving most instantiated goals first (MIGF)

BW-prop 51% 7872 69% 5350 (1.5x) 24 68% 5410 (1.5x) 28

BW-cond 89% 2821 88% 2933 (0.96x) 15 91% 2567 (1.1x) 37

BW-quant 53% 7205 100% 210(34x) 4 100% 210 (34x) 4

Achieving goals in a LIFO order

BW-prop 10% 13509 10% 13505 (1x) 30 10% 13509 (1x) 30

BW-cond 42% 9439 60% 6954 (1.4x) 14 75% 4544 (2.1x) 36

BW-quant 81% 3126 89% 2136 (1.5x) 32 94% 1699 (1.8x) 37
Table 3
Performance of UCPOP+EBL in the three blocks world domains (with DDB disabled)
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Results: Table 3 shows the statistics from these experiments. The performance
of the base level planner varies considerably across the three domains and the two
goal selection strategies. What is more interesting, the effectiveness of the learned
control rules in improving the planning performance also varies significantly,
giving a speedup anywhere between 0.95x and 38x. We will now analyze this
variation with respect to several factors.

10.1 Expressive Domain Theories and Analytical Failures

The results show that the magnitude of improvement provided by UCPOP+EBL
when learning from analytical failures alone (mode II) depends on the nature of
the domain theory. For example, we note that search control rules learned from
analytical failures improve performance more significantly in BW-quant than
they do in BW-prop and BW-cond(see Table 3). This can be explained by the
fact that in the latter two domains, in many cases, the base level planner is not able
to detect any analytical failures in various branches before the planner crosses the
depth-limit. In contrast, the explicitness of the domain description in BW-quant
enables the planner to detect and explain analytical failures in many more situations.
To illustrate this point, consider the blocks world partial plan:

START

(ON A B)

(CLEAR B)

(ON B C)

1:PUTON(B C) GOAL

Given the relation betweenClear andOn predicates, it is clear that this plan cannot
be refined into a solution (since it is impossible to protect the condition On(A;B)
while still ensuring the precondition Clear(B) of step 1). However, since the
relation between Clear and On is not explicit in BW-prop and BW-cond, the
planner may not recognize this failure in those domains before crossing the depth
limit (unless some domain specific theories of failure are provided). In contrast,
in BW-quant, the precondition Clear(B) will be expressed as the quantified
condition 8y:On(y;B), and the planner will immediately notice an analytical
failure, when trying to add a step to achieve :On(A;B) at step 1 (since any step
giving :On(A;B) will threaten the causal link supporting On(A;B).

10.2 Expressive domain theories and domain specific failure theories

We note that the availability of domain specific theories of failure does not
uniformly improve performance of EBL. In particular, we see a bigger improvement
in BW-cond than we do in BW-quant (Table 3). UCPOP+EBL improves the
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solvability from 60% to 75% in LIFO goal ordering and 88% to 91% in the MIGF
goal order. The number of rules learned also increases from 14 to 36, and 15 to
37 respectively in MIGF and LIFO goal orders. In contrast, the improvements
are smaller in the case of BW-quant. This can be explained by the fact that the
information in the domain axioms (which constitute our domain-specific theories
of failure), is subsumed to a large extent by the information in the quantified
preconditions and effects of the actions in BW-quant. The situation is opposite
in the case of BW-cond, and it benefits from the availability of domain specific
theories of failure.

10.3 Importance of Explainable Failures

Another interesting point, brought about by the results above is the correlation
between the performance of the base level planner and the performance of the
planner in the presence of learned control rules. From Table 3, we note that the
planner performs poorly in theBW-quant domain, compared toBW-cond domain
in the from-scratch mode (with 53% solvability as against 89%), but out-performs it
with learning (100% solvability as against 91%). At first glance, this might suggest
the hypothesis that the planner that makes more mistakes in the from-scratch phase
has more opportunities to learn from. This hypothesis is not strictly true -- in
particular, it is not the number of mistakes, but rather the number of explainable
mistakes that provide learning opportunities. As an example, BW-prop, which
also does worse than BW-cond in from-scratch mode, continues to do worse with
learning.

10.4 Effect of Sophisticated Backtracking Strategies

One other factor that influences the utility of control rules learned from EBL is
the default backtracking strategy used by the planner. In Section 4.4.1, we noticed
that the analysis being done by UCPOP+EBL in learning control rules also helps
it do a powerful form of dependency directed backtracking (DDB). To understand
how much the improvement brought about by dependency directed backtracking
affects the utility of control rules learned through the EBL analysis, we repeated
our experiments while making the base level planner use dependency directed
backtracking. Table 4 shows these results, and Figure 28 compares the performance
of UCPOP+EBL when DDB, EBL and domain specific failure theories are used
(for the LIFO goal order case).

The first thing we note is that the impact of EBL reduces in the presence of DDB in
both goal ordering strategies (compare the numbers in Tables 4 and 3. This should
not in itself be surprising since both EBL and DDB draw strength from the same
processes of regression and propagation of failure explanations (see Section 4). For
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Domain I. Scratch II. EBL with analytical failures III. EBL with dom. spec. fail. theories

% Solv cpu % Solv cpu # rules. % Solv cpu # rules.

Achieving most instantiated goals first (MIGF)

BW-prop 71% 5093 61% 6613 (0.8x) 24 70% 5193 (1.0x) 28

BW-cond 89% 2837 88% 2983 (0.8x) 15 95% 1835 (1.6x) 37

BW-quant 100% 197 100% 190(1.03x) 4 100% 190 (1.03x) 4

Achieving goals in a LIFO order

BW-prop 22% 12001 21% 12054 (0.97x) 30 21% 12080 (0.98x) 36

BW-cond 42% 9439 60% 7666 (1.2x) 14 75% 4544 (2.1x) 29

BW-quant 90% 1640 96% 1175 (1.4x) 32 98% 1146 (1.4x) 37
Table 4
Performance of UCPOP+EBL in the three blocks world domains, when the base level planner uses a dependency directed backtracking strategy
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Fig. 28. Plots summarizing the interaction between DDB, EBL and domain specific failure
theories (in the LIFO goal order)

example, in comparing the statistics in Table 3 and Table 4, we note that there is a
strong correlation between the planner’s ability to improve its performance through
DDB, and its ability to learn useful control rules from analytical failures alone.
For example, BW-cond is unable to improve its performance with DDB or with
control rules learned from analytical failures in the ‘‘most instantiated goals first’’
case. This is not surprising since lack of detectable analytical failures will hurt both
the effectiveness of DDB and that of EBL. (Similar relation has been observed in
the constraint satisfaction literature between back-jumping and learning [9]).

What is interesting is that EBL is able to outperform DDB at least in some cases.
Specifically, in the case of the LIFO goal selection strategy, control rules do bring
out significant additional savings over DDB (see Table 3). This tendency was also
confirmed by our experiments in the briefcase domain (not shown in the table). It
can be explained by the fact that although DDB captures much of the analysis done
while learning control rules, it is effective only after a failure has been encountered,
and backtracking is started. In contrast, control rules attempt to steer the planner
away from the failing branches in the first place. In cases when the average match
cost of the control rules is smaller than cost of backtracking from the first failure,
EBL can outperform DDB. Another factor is that while DDB typically tends to
exploit only the analytical failures detected by the planner, the control rules learning
may also benefit from domain specific failure theories.

11 Related Work and Discussion

11.1 Relation to other search control rule learning frameworks

As we mentioned earlier, significant research has been done towards applying
EBL techniques to state-space planners. Two such systems are closely related to
our work. The first, PRODIGY+EBL, was developed by Minton [31] . It learns
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search control rules and improves performance of a state-space planer using means
ends analysis. The second, FAILSAFE, was developed by Bhatnagar and Mostow
[2,3]. It learns search control rules for a forward searching state-space planner.
The primary difference between these efforts and our work is that we adapt EBL
to plan-space planners. In some ways, the SNLP+EBL/UCPOP+EBL frameworks
can be seen as a generalization of the EBL techniques for state space planning.
In particular, recent work [27] shows that partial order and state space planning
approaches can be cast and combined in a single refinement planning framework,
that is not very different from the one used in this paper.

Ignoring the differences brought about by the differences in base-level planners,
the learning strategies used by our systems have some interesting relations to
PRODIGY+EBL and FAILSAFE. We discuss these briefly below:

Learning opportunities: PRODIGY+EBL learns from a variety of target con-
cepts including failures, successes and subgoal interactions, while FAILSAFE
uses failures and subgoal interactions alone. In contrast, both SNLP+EBL and
UCPOP+EBL restrict their learning to failures. Since partial order planner do not
need to backtrack on goal ordering decisions, target concepts based on subgoal
interactions are not relevant for SNLP+EBL and UCPOP+EBL. While learning
from successes is important, we believe that macro learning strategies such as reuse
and replay are more effective in doing this [17] (see Section 11.2).

Interaction between Learner and planner: In PRODIGY+EBL, the learning
starts after the planning phase is completed. In contrast, both FAILSAFE, and
our systems SNLP+EBL, UCPOP+EBL do on-line learning, where the learning
component is activated any time the planner encounters a failure. One advantage of
the on-line learning process in SNLP+EBL and UCPOP+EBL is that the regression
and propagation analysis also provides a powerful framework for dependency
directed backtracking, that can speedup the base-level planner.

Properties of learned rules: As we discussed in Section 5, SNLP+EBL and
UCPOP+EBL aim to learn search control rules that are sound in that they do not
affect the completeness of the planner. While PRODIGY+EBL shares this goal,
FAILSAFE does not. Specifically, FAILSAFE learns over-general control rules,
called censors, by declaring failures early on during the search, building incomplete
proofs of the failures, and learning censors from these proofs. The censors speed
up search by pruning away more and more of the space until a solution is found in
the remaining space. To learn quickly, the technique over-generalizes by assuming
that the learned censors are preservable, i.e., remain un-violated along at least
one solution path. A recovery mechanism heuristically detects violations of this
assumption and selectively specializes censors that violate the assumption. It
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remains to be seen as to what extent such an adaptive learning mechanism could be
useful for plan-space planners (see Section 12.1).

Initiating learning: The three systems follow slightly different methods in
initiating the learning cycle. PRODIGY+EBL initiates learning by analyzing the
full search tree, looking for instances of its target concepts in the search tree. Once it
finds these target concepts, it then specializes them with respect to the search tree to
learn search control rules. Both SNLP+EBL/UCPOP+EBL and FAILSAFE initiate
learning any time they encounter a failure or cross depth limits. They however differ
in terms of the way failures are explained. In the case of SNLP+EBL/UCPOP+EBL,
failure explanations are a minimal set of mutually inconsistent constraints. When
such explanations cannot be extracted SNLP+EBL/UCPOP+EBL avoid learning
from that failure. In contrast, since FAILSAFE allows overgeneral search control
rules, it does not have to rely on its failure explanations being sound. In fact,
FAILSAFE does not guarantee any formal properties of soundness for the failure
explanations.

Monitoring Utility: Although search control rules can improve the planner’s
performance, like any other deductive learning strategy, they suffer from the
potential utility problem. Specifically, it is possible to populate the rule database
with many rules which have little search reduction potential, and whose amortized
match cost far outstrips their potential search improvements. To prune rules of
questionable utility, PRODIGY+EBL tracks the usage statistics associated with
the control rules, including the application frequency, match cost and reduction in
search entailed by the rule, when it is applicable. More recent work such as that by
Gratch and DeJong [20] provides a sound statistical basis for such utility models.
SNLP+EBL and UCPOP+EBL currently do not use any sophisticated models for
tracking the utility of learned rules. The only mechanism that is currently used
involves learning control rules only when the size of the search tree pruned by
those rules in the training case is above a specified threshold. One reason why
we did not find utility problem a bottleneck until now may be that SNLP+EBL
and UCPOP+EBL learn only from a single target concept -- failures for which
sound explanations can be given. We believe however that as the complexity of
the domains increase, the utility models such as those developed in [20] can be
profitably adapted to our EBL framework (see Section 12.1).

11.2 Relation to EBL methods that do not learn search control rules

Although our work is the first to adapt failure based search control rule learning
to partial order planning, the general explanation based generalization framework
has been applied to partial order planners in the past. Kambhampati and Kedar [24]
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describe how partial order plans can be generalized in a variety of ways based on
their explanations of success. Similar methods were also developed independently
by Chien and DeJong [5,6].

While learning search control rules is one possible way of exploiting the explanation
based analysis of failures, this is by no means the only way. In particular, it is
possible to use similar analyses in conjunction with other types of speedup learning
frameworks, such as plan reuse and/or replay. As an example, recently, we adapted
the SNLP+EBL framework to learn to improve case-retrieval based on previous
replay failures [17].

11.3 Relation to speedup learning methods that use static analyses

Although most EBL systems base their learning on the experiences of the underlying
problem solver, this is not always required. In particular, it is theoretically possible
to derive equivalent (and some times more general) search control knowledge
by simply analyzing the domain theory used by the problem solver. Such static
analyses have been the basis of some EBL systems, such as the PRODIGY/STATIC
system by Etzioni [13]. This system analyzes a structure called the ‘‘Problem Space
Graph (PSG)’’ -- which is a graphical structure capturing the precondition/effect
dependencies between the actions in the domain -- to detect necessary interactions
between different types of subgoals. This analysis is used to come up with operator
rejection and goal ordering rules for a state-based means-ends analysis planner.
Although goal-ordering rules are not relevant for partial order planners, operator
rejection rules will of course be relevant. 20 For example, the rule rejecting the
operator Roll(x) in job shop scheduling domain (see Figure 15) can be learned
through analysis of PSG. It is not clear whether this type of analysis can be extended
to learn simple establishment possibilities, such as the first rule in Figure 19.

As Etzioni points out [41], both static and dynamic search control rule learning
methods have their advantages. For example, while static methods can improve the
performance of the planner before the first failure is even encountered, the dynamic
methods have the ability to exploit the problem distribution and the default behavior
of the problem solver. Etzioni and Perez [41] describe a way of combining static
and dynamic analyses to exploit both their advantages.

There has been some work on using PSG-like structures in partial order planning.
Smith and Peot [47] propose structures called ‘‘Operator Graphs.’’ 21 , and show that

20 It is not clear from Etzioni’s papers whether the goal-ordering rules or the operator
rejection rules had more effect on the performance of PRODIGY.
21 Unlike PSGs, that are domain-specific, the operator graphs are problem-specific, and
are constructed for each problem. There are also some differences between PSGs and
operator graphs in terms of when the construction is terminated.
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operator graphs can provide a variety of search control strategies for partial order
planners [19, Section 3], including analysis on which types of unsafe link conflicts
can be postponed indefinitely, thereby improving performance of the planner. It
would be interesting to see how our dynamic search control rule learning methods
for partial order planning, can be integrated with the operator graph methods such
as those being developed by Smith and Peot [47].

In [14], Etzioni also develops a structural theory of EBL that attempts to explain
what features of the problem spaces (domains) are predictive of the effectiveness
of EBL. Our work complements and extends this theory in several directions. In
particular, the empirical results discussed in Section 10 show a high correlation
between the effectiveness of EBL and the presence of explainable failures, and
discuss how these are affected by the domain encoding and availability of domain
specific failure theories. We conclude that encodings that allow more analytical
failures to be explicitly detected by the planner facilitate learning without recourse
to additional domain specific failure theories. In addition, as we discuss below,
our experiments confirm an open hypothesis regarding the effect of DDB on the
effectiveness of EBL.

11.4 Relation to work on dependency directed backtracking

One of the important side-benefits of the EBL framework used in SNLP+EBL and
UCPOP+EBL is a systematic method for doing dependency directed backtracking
in planning. Although there has been a significant amount of work on dependency
directed backtracking in the the constraint satisfaction community[48], very little
such work has been done in planning. There do exist planning systems, such
as OPLAN-2 [7], that claim to use some form of ‘‘intelligent’’ backtracking.
Typically, such methods are driven by a carefully constructed decision dependency
graph (c.f. [8]). The regression and propagation based approach for dependency
directed backtracking provides an interesting alternative that does not require
explicit construction of decision graphs.

The affinity between dependency directed backtracking and learning has been
observed in the CSP literature. In particular, Dechter and her co-workers [9,16]
have done several empirical studies on the relative tradeoffs offered by the use of
failure explanations in guiding dependency directed backtracking, vs. using them
to learn node rejection rules. Their conclusions are similar to those we reached in
our experiments (Section 10.4).

In [14], Etzioni hypothesizes that DDB reduces the impact of EBL, but leaves
the verification of the hypothesis for future work. Our experimental results in
Section 10.4 can be seen as a partial confirmation and refinement of Etzioni’s
hypothesis. In particular, we not only show that DDB and EBL derive their
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effectiveness from the same computational sources of regression and propagation,
we also point out that when the cost of matching control rules is smaller than the
cost of backtracking from the first failure, EBL can potentially outperform DDB.

It is also possible to exploit the DDB component of UCPOP+EBL more effectively
than we did in the current work. Sadeh et. al. [46] discuss a variety of techniques
for improving DDB, including changing the flaw resolution order such that the
flaw whose resolution lead to the latest failure is tried first after DDB (this is an
instance of the ‘‘fail-first’’ principle [48]). In [43], we also discuss the relations
between DDB as presented here, and many other intelligent backtracking schemes,
including dynamic backtracking [18].

11.5 Effect of the default search strategy on performance of EBL

The discussion about the effect of sophisticated backtracking strategies on the
impact of EBL brings to fore the more general issue of the impact of the default
search strategy used by the planner on the effectiveness of EBL. Like most previous
EBL frameworks, UCPOP+EBL also uses a depth first regime [2,32]. The main
reason for the use of depth-first search is to force the planner to continue each line
of enquiry until it encounters a failure. These failures then help the EBL component
to formulate search control rules that will avoid unpromising branches of inquiry in
future. Best-first search regimes often change search direction before a given line
of enquiry leads to failure, and thus they do not provide effective support for EBL.
Note that depth-first search is only required during learning phase. Once learned,
the search control rules can be used in non-depth-first search regimes also.

12 Conclusions and Future Work

In this paper, we presented SNLP+EBL, the first systematic framework for learning
from failures of a partial order planner, using an explanation based analysis. We
have described the various ways in which failures are detected and explained during
planning. We then discussed how the failure explanations of the interior nodes are
computed through regression and propagation, and how the resulting explanations
are converted into search control rules. We have shown that the search control rules
generated by SNLP+EBLare sound, and explained how they can be generalized
without loss of soundness. Our discussion shows that name-insensitive theories are
particularly useful in facilitating simple generalization algorithms.

We have also noted that the regression and propagation processes can facilitate
a powerful form of dependency directed backtracking. We have then presented
experimental results showing that the search control rules that SNLP+EBL learns
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using our techniques enable it to outperform SNLP.

Next, we demonstrated the extensibility of our EBL framework by showing how
it can be easily adapted to UCPOP, a more powerful descendant of SNLP, that
allows quantified and conditional formulas in its operator language. We described
empirical studies in a quantified encoding of blocks world domain (BW-quant)
and a simple transportation domain, that demonstrate that UCPOP+EBL provides
significant performance improvements.

Finally, we presented an empirical analysis of the factors that influence the effec-
tiveness of explanation based search control rule learning for partial order planners.
We used UCPOP+EBL as a basis to investigate the effect of expressive action
representations, heuristic goal selection strategies and sophisticated backtracking
algorithms on the effectiveness of control rule learning. In particular, we showed that
expressive action representations facilitate the use of richer domain descriptions,
which in turn increase the effectiveness of learning control rules from analytical
failures. This reduces the need for domain specific failure theories to guide EBL.
We also noted the strong affinity between dependency directed backtracking and
control rule learning, and showed that despite this affinity, control rules can still
improve the performance of a planner using dependency directed backtracking.

12.1 Limitations and Future Directions

There are several ways in which our learning framework can be improved. Our
approaches until now have concentrated on finding and explaining inconsistencies
in partial plans generated by the base-level planner. Unfortunately, this is still
inadequate in doing effective learning in some domains. In the following, we
discuss two extensions that we are currently pursuing.

The first approach is to expand the notion of failure to include not just the
inconsistencies among the constraints of the partial plan, but also the inability of
the partial plan to lead to a useful solution. For example, partial order planners
exhibit ‘‘looping’’ whrein they spend inordinate amounts of time doing many
locally relevant but globally unpromising refinements to a partial plan. Recently,
we showed that much of the looping in partial order planning can be tied to
production of non-minimal plans (i.e., plans with redundant steps), and developed
conditions under which such pruning strategies do not lead to loss of completeness
[26]. We are currently investigating if it is possible to learn effective search control
rules from such pruning techniques.

The second approach for improving the chances of failure detection is to relax the
requirement for soundness of failure explanations. Although proving that a partial
plan is inconsistent is hard, often we may know that the presence of a set of features
is losely ‘‘indicative’’ of the unpromising nature of the partial plan. For example,
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FAILSAFE system [2] constructs explanations that explicate why the current node
is not the goal node, inspite of many refinements. 22

Relaxing soundess requirement on failure explanations will allow UCPOP+EBL
to learn with incomplete explanations, thus improving the number of learning
opportunities. We are currently experimenting with a variant of this approach,
where such partial explanations of failure are associated with numerical certainty
factors between 0 and 1 (to signify their level of soundess). The explanation of
failure of an interior node will have a certainty factor that depends on the certainty
factors of the explanations of failure of its children nodes. Similarly, the search
control rules learned from these failure explanations will also inherit the certainty
factors of the explanations.

Of course, learning with unsound explanations of failure will lead UCPOP+EBL
to learn unsound search control rules, which, if used as pruning rules, can affect
the planners completeness. We propose to handle this by considering such search
control rules to black-list, rather than prune plan refinements.

Although sacrificing soundness seems like a rather drastic step, it should be noted
that ‘‘correctness’’ and ‘‘utility’’ of a search control rule are not necessarily related.
Utility is a function of the problem distribution that is actually encountered by the
planner, and thus, it is possible for a rule with lower certainty factor to have higher
positive impact on the efficiency than one that is correct. 23

A complementary approach to improving the effectiveness of EBL involves
combining it with inductive learning methods. In particular, EBL methods can be
used to isolate the features of the problem that are relevant to the failure and then
inductive methods can be used to generalize over these partial explanations of
failure (or success). Borrajo and Veloso [4] discuss an approach of this type in the
context of a state-space planner, while Estlin and Mooney present a similar method
in the context of partial order planning [12]. It would be interesting to see how such
hybrid methods can be adapted to UCPOP+EBL.

22 It is tempting to use the complete description of the unpromising plan as its own
explanation of failure. However, this can seriously inhibit any useful learning from taking
place. Once a partial plan P is given the constraints comprising P as the explanation of
its failure, given the way the explanations of failure of the interior nodes are computed by
the propagate procedure, no ancestor P 0 of P can ever have an explanation of failure
simpler than P 0 itself. Thus, it is critically important to blame the failure on some (rather
than all) constraints of the plan.
23 As an analogy, consider a physician who has two diagnostic rules, one that is completely
certain, but is about a relatively rare disease (e.g. ebola virus syndrome), and another which
has low certainty, but is about a frequently occuring disease (e.g. common cold). Clearly,
the latter rule may be much more useful for the physician practising in a US city, than the
latter.
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Another issue that needs to be carefully addressed is that of utility of learned
rules. The utility problem was not critical until now as UCPOP+EBL learns only
from failures, and leads to few rules because of the practical limit on the number
explainable failures detected by the base-level planner. However, as we allow
extensions such as learning with partially sound failure explanations, we are likely
to learn rules whose match cost may outweigh their computational advantages. We
believe however that the existing approaches to utility management in EBL will
still be applicable for UCPOP+EBL. It would be interesting to integrate the rule
utility monitoring approaches such as those embodied in the COMPOSER system
[20] into UCPOP+EBL.

The framework for EBL and DDB, presented in this paper, applies with very
little changes to constraint satisfaction problems. In particular, in [43], we adapt
our framework to general refinement search, which subsumes many models of
planning and constraint satisfaction problems. This formalization brings to fore the
many similarities between the EBL and DDB work in CSP, Planning and Machine
Learning communities, and facilitates cross-fertilization of the ideas from these
hither-to disparate research streams.
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A List of Symbols

Symbol Denotes

C The set of precondition constraints on the partial plan

E The set of effect constraints on the partial plan

L The set of causal link constraints on the partial plan

O The set of binding constraints on the partial plan

S The set of steps in the partial plan

B The set of binding (codesignation and non-codesignation)
constraints on the partial plan

s0; 0 Alternative names for the initial step of a partial plan. The
effects of this step correspond to the assertions in the initial
state of the planning problem.

s1; G Alternative names for the final step of a partial plan. The
preconditions of this step correspond to the assertions in the
goal state of the planning problem.

s:O Denotes that a step name s is mapped to an operator O

x � y A codesignation constraint among variables, saying that x
and y must take the same values

x 6� y Non-codesignation constraint among variables, saying that x
and y must not take the same values

s � s0 An ordering constraint among steps, saying that s must
precede s0.

F The set of constraints describing a flaw

E;E0; E00; Ei; � � � Symbols for denoting failure explanations of partial plans (a
failure explanation is a set of constraints on the partial plan
that are inconsistent)

d; d0; d00; di; � � � Symbols for denoting the planning decisions taken to refine
one partial plan into another.

P;P 0; P 00; Pi; � � � Symbols for denoting partial plans.

n; n0; n00; ni; � � � Symbols for denoting search nodes generated by SNLP+EBL
(which contain the partial plans as well as any other search
tree related information)

P (n) The partial plan corresponding to a search node n

d(n) The planning decision that lead to the search node n from its
parent

E(n) The failure explanation for the search node n

parent(n) The search node from which n was produced (through the
d
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Symbol Denotes

s
e
! The effect constraint denoting that the operator correspond-

ing to the step s in the partial plan must have an effect
s

s
[p;e]
! A conditional effect constraint denoting that the operator

corresponding to the step s has a conditional effect ‘‘If p
then e’’

initially�true(p) Same as 0 s
!, denoting that the initial state must have an

assertion p

p@s The precondition constraint, denoting that the condition p

must be true before the step s in the plan

s
p
! q The causal link constraint saying that step s gives the condi-

tion p to the step q in the partial plan

mgu(p; q) The set of binding constraints on variables of the partial plan
such that the condition p and q necessarily codesignate

init�step(s) A predictate that evaluates to true only if s is the initial step
of the plan

Regress(c; d) The result of regressing the constraint c over the planning
decision d.

Regress(E; d) The result of regressing the failure explanation E over the
planning decision d.
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