
Finding Inter-Related Plans

Biplav Srivastava
IBM India Research Laboratory
IIT, New Delhi 110016, India

sbiplav@in.ibm.com

Subbarao Kambhampati∗
Arizona State University
Tempe, AZ, USA 85287

rao@asu.edu

Minh Binh Do
Palo Alto Research Center

Palo Alto, CA 94304
minhdo@parc.com

Tuan A. Nguyen
University of Natural Sciences

Ho Chi Minh, Vietnam
natuan@fit.hcmuns.edu.vn

Abstract

In many planning situations, a planner is required to return
a set of plans satisfying the same goals which will be used
by the external systems collectively. The external systems
can specify the desired inter-relationships among the returned
plans (e.g., diverse plans, similar plans, non-dominated plans)
and the task of the planner is to return a set of plans which
will meet these requirements. As an example, in adaptive
web services composition, the web service engine wants to
have a set of diverse plans/ compositions such that if there is
a failure while executing one composition, an alternative may
be used which is less likely to be failing simultaneously. In
this paper, we investigate the problem, propose functions for
defining similarity among plans and propose methods to find
sets of inter-related plans.

Introduction
A typical AI planner takes as input the specifications of the
initial and goal states and the set of available actions, and
finds a plan that will satisfy the goals by efficiently search-
ing in the space of possible states configurations or action
orderings (plans). In many planning situations, a planner is
required to return not one but a set of plans satisfying the
same goals which will be used by the external systems col-
lectively. The external systems can specify the desired inter-
relationship among returned plans (e.g., diverse plans, simi-
lar plans, dominated plans) and the task of the planner is to
return a set of plans which meet these requirements.

As an example, in adaptive web services composition, the
web service engine wants to have a set of diverse plans/ com-
positions such that if there is a failure while executing one
composition, an alternative may be used which is less likely
to be failing simultaneously. However, if a user is helping in
selecting the compositions, the planner could be first asked
for a set of diverse plans and when she selects one of them,
the planner is next asked to find plans that are similar to the
selected one. Another example is using planning for intru-
sion detection (Boddyet al. 2005), where the aim is to detect
as many ways of possible intrusion as possible where an in-
trusion attack is represented as a plan. A third, more general

∗Kambhampati’s research is supported in part by the NSF grant
IIS-0308139 and the ONR Grant N000140610058.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

example involves any complex planning situation where the
user is interested in optimizing multiple and possibly con-
flicting objectives, to generate a set of desired plans.

Existing planners, that are designed to find single solu-
tion plans, are not well suited for this problem. Even though
many of the planners are capable of outputting multiple
solutions by continuing their search beyond the first solu-
tion, they cannot guarantee any desired relations between
the plans that are output.

To find inter-related plans, we need to be able to (1) de-
fine distance measures between plans and (2) modify exist-
ing planners so that they can use this distance measure to
generate sets of inter-related plans. Similarity and diversity
are examples of such inter-relationships for plans.

There has been very little work on this problem in plan-
ning. Hebrard et al 2005 solve the problem of similar/
dissimilar solutions for CSPs. If we consider their work
for planning, since a planning problem of finite length can
be compiled as a CSP problem, their results are the lower
bounds for finding similar or diverse plans.

Our major contributions in the paper are:
• We formalize the problem of finding diverse/ similar plans

by extending previous formulations for CSPs.

• We introduce useful bases and measures for plan distance.
We show that different measures can give drastically dif-
ferent picture about inter-plan relationships.

• We discuss some preliminary work on effective solutions
to the proposed problems.

We start by formalizing the problem and then propose a se-
ries of plan similarity function. Next, we propose methods to
find inter-related plan and present initial results about their
effectiveness. We then explore the problem with hierarchical
plans. We end with discussion on related work and provide
pointers for future work.

Problem Statement
At its simplest, a planning problemPP is a 4-tuple
〈P, I, G, A〉 whereP is the set of predicates,I (⊆ P) is
the complete description of the initial state,G (⊆ P) is the
partial description of the goal state, andA is the set of ex-
ecutable (primitive) actions. A specification of an action
consists of preconditions (A

pre
i ⊆ P) and postconditions

(Apost
i ⊆ P).

A plan for PP is an action sequenceSj , such that ifSj

is executed inI, the resulting state of the world would con-
tain (entail)G. It is a 3-tuple〈T, O,ST 〉 where: T is the
set of steps in the plan;T contains two distinguished step
namest0 andt∞. ST is a symbol table, which maps step
names to actions. (Note that multiple steps can be mapped
to the same action.) The special stept0 is always mapped
to the dummy operatorstart, and similarlyt∞ is always
mapped tofinish. The effects ofstart and the precon-
ditions of finish correspond, respectively, to the initial
state and the desired goals of the planning problem.O is a
partial ordering relation overT .

As an example, suppose a person in Las Vegas (LV) wants
to plan a weekend and is considering to visit one or more
of the Disneyland (DL) in Los Angeles, his friend in San
Francisco (SF) or an event at San Jose (SJ), based on the
cost of each choice and its relative utility. In Figure 1, two
possible plansS1 andS2 are given.

We also see in the Figure that there can be different repre-
sentations for a plan. For example, plans can be hierarchical
consisting of non-primitive actions (tasks) which can be de-
composed further into primitive/ executable actions or other
non-primitive actions by one or more reductions. In the ex-
ample, we had consideredTravel actions as primitive. If we
consider them as non-primitive, plans are trees of AND-OR
nodes. In Figure 1,S1

3
andS2

3
are two possible reductions

of the non-primitive actionTravel between LV and DL. We
will focus on plans with primitive actions but we note that
plans in alternative representations could also be compared.

Travel_LV_DL

Travel_DL_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_DL

Travel_DL_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_DL

FlyBuyTicket

BoardPlane

TravelByCar_LV_DL TravelByFlight_LV_DL

UnboardPlaneBoardCar Drive UnboardCar

Plan S1 Plan S2

Plan S3-1 Plan S3-2

AND trees

OR trees

Figure 1: Examples of plans.

Let δ(Si, Sj) → [0, 1] denote a distance function between
a pair of plans. A value of 0 represents complete simi-
larity of plans while 1 represents complete diversity. Fol-
lowing the convention of (Hebrardet al. 2005), we de-
fine max(δ, S) = max

Si,Sj∈S
δ(Si, Sj) andmin(δ, S) = min

Si,Sj∈S

δ(Si, Sj). Also, we definemax(δ, S, Sj) = max
Sk∈S

δ(Sj , Sk)

Notation Description
PP A planning problem
Plan(PP) Set of all plans ofPP

Si, Sj A plan forPP (⊆ Plan(PP))
S, S′ Sets of plans

Table 1: Notation used in the paper.

Problem Description
dDISTANTkSET FindS with S ⊆ Plan(PP)
(resp.dCLOSEkSET) | S | = k andmin(δ, S) ≥ d (resp.max(δ, S) ≤ d)
Input: PP ; Output:S
MAXDIVERSEkSET FindS with S ⊆ Plan(PP), | S | = k and
(resp. MAXSIMILARkSET) for all S′ ⊆ Plan(PP), | S′ | = k,
Input: PP ; Output:S min(δ, S) ≥ min(δ, S′) (resp.max(δ, S) ≤ max(δ, S′))
MAX dDISTANTSET FindS with S ⊆ Plan(PP), min(δ, S) ≥ d
(resp. MAXdCLOSESET) (resp.max(δ, S) ≤ d), and for allS′ with min(δ, S’) ≥ d
Input: PP ; Output:S (resp.max(δ, S’) ≤ d), | S |≥| S′ |
MOSTDISTANT FindSj with Sj ∈ Plan(PP)-S, such that for
(resp. MOSTCLOSE) Sk with Sk ∈ Plan(PP)-S, max(δ, S, Sj) ≥
Input: PP , S; Output:Sj max(δ, S, Sk) (resp.min(δ, S, Sj) ≤ min(δ, S, Sk))
nNEARdDISTANTkSET FindS such that it isdDISTANTkSET
(resp.nNEARdCLOSEkSET) (resp.dCLOSEkSET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

nNEARMAXDIVERSEkSET FindS such that it is MAXDIVERSEkSET
(resp.nNEARMAXSIMILAR kSET) (resp. MAXSIMILARkSET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

nNEARMAXdDISTANTSET FindS such that it is MAXdDISTANTSET
(resp.nNEARMAXdCLOSESET) (resp. MAXdCLOSESET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

Table 2: Different instances of the inter-relationship aware
planning problem.

andmin(δ, S, Sj) = min
Sk∈S

δ(Sj , Sk). In Table 1, we sum-
marize the notations that are followed and Table 2 lists
the various problems to find inter-related plans. The first
3 problems,dDISTANTkSET, MAXDIVERSEkSET and
MAX dDISTANTSET (and their respectiveclose variants)
are planning adaptations of offline CSP problems in (He-
brardet al. 2005) while MOSTDISTANT is adaptation of
their online problem1. We also introduce thenNEAR varia-
tions of the offline problems which takes the planning prob-
lem and a reference (previous) plan as input and requires that
all returned plans be close to the reference plan.

Distance Measures
In this section, we motivate different bases for comparing
plans, the different methods of comparing plans, and pro-
pose useful plan distance functions.

Different Bases for Plan Comparison
At the heart of the problem of finding inter-related plans is
the issue of defining criteria by which two plans are com-
pared. A plan can be characterized by:

1. Actions that are present in the plan

2. Its behavior where the behavior represents the set of states
that an execution of the plan will take

3. Causal chains that support the different goals achieved by
the plan. They represent a middle-ground between actions
and states by encoding how actions contribute to the goal
states being achieved.

1We have converted all the decision problems to seek their so-
lutions.

Basis Pros Cons
Actions Does not require No problem information

problem information is used
States Not dependent on any specific Needs an execution

plan representation simulator to identify states
Causal chains Considers causal proximity Requires domain theory

of state transitions (action)
rather than positional
(physical) proximity

Table 3: The pros and cons of different bases to characterize
plans.

These different criteria for characterizing plans can also
serve as the basis for different ways of comparing plans. Ta-
ble 3 gives the pros and cons of using the different basis.
We note that if actions in the plans are used as the basis
for comparison, no problem or domain theory information
is employed. If plan behaviors are used as the basis for com-
parison, the representation of the actions that bring about
state transition becomes irrelevant since the actual states that
an execution of the plan will take is considered. Hence, we
can now compare plans of different representations, e.g., 4
plans where the first is a deterministic plan, the second is a
contingent plan, the third is a hierarchical plan and the fourth
is a policy encoding probabilistic behavior. If causal chains
is used as the basis for comparison, the causal proximity
among actions is now considered rather than just physical
proximity in the plan. But it requires the domain theory to
be available.

Different Ways for Computing Comparison
After a basis for plan comparison is chosen, there can be
different ways of using its characterizer to derive distance
functions. The analogy we use is to string comparison where
inter-relationship among characters in the string are usedto
define distance functions. Without loss of generality, assume
that we are interested in action based comparison of plans.

One way to measure distance between plans is to consider
plans as sets of actions and string similarity functions that
depend on characters sets. This view ignores the absolute
position of an action in the plan string and cares only about
the presence or absence of an action in the plan.

Set-difference based Distance Computation We can
also use the set-difference measure between plans. Here, the
distance between plansSi andSj is measured as the num-
ber of actions that occur in one plan but not the other. This
measure is used in (Myers 2005; Foxet al. 2006).

δ1(Si, Sj) =
| Si − Sj | + | Sj − Si |

| Si | + | Sj |
(1)

Neighbourhood-based Distance Computation We can
also consider the ordering of the actions in the plan (char-
acters in the string). LetSi andSj be broken into substrings
P = P1, ..., PK andQ = Q1, ..., QL. Then neighbourhood
similarity functions follow the general pattern as follows.

δ∗(Si, Sj) =
1

K

K∑

i=1

minL
j=1

δ
′

(Pi, Qj) (2)

Name Basis Computation
δ1 Actions Set-difference
δ2 Actions Prefixes Neighbourhood
δ3 States Set-difference
δ4 States Prefixes Neighbourhood
δ5 Causal Chains Set-difference
δ6 Causal Chains Prefixes Neighbourhood

Table 4: A spectrum of distance functions based on different
bases and way of computations.

whereδ
′

refers to some secondary similarity function. Let
δ
′

be δ1 in the remainder. We give the distance function
based on prefixes and more can be proposed based on how
different substrings are created.

Prefixes-based Distance Computation PandQ contains
prefixes ofS1 andS2, respectively.

δ2(Si, Sj) = δ∗(Si, Sj) (3)

In Table 4, 6 distance functions are presented which use
3 different bases and 2 different ways of computation. More
distance functions can be derived by extending any of the
two dimensions.

g3p3A3

g3p3, g2A3’

g2p2, g1A2’

g2p2A2

g1p1A1

EffectPreconditionsAction

g3p3A3

g3p3, g2A3’

g2p2, g1A2’

g2p2A2

g1p1A1

EffectPreconditionsAction

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3> <g1,g2,p3>

<g1,g2,g3>

Plan S6-2

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3> <g1,g2,p3>

<g1,g2,g3>

Plan S6-2

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3<p1,p2,p3>

<g1,g2,g3>

Plan S6-1

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3<p1,p2,p3>

<g1,g2,g3>

Plan S6-1

I-p1-A1-g1g1S6-1,
S6-2

I-p2-A2-g2g2

I-p3-A3-g3g3

I-p1-A1-g1,p2-A2’-g2-
p3,g2-A3’-g3

g3

I-p1-A1-g1,p2-A2’-g2g2

I-p1-A1-g1g1S6-3

Causal ChainsGoalPlan

I-p1-A1-g1g1S6-1,
S6-2

I-p2-A2-g2g2

I-p3-A3-g3g3

I-p1-A1-g1,p2-A2’-g2-
p3,g2-A3’-g3

g3

I-p1-A1-g1,p2-A2’-g2g2

I-p1-A1-g1g1S6-3

Causal ChainsGoalPlan

p1,
p2,
p3

g1,
g2,
g3

A1 A2’

<p1,p2,p3>

A3’

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S6-3

Initial
State Goal

State

Figure 2: Three different plans for an example problem. The
significant fluents of the states after every action is shown in
≺ ... 〉. The domain description and causal chains in the 3
plans are also given.

Example: Comparing Plans by Different Bases
In Figure 2, three plans are shown for a planning problem
where the initial state is〈p1, p2, p3〉 and the goal state is
〈g1, g2, g3〉. Plans S6-1 and S6-2 have the same actions but
different structures. S6-1 has parallel actions while S6-2has
them in sequence. The plan S6-3 hasA1 like the other plans
but all other actions are different (A

′

2
andA

′

3
). However, it

also achieves the same goals.
An action based plan comparison method which uses

prefix-neighbourhood based distance computation would
find S6-1, S6-2 and S6-3 to be all different. This is because

all the three plans have different sets of action prefixes. If
instead, the action information is used with set differencing,
S6-1 and S6-2 would be found identical.

A state based comparison method which uses any of the
given computation choice would find S6-2 and S6-3 to be
identical, and both of them to be different from S6-1. This is
because the states after every transition in S6-2 and S6-3 are
identical. S6-1, on the other hand, has (trivially) the same
first and last states but no intermediate states.

A causal link based comparison method which uses set
differencing would find S6-1 and S6-2 to be the same while
S6-3 as different. The causal chains for all the goals are
shown in the figure.

Solution Methods
We start by noting that one straightforward approach to gen-
eratek multiple inter-related plans is to make existing plan-
ners run further after finding the first solution. As new so-
lutions are generated, their distance from the already se-
lected plans can be assessed and used to decide whether they
should be added to the selected set.

A more efficient alternative would be to bias the planners’
search process so it progresses towards plans that are likely
to meet both the solution quality and inter-releatedness con-
straints. There are broadly two ways of achieving this: One
idea is to bias the search for the latter plans so as to sat-
isfy the inter-relatedness constraints. In the case of heur-
sitic search planners such as FF, this can be accomplished by
modifying the heuristic to reflect the inter-relatedness con-
straints. For example, if we are interested in finding maxi-
mally dissimilar plans, we can penalize plans similar to the
ones already selected. The technical challenge in imple-
menting this approach would be making the heuristics sen-
sitive to inter-relatedness constraints.

The heuristic search approach outlined above is “greedy”
in the sense that the seed plans that we have already commit-
ted to could force us into a sub-optimal overall set of plans.
The second idea is thus to search simultaneously for thek
solutions. One avenue for doing this is to model planning
as constraint satisfaction (c.f. (Do & Kambhampati 2001)),
and adapt the technique proposed in (Hebrardet al. 2005)
for simultaneously searching fork inter-related CSP solu-
tions.

As of this writing, we have experimented with one spe-
cific implementation of each of the above ideas. We will
describe the techniques implemented and provide prelimi-
nary results. We are currently in the process of completing a
more careful investigation of the comparative advantages of
these approaches.

Compiling Planning as CSP and Solving for Exact
Diverse Plans
The GP-CSP planner(Do & Kambhampati 2001) is a Graph-
plan based planner that converts Graphplan’s planning graph
into a CSP encoding, and solves the CSP encoding using
standard CSP solvers. Here, the variables correspond to the
predicates that have to be achieved at a level and its pos-
sible values are the actions that can support the predicates.

Constraints encode the relationship (e.g., mutual exclusions)
among predicates and the relationship among the supporters
of the predicates.

Similar to the way Hebrard et. al 2005 solved their
dDISTANTkSET/dCLOSEkSET problem by reformulating
it as a new CSP, we solve the same problem with different
distance measures by making k copies of each planning en-
coding. Each encoding is created using GP-CSP planner and
the k copies are connected to each other using global con-
straints. Due to the way the CSP library is used in conjunc-
tion with the planning graph structure to solve the planning
encoding, there are some complications. The details of our
approach are:

• As opposed to creating k(k-1)/2 special variables to repre-
sent the distances between each pair of copies, we create
k(k-1)/2 global constraints connecting them. If each copy
has n variable, then this constraint involves 2n variables
from each of k(k-1)/2 possible pairs of k copies2. Each
global constraint between the ith and jth copies ensures
that two plans represented by the solutions of those two
copies will be at least/mostd diverse/similar to each other.

• Because the CSP library used in GP-CSP uses implicit
constraint representation, we implement special con-
straint checking routine to check those k(k-1)/2 con-
straints. Those routines are called upon by the normal for-
ward checking and arc-consistency checking procedure
inside the default solver. In the future, we plan on imple-
menting special consistency checking techniques to deal
more efficiently with those global constraints.

Due to the special planning encoding in GP-CSP and the
distance measure defined earlier in this paper, there are sub-
stantial differences between how each global constraint is
satisfied between traditional CSP encoding as in (Hebrard
et al. 2005) and our encoding. In our encoding, facts rep-
resent variables and actions represent values. A given ac-
tion a can represent different values in domains of differ-
ent variables. For example, if there are two variablesx1

andx2 and their current assignments in the first copy are
{x1 → v1, x2 → v2} and in the second copy, they are:
{x1 → v2, x2 → v1}, then in traditional CSP, the distance
between two sets of assignments would be 2. However, the
valuev1 of x1 andv1 of x2 may represent the same action
instance, alsov2 of x1 andv2 of x2. Therefore, the dis-
tance between those two set of assignments in our planning
encoding can be 2, 1 or even 0.

Thus, when each global constraint is called upon to check
if the distance between two copies is within/over a prede-
fined value d, we first have to map each set of assignments
to an actual set of actions. Then, we compare the action sets
(not the variable assignments) to decide if the two copies
satisfy the global constraint defined by the distance measure.
This process is done by mapping each variable→ value into
action using a call to the planning graph, which is outside
but works closely with the general purpose CSP solver in
GP-CSP.

2An alternative approach would be to create only one global
constraint involving k*n variables from all k copies.

Problem k d Time (in sec) Dist.(Min, Max, Avg)
prob002-rocket-a 2 0.1 2.45 (0.154, 0.154, 0.154)

0.2 6.72 (0.862, 0.862, 0.862)
0.8 6.79 (0.862, 0.862, 0.862)

prob002-rocket-a 3 0.05 11.1683 (0.154, 0.862, 0.626)
0.1 10.88 (0.154, 0.862, 0.626)

prob004-log-a 3 0.05 7.86 (0.054, 0.203, 0.151)
0.1 24.11 (0.197, 0.698, 0.525)
0.15 21.04 (0.197, 0.698, 0.525)
0.2 19.50 (0.209, 0.701, 0.536)

Table 5:Initial results of GP-CSP in dDISTANTkSET

Table 5 presents the results of GP-CSP on some logistics
problems as run on a Pentium-3 667Mhz with 256MB RAM.
We see that this approach can give diverse plans effectively.
The last column shows the diversity in the returned plans
usingδ1 and that it is greater than minimum diversity needed
for the problem (d). We also found that with higher k and d,
the problems take longer to solve, as expected.

Heuristic Approach for Approximate Diverse Plans
In heuristic state space planning, a search framework like
A* is used to find plans driven by heuristics that measure
the progress to goals. Specifically, the cost of a search node
is measured by:

f(si) = g(si) + w ∗ h(si) (4)

whereg is the cost to achieve the current node starting
from the initial search state,h is the heuristic estimate of the
effort to achieve the goals andw is a weighing function. In
measuringh, heuristics derived from the relaxed planning
graph (RPG) have been found to be very effective(Nguyen,
Kambhampati, & Nigenda 2002).

The RPG heuristic estimate can be biased towards plans
that use as many of the actions already supporting other
goals as possible. To do this, the planner will now take as
input not just the goals to be supported, but also the set of
actions already committed to in previous plans. RPG heuris-
tic can also be biased to find plans that do not share many
actions with another plan. Thus, the relaxed plan extraction
process will be biased to avoid actions that are in the input
plan. This approach works as long as we have similarity
measures that are dependent on action presence and not on
the relative position of the actions.

We implement this idea by usingh′(si) as defined below
instead ofh(si).

h′(si) = h(si) + wδ ∗ δj(si, S0) (5)

Hence, we increase the heuristic values with a weighted
factor accounting for the distance between the partial plan
and the reference input plan.δj can be any distance measure
including the ones defined earlier. Ifwδ is positive, search
nodes close to the reference plan (S0) get priority over other
nodes. Ifwδ is negative, search nodes away from neigh-
bourhood of the reference plan get priority. Given a distance
function, one can start from a reference plan and control the
relationship of the subsequent plan by using appropriatewδ.
The new plan can be added to the reference plans set and
more plans generated appropriately related to it.

Problem wδ wk Time (in sec) Dist. (Min, Max, Avg)
bw-prob-4-0 -100 0 2.08 (0.334, 0.334, 0.334)

10 100 2.04 (0.0, 0.0, 0.0)
-10 -100 2.22 (0.156, 0.318, 0.249)

lilprob-4-0 -10 -10 1.77 (0.143, 0.334, 0.242)
100 -100 1.68 (0.0, 0.0, 0.0)
-100 -100 1.73 (0.0, 0.5, 0.334)

Table 6:Initial results of Planner4J RPG for k=3

The above approach would work regardless of whether
the h was obtained from a relaxed plan of RPG (e.g., Ad-
jSum2 heuristic) or not (e.g., max heuristic). We can also
affect the relaxed plan extraction process for obtainingh.
Consider the AdjSum2 heuristic where the value of a state
is estimated by the length of the relaxed plan to reach the
goal and an interaction factor derived from the maximum
interaction among the predicates in the state.

hAdjSum2(si) = len(RP (si)) + maxp,q∈si
∆(p, q) (6)

len(RP (si)) = len(RelP lan(si)+wk∗δk(RelP lan(si), S0))
(7)

Specifically, at each step of the extraction of the relaxed
plan, we prefer actions that are not present in other plans.
We give a cost metric to each action in the PG and the cost
is dependent on how many of the other plans these actions
already support. Then we can use the costs to extract the
relaxed plan.

We have implemented both the methods in the Planner4J
family of Java planners and they together seem to give the
best results. Table 6 presents the results on a sample of
blocksworld and logistics problems as run on a Pentium-M
1.5GHz with 1.25GB RAM under Windows XP with w=5.
We see in lilprob-4-0 that onlywk could not lead to diversity
in the solution.

Related Work
Although the need for finding similar or different plans has
been noticed in the past, there has been little concrete work
on formalizing and solving the problem. Researchers in-
cluding Tate (Tate, Dalton, & Levine 1998) and Myers (My-
ers 2005) have articulated the need for finding dissimilar
plans. Myers, in particular, allows evaluating the plan simi-
larity, but does not seem to provide a way of generating dis-
similar plans efficiently. As we mentioned earlier, intrusion
detection work by Boddy et. al. (Boddyet al. 2005) focuses
on finding multiple qualitatively different plans for a prob-
lem. However, they coerce a traditional planner (Metric-
FF) to generate multiple plans, and filter them out in a post-
processing phase. Boddy et. al. acknowledge the need for
a technique that takes inter-relatedness constraints intoac-
count during search more actively. The problem of finding
similar plans has been considered in the context of replan-
ning. A recent effort in this direction is (Foxet al. 2006),
which shows how a local search planner called LPG can be
modified to produce a plan that is similar to a reference plan.

Finally, Linden et. al. (Linden, Hanks, & Lesh 1997) mo-
tivate the need for finding related plans comprising a pareto
set in the context of a travel planning scenario.

Outside of planning, we have already mentioned the con-
nections to the work in CSP community in finding sim-
ilar/dissimilar solutions. The challenges in finding inter-
related plans also bears some tangential similarities to the
work in information retrieval on finding similar or dissimi-
lar documents (c.f. (Callan & Minka 2002)).

Conclusion and Future Work
In this paper, we investigated the problem of finding inter-
related plans. We formalized the problem of finding diverse/
similar plans by extending previous formulations for CSPs.
We looked at the different bases for comparing plans, the
different methods of computing comparison, and proposed
useful plan distance functions. We conducted preliminary
experiments with a CSP based exact approach and a heuris-
tic based approximate approach to generate diverse plans.
In future, we intend to implement more approaches and run
extensive experiments.

References
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005.
Course of action generation for cyber security using classi-
cal planning. InProc. ICAPS. AAAI.
Callan, J., and Minka, T. 2002. Novelty and redundancy
detection in adaptive filtering. InProc. SIGIR. ACM Press.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compil-
ing it into CSP.AI 132(2):151–182.
Fox, M.; Gerevini, A.; Serina, I.; and Long, D. 2006. Plan
stability: Replanning versus plan repair. InProc. ICAPS.
Hebrard, E.; Hnich, B.; O’Sullivan, B.; and Walsh, T.
2005. Finding diverse and similar solutions in constraint
programming. InProc. AAAI.
Linden, G.; Hanks, S.; and Lesh, N. 1997. Interactive as-
sessment of user preference models: The automated travel
assistant. InProc. UM.
Myers, K. 2005. Metatheoretic plan summarization and
comparison. InProc. ICAPS WK. Mixed-initiative Plan-
ning and Scheduling.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and csp search. InAI.
Tate, A.; Dalton, J.; and Levine, J. 1998. Generation of
multiple qualitatively different plan options. InProc. AIPS-
98, Pittsburgh. AIAI.

