
A Unified Framework for Explanation-Based
Generalization of Partially Ordered and Partially

Instantiated Plans

Subbarao Kambhampati�y

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85287

Smadar Kedar
Sterling Federal Systems

AI Research Branch
nasa ames Research Center

Moffett Field CA 94035

ASU CSE Technical Report 92-008
April, 1992, Revised: February, 1993
To appear in Arti�cial Intelligence

Running head: EBG of POPI Plans

�A preliminary version of this paper has been presented at the 9th National Conference on Artificial Intelligence
(AAAI-91), Anaheim, CA, USA.

yThe first author was partially supported by the Office of Naval Research under contract N00014-88-K-0620
(to Stanford University), and by NSF under grant IRI-9210997 (to Arizona State University). The authors’ email
addresses are rao@asuvax.asu.edu and kedar@ptolemy.arc.nasa.gov.

0

Abstract

Most previous work in explanation based generalization (EBG) of plans dealt with totally ordered plans.
These methods cannot be directly applied to generalizing partially ordered partially instantiated plans, a
class of plans that have received significant attention in planning. In this paper we present a natural way
of extending the explanation-based generalization methods to partially ordered partially instantiated (popi
) plans. Our development is based on Modal Truth Criteria for popi plans [3]. We develop explanation
structures from these truth criteria, and use them as a common basis to derive a variety of generalization
algorithms. Specifically we present algorithms for precondition generalization, order generalization,
and possible correctness generalization of popi plans. The systematic derivation of the generalization
algorithms from the Modal Truth Criterion obviates the need for carrying out a separate formal proof of
correctness of the ebg algorithms. Our development also systematically explicates the tradeoffs among
the spectrum of possible generalizations for popi plans, and provides an empirical demonstration of the
relative utility of EBG in partial ordering, as opposed to total ordering, planning frameworks.

0

1 Introduction

Creating and using generalized plans is a central problem in machine learning and planning. This
paper addresses the problem of generalizing a class of plans known as partially ordered partially
instantiated plans1 (popi plans), that have been extensively investigated in the planning literature
[31, 35, 38, 3]. The advantages of popi plans in plan generation -- such as improved efficiency
through least commitment and flexible plan representation -- are well known (cf. [24, 1, 21]). In
addition to these, popi plans also promise a variety of attractive tradeoffs in plan generalization
and learning to improve planning performance:

� popi plans provide a compact way of representing and reasoning with an exponential
number of totally ordered plans, thereby allowing attractive storage compactions.

� popi plans can be generalized in multiple ways: precondition generalizations, order
generalizations, possible correctness generalizations etc. These generalizations present
interesting plan time vs. generalization time tradeoffs.

� During reuse, popi plans afford greater flexibility in modifying the retrieved plan (cf [13]).

In spite of these potential advantages, the problem of popi plan generalization has received
relatively little attention in the machine learning and planning communities. Much of the previous
work on explanation based generalization (EBG) of plans has instead been focused on totally
ordered plans (see Section 1.1). In this paper, we will show that generalization methods developed
for totally ordered plans cannot be directly applied to popi plans. We will then develop a unified
framework for explanation based generalization of popi plans. Our development is based on the
Modal Truth Criteria [3] , which state the necessary and sufficient conditions for ensuring the truth
of a proposition at any point in a plan for particular classes of popi plans. We develop explanation
structures from these truth criteria, and use them as a common basis to derive a spectrum of
generalizations including precondition generalization, order generalization and generalization for
possible correctness. Our development explicates the spectrum of plan time vs. generalization
time tradeoffs offered by the various generalizations. We also provide an empirical analysis of the
utility of basing EBG based plan reuse in popi vs. total ordering planning frameworks.

The paper is organized as follows. In the rest of this section, we shall discuss past work
on plan generalization, and explain the motivations behind our current work. In Section 2,
we present some terminology regarding popi plans, and formalize the notion of popi plan
generalization. Section 3 reviews modal truth criteria and develops the explanation of correctness
of a popi plan based on a Modal Truth Criterion. Section 4 discusses the basic precondition and
order generalization algorithms based on these explanations: Section 4.1 describes precondition
generalization methods, Section 4.2 describes the order generalization methods, and Section 4.3

1
popi plans are also widely referred to as nonlinear plans in the planning literature. We prefer the former term as

it avoids confusion with the linearity assumption.

1

describes ways of combining order and precondition generalization algorithms. Section 5 discusses
extensions to the basic generalization algorithms: Section 5.1 describes how the algorithms in
Section 4.1 can be modified to compute generalized conditions for possible correctness. Section
5.2 describes the effect of using more general truth criteria, and Section 5.3 contrasts the notion
of weakest preconditions with that of the generalizations developed in this paper. Section 6
summarizes the spectrum of generalizations explored in this paper, and discusses the tradeoffs
offered by them. Section 7 discusses the relative utility of EBG in total ordering vs. partial
ordering planning. Section 8 discusses related work and Section 9 concludes by summarizing the
contributions of this paper, and discussing directions for future work.

1.1 Previous Work and Motivation

The problem of generalizing a plan has traditionally been characterized as that of computing the
weakest (most general) initial conditions of a sequence of operators. The computed conditions are
required to describe exactly the set of initial states such that the generalized plan applicable in
those states is guaranteed to achieve a state matching the goals.

Goal regression [29], explanation-based generalization (ebg) [26] [7] [28], and macro-operator
formation [10], are some previous analytic solutions to the plan generalization problem. These
methods were developed for totally ordered plans. They typically compute the weakest conditions
of such plans by regressing variablized goals back through the plan operator sequence to ensure
appropriate producer-consumer dependencies among effects and preconditions in the generalized
plan, and to prevent deletions of needed literals.

Another class of plans that have been widely investigated in the planning community are the
so called partially ordered partially instantiated plans, or popi plans. A popi plan corresponds
to a set of totally ordered totally instantiated plans (aka completions, see Section 2). The
generalization methods developed for totally ordered plans (discussed above) cannot be directly
applied to generalizing popi plans, since they do not capture all interactions among plan operators
for all completions such plans. To illustrate this limitation, consider the simple blocks world
problem for stacking four blocks (4bsp) and a popi plan for solving it, shown in Figure
1. Given an initial state where four blocks A, B, C, D are on the table and clear, the goal
On(A;B) ^ On(C;D) can be achieved by the popi plan corresponding to two totally ordered
plans, Puton(A;B) ! Puton(C;D), and Puton(C;D) ! Puton(A;B) (where the operator
template Puton(x; y) is specified as shown in the figure).

For this problem, the generalization algorithms discussed above produce a generalized plan
such as the one shown in Figure 2. These generalized preconditions are not sufficient to guarantee
that every total order of this partial order will execute successfully. The reason is that the plan
was generalized guided by one specific total order, so constraints for other total orders were not
accounted for. For example, if a new problem involves stacking the three blocks A, B and C on
top of each other, this generalized plan would be applicable, and yet fail for one of the two total
orders (as it includes an incorrect total ordering Puton(A;B)! Puton(B;C)). What is missing

2

A: on(x,y)
D: clear(y),on(x,Table)

P: clear(x),clear(y),on(x,Table)

clear(A)
clear(B)
on(A,Table)

clear(C)
clear(D)
on(C,Table)

on(C,D)

on(A,B)

.

��
��

���1

HHHHHHHj
��

��
��

��*

PPPPPPPPq

A B

A

B

C

D

Puton(x,y)

tI

tG

t2: Puton(C,D)

t1: Puton(A,B)

C D

Figure 1: Four Block Stacking Problem (4BSP)

.

clear(q)
on(p,Table)

clear(p)

clear(r)
clear(s)
on(r,Table)

��
��

��
��1

HHHHHHHHj
��

��
��

��*

PPPPPPPPPq
on(p,q)

on(r,s)

ts2: Puton(r,s)q 6=r, q6=s
p6=r

tsI

tsG

ts1: Puton(p,q)

Figure 2: An incorrect generalization of 4bsp

3

is the constraint that s should not be the same as p (whereas both are codesignating with B in this
case).2

To avoid this problem, the ebg algorithm needs to be modified to be more systematic in
accounting for all possible interactions among operators corresponding to all possible linearizations
of the plan. There are two potential options for doing this. First is to modify the algorithm: For
instance, repeatedly compute the generalizations of all total orders of the partial order and then
conjoin them together. This approach involves an exponential amount of redundant computation
because a popi plan corresponds to a possibly exponential number of totally ordered totally
instantiated plans, while the generalized preconditions of a plan are more directly related to its
causal structure.

A better option, explored in this paper, is to modify the input to the EBG algorithm: Construct
a valid explanation of correctness of the popi plan, and use that explanation to produce the
correct generalized initial conditions for the plan. By modifying the input to ebg, rather than the
ebg algorithm, we retain the broad applicability of the algorithm (for different classes of truth
criteria, different generalizations can be produced) [3]. We also avoid the redundant computation
associated with the first approach.

Our approach is to provide ebg with explanations of correctness of partially ordered plans
based on the Modal Truth Criteria [3], which state the necessary and sufficient conditions for
ensuring the truth of a proposition at any point in a plan for a class of partially ordered plans. The
explanations are represented by a set of dependency links, with well-defined semantics, called
validations. These explanations are then used as the basis for generalization. The generalizations
obtained by this method guarantee successful and interaction-free execution of all total orders of
the generalized plan. In addition, the systematic derivation of the generalization algorithms from
the Modal Truth Criteria obviates the need for carrying out a separate formal proof of correctness
of the ebg algorithms.

More importantly, once we shift to popi plan representations, we also open up a larger
spectrum of possible generalizations. To begin with, in addition to the traditional precondition
generalizations, we can also consider order generaliations, or combinations there of. For example,
if the planner gave Puton(A;B)! Puton(C;D) as the plan for solving the four block stacking
problem, we should be able to generalize it by generalizing the preconditions, the order constraints
or both. Within the popi plan representation, the notion of generalization itself can be relaxed
to allow for possible correctness generalizations, where we attempt to guarantee that at least one
instantiation of the popi generalization is applicable in the new problem situation. We will show
that our development provides a unified framework within which all these generalizations can be
computed in a principled fashion.

2It might be pointed out that in this particular case, adding an implicit universal non-codesignation constraint
among all blocks could have allowed even traditional EBG algorithms to get a correct generalization. However, such
problem-independent constraints may be unnecessarily strong in some other problems. What we need instead is a way
in which the generalization algorithm itself adds the minimum additional constraints while generalizing the plan.

4

2 Preliminaries and Terminology

Given a planning problem [I;G] where I is a conjunction of literals specifying the initial state
and G is a conjunction of literals specifying the desired goal state, a partially ordered partially
instantiated plan3 P is a 3-tuple P : hT;O; i, where T is the set of actions in the plan, and O is
a partial ordering relation over T , and is a set of codesignation (binding) and non-codesignation
constraints (prohibited bindings) on the variables in P . T contains two distinguished nodes tI and
tG, where the effects of tI and the preconditions of tG correspond to the initial and final states of
the plan, respectively. The actions are represented by instantiated strips-type operators with Add,
Delete and Precondition lists, all of which are conjunctions of first order literals4.

O defines a partial ordering over T : O = f(ti; tj) j ti; tj 2 Tg. We write ti � tj
if either (ti; tj) 2 O, or there exists a sequence of operators t1 � � � tn 2 T , such that
(ti; t1); (t1; t2) � � � (tn; tj) 2 O. (Thus, the ‘‘�’’ relation corresponds to the transitive closure
of O.) If ti and tj are unordered with respect to each other (i.e., ti 6� tj and tj 6� ti), then we say
ti k tj .

defines the set of codesignation and non-codesignation constraints on the variables occurring
in the plan. We say that a literal pi can codesignate with another literal pj (written as pi � pj),
if and only if pi and pj are unifiable under the variable constraints in . Similarly, we say that pi
cannot codesignate with pj (written as pi 6� pj), if pi and pj cannot be unified under the constraints
imposed by .5

A popi planP : hT;O; i corresponds to a set of totally ordered totally instantiated plans called
completions or ground linearizations6 (denoted by completions(P)). Each completion of P will
have the same operators as P , ordered in a sequence consistent with O (i.e., corresponds to a
topological sort of the operators of P), and with all variables assigned (constant) values that are
consistent with .

The modal operators ‘‘2’’ and ‘‘3’’ are used to denote the necessary and possible truth of
a statement over all the completions of a plan. The necessary and possible truth of an assertion
P are related by the modal equivalence relation: 3P � :2:P . Given two literals On(A;B)
and On(x; y) in the plan P , we say 2[On(A;B) � On(x; y)] if and only if the codesignation
constraints A � x and B � y belong to . Similarly, we say 3[On(A;B) � On(x; y)] if and only

3Unless otherwise stated, when we talk about plans in the rest of the paper, we will be referring to partially ordered
partially instantiated plans.

4We shall use upper case letters for constants and the lower case ones for variables.
5Codesignation constraints among literals translate into equalities among variables and constants (domain objects),

while the non-codesignation constraints translate into disequalities among variables. For example, On(A;B) �
On(x; y) if and only if eq(A; x) ^ eq(B; y), since the most general unifier of the two literals is � = ((Ax)(B y)).
Thus, when we say that On(A;B) can co-designate with On(x; y) in our plan, we mean that � is consistent with
the constraints in (i.e., doesn’t constrain x not to co-designate with A or B not to co-designate with y). Similarly,
On(A;B)6�On(x; y) if and only if :[eq(A; x)^ eq(B; y)] (that is neq(A; x) _ neq(B; y)).

6Note: There is some confusion in the literature regarding the term completion. In this paper, we use it to mean a
ground linearization of a popi plan.

5

if the non-codesignation constraints A 6� x and B 6� y do not belong to . Similarly, 3(ti � tj) if
and only if ti can possibly precede tj in some total ordering of the popi plan (which means that
either (ti � tj) or (ti k tj)).7

Plan Generalizations: popi plans, by virtue of their more expressive representation of plans,
allow for a variety of generalizations. A popi plan P is said to be more general than another plan
P 0 (written as P = P 0) if and only if the set of all completions of P 0 is a subset of the completions
of P:

P = P 0 , Completions(P 0) � Completions(P) (1)

We distinguish a generalization of a plan called the ‘‘unconstrained’’ (maximal) generalization.

unconstrained(P : hT;O; i) � hT; ftI � tGg; ;i

It is easy to see that unconstrained(P) is the most general version of P that still contains the
tasks of P .

Next, we define the notion of correctness preserving generalization as follows: P is called a
correctness preserving generalization of P 0, (written P =� P 0) if and only if P = P 0 and both P
andP 0 are correct popi plans (i.e., all their completions are correct). Given two correct popi plans
P : hT;O; i and P 0 : hT 0; O0; 0i, we differentiate between three types of correctness preserving
generalizations:

� P is considered a precondition generalization of P0 if and only if P =� P 0 and T = T 0,
O = O0 and TC(0) � TC(), where TC is the transitive closure operation. In other words,
every codesignation and non-codesignation constraint that is consistent with 0 must also be
consistent with .

� P is considered an order generalization of P0 if and only if P =� P 0 and T = T 0, = 0 and
TC(O0) � TC(O). In other words, every ordering constraint that is consistent with O0 must
also be consistent with O.

� P is an order and precondition generalization of P0 if and only if P =� P 0 and T = T 0,
TC(0) � TC() and TC(O0) � TC(O).

Note that all three generalizations discussed above generalize (or relax) the ordering and binding
constraints, but leave the steps unchanged. To define the notion of structure generalizations, or
generalizations that can also change the plan steps, we have to first define the notion of plan

7Note that by this definition, a totally ordered, totally instantiated plan (such as one produced by strips

[10]) is just a special case of popi plans, where O defines a total ordering on the steps of the plan (i.e,
8ti; tj 2 T; (ti � tj)_ (tj � ti)), and there are no variables in the plan (i.e., is such that every variable is constrained
to necessarily codesignate with some constant). Thus, the techniques developed here will also be applicable to the
former.

6

refinement. A refinement of a popi plan P : hT;O; i is a totally ordered and totally instantiated
plan P 0, such that P0 contains all the steps of P , and is consistent with all the ordering and binding
constraints of P .(Note that this leaves open the possibility of P0 having additional steps, orderings
as well as bindings.) By this definition, every completion of a plan is also a refinement of the
plan. Given this definition, we say P0 is a structural generalization of P , if and only if every
completion of P 0 is a refinement of P .

3 Explanation of Correctness using Modal Truth Criteria

In [3], Chapman proposed modal truth criteria (mtc), as a formal means of reasoning about
(popi) plans. An mtc provides necessary and sufficient conditions for ensuring the truth of a
proposition C before an action t in a popi plan. In this section, we shall develop the explanation
of correctness of a popi plan in terms of such a truth criterion. For plans containing strips-type
operators whose precondition, add and delete lists contain first order literals, a mtc can be stated
as follows:8

holds(C; t;P) ()
9 t0 s.t. 2(t0 � t)^ e 2 effects(t0) ^ 2(e � C)

V
8t00 s.t.3(t0 � t00 � t)

8d 2 delete(t00)2(d 6� C) (2)

It states that a proposition C holds before an operator t in a popi plan P : hT;O; i if and only
if there exists an operator t0 such that an effect e of t0 necessarily codesignates with C , and for
every operator t00 of the plan that may possibly fall between t0 and t, every proposition belonging
to the delete list of t00 will necessarily not codesignate with C . The truth criterion can usefully be
thought of as a completeness/soundness theorem for a version of the situation calculus (cf. [3], pp.
340). Alternatively, it can be thought of as a method for doing goal-regression [29] over a class of
popi plans.

In planning, the intended use of the mtc is as a prescription of all possible ways of making
a proposition of a popi plan true during plan synthesis. However, the mtc can also be used as
the formal basis solely for proving plan correctness. In particular, a popi plan P : hT;O; i is
considered correct according to the modal truth criterion, if and only if all the goals of the plan,
as well as all the preconditions of the individual plan steps can be shown to hold according to the
criterion given in equation 2 without extending or modifying P in anyway.

The explanation of correctness of a plan can then be characterized as a ‘‘proof’’ that the plan
satisfies this criterion for correctness. The algorithm exp-mtc shown in Figure 3 constructs the
explanation of correctness given a popi plan, by interpreting equation 2 for each precondition and

8For ease of exposition, we will be using a version of Chapman’s truth criterion [3] without the white-knight clause,
in our initial development. Section 5.2 shows how our algorithms can be extended in a straight forward fashion to the
more general tweak truth criterion.

7

Algorithm exp-mtc (P : hT;O; i)
V ;
foreach t 2 T do
foreach hC; ti (where C 2 precond(t)) do
Traverse P in the reverse topological sorted order and

find the first operator t0 s.t.
t0 � t ^ 9e 2 effects(t0) ^2(e � C)

V
8t00s.t. 3(t0 � t00 � t);
8d 2 delete(t00) 2(d 6� C)

if such a t0 is found
then V V [fhe; t0; C; tig
else return failure

od od

Figure 3: Explanation Construction Algorithm

goal of the plan. It returns failure if such an explanation structure cannot be found (implying that
the plan is incorrect according to the given mtc).

Note that our algorithm represents the computed explanation by a set V of dependency links;
we shall refer to these links as validations of the plan [18]. The individual dependency links are
of the form he; t0; C; ti. Intuitively, these represent the interval of operators t0 and t over which
a literal C needs to hold. C is made true by the effect e of operator t0, and is needed at t. It is
protected throughout that interval (t0; t) from being clobbered, that is, any operator t00 that may
possibly come between t0 and t in some total ordering must not violate the conditionC (i.e., t0 must
not have a delete list literal that can possibly unify with C). The semantics of validations therefore
capture both the traditional precondition-effect dependencies and protection violations across all
completions. In particular,

v : he; t0; C; ti is a validation of P : hT;O; i ()
2(e � C) ^ 2(t0 � t) ^
8t00 2 T s.t. 3(t0 � t00 � t)

8d 2 delete(t00); 2(d 6� C) (3)

For the 4bsp plan shown in Figure 1, the explanation of correctness found by this algorithm
would consist of the following validations:

8

v1 : hOn(A;Table); tI; On(A;Table); t1i
v2 : hClear(A); tI; Clear(A); t1i
v3 : hClear(B); tI; Clear(B); t1i
v4 : hOn(C;Table); tI; On(C;Table); t2i
v5 : hClear(C); tI; Clear(C); t2i
v6 : hClear(D); tI; Clear(D); t2i
v7 : hOn(A;B); t1; On(A;B); tGi
v8 : hOn(C;D); t2; On(C;D); tGi

Remarks: The exp-mtc algorithm shown in Figure 3 finds only one out of the possibly many
explanations of correctness of the plan. In particular, for each precondition C of an operator t,
there might possibly be many operators that can contribute C (according to the criteria stated by
mtc). Of these, the algorithm records only the first operator t0 encountered in a reverse topological
order scan of P that satisfies the conditions of mtc9. It is perfectly reasonable to choose another
explanation of correctness (i.e., another set of validation links V) over the one given by this
algorithm as long as that explanation also satisfies the mtc. It should however be noted that the
generalization phase will be guided by the particular explanation that is chosen at this step (rather
than by all possible explanations). This corresponds to a common restriction for ebg termed
‘‘generalizing with respect to the explanation structure’’, or ‘‘following the example’’ [26].
Complexity: The cost of finding a validation link in the above algorithm is O(n2�), where � is an
upper bound on the number of delete literals per operator, and n is the number of operators in the
plan10. If � is the upper bound on the number of preconditions per operator, then there must be
O(�n) validations links in the explanation. Thus the total cost of explanation construction, using
this mtc, is O(n3).

4 Precondition and Order Generalization methods

4.1 Explanation-Based Precondition Generalization
In this section, we will first use the explanation of correctness developed in the previous section

to derive a declarative specification for the generalization phase of ebg for popi plans. We will
then provide an algorithm that interprets this specification.

The generalization process consists of schematizing11 (variablizing) the plan P to produce Ps,
and determining the weakest co-designation and non-codesignation constraints on the variables
under whichPs will be correct according to themtc, with respect to the same explanation structure

9If no such t0 is found, the algorithm returns failure, which means that there exists at least one linearization of P
that will have subgoal interactions.

10This assumes that the transitive closure of the partial ordering relations among plan steps is available (for an n

step plan, this can be computed in O(n3) time), thereby allowing the checks on ordering relations during explanation
construction to be done in constant time.

11We shall use the superscript ‘‘s’’ to distinguish entities corresponding to the schematized plan.

9

.

clear(i)
clear(j)
on(i,Table)

clear(l)
clear(k)

on(k,Table)

��
��

��
��1

HHHHHHHHj
��

��
��

���*

PPPPPPPPPq
on(p,q)

on(r,s)

tsI

tsG

ts1: Puton(x,y)

ts2: Puton(z,w)

Figure 4: Schematized Plan for 4bsp

as that used to explain the correctness of P .
Given a plan P : hT;O; i, we construct its schematized version, Ps : hT s; Os; si by replacing

each instantiated operator t 2 T by the corresponding operator template ts (with unique variables).
(For tI and tG, we replace their literals by their variablized versions.) Os defines a partial
ordering on T s that is isomorphic to O, and s is initially set to empty set12 . The objective of the
generalization is to compute the weakest s that is enough to make Ps correct according to Vs.
Figure 4 shows the schematized plan corresponding to the 4bsp plan shown in Figure 1.

The schematization process defines a one-to-one mapping between the add, delete and
precondition lists of each step t of P and those of the corresponding operator template ts of Ps.
For example, the literal On(A;Table) in the preconditions of operator t1 in the 4bsp plan shown
in Figure 1 corresponds to the literal On(x; Table) in the schematized plan. Let lmap denote
this mapping. Given this mapping, a set of explanation links Vs for Ps can be constructed such
that they are isomorphic to V of P . For each validation v : he; t0; C; t00i 2 V , there will be a
validation vs : hes; t0s; Cs; t00si 2 Vs such that t0s and t00s are operator templates in the schematized
plan corresponding to t0 and t00 respectively, and es and Cs are the literals corresponding to e

and C according to lmap defined above. For the 4bsp schematized plan shown in Figure 4, the
explanation links in Vs are:

12Note that it is also possible to start with an empty O set and compute just the amount of orderings required by the
schematized validation structure, see Sections 4.2 and 4.3.

10

vs1 : hOn(i; Table); tsI; On(x; Table); ts1i
vs2 : hClear(i); tsI; Clear(x); ts1i
vs3 : hClear(j); tsI; Clear(y); ts1i
vs4 : hOn(k; Table); tsI; On(z; Table); ts2i
vs5 : hClear(k); tsI; Clear(z); ts2i
vs6 : hClear(l); tsI; Clear(w); ts2i
vs7 : hOn(x; y); ts1; On(p; q); tsGi
vs8 : hOn(z;w); ts2; On(r; s); tsGi

Notice that after the schematization, Ps and Vs are over general in that the links in Vs may no
longer constitute an explanation of correctness of Ps according to the mtc. The objective of the
generalization phase is to post constraints (codesignation and non-codesignation) on the variable
bindings to specialize this over general schematized plan and validations just enough so that Vs is
an explanation of correctness for Ps according to mtc. Extracted initial conditions on Ps are then
the weakest (most general) conditions for which Ps can be executed in any total order consistent
with the partial order Os, according to the same explanation structure

We now develop the declarative specification of the necessary and sufficient conditions under
which Vs will be an explanation of correctness of Ps according to the mtc. We do this by
expressing the conditions under which each element vs 2 Vs is a validation of Ps. From
the semantics of the validations provided in equation 3, these conditions can be stated as the
conjunction of codesignation and non-codesignation constraints:13

^
8vs:hes;t0s;Cs;t00si2Vs

"
2(es � Cs)

^
8ts 2 T s s:t:

3(t0s � ts � t00s);
8ds 2 delete(ts) 2(ds 6� Cs)

#
(4)

Essentially, the validations offer an ‘‘interval’’ view on the explanation -- the intervals in
which literals have to hold. For our generalization algorithm to mirror standard ebg algorithms,
we regroup the validations to reflect what needs to hold for each operator (the ‘‘operator’’ view).
The validations grouped for each operator ts 2 T s, describe validations it is required to support
and preserve in the explanation of correctness. The ‘‘interval’’ view in expression 4 can thus be
re-expressed in an ‘‘operator’’ view by grouping the validations at each operator:

^
8ts2T s

2
66664
8 vs : hes; t0s; Cs; t00si 2 Vs s:t: t0s = ts| {z }

e�conditions(ts)

; 2(Cs � es)^

8 vs : hes; t0s; Cs; t00si 2 Vs s:t: 3(t0s � ts � t00s)| {z }
p�conditions(ts)

8ds 2 delete(ts) 2(ds 6� Cs)

3
77775 (5)

13Since there is a direct correspondence between Vs and V, and Os is isomorphic to O, for each vs :
hes; t0s; Cs; t00si 2 Vs, we already have t0s � t00s (see equation 3)

11

Informally, expression 5 states that every operator in the schematized plan should: (i)
necessarily support the conditions that its counterpart in the specific plan was required to support
according to the explanation and (ii) necessarily preserve all the conditions that its counterpart
in the specific plan was required to preserve. In particular, we can define the e-conditions (for
relevant effect conditions) of an operator as the set of validations it is required to support in the
explanation of correctness:

e�conditions(ts) = fvs j vs : hes; t0s; Cs; t00si 2 Vs s:t: t0s = tsg (6)

and p-conditions (for preservable conditions) of an operator as the set of validations it is
required to protect:

p�conditions(ts) = fvs j vs : hes; t0s; Cs; t00si 2 Vs s:t: 3(t0s � ts � t00s)g (7)

Using equations 6 and 7, we can now rewrite expression 5 as:

^
8ts2T s

"
8vs : hes; t0s; Cs; t00si 2 e�conditions(ts) ; 2(Cs � es)^
8vs : hes; t0s; Cs; t00si 2 p�conditions(ts) 8ds 2 delete(ts) 2(ds 6� Cs)

#
(8)

Expression 8 is then the declarative specification of the necessary and sufficient conditions
under which the schematized plan Ps is correct according to mtc, given the same explanation
structureVs. Ps can be used in any initial state S that satisfies the conditions shown in expression 8.
For such states, the plan is guaranteed to succeed in all of its total orderings. Furthermore, note
that expression 8 computes exactly those conditions that are required (by mtc) to make Vs

an explanation of correctness of Ps. In this sense, the computed conditions are the weakest
preconditions (modulo the given explanation) for P s

The algorithm exp-prec-gen shown in Figure 5 implements expression 7 procedurally in a
straightforward manner. The algorithm makes one pass through the plan, visiting each operator,
computing the codesignation and non-codesignation constraints imposed on the generalized plan.
The codesignation constraints are maintained as substitutions in �, and the non-codesignation
constraints are maintained as disequality constraints on the variables in . At the end of the
generalization phase, the substitution list � is applied to all the literals in the schematized plan Ps

and its explanation structure Vs. Finally, the equality and disequality constraints imposed by � and
 respectively are conjoined with the initial state specification14 of the generalized plan to get the
weakest preconditions for the generalized plan.
Complexity: The generalization algorithm runs in polynomial time. In particular, the e-conditions
and p-conditions of all the operators in Ps, as required by the algorithm, can be precomputed in
O(jT sjjVsj) or O(n2) time (where n is the number of operators of the plan), and the propositional

14the literals in the e-conditions of tI , to be precise

12

Algorithm exp-prec-gen (Ps : hT s; Os; si;Vs)
Initialize: Let � be a null substitution, s a null set of constraints, and be True
foreach ts 2 T s do

foreach vs : hes; t0s; Cs; t00si 2 e�conditions(ts) do
Let �0 be the substitution under which 2(es � Cs)
� � � � 0

foreach vs : hes; t0s; Cs; t00si 2 p�conditions(ts) do
Let 0 be the condition under which

8ds 2 delete(ts)2(ds 6� Cs)
 ^ 0

s � ^
Substitute � into all the literals of Ps and Vs

Return Ps : hT s; Os; si as the generalized plan and effects(tsI) ^ � �
as its generalized preconditions

Figure 5: Precondition Generalization Algorithm

unification required to compute � 0 and 0 itself can be done in time linear in the length of the
propositions15.

4.1.1 Example

Let us now follow the generalization of the schematized plan for 4bsp by the algorithm exp-

prec-gen. Following the definitions in equations 5 and 6, and the schematized validations in
Section 4.1, the e-conditions and p-conditions of the operators in the schematized plan can be
computed as:

15Note that we do not have any functions in our language, and so the length of literals is bounded by the arity of the
predicates.

13

e-conditions(ts1) : vs7 : hOn(x; y); ts1; On(p; q); tsGi
p-conditions(ts1) : vs8 : hOn(z;w); ts2; On(r; s); tsGi

vs5 : hClear(k); tsI; Clear(z); ts2i
vs6 : hClear(l); tsI; Clear(w); ts2i
vs4 : hOn(k; Table); tsI; On(z; Table); ts2i

e-conditions(ts2) : vs8 : hOn(z;w); ts2; On(r; s); tsGi
p-conditions(ts2) : vs7 : hOn(x; y); ts1; On(p; q); tsGi

vs2 : hClear(i); tsI; Clear(x); ts1i
vs3 : hClear(j); tsI; Clear(y); ts1i
vs1 : hOn(i; Table); tsI; On(x; Table); ts1i

e-conditions(tsI) : vs5 : hClear(k); tsI; Clear(z); ts2i
vs6 : hClear(l); tsI; Clear(w); ts2i
vs4 : hOn(k; Table); tsI; On(z; Table); tsGi
vs2 : hClear(i); tsI; Clear(x); ts1i
vs3 : hClear(j); tsI; Clear(y); ts1i
vs1 : hOn(i; Table); tsI; On(x; Table); ts1i

Recall that e-conditions of an operator t describe those literals which t supports, and p-
conditions are those literals it is required to preserve (these would include the preconditions and
useful effects of other operators parallel to t; for example, among the four p-condition validations
of ts1, the first one corresponds to preserving the required effect of ts2 and the other three correspond
to preserving the preconditions of ts2). Note that by definition, tsG will have no e-conditions or
p-conditions, and tsI will only have e-conditions (since no plan operator can precede tI or follow
tG).

The exp-prec-gen algorithm computes �01 for ts1 : Puton(x; y) by unifying On(x; y) and
On(p; q). Thus at this point, �01 (and therefore �) is ((x p)(y q)). Next, 01 for ts1 : Puton(x; y) is
computed by ensuring that its delete literals on(x; Table)^clear(y)do not unify with the literals of
its p-conditions. Thus 01 can be computed as: [neq(x; z)_neq(Table; w)]^neq(y; z)^neq(y;w)^
neq(x; k)

Similar processing for ts2 : Puton(z;w) yields � 02 as ((z r)(w s)), and 02 as [neq(z; x) _
neq(Table; y)] ^ neq(w; x) ^ neq(w; y) ^ neq(z; i). Finally, the processing for tsI yields �03 as
((i x)(j y)(k z)(l w)) (there are no p-conditions for tsI and so 03 is trivially True).

The resultant global substitution � is thus �01 � �
0
2 � �

0
3, or:

� = ((i p)(x p)(j q)(y q)(k r)(z r)(l s)(ws))

Similarly the global non-codesignation constraints on variables is computed by conjoining 01,
02 and 03 as:

 = [neq(x; z)_ neq(Table; w)]^ neq(y; z)^ neq(y;w)^ neq(x; k)^ [neq(z; x)_
neq(Table; y)]^ neq(w; x)^ neq(z; i)

14

tI
.

clear(q)
on(p,Table)

clear(p)

clear(r)
clear(s)
on(r,Table)

��
��

��
��1

HHHHHHHHj
��

��
��

���*

PPPPPPPPPq
on(p,q)

on(r,s)

t2: Puton(r,s)

tG

t1: Puton(p,q)

q6=r, q6=s

p6=r _ q 6=Table
p6=r _ s6=Table

p 6=s , p 6= r

Figure 6: Generalized Plan for 4bsp

Figure 6 shows the generalized plan (computed by substituting � into the literals of schematized
4bsp plan shown in Figure 4), and its weakest preconditions, computed by conjoining � � with
the effects of tsI in the plan. In particular, by substituting � into and simplifying, we have:

 � � =
[neq(p; r)_neq(Table; s)]^neq(q; r)^neq(q; s)^[neq(r; p)_neq(Table; q)]^neq(s; p)^neq(p; r)

Notice that the weakest preconditions rightly prohibit the use of this plan in a situation where
the goal is On(A;B)^On(B;C), because they explicitly prohibit codesignation of q and r, and p
and s (see � �). Thus, the algorithm avoids the overgeneralization discussed in Section 1.

4.2 Explanation-based Order Generalization

Given a plan P : hT;O; i, the precondition generalization algorithm developed in the previous
section uses the validation structure based explanation of correctness of the plan to compute
weakest constraints on the variable bindings, , that are required to ensure the correctness of the
plan. We can easily extend this methodology to also generalize the ordering relations O on the
plan. Just as we can eliminate any bindings that are not required to make the plan correct according
to the given validation structure, we can also eliminate any orderings that are redundant. In
particular, if V is the validation structure of the plan P (see Section 3), then we can justify the
ordering relations among the steps of the plan P with respect to the validation structure. The key
insight is that the only ordering constraints that are necessary to ensure correctness of the plan are
those that are required to maintain the individual validations (as given by equation 3).

15

Algorithm exp-order-gen (P : hT;O; i;V)
Construct transitive closure of the partial ordering O relations among the steps T of the plan.
Let O� be the resultant ordering
Initialize: Let O0 be the generalized ordering on P . Initialize O0 ;.
Foreach o : (ti ; tj) 2 O�

If Justified(o;P;V) (see text)
O0 O0 + o

O00 transitive� closure(O0)
Return(P 0 : hT;O00; i)

Figure 7: Order Generalization Algorithm

Let o : ti � tj be an ordering relation on the plan P . Then, from the semantics of the validation
given in equation 3, it can easily be shown that o is justified with respect to the validation structure
V (or justified(o : (ti � tj);P;V)) if and only if at least one of the following cases hold:

case 0. Either ti = tI or tj = tG (all plan steps follow the the start node and precede the end node).

case 1. 9v : he; ti; C; tji 2 V

case 2. 9v : he; t0; C; tii 2 V and tj has a delete list literal d such that d � C

case 3. 9v : he; tj; C; t0i 2 V and ti has a delete list literal d such that d � C .

Additionally, any ordering relation that belongs to the transitive closure of all the justified
ordering relations is also justified.

Whenever an ordering relation o is not either directly justified or transitively justified, then o can
be safely removed from P without affecting the correctness of the plan according the explanation
V . Figure 7 provides a straightforward algorithm for doing this type of order generalization. Since
there are O(n2) ordering relations and O(n) validation links in n-step plan, it is easy to see that the
order generalization algorithm can be run to completion in O(n3) time.
Example: Consider the partially ordered propositional plan shown at the top of Figure 4.2. The
add and delete list literals (propositions) of each operator are shown above the operator with ‘‘+’’
and ‘‘�’’ signs, while the preconditions are shown under the operator within parentheses. If this
plan is given as input to the explanation construction algorithm in Figure 3, it will return the
following four validations as the explanation of correctness of the plan:

v1 : hP; t1; P; tGi
v2 : hW; t2;W; t4i
v3 : hQ; t4; Q; tGi
v4 : hR; t3; R; tGi

16

- -
J
J
J
J
J
J
Ĵ

�

--

(P, Q, R, U)
(W)

+Q

+R, -W

+P +W

t2t1

t3

t4 tGtI

A propositional plan with redundant orderings

- -
J
J
J
J
J
J
Ĵ

--

��
��

��
��

��
��

��
��

��
��1

(P, Q, R, U)
(W)

+Q+W

t2
t4 tGtI t3

+P

+R, -W

t1

The plan after order generalization

Figure 8: An example of order generalization

Using these validations, the algorithm in Figure 7 can generalize the orderings on the plan as
follows. Note that the set of initial orderings are:

8>>><
>>>:

tI � t1; tI � t2; tI � t3; tI � tG;

t1 � tG; t2 � tG; t3 � t4; t4 � tG
t3 � t2;

t3 � t4; t1 � t2; t1 � t4

9>>>=
>>>;

Of these, the first four are directly justified based on case 0 of the definition, and the next four
are directly justified based on case 1 of the definition.16 The next one, t3 � t4, is directly justified
by case 3 of the definition (since v2 : hW; t2;W; t4i is a validation of the plan, and W is a delete
list literal of t3). These are the only orderings that are directly justified. From these, we can see
that the ordering t3 � t4 is also transitively justified (since t3 � t2 and t2 � t4 are both justified).

16the first two and the last are also justified according to case 0

17

Algorithm ord-prec-gen (P : hT;O; i)
V exp-mtc(P : hT;O; i)
P 0 : hT;O0; i exp-ord-gen(P : hT;O; i;V)
P 00 :hT;O0; 00i exp-prec-gen(P 0 : hT;O0; i;V)
Return(P 00)

Figure 9: An algorithm for generalizing the order and preconditions of a popi plan

The ordering relations t1 � t2 and t1 � t4 are however are neither directly nor transitively
justified according to the set of validations fv1 � � � v4g. Thus they will be removed from the order
generalized plan, giving rise to a more general partially ordered plan shown in the bottom of
Figure 4.2. (The latter plan is more general as it has more completions compared to the former;
see Section 2).

Note that the order generalization algorithm developed here can also be applied to the plans
generated by a totally ordered planner, to remove unnecessary orderings from them and make them
more ‘‘parallel.’’ In this sense, it is equivalent to the plan order optimization algorithms described
in [36] and [9].

4.3 Combining order generalization and precondition generalization

Given the precondition generalization and order generalization algorithms developed above, a
natural possibility would be to combine them. Such a combined generalization algorithm can
take a totally ordered totally instantiated plan, such as one generated by strips [10] or prodigy
[23] and generalize it by first removing unnecessary orderings and then generalizing the variable
bindings. The algorithm ord-prec-gen in Figure 9 shows a way of doing this. We start
by running the explanation construction algorithm (shown in Figure 3) on the plan. Using the
validation structure produced by the explanation algorithm, we can then generalize the ordering
on the plan (with the help of the algorithm shown in Figure 7). Finally, the order generalized plan
and the validation structure can be given as the input to the precondition generalization algorithm
(shown in Figure 5).
Example: Suppose we are given the plan P4BS : Puton(A;B)! Puton(C;D) for solving the
4BS problem shown in Figure 1. For this plan, he explanation construction algorithm will give
the same eight validations shown in Section 3. Using these validations, the algorithm exp-

order-gen in Figure 7 will remove the ordering relation between Puton(A,B) and Puton(C,D),
from the plan P4BS, thus returning the plan shown in Figure 1. This new plan, along with the
validation structure is then provided to the exp-prec-gen algorithm in Figure 5, giving rise to
the generalized plan in Figure 6.

18

4.3.1 Disjunctive generalization

Given a plan P : hT;O; i and a validation structure V , there may typically be more than one
way of specializing (adding constraints to) and O to make V a validation structure of P . In
particular, there are essentially two types of ordering and binding constraints that P has to satisfy
so as to maintain Vs as its validation structure [21]:

Causal constraints: Foreach validation v : hE; ts; C; tdi 2 V , (ts � td) 2 O, and (E � C) 2 .

Safety constraints: Foreach validation v : hE; ts; C; tdi 2 V , foreach node t0 2 T such that t0 has
a delete list literal d that can possibly codesignate with C , either of the following constraints
must be satisfied:

� (td � t0) 2 O or (t0 � t) 2 O or

� d 6� C 2

Note that although the causal constraints are fixed once a validation structure has been chosen,
the safety constraints can be satisfied in more than one way -- either by adding additional ordering
constraints or by adding additional codesignation/non-codesignation constraints.

The algorithm ord-prec-gen selects one point along this spectrum -- it uses the strategy
of first pegging to one value, and generalizing O with respect to it, and then pegging O to the
generalized value and generalizing .

It is also possible to compute all possible generalizations (i.e., all possible s and Os com-
binations) and conjoin them, resulting in a disjunctive generalization of the original plan. This
is what is done in Mooney’s order generalization algorithm [27]. Computing all the consistent
�O combinations for a given plan P and validation structure V however involves reinterpreting
the truth criterion, thus transferring some of the planning activity into the generalization phase;
Mooney’s algorithm takes O(n5) in the length of the plan [27].

Figure 4.3.1 shows the disjunctive generalization of the 4BS plan. Note in particular, that
apart from the fully parallel version, the generalized plan also includes one set of orderings to
accommodate the scenario where q � r and another set of ordering to accommodate the scenario
where p � s.

5 Extending the Generalization Framework

5.1 Computing conditions of possible correctness

Until now, we have looked at generalization algorithms that compute weakest conditions under
which all completions of a popi plan can be guaranteed to execute successfully. Failure of
these conditions means only that there exists at least one completion that is incorrect. It does not
preclude the possibility that the plan can be specialized further (by adding further constraints on the

19

.

clear(q)
on(p,Table)

clear(p)

clear(r)

clear(s)

on(r,Table)

tI

��
��

���1

HHHHHHHj
��

��
��

�*

PPPPPPPq
on(p,q)

on(r,s)

t2: Puton(r,s)

tG

t1: Puton(p,q)

q6=r, q6=s

p6=r_ q6=Table
p 6=r_ s6=Table

p 6=s , p 6= r

.

clear(q)

on(p,Table)

clear(p)

clear(r)

clear(s)

on(r,Table)

- - . -

q 6= r, q6=s

p 6=r_ q6=Table

p 6=r_ s6=Table

p = s , p 6= r

on(p,q)

on(r,s)

tG

t2: Puton(p,q) t1: Puton(r,s)

.

clear(q)

on(p,Table)

clear(p)

clear(r)

clear(s)
on(r,Table)

tI

q = r, q6=s

p6=r_ q6=Table

p6=r_ s6=Table

p 6= s , p 6= r

on(p,q)

on(r,s)

tG

t1: Puton(p,q)

tI

- - . -
t2: Puton(r,s)

L
L
LL�
�
��

L
L
LL�
�
��

Figure 10: Disjunctive generalization of 4BS problem

20

orderings and variable bindings). Sometimes, it may be useful to compute weakest preconditions
under which at least some completion of the plan can possibly execute. Such preconditions can
be used to select a generalized plan that is possibly applicable in a given situation, and make
it necessarily applicable by allowing the planner to add only additional ordering and binding
constraints without ever retracting the existing constraints in the plan. Such a mechanism would,
for example, allow us to store the generalized plan for the four-block stacking problem and use
it both in a four block stacking scenario and in a three-block stacking scenario (such as the one
discussed in Section 1). Since such a mechanism allows a stored plan to be used in a much larger
set of situations, it provides an interesting memory vs. planning trade-off.

Consider the schematized plan Ps : hT s; Os; si and its schematized validation structure Vs

described in Section 4.1. Let Ps
c be a completion of Ps (see Section 2). We say that a validation

vs : hes; t0s; Cs; t00si 2 Vs holds in Ps
c (comp�holds(vs;Ps

c)) if and only if

1. t0s comes before t00s in Ps
c

2. Es = Cs (note that in a completion corresponds to a totally instantiated plan, all the effects
and preconditions will be ground)

3. no step comes between t0s and t00s and deletes Cs in Ps
c .

Ps is possibly correct (under the explanation Vs) if and only if there exists at least one
completion of it such that all the validations vs 2 Vs simultaneously hold in that completion:

possibly�correct(Ps;Vs) � 9Ps
c 2 Completions(P)

^
vs2Vs

comp�holds(vs;Ps
c)

Computing conditions of possible correctness as described in the above equation will in
general force us to reason with the individual completions, and can be quite costly.17 Even more
importantly, the resulting preconditions would be highly disjunctive and thus the match cost might
out-weigh its expected savings [23]. One compromise would be to look for necessary or sufficient
conditions for possible correctness which will be easier to compute and match against. Since
2P � 3P , the preconditions for necessary correctness computed by the algorithm in Figure 5
already provide a set of sufficient conditions for possible correctness.

17The relative difficulty of dealing with possible correctness, as compared to necessary correctness (Section 4.1)
is due to the asymmetry in the way possible and necessary truths distribute over conjunctions. To compute necessary
(possible) correctness of a plan, we need to check that in every (at least one) completion of the plan, all the prerequisites
of the plan are true. Since 2(P ^Q) � 2P ^ 2Q, necessary correctness can be determined in polynomial time by
locally determining the necessary truth of individual propositions using MTC and conjoining them. However such a
method cannot be used for possible correctness since 3(P ^Q) 6 equiv3P ^3Q. Thus, although local determination
of possible truth of individual propositions can be done polynomial time, there is no straightforward way in which
they can be combined to determine the possible truth of the plan in polynomial time.

21

A way of computing necessary conditions for possible correctness, without having to reason
with individual completions, is to use the modal truth criterion for possible truth of a proposition in
a popi plan (see below). The basic idea is to use the possible truth criterion to explain the possible
correctness of each precondition and goal of the plan individually, and base the generalization
on this explanation. Since 3P ^ 3Q does not imply 3(P ^ Q), the conditions that ensure
that all preconditions individually possibly hold may not in general guarantee that there exists
a completion in which they all hold simultaneously. (In other words, even if its preconditions
for possible correctness, as described above, hold in that situation. there may possibly not be
any completion of the plan that will work in a given situation) They do however constitute a
set of necessary conditions for ensuring possible correctness of the plan --- if the generalized
preconditions computed by possible correctness do not hold in a problem situation, then we know
for sure that no specialization of that plan will ever solve that problem. When these conditions do
hold, we can use the global constraint satisfaction techniques, such as those described in [39] to
check if the plan can be constrained to be applicable to the new situation. The following briefly
describes the development of an algorithm for computing such necessary preconditions of possible
correctness.

We will start by observing that the truth criterion for guaranteeing the possible truth of a
proposition can be obtained by simply reversing the modalities in the equation 2 (substitute ‘‘3’’
for ‘‘2’’ and vice versa) [3] as follows:

possibly�holds(C; t;P) ()
9 t0 s.t. 3(t0 � t)^ e 2 effects(t0) ^ 3(e � C)

V
8t00 s.t.2(t0 � t00 � t)

8d 2 delete(t00)3(d 6� C)

Thus a condition C is possibly correct at step t as long as there exists some step t0 that is
possibly preceding t which has an effect that can possibly codesignate with C , and for every step
t00 that necessarily comes between t0 and t, the effects of t00 will possibly not clobber the condition
C . If an individual condition C is possibly correct, then we can make it necessarily correct by
adding some additional ordering and binding constraints on the plan, without ever having to retract
any constraints from the plan (i.e., without backtracking).

Using this truth criterion, we can develop polynomial time ebg algorithms for necessary
conditions for possible correctness (isomorphic to those developed for necessary correctness). In
particular, we can represent an explanation that each precondition of the plan is possibly true, in
the form of validation links that are similar to those described in Section 2. In keeping with the
possible truth criterion, we associate the following weaker semantics to the validation links:

v : he; t0; C; ti is a validation of P : hT;O; i ()
3(e � C) ^ 3(t0 � t) ^
8t00 s.t.2(t0 � t00 � t) ^ 9d 2 delete(t00) s:t:3(d 6� C);

22

Algorithm exp-prec-gen (Ps : hT s; Os; si;Vs)
Initialize: Let �; True

foreach ts 2 T s do
foreach vs : hes; t0s; Cs; t00si 2 e�conditions0(ts) do

Let �0 be the conditions under which 3(es � Cs)
� � ^ �0

foreach vs : hes; t0s; Cs; t00si 2 p�conditions0(ts) do
Let 0 be the condition under which

8ds 2 delete(ts)3(ds 6� Cs)
 ^ 0

Return effects(tsI) ^ ^ � as the necessary conditions for possible correctness

Figure 11: Algorithm for computing a set of Necessary Conditions for Possible Correctness of a
Generalized Plan

Given this, the conditions under which all the validations individually possibly hold are given
by

^
8vs:hes;t0s;Cs;t00si 2Vs

"
3(es � Cs)

^
8ts 2 T s s:t:

2(t0s � ts � t00s);
8ds 2 delete(ts) 3(ds 6� Cs)

#

Based on this we can also define the notion of e�conditions0 and p�conditions0 for each step
in the plan, and develop the declarative specification of the generalization algorithm in terms of
those constraints as follows:

e�conditions0(ts) = fvs j vs : hes; t0s; Cs; t00si 2 Vs s:t: t0s = tsg

p�conditions0(ts) = fvs j vs : hes; t0s; Cs; t00si 2 Vs s:t: 2(t0s � ts � t00s)g

^
8ts2T s

"
8vs : hes; t0s; Cs; t00si 2 e�conditions0(ts) ; 3(Cs � es)^
8vs : hes; t0s; Cs; t00si 2 p�conditions0(ts) 8ds 2 delete(ts) 3(ds 6� Cs)

#

Here V is the set of validation links that constitute the explanation of possible correctness
(with the semantics described above). With this alternative definition, we can now use a simple
variant of the precondition generalization algorithm described in Figure 5, shown in Figure 11 to
compute necessary preconditions for possible correctness. The conditions � and returned by the
procedure above will be of the form peq(x; y) and pneq(x; y), defined as follows:

peq(x; y)
4
= (x 6� y) 62

23

pneq(x; y)
4
= (x � y) 62

These conditions are necessary but not sufficient for ensuring possible correctness. Failure of these
conditions in a new problem situation is sufficient to guarantee that the schematized plan cannot
be specialized to solve that problem. When they hold, then it may be possible (but not necessarily
so) to specialize the plan.

Using this algorithm, we can easily compute the conditions under which the schematized
4BS plan (described in Figure 4) will be possibly correct. To begin with, note that the
e�conditions0 on ts1, ts2 and tsI are the same as the e�conditions on those steps (as shown in
Section 4.1.1), but there are no p�conditions0 on either of these steps (this is because there is
no validation vs : hes; t0s; Cs; t00si in the validation structure of the schematized 4BS plan such
that 2(t0s � ts1 � t00s) or 2(t0s � ts2 � t00s)). With this information, the algorithm in Figure
11 will compute the following necessary conditions for ensuring the possible correctness of the
schematized plan:

peq(x; p) ^ peq(y; q)^ peq(z;w) ^ peq(r; s)^ peq(k; z)^ peq(l; w) ^ peq(i; x)^ peq(j; y)

Suppose we want to check if the schematized 4BS plan can be used to solve a three block
stacking problem where i � A; j � B; k � B and l � C . We can see that the conditions
above are not violated in the three blocks situation. Thus, it may be possible to specialize the
4BS plan to solve the three block stacking problem. In this case, we can see that the plan can
in fact be specialized to solve the three block stacking problem by adding an additional ordering
constraint ts2 � ts1 to the plan. In [39], Yang provides algorithms based on global constrain
satisfaction techniques to efficiently determine whether a given possibly applicable plan can be
made necessarily applicable by adding additional ordering and binding constraints.

5.2 Utilizing more general truth criteria

As we pointed out earlier, for exposition purposes, we used a version of Chapman’s truth criterion
[3] without the white-knight clause that would permit deleters to come in between the producer
and consumer of a condition, as long as each such deleter is necessarily followed by a so called
white-knight step which necessarily precedes the consumer and adds the condition being deleted.
Although planners using this truth criterion will be complete, in that they will be able to produce
correct (popi) plans for any solvable planning problem (c.f. [21]), the truth criterion itself
describes only sufficient, but not necessary conditions for ensuring the truth of a proposition in a
popi plan. As a result, the generalization algorithm in Figure 5 is sound, but not complete for
popi plans involving the class of operators described in Section 2. That is, there may be plans,
such as the one shown in Figure 12, which are correct, but our generalization algorithm cannot
handle them, since they do not have a validation structure with semantics defined by equation 3.

This incompleteness can be avoided by using Chapman’s [3] tweak truth criterion, which
provides both necessary and sufficient (for domains where the operator add/delete/precondition
lists have unquantified literals). This criterion can essentially be stated as follows:

24

holds(C; t;P) ()
9 t0 s.t. 2(t0 � t)^ e 2 effects(t0) ^ 2(e � C)

V
8t00 s.t.3(t0 � t00 � t) ^ 9d 2 delete(t00) s:t:3(d � C);

9w 2 P s:t:2(t00 � w � t) ^ 9e 2 effects(w) s:t:2[(d� C)) (e � C)]

It states that a proposition C holds before an operator t in a popi plan P : hT;O; i if and only
if there exists an operator t0 such that an effect e of t0 necessarily codesignates with C , and for
every operator t00 of the plan that may possibly fall between t0 and t, such that it can possibly delete
C , there exists another operator w that necessarily follows t0 and precedes t and establishes E in
each case when t0 clobbers C (such a step w is called the white-knight step). Obviously, this truth
criterion is more general in that it does not summarily prohibit a clobberer possibly coming after
the establishing node.

The generalization algorithms of the previous section can be extended in a straightforward
fashion to cover this more general truth criterion. In particular, the explanation of correctness of a
plan with respect to this truth criterion can be represented in the form of validation links that are
similar to those described in Section 3, but have the following more general semantics:

v : he; t0; C; ti is a validation of P : hT;O; i ()
2(e � C) ^ 2(t0 � t) ^
8t00 s.t.3(t0 � t00 � t) ^ 9d 2 delete(t00) s:t:3(d � C);

9w 2 P s:t:2(t00 � w � t) ^ 9e 2 effects(w) s:t:2[(d � C)) (e � C)]

This definition of the validations can be used to develop a generalization algorithm similar to
the one shown in Figure 5. In particular, we can use a variant of the algorithm in Figure 3 to
construct the validation structure that satisfies the semantics of equation 5.2. Constructing this
explanation structure will be costlier --- (O(n4) for an n-operator plan, instead of O(n3) for the
algorithm in Figure 3. Once such a validation structure is found, a variant of the algorithm in
Figure 5, as shown in Figure 13, can be used to compute the generalized preconditions. This
algorithm will still be of polynomial time complexity, but will be both sound and complete for any
plans representable in the tweak operator language (defined in Section 2).

For those plans which can be handled by both exp-alg and exp-alg-2, the latter returns
a slightly more general (disjunctive) preconditions (set of codesignation/non-codesignation con-
straints among variables). Just as we can use the algorithm in Figure 5 to generalize plans
generated by a total ordering planner, we can use the algorithm in Figure 13 to generalize plans
generated by a planner using a stronger truth criterions such as the one in equation 2.

25

�
�
�
�
���

HHHHHHHHHHHHj - �
�
�
�
���

@
@
@
@
@@R

-

(T1)

+P,+Q

+T2, -P +P, +R

+T1, -P

s1 w1

tG

w2s2

tI

(P, Q, R)

(T2)

Figure 12: A plan that cannot be handled by the algorithm exp-prec-gen. (the add and delete
lists literals of each step are shown above the step with + and � signs, while the prerequisites of
the step are in parentheses under the step)

Algorithm exp-prec-gen-2 (Ps : hT s; Os; si;Vs)
Initialize: Let � be a null substitution and be True
foreach ts 2 T s do

foreach vs : hes; t0s; Cs; t00si 2 e�conditions(ts) do
Let �0 be the substitution under which 2(es � Cs)
� � � � 0

foreach vs : hes; t0s; Cs; t00si 2 p�conditions(ts) do
foreach ds 2 delete(ts) do

Let 0 be the conditions under which 2(ds 6� Cs)
Let �0 be False
Foreach tsw 2 T

s such that 2(ts � tsw � t00s)
Let �00 bethe condition under which 9esw 2 effects(tsw) such that 2(esw � Cs)
�0 � 0 _ �00

 ^ [0 _ �0]
s � ^

Substitute � into all the literals of Ps and Vs

Weakest preconditions effects(tsI) ^ � �

Figure 13: Precondition Generalization Algorithm 2

26

5.3 Generalization based on Multiple Explanations and ‘‘Weakest Precondi-
tions’’

It is instructive to note that all of the algorithms developed in this paper compute generalizations
with respect to a particular chosen validation (explanation) structure based on a particular modal
truth criterion. Unless the plan has only a single validation structure18, these conditions will not in
general be the weakest such conditions for guaranteeing correct execution of the plan with respect
to the modal truth criterion being used.

To compute weakest preconditions with respect to a truth criterion, we have to compute
all possible explanation structures of the plan with respect to that truth criterion, and perform
generalizations with respect to each of them. (If the truth criterion under consideration is both
necessary and sufficient for the class of plans under consideration, then this computation will give
the absolute weakest preconditions for the success of the plan). Not surprisingly, finding weakest
preconditions is in general costlier than finding an explanation based generalization of the plan. In
particular, we note that in an n-action plan, there are at most O(�n2) different validations, where
� is the upper bound on the number of preconditions per step.19 Since finding a validation link
with respect to tweak truth criterion takes O(n3) (see Section 5.2), the total cost of finding
all possible validations is O(�n5). Since computing the codesignation and non-codesignation
constraints imposed by a schematized validation can be done in O(n) time (see Section 4.1), the
cost of generalization is O(�n3).

By relaxing the notion of ‘‘following the example’’ (Section 4.1), we can also systematically
develop a spectrum of structural generalizations. Such generalizations involve allowing new
planning steps during the generalization phase20. This essentially involves using the truth criterion
as a way of establishing the truth of a proposition (synthesis) [3] rather than merely as a way
of testing for correctness and thus allow additional planning during generalization phase. At one
extreme, we can use the modal truth criterion to find out all possible plans that will guarantee the
goals under consideration. This corresponds to full goal regression based on the truth criterion, and
will have the same complexity as generative planning (which, for tweak truth criterion, is NP-hard
[3]).

18Correct plans with at most one single validation structure are called plans with ‘‘exhaustive validation structures’’
(see [15]). Not every plan can have an exhaustive validation structure. It is however possible to take a plan without an
exhaustive validation structure and impose additional constraints on the plan so as to produce a plan that will have an
exhaustive validation structure.

19To visualize this worst case situation, consider an n action, n goal totally ordered plan, with each step of the plan
providing one of the goals. Suppose that each step has p preconditions, and they can be supplied by any of the steps
that precede it. Thus, for the ith step, each of its preconditions can be supported by (i� 1) different validations, giving
rise to �(i� 1) validations. Summing this over all the steps, we get O(�n2) different validations.

20The structural generalizations discussed in [27] can be seen in this light.

27

��
��

��
��

��
��

��
��1

A
A
A
A
A
A
AK

PP
PP

PP
PP

PP
PPPi

��
��

��
��

��
��

��
��

��
��

��
��1

6

�
�
�
�
�
���

6

��
��

��*

PP
PP

PPi

6I

........

6

.

.

.

.

Ord-prec-gen(P)

<�

Exp-order-gen(P)

<�

<�

P

<�

Exp-prec-gen(P)

Disjunctive-ord-prec-gen(P)

Tweak-Regression(P)

Exp-prec-gen-2(P)

Exp-poss-prec-gen(P)

Weakest-precond(Disjunctive-ord-prec-gen(P))Unconstrained(P)

<

<

<�
<�

Weakest-precond(P)

<�

<�

<�

<�

Figure 14: A lattice showing the spectrum of generalizations of popi plans

6 Tradeoffs between the spectrum of generalizations

We have seen that there are a variety of factors influencing the generalizations of a popi plan.
These include the generality of the truth criterion used as the basis for generalization; the particular
constraints on the popi plan that is being generalized (viz., codesignation constraints, ordering
constraints, steps); whether or not the generalization is correctness preserving; and finally whether
the generalization is based on a single explanation or multiple explanations.

The various generalization algorithms developed in this paper all fall within a lattice of
generalizations delimited by P as the least general in the lattice and the full goal regression of P as
the most general plan (see Section 5.3). Figure 14 depicts this generalization lattice. In addition to
the lattice of correctness preserving generalizations, this figure also shows the of non-correctness
preserving generalizations (such as the possible correctness generalization discussed in Section

28

Type of Generalization Cost Usage
Precondition Generalization O(n3) Nonlinear macrops/adaptation
Order Generalization O(n3) -same-
Precondition generalization with tweak MTC O(n4) -same-
Disjunctive order generalization [27] O(n5) -same-
Precondition Generalization via multiple explanations
(Weakest preconditions w.r.t. Tweak MTC) O(n5) -same-
Full goal regression based on Tweak MTC [3] NP-hard -same-

Possible correctness generalization NP-hard Only for adaptation
Necessary cond. for possible correctness O(n3) Only for adaptation
Unconstrained generalization O(1) Only for adaptation

Figure 15: Comparison between generalization algorithms

5.1, and the unconstrained generalization discussed in Section 2). Figure 15 summarizes the
comparative costs of producing each of these generalizations.

An important issue brought up by this spectrum is the cost of using each type of generalization
during planning. The correctness preserving generalizations of popi plans developed in this paper
can be used during planning either as nonlinear macro-operators [10] or as generalized plans to
be reused [18]. In the former case, the stored plans can be instantiated even in cases where only
some parts of the plan are applicable. In particular, the validation structure can be used to edit
the macro operator (c.f. [10]) and find sub-parts of it that are applicable in the current situation
[18]. The cost of instantiating a macro-operator depends on the number of preconditions that need
to be checked. It is thus typically costlier to instantiate generalizations with disjunctive sets of
preconditions (such as the ones described in Sections 4.3.1 and 5.2).

In addition to being used as macro operators, the stored plans can also be instantiated in new
situations through plan refinement and modification [18]. This latter process involves using the
modal truth criterion to establish additional propositions within the context of the retrieved plan.
This option is particularly relevant in the case of non-correctness preserving generalizations, such
as the possible correctness generalization, since these generalizations cannot be instantiated as
macro operators. The planner will have to specialize them by adding additional ordering and
binding constraints.

From the preceding discussion, we see that precondition generalization, order generalization
and structure generalization [27] algorithms can be seen as different points on a spectrum of
generalizations. They offer varying tradeoffs on plan-time vs. generalization-time analysis, which
can be summarized as follows:

� The different truth criteria can be seen as providing differing biases for EBG. In particular,
the more general a truth criterion, the more general the generalizations based on it.

29

� The more general a generalization, the costlier it is to compute.

� The more general a generalization, the costlier it is to instantiate during planning.

� Correctness preserving generalizations are cheaper to instantiate (use) during planning, than
non-correctness preserving generalizations. This is because after checking the preconditions
of the generalized plan, the planner has to do additional work to see if any completion of the
generalized plan can be applied in the given problem situation.

� Non-correctness preserving generalizations provide more compact generalizations (and thus
tradeoff instantiation cost to storage cost)

7 Utility of popi generalizations in improving planning perfor-
mance

Up to this point, the main focus of this paper has been to provide algorithms to correctly generalize
partially ordered partially instantiated plans in a variety of ways. In this section, we shall briefly
address the issue of utility of these generalizations in improving planning performance. To begin
with, it should be noted that the utility of stored plan generalizations does depend to a large extent
on the exact way they are used during planning. There are a variety of ways of reusing stored plans.
One obvious way of course is to use the stored plan generalizations as macrops [10]. Another one
is to use the stored plan generalizations as schemas and use them in only those situations where
they are completely applicable [5, 33]. The former provides a natural ability to combine more
than one stored plan to solve a problem at the expense of increased branching factor of the search
space, while the latter avoids the utility problems associated with the branching factor increase
by going to the stored plan library only once per problem. There are other more sophisticated
reuse strategies which improve on both of these: We can use stored plan generalizations in plan
reuse, where like schema-based reuse, we retrieve one plan per problem, but unlike schema-based
reuse, will facilitate reuse even when the plan is only partially applicable, by allowing flexible
modification of the plan (c.f. [18]). We can extend this strategy further by allowing retrieval of
multiple plans to cover complementary goal sets of the new problem, and merge and modify the
retrieved plans to solve the new problem (see Section 7.1 for a particular strategy along these
lines).

The utility tradeoffs between various ways of reusing stored plans has received, and continues
to receive, significant attention in the literature (see [16, 12, 22, 20]), and we shall not attempt a
general discussion of these issues here. Instead, we will concentrate on the specific tradeoffs and
advantages of basing reuse in the context of partially ordered partially instantiated, as opposed to
totally ordered, plans.

There are two separate considerations here:

30

� Storage Compations: storing plans as generalized partially ordered and partially instantiated
plans

� Reusing stored plans: using stored plans in the context of a partial ordering planning vs.
total ordering planning framework

We will address these two in turn below.21 (In the following, the word ‘‘macro’’ is used as a
short form to any form of stored plan generalization, without committing in any way as to how the
generalization will be used as macrops or schemas etc.):

Storage Compactions: The storage compaction provided by the usage of POPI plans has long
been acknowledged. As discussed in Section 2, a popi plan provides a compact representation for
the possibly exponential number of its underlying linearizations by specifying just the steps, the
partial ordering between steps and the codesignation and non-codesignation constrains between
the variables. As we saw in this paper, the flexible plan representation allows for a spectrum
of order, precondition and structure generalizations. Storing plans in popi form also allows for
more sophisticated editing operations at retrieval time, when the macro is only partly applicable.
Specifically, any irrelevant steps and constraints of the plan can be edited out by retracting the
corresponding planning decisions. The retraction itself can be facilitated by justifying individual
planning decisions in terms of the plan validation structure as discussed earlier.

Consider for example the plan for stacking four blocks x; y; z; wwhich are all clear and initially
on the table, on top of each other (i.e., the goal formula is On(x; y) ^On(y; z) ^On(z;w)):

Puton(x; y)! Puton(y; z)! Puton(z;w)

which is being reused in a situation where the goal involves stacking four blocks into two different
stacks (i.e., the goal formula On(A;B) ^ On(C;D)). In such a case, with x; y; z and w bound to
A;B;C and D respectively, we find that the goal On(B;C) of the macrop is unnecessary in the
new problem. This makes the step Puton(y; z) unjustified. When this step is removed from the
plan, and the plan is order justified (as described in Section 4.2), we will find that there is no
longer any reason to order Puton(x; y) and Puton(y; z) with respect to each other, giving rise to
the new edited plan:

Puton(x; y)kPuton(z;w)

Clearly, this editing is more flexible than STRIPS triangle table based editing. Once such a
justification framework is in place, the retraction of irrelevant constraints can be accomplished
with the help of a polynomial time greedy algorithm (see [18, 15]).

However, it must be noted that all the advantages of storage compaction and plan editing will
hold whether the underlying planner is a total ordering or a partial ordering planner. For example,
as we mentioned several times in this paper, the generalization techniques described here can be
used regardless of whether the plan was initially produced by a partial ordering or a total ordering

21See [17] for a more complete discussion

31

ART-IND (Action Ai precond : Ii add : Gi)
ART-MD (Action Ai precond : Ii add : Gi delete : fIjjj < ig)

ART-MD-NS (Defstep A1
i precond : Ii add : Pi delete : fIjjj < ig)

(Defstep A2
i precond : Pi add : Gi delete : fIjj8jg [fPj jj < ig)

Figure 16: The specification of Weld et. al.’s Synthetic Domains

planner. In fact, even in reuse frameworks based on total ordering planners (e.g. [37, 34]), order
generalization has been used as a way to separate independent parts of the plan and store them
separately, thereby containing the proliferation of macrops by reducing the redundancy among
them. In other words, although storage considerations motivate the use of popi plan representation
during plan reuse, they do not necessarily argue for the use of popi planners during planning.

Ability to exploit stored plans during reuse: Normally, when a macro is retrieved to be reused
in a new problem situation, it will only be a partial match for the problem under consideration:
(i) The macro may contain extraneous goals/constraints that are not relevant to the problem at
hand. (ii) There may be some outstanding goals of the problem that the retrieved macro does not
match. The first situation can be handled largely through the editing operations described earlier.
In the second case, the planner may have to do some further planning work even after the macro is
incorporated into the current plan. The way a planner extends the macro during planning critically
affects its ability to reuse stored plans in new situations.

Suppose a planner is solving a problem involving a set G of goals, and retrieves a macro M

which promises to achieve a subset G0 of these goals. Let g 2 (G�G0) be an outstanding goal of
the problem. We will say that g is sequenceable with M if and only if there exists a subplan P for
achieving g such that M:P or P:M (where ‘‘.’’ is the sequencing or concatenation operator) will
be a correct plan for achieving the set of goals G[fgg. M is said to be interleavable with respect
to g, if and only if there exists a sub-plan P for achieving g such that P can be merged with M

without retracting any constraints in M or P .
There are many situations when the macros are not sequenceable but only interleavable with

respect to the outstanding goals of the planner. Consider the simple artificial domains, ART-IND,
ART-MD and ART-MD-NS (originally described in [1]) shown in Figure 16. These domains
differ in terms of the serializability of the goals in the domain. ART-IND contains only independent
goals (notice that none of the actions have delete lists). The goals in ART-MD are interacting but
serializable while those in ART-MD-NS are non-serializable.22 In particular, in the latter domain,
macros will be interleavable, but not sequenceable with respect to any outstanding goals of the

22From the domain descriptions, it can be seen that a conjunctive goal Gi ^Gj (where i < j) can be achieved in
ART-IND domain by achieving the two goals in any order, giving rise to two plans Ai ! Aj and Aj ! Ai. Only the
first of these two plans will be a correct plan in ART-MD domain, since the delete literals in the actions demand that
Gi be achieved before Gj. Finally, in ART-MD-NS domain, the subplans for Gi and Gj have to be interleaved to
give the plan A1

i ! A1
j ! A2

i ! A2
j.

32

planner. To illustrate, consider the macro for solving a problem with conjunctive goal G1 ^G2 in
ART-MD-NS, which will be: A1

1 ! A1
2 ! A2

1 ! A2
2. Now, if we add G3 to the goal list, the plan

for solving the new conjunctive goal G1 ^ G2 ^ G3 will be A1
1 ! A1

2 ! A1
3 ! A2

1 ! A2
2 ! A2

3

(where the underlined actions are the new actions added to the plan to achieve G3). Clearly, the
only way a macro can be reused in this domain is by interleaving it with new operators (unless of
course it is an exact match for the problem).

Even when the goals are serializable, as is the case in ART-MD, the distribution of stored
macros may be such that the retrieved macro is not sequenceable with respect to the outstanding
goals. For example, suppose the planner is trying to solve a problem with goals G1 ^ G2 ^ G3

from ART-MD domain, and retrieves a macro which solves the goals G1 ^G3: A1 ! A3. Clearly,
the outstanding goal, G2 is not sequenceable with respect to this macro, since the only way of
achieving G1 ^ G2 ^ G3 will be by the plan A1 ! A2 ! A3, which involves interleaving a new
step into the retrieved macro.

The foregoing shows that any planner that is capable of using macros only when they are
sequenceable with respect to the outstanding goals is less capable of exploiting its stored plans
than a planner that can use macros also in situations where they are only interleavable. Total
ordering planners using linearity assumption, such as STRIPS [10], can reuse macros only when
they are sequenceable with respect to the outstanding goals. In contrast, popi planners can reuse
macros even when they are only interleavable with respect to the outstanding goals. Although some
total ordering planners without linearity assumption do have this capability, the popi planners’
least-commitment strategy, coupled with their flexible plan representation, makes them more
flexible and efficient than totally ordered planners in interleaving the new operators. This, we
believe is the most important advantage of partial ordering planning during reuse.

7.1 Empirical Evaluation

The discussion above section leads to two plausible hypotheses regarding the utility of popi
planning in plan reuse frameworks. (i) popi planners are more efficient in exploiting interleavable
macros than total ordering planners (with or without linearity assumption) and (ii) This capability
significantly enhances their ability to exploit stored macros to improve performance in many
situations, especially in domains containing non-serializable sub-goals. We have tested these
hypotheses by comparing the performance of three planners -- one a partial ordering planner, and
the other two total ordering planners, in conjunction with two different reuse strategies [17].23 In
the following, we describe our experimental setup and discuss the results of the empirical study.
Performance Systems: Our performance systems consisted of three planners implemented by
Barrett and Weld [1]: SNLP, TOCL and TOPI. SNLP is a causal-link based partial ordering
planner, which can arbitrarily interleave subplans. TOCL is a causal link based total ordering
planner, which like SNLP can insert a new step anywhere in the plan, but unlike SNLP, searches

23Code and test data for replicating our experiments can be acquired by sending mail to rao@asuvax.asu.edu

33

in the space of totally ordered plans24. SNLP, by virtue of its least commitment strategy, is more
flexible in its ability to interleave operators than is TOCL. The third planner, TOPI carries out a
backward-chaining world-state search. TOPI only adds steps to the beginning of the plan. Thus,
unlike SNLP and TOCL, but like planners using linearity assumption, TOPI is unable to interleave
new steps into the existing plan.25 All three planners share many key routines (such as unification,
operator selection, and search routines), making it possible to do a fair empirical comparison
between them.
Reuse modes: To compare the ability of each planner to exploit the stored plan generalizations in
solving new problems, the planners were run in three different modes in the testing phase: Scratch
mode, SEBG (or sequenceable EBG) mode and IEBG (or interleavable EBG) mode. In the
scratch mode, the planner starts with a null plan and refines it by adding steps, orderings and
bindings until it becomes a complete plan. In the SEBG mode, the planner first retrieves a stored
plan generalization that best matches the new problem (see below for the details of the retrieval
strategy). The retrieved plan is treated as an opaque macro operator, and is added to the list of
operator templates available to the planner. The planner is then called to solve the new problem,
with this augmented set of operators. The IEBG mode is similar to the SEBG mode, except that
it allows new steps and constraints to be introduced between the constituents of the instantiated
macro and the rest of the plan, as the planning progresses. To facilitate this, whenever the planner
selects a macro to establish a precondition, it splits the macro into its constituent primitive operators
and adds them to the existing partial plan. This operation involves updating the steps, orderings
and causal links of the current partial plan with those of the macro. In the case of SNLP, the exact
ordering of the steps of the macro with respect to the current plan can be left partially specified
(e.g., by specifying the predecessor of the first step of the macro, and the successor of the last step
of the macro), while in the case of TOCL, partial plans need to be generated for each possible
totally ordered interleaving of the steps of the macro with respect to the steps of the current partial
plan. SNLP is thus more flexible and least committed than TOCL in interleaving macros.

It is easy to see that the SEBG strategy can reuse a macro if and only if it is sequenceable
with the other outstanding goals of the plan, while IEBG strategy can reuse a macro whenever it is
interleavable with other outstanding goals of the plan. From the description of the three planners
above, it should also be clear that only SNLP and TOCL can support IEBG mode.

Storage and Retrieval Strategies: To control for the factors of storage compaction, and flexible
plan editing, no specialized storage or editing strategies are employed in either of the planners. The
retrieval itself is done by a simple (if unsophisticated) strategy involving matching of the goals of
the new problem with those of the macros, and selecting the one matching the maximum number
of goals.

Evaluation strategy: As noted earlier, sequenceability and interleavability of the stored macros

24Each partially ordered plan produced by SNLP corresponds to a set of totally ordered plans. TOCL generates
these totally ordered plans whenever SNLP generates the corresponding partially ordered plans.

25If TOPI addresses the goals in a last-in-first-out fashion, then its behavior will be identical to a total ordering
state-based planner using linearity assumption, such as STRIPS.

34

can be varied by varying the type of goals (independent vs. serializable vs. non-serializable
domain). The artificial domains described in Figure 16 make ideal testbeds for varying the latter
parameter, and were thus used as the test domains in our study. The test domains ART-MD and
ART-MD-NS above were somewhat extreme in the sense that the former only has serializable goals
while the latter has all non-serializable goals. More typically, we would expect to see a mixture
of independent, serializable and non-serializable goals in a problem distribution. To understand
how the effectiveness of the various reuse strategies vary for such mixed problem distributions,
we also experimented with a mixed domain obtained by combining the actions of ART-IND (the
domain with independent subgoals) and ART-MD-NS (the domain with non-serializable subgoals)
domains (shown in Figure 16).

Five different training and testing suites, each containing a different (pre-specified) percentage
of non-serializable goals in the problem distribution, were generated. We experimented with
problem sets containing 0, 25, 50, 75 and 100% non-serializable goals (where 0% corresponding
to the problem set having goals drawn solely from ART-IND, and 100% corresponding to the
problem set with goals drawn solely from ART-MD-NS).

For each mixture, 50 training problems and 30 testing problems were generated randomly.
The training problems all have between 0 and 3 goals. During the training phase, each planner
generalizes the learned plans using EBG techniques and stores them. In the testing phase, a set of
30 randomly generated problems, that have between 4 and 7 goals (thus are larger than those used
in the training phase) are used to test the extent to which the planners are able to exploit the stored
plans in the three different modes. A limit of 1000 cpu sec per problem is enforced on all the
planners, and any problem not solved in this time is considered unsolved (This limit includes both
the time taken for retrieval and the time taken for planning). To eliminate any bias introduced by
the time bound (c.f. [32]), we used the maximally conservative statistical tests for censored data,
described by Etzioni and Etzioni in [8], to assess the significance of all speedups. All experiments
were performed in interpreted lucid commonlisp running on a Sun Sparc-II.

Experimental Results
The plots in Figure 17 summarize the performance in each problem set as a function of the

percentage of the non-serializable goals in the problem set. The plot on the left compares the
cumulative time taken by each strategy for solving all the problems in the test suite of each of the
5 problem sets The plot on the right shows the percentage problems successfully solved within
the time bound by each strategy for each problem set. We note that SNLP using IEBG shows
the best performance in terms of both the cumulative time and the percentage problems solved.
IEBG strategy is also the best strategy for TOCL, but turns out to be considerably less effective
than the IEBG strategy for SNLP. In all the experiments, TOPI (not shown in the plots) performed
considerably worse than SNLP and TOCL. More interestingly, we see that the performance of
IEBG strategy compared to the base-level planner improves as the percentage of non-serializable
goals in the problem set increases for both SNLP and TOCL. By the same token, we also note that
the relative performance of SEBG strategy worsens with increased percentage of non-serializable
goals for both SNLP and TOCL. This should not be surprising since as discussed in Section 7.1,

35

0.0 25.0 50.0 75.0 100.0
% of non-serializable goals (from ART-MD-NS)

0.0

10000.0

20000.0

30000.0

C
um

ul
at

iv
e

C
pu

 ti
m

e

Cumulative time as a function of % of non-serializable goals

SNLP
TOCL
SNLP+SEBG
TOCL+SEBG
SNLP+IEBG
TOCL+IEBG

0.0 25.0 50.0 75.0 100.0
% of non-serializable goals (from ART-MD-NS)

0.0

20.0

40.0

60.0

80.0

100.0

%
 P

ro
bl

em
s

so
lv

ed
 w

ith
in

 ti
m

e
bo

un
d

% Problems solved as a function of % of non-serializable goals

SNLP
TOCL
SNLP+SEBG
TOCL+SEBG
SNLP+IEBG
TOCL+IEBG

Figure 17: Cumulative performance of various reuse strategies as a function of % of non-serializable
sub-goals

as the number of goals from ART-MD-NS increases, the stored plans will not be sequenceable
with respect to any remaining outstanding goals of the planner, undermining the ability of SEBG
strategies to exploit the stored plans.

The results in our empirical studies are consistent with our hypothesis regarding the superiority
of popi planners in exploiting stored macros. The strategy of using SNLP planner with IEBG
reuse strategy significantly outperforms all the other strategies including TOCL+IEBG, both in
terms of cumulative time and solvability horizon. The higher cost of TOCL+IEBG strategy can
itself be explained by the fact that TOCL generates partial plans corresponding to each possible
interleaving of the macro with the new steps, while SNLP can maintain a partially ordered plan
and interleave the steps as necessary. Finally, TOPI, which can only add steps at the beginning and
end of the plan, is unable to interleave plans, and thus is worse than TOCL in its ability to exploit
stored plans.

8 Related Work

In this section, we compare our work to other related efforts that aim to extend Explanation Based
Generalization to partial ordering planning.

The research that comes closest to ours is Chien’s dissertation work [5] on incremental
approximate planning. The main thrust of his work is on failure driven refinement of popi plans.

36

His dissertation [5] proposes a method for planning that involves using an approximate model of
the domain to generate a plan and using a more complex model to test that plan. Approximation
involves using a simpler modal-truth criterion than is warranted by the operator structure of
the domain. This simplifies plan generation at the expense of loss of soundness. To reinstate
soundness, every generated plan is checked with respect to the more expressive truth criterion. If a
failure is noticed during this testing phase, the plan is ‘‘debugged’’ with respect to the latter truth
criterion, and is generalized using Explanation-based generalization techniques and the debugged
plan is stored in the library of plan schemas. Given a new problem to solve, the planner checks to
see if any of its existing schemas directly solves the problem, and resorts to plan generation only
when no such plan exists.

It is the generalization phase of Chien’s work that is of direct relevance to the work reported in
this paper. Both our work and his developed the framework showing that EBG can be performed on
partial plans by using the explanation of how a plan satisfies a truth criterion, and generalizing the
plan based on that explanation (although the exact structures used for representing the explanations
are different). This initial development was done independently and approximately the same
time.26 Our current research extends Chien’s and our initial work significantly. We have an
extended spectrum of popi generalizations, and present these in an integrated framework based on
validation-structure based representation of plan explanation structures. We discuss the tradeoffs
between the spectrum of generalizations, and also provide a comparative analysis of the utility
of EBG in popi and total ordering planning. Chien’s research extended the work on generalized
POPI plans in a different direction, examining the failure-driven nature of planning with simplified
plans.

It is also interesting to note that Chien uses his generalized plans chiefly to guide schema-based
planning, where a plan is reused only when it is completely applicable. In contrast, as our empirical
studies in Section 7 show, one of the most important advantages of EBG in the context of popi
planning is the ability to interleave stored plan generalizations during planning.

Other related work includes methods for generalizing the ordering constraints in total ordering
plans (c.f. [27, 4, 36, 9]). These efforts were all directed towards generalizing totally ordered plans
produced by total ordering planners to partially ordered plans. The motivation was often to provide
storage or execution optimization. Although these efforts are related to our order generalization
algorithms, our development is directly based on the partial ordering planning. Consequently our
treatment puts order and precondition generalization in an integrated framework which explicates
the spectrum of order/precondition generalizations (see Sections 4.2 and 4.3).

Our algorithms for generalizing popi plans correspond directly to the ebg explanation and
generalization steps, but work on specialized explanations of correctness tailored to plans, rather
than arbitrary proofs. It is possible to use the standard ebg algorithm [26] itself for this purpose
--- by proving (explaining) correctness of a plan directly from first order situation calculus. The
advantage of dealing with specialized explanations is that they often can be produced much
more efficiently. In particular, we showed that explanations of correctness (validations) based on

26Chien’s work was brought to our notice after a preliminary version of our work was presented at AAAI-91 ([19])

37

modal truth criteria, can be generated in polynomial time for plans with strips-type operators
without conditional effects (Section 3). In contrast, generating proofs in full situation calculus
is undecidable. In addition, by starting with a provably sound and complete truth criterion and
deriving the ebg algorithms directly from that, we obviated the need to carry out a separate formal
proof of correctness of the algorithms (e.g. [2]).

9 Concluding Remarks

In this paper, we addressed the problem of generalizing partially ordered and partially instantiated
(popi) plans -- a class of plans which have been extensively investigated in the planning literature.
Our main contribution is a unified framework for plan generalization based on the modal truth
criteria, which gives rise to a spectrum of generalization algorithms. We have developed the
formal notion of explanation of correctness for popi plans based on the modal truth criteria and
used this to derive declarative specifications for generalizing them in a variety of ways. These
include precondition generalization (for both necessary and possible correctness), as well as order
generalization. We have also characterized the spectrum of tradeoffs offered by the various
generalizations, including the cost of producing and using them. Finally, we also addressed the
utility of these generalizations in improving planning performance, and described an empirical
study characterizing the relative advantages of doing EBG based plan reuse in a partial ordering,
as opposed to total ordering, planning framework.

The generalization algorithms described in this paper can be easily implemented on top of any
partial ordering (nonlinear) planner. We have implemented them on top of a public-domain domain-
independent nonlinear planner called snlp[1], and used the implementation to characterize the
relative advantages of basing EBG based plan reuse within partial ordering planning. Even though
the development here provided a separate algorithm to compute the explanation of correctness of
a popi plan, often the explanation construction phase can be integrated with the generation of
the plan. In particular, most partial-order planners (such as nonlin [35], sipe [38], as well as
snlp which we used in our implementation) keep track of the ‘‘validation structure’’ of the plan
being developed to aid in plan generation. Thus the generalization can be closely integrated with
planning.

9.1 Limitations and Future Directions

The model of planning used in this paper assumes an operator representation that is free of
conditional effects and conditional preconditions. We believe that similar methodology can also
be used for more expressive operator representations. It must however be noted that increased
expressiveness of the operators necessitates truth criteria that are correspondingly expensive to
interpret (e.g. [30, 6]), increasing the cost of ebg.

Although we concentrated on the issue of plan generalization, we believe that similar truth
criterion based frameworks can also be developed for explanation based learning of other types

38

of target concepts, such as failure and goal interactions (c.f. [25]). In particular, it seems likely
that the truth criterion most directly affects the architecture level axioms of an EBL framework
such as the one described in [25]. We are currently working towards verifying this intuition. It
should however be noted that the utility of learning particular types of target concepts depends to
a large extent on the nature of the underlying problemsolver. In particular, it seems likely that
target concepts such as ‘‘goal interactions’’ may not be as utile in a popi planner as they will be
in a total ordering planner such as prodigy (since the former already deals with step ordering in
a more intelligent fashion). On the other hand, loop detection is easier in a total order state based
planner27 than a popi planner. Thus, this may be a more utile concept to learn in a popi planner.
Understanding such tradeoffs is an important aim of our ongoing work [16].

In Section 7, we showed that popi planners, by virtue of their ability to intelligently interleave
the retrieved plan with new operators, do promise several advantages from the point of view of
plan reuse. We can go further along these lines and integrate the generalization process with a
plan modification framework such as priar [18] which can flexibly modify any given plan to fit
any new problem situation.28 Such an integrated framework will allow us to reuse generalized
plans in a variety of new situations (including those in which they are only partially applicable,
and can be made applicable only by retracting some of the previous planning decisions). This
presents interesting tradeoffs compared to a macrop [10] based reuse mechanism in terms of the
demands on storage and retrieval. For example, in Section 5.1, we noted the memory-vs-time
trade-off that can be achieved by computing and using the conditions for possible correctness of a
generalized plan. Further more, given the flexibility of reuse, exact match retrieval may no longer
be critical; see [16]). Our future plans include integrating the generalization algorithms on top of
priar modification framework [11, 14, 18], and carrying out empirical experimentation to get a
clearer understanding of these tradeoffs [16]29.

Acknowledgements: We acknowledge Jengchin Chen’s help in implementing and carrying out
the empirical comparisons reported in the paper. A remark by Drew McDermott at the 1990
Darpa Planning Workshop, regarding truth criteria and goal regression, led us to investigate truth
criteria as the basis for plan generalization. Discussions with Steve Minton, Mark Drummond and
John Bresina and Prasad Tadepalli, helped significantly in clarifying our presentation. We also
acknowledge helpful suggestions from Peter Cheeseman, Pat Langley and Amy Lansky.

27In fact, many of the architectural axioms in [25] depend explicitly on the problem solver’s ability to detect
‘‘loops.’’

28From a theoretical point of view, this essentially involves allowing retraction into the modal truth criterion of the
plan.

29Such an evaluation should, of necessity, be comparative in the sense that it should (i) explain the merits of reuse in
comparison to other learning techniques such as abstraction, search control rules and (ii) provide methods of fruitfully
integrating these different learning techniques. In [16], we provide a preliminary proposal for such a comparative
study of tradeoffs.

39

References

[1] A. Barrett and D. Weld. Partial order planning: Evaluating possible efficiency gains.
Technical Report 92-05-01, Department of Computer Science and Engineering, University
of Washington, Seattle, WA, June 1992.

[2] N. Bhatnagar. A correctness proof of explanation-based generalization as resolution theorem
proving. In Proceedings of the 1988 AAAI Spring Symposium on Explanation Based Learning,
pages 220--225, 1988.

[3] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333--377, 1987.

[4] S.A. Chien. Using and refining simplifications: Explanation-based learning of plans in
intractable domains. In Proceedings of IJCAI-89, pages 590--595, Detroit, MI, 1989.

[5] S.A. Chien. An Explanation-Based Learning Approach to Incremental Planning. PhD thesis,
TR. UIUCDCS-R-90-1646 (Ph.D. Thesis). Dept. of Computer Science, University of Illinois,
Urbana, IL, 1990.

[6] J. Christensen and A. Grove. A formal model for classical planning. In Proceedings of 12th
Intl. Joint Conference on AI (IJCAI-91), 1991.

[7] G. DeJong and R. Mooney. Explanation-based learning: An alternative view. Machine
Learning, 1(2):145 -- 176, 1986.

[8] Oren Etzioni and Ruth Etzioni. Statistical methods for analyzing speedup learning experi-
ments. Machine Learning. (To Appear).

[9] B. Fade and P. Regnier. Temporal optimization of linear plans of action: A strategy based on
a complete method for the determination of parallelism. Technical report, IRIR-Laboratorie
Langages et Systemes Informatiques, Universite Paul Sabatier, France, 1990.

[10] R. Fikes, P. Hart, and N. Nilsson. Learning and executing generalized robot plans. Artificial
Intelligence, 3(4):251--288, 1972.

[11] S. Kambhamapti. Supporting plan reuse. In S. Minton and P. Langley, editors, Learning
Methods for Planning. Morgan Kaufmann, Palo Alto, Stanford, 1991 (in press).

[12] S. Kambhampati. Utility tradeoffs in plan reuse and casebased planning. Submitted to Intl.
Conf. on Machine Learning, 1993.

[13] S. Kambhampati. Mapping and retrieval during plan reuse: A validation-structure based
approach. In Proceedings of 8th National Conference on Artificial Intelligence, August 1990.

40

[14] S. Kambhampati. A theory of plan modification. In Proceedings of 8th National Conference
on Artificial Intelligence, August 1990.

[15] S. Kambhampati. Characterizing multi-contributor causal structures for planning. In Pro-
ceedings of 1st Intl. Conf. on AI Planning Systems, 1992.

[16] S. Kambhampati. Utility tradeoffs in incremental plan modification and reuse. In Working
Notes of the 1992 AAAI Spring Symposium on Computational Considerations in Supporting
Incremental Modification and Reuse, March, 1992.

[17] S. Kambhampati and J. Chen. Relative utility of basing ebg based plan reuse in partial
ordering vs. total ordering planning. Submitted to AAAI-93, 1993.

[18] S. Kambhampati and J.A. Hendler. A validation structure based theory of plan modification
and reuse. Artificial Intelligence, 55(2-3), June 1992.

[19] Subbarao Kambhampati and Smadar Kedar. Explanation based generalization of partially
ordered plans. In Proceedings of 9th AAAI, 1991.

[20] Smadar Kedar and Kathhleen McKusick. Tradeoffs in the utility of learned knowledge. In
Proc. 1st Intl. Conf. on AI Planning Systems, pages 281--282, 1992.

[21] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of 9th
AAAI, 1991.

[22] S. Minton. Issues in the design of operator composition systems. In Proceedings of the
International conference on Machine Learning, 1990.

[23] S. Minton. Quantitative results concerning the utility of explanation-based learning. In
Artificial Intelligence, volume 42, pages 363--392, 1990.

[24] S. Minton, J. Bresina, and M. Drummond. Commitment strategies in planning: A comparative
analysis. In Proceedings of 12th IJCAI, 1991.

[25] S. Minton, J.G. Carbonell, C.A. Knoblock, D.R. Kuokka, O. Etzioni, and Y. Gil. Explanation-
based learning: A problem solving perspective. Artificial Intelligence, 40:63--118, 1989.

[26] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based learning: A
unifying view. Machine Learning, 1(1):47 -- 80, 1986.

[27] R. J. Mooney. Generalizing the order of operators in macro-operators. In Proceedings of the
5th International Conference on Machine Learning, pages 270--283, June 1988.

[28] R. J. Mooney and S. W. Bennett. A domain independent explanation-based generalizer.
In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 551--555,
Philadelphia, PA, 1986. Morgan Kaufmann.

41

[29] N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishers, 1980.

[30] E.P.D. Pednault. Generalizing nonlinear planning to handle complex goals and actions with
context-dependent effects. In Proceedings of 12th Intl. Joint Conference on AI (IJCAI-91),
pages 240--245, 1991.

[31] E. D. Sacerdoti. A Structure for Plans and Behaviour. American Elsevier, New York, NY,
1977.

[32] Alberto Segre, Charles Elkan, and Alexander Russell. A critical look at experimental
evaluation of ebl. Machine Learning, 6(2), 1991.

[33] J. Shavlik. Generalizing the structure of Explanations in Explanation Based Learning. PhD
thesis, Dept. of Comp. Sci., University of Illinois, 1988. (Available as technical report
UILU-ENG-87-2276).

[34] P. Tadepalli and R. Isukapalli. Learning plan knowledge from simulators. In Proceedings of
the workshop on Knowledge compilation and speedup learning.

[35] A. Tate. Generating project networks. In Proceedings of IJCAI-5, pages 888--893, Boston,
MA, 1977.

[36] M. M. Veloso, M. A. Perez, and J. G. Carbonell. Nonlinear planning with parallel
resource allocation. In Proceedings of the Workshop on Innovative Approaches to Planning,
Scheduling and Control, pages 207--212, November 1990.

[37] Manuela M. Veloso. Learning by Analogical Reasoning in General Problem Solving. PhD
thesis, Carnegie-Mellon University, 1992. (CMU-CS-92).

[38] D. E. Wilkins. Domain independent planning: Representation and plan generation. Artificial
Intelligence, 22:269--301, 1984.

[39] Q. Yang. A theory of conflict resolution in planning. Artificial Intelligence, 58(1-3):361--392,
1992.

42

Contents

1 Introduction 1
1.1 Previous Work and Motivation : 2

2 Preliminaries and Terminology 5

3 Explanation of Correctness using Modal Truth Criteria 7

4 Precondition and Order Generalization methods 9
4.1 Explanation-Based Precondition Generalization : : : : : : : : : : : : : : : : : : 9

4.1.1 Example : 13
4.2 Explanation-based Order Generalization : 15
4.3 Combining order generalization and precondition generalization : : : : : : : : : 18

4.3.1 Disjunctive generalization : 19

5 Extending the Generalization Framework 19
5.1 Computing conditions of possible correctness : : : : : : : : : : : : : : : : : : : 19
5.2 Utilizing more general truth criteria : 24
5.3 Generalization based on Multiple Explanations and ‘‘Weakest Preconditions’’ : : 27

6 Tradeoffs between the spectrum of generalizations 28

7 Utility of popi generalizations in improving planning performance 30
7.1 Empirical Evaluation : 33

8 Related Work 36

9 Concluding Remarks 38
9.1 Limitations and Future Directions : 38

i

List of Figures

1 Four Block Stacking Problem (4BSP) : 3
2 An incorrect generalization of 4bsp : 3
3 Explanation Construction Algorithm : 8
4 Schematized Plan for 4bsp : 10
5 Precondition Generalization Algorithm : 13
6 Generalized Plan for 4bsp : 15
7 Order Generalization Algorithm : 16
8 An example of order generalization : 17
9 An algorithm for generalizing the order and preconditions of a popi plan : : : : : 18
10 Disjunctive generalization of 4BS problem : 20
11 Algorithm for computing a set of Necessary Conditions for Possible Correctness

of a Generalized Plan : 23
12 A plan that cannot be handled by the algorithm exp-prec-gen : : : : : : : : : 26
13 Precondition Generalization Algorithm 2 : 26
14 A lattice showing the spectrum of generalizations of popi plans : : : : : : : : : 28
15 Comparison between generalization algorithms : : : : : : : : : : : : : : : : : : 29
16 The specification of Weld et. al.’s Synthetic Domains : : : : : : : : : : : : : : : 32
17 Cumulative performance of various reuse strategies as a function of % of non-

serializable sub-goals : 36

ii

