
Journal of Artificial Intelligence Research () Submitted 07/07/04; published

Planning Graph Heuristics for Belief Space Search

Daniel Bryce DAN.BRYCE@ASU.EDU

Subbarao Kambhampati RAO@ASU.EDU

Department of Computer Science and Engineering
Ira A. Fulton School of Engineering
Arizona State University, Brickyard Suite 501
699 South Mill Avenue, Tempe, AZ 85281

David E. Smith DE2SMITH@EMAIL.ARC.NASA.GOV

NASA Ames Research Center

Comp. Sciences Division, MS 269-2

Moffett Field, CA 94035-1000

Abstract
Belief space search is a technique for solving planning problems characterized by in-

complete state information and non-deterministic actions. Planning problems expressed in
this space present a much more difficult search problem than classical planning because the
space is doubly exponential in the number of boolean state variables. Effective heuristics
that reason about the features of belief state space are an, as yet, insufficiently studied topic
in planning research. We intend to show how reachability heuristics adapted from classical
planning can provide effective search guidance in belief space. Our specific contribution to
heuristics for belief space planning is in three respects: (1) defining plan distance between
belief states, (2) crafting new heuristics to estimate plan distance, and (3) finding efficient
data structures to compute the new heuristics.

We developed two planners to serve as test-beds for our investigation. The first,
CAltAlt, is a non-observable (conformant) regression planner that uses A* search. The
second, POND, is a partially-observable (contingent) progression planner that uses LAO*
search. CAltAlt finds plans as directed paths in the search space whereas POND finds
plans as directed cyclic hyper-graphs in the search space. We show the relative effective-
ness of our heuristic techniques within these planners. We also compare the performance
of these planners with several state of the art approaches in non-deterministic planning.

1. Introduction

Ever since CGP [Smith and Weld, 1998] and SGP [Weld et al., 1998] a series of planners
have been developed for tackling conformant and contingent planning problems – includ-
ing GPT [Bonet and Geffner, 2000], C-Plan [Castellini et al., 2001], PKSPlan [Bacchus,
2002], Frag-Plan [Kurien et al., 2002], MBP [Bertoli et al., 2001a], HSCP [Bertoli et al.,

c© AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

BRYCE, KAMBHAMPATI, & SMITH

2001b], and KACMBP [Bertoli and Cimatti, 2002]. Several of these planners are exten-
sions of heuristic state search planners that search in the space of “belief states” (where
a belief state is a set of states, one of which the agent “believes” it is currently in). Al-
though heuristic search planners are currently among the best, the question of what should
constitute heuristic estimates for such planners has not yet been adequately investigated.

Intuitively, it can be argued that the heuristic merit of a belief state depends on at least
two factors–the size of the belief state (i.e., the uncertainty in the current state), and the
distance of the individual states in the belief state from the goal (belief) state. The question
of course is how to compute these measures and which are most effective. We argue that
existing planners do not adequately address this question. Our contribution is in a new type
of belief space distance measure that more accurately models the mechanics of plans in
belief space. The measure accounts for the overlap in deterministic plans that transition the
states of a source belief state into the states of a destination belief state.

We will start by discussing, in general terms, what the heuristic estimates should be
evaluating in belief space planning. This involves formalizing the notions of distances
between belief states. Once we figure out what information the heuristics should be com-
puting, we will then turn our attention to ways of computing that information, and finally
how to make these computations efficient. We will show that planning graph structures pro-
vide a good substrate for the heuristic computation. We start by evaluating non-planning
graph approaches – breadth-first search and heuristic search using cardinality. We then try
a minimal extension to heuristics used in classical planning by considering heuristics from
a single planning graph to guide search. To improve the informedness of the heuristics,
we track multiple planning graphs, each corresponding to one of the possible initial states.
The number of planning graphs needed is exponential in the number of uncertain initial
state literals.1 Hence, multiple graphs do not scale well as the number of possible initial
states grows. The limitations in scaling involve either potentially running out of space to
build planning graphs or spending too much time computing heuristics across the multi-
ple planning graphs. Thus, we also describe a significant improvement that addresses these
limitations. The idea is to condense the multiple planning graphs to a single planning graph,
called a Labelled Uncertainty Graph (LUG). Loosely speaking, this single graph unions
the causal support information present in the multiple graphs and pushes the disjunction,
describing sets of possible worlds, into “labels”.2 The graph elements are the same as those
present in multiple graphs, but much redundancy is avoided. For instance an action that

1. We are able to avoid an exponential number of planning graphs due to non-deterministic effects, ignoring
disjunction through treating non-deterministic effects as conjunctive. For example, an effect that gives
a ∨ b, would add both a and b to the subsequent literal layer instead of splitting the planning graph as in
CGP [Smith and Weld, 1998].

2. As with multiple planning graphs, in the LUG we ignore the disjunction of non-deterministic effects by
treating them as conjunctive. Non-deterministic effects create new possible worlds, but we do not give

2

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

was present in all of the multiple planning graphs would be present only once in the LUG

and labelled to indicate that it is applicable in a projection from each possible world. We
will describe how several powerful planning graph-based heuristics from classical plan-
ning, including “level” and “relaxed plan” [Nguyen et al., 2002] can be generalized to the
case of multiple planning graphs and the LUG.

An issue in evaluating the effectiveness of heuristic techniques is the many architectural
differences between planners that use the heuristics. It is quite hard to pinpoint the global
effect of the assumptions underlying their heuristics on performance. For example, GPT is
outperformed by MBP–but it is questionable as to whether the credit for this efficiency is
attributable to the differences in heuristics, or differences in search engines (MBP uses a
BDD-based search). Our interest in this paper is to systematically evaluate a spectrum of
approaches for computing heuristics for belief space planning. Thus we have implemented
heuristics similar to GPT and MBP and use them to compare against our heuristics devel-
oped around the notion of overlap. We implemented the heuristics within two planners,
Conformant-AltAlt (CAltAlt) and Partially-Observable Non-Deterministic (POND).

Although our main interest in this paper is to evaluate the relative advantages of a spec-
trum of belief space planning heuristics in a normalized setting, we also compare the best
heuristics from this work to existing conformant and contingent planners. Our empirical
studies show that planning graph based heuristics provide effective guidance compared to
cardinality heuristics as well as the reachability heuristic used by GPT, and our planners
are competitive with BDD-based planners such as MBP and GraphPlan-based ones such as
CGP and SGP.

The rest of this paper is organized as follows. We present our work by first explaining
the state and action representation used within CAltAlt and POND, then discuss appro-
priate properties of heuristic measures for belief space planning, followed by the set of
heuristics used for search control, empirical evaluation, related research, future work, and
concluding remarks.

2. Belief State Planners

Our planning formulation uses regression search to find conformant plans and progression
search to find conformant and contingent plans. Search is in the space of belief states
using actions with conditional and non-deterministic effects. The planning problem is P =

(D,BSI , BSG) and the domain is D = (L,S, A), where L is the set of all literals l, S is the
set of all states, and A is the set of actions. BSI and BSG are the respective initial and goal
belief states.

the effects labels to signify the new possible worlds. Essentially, effects can propagate possible world
support, but cannot create new possible worlds.

3

BRYCE, KAMBHAMPATI, & SMITH

Belief State Representation: As discussed in [Bonet and Geffner, 2000], conformant and
contingent planning can be seen as a search in the space of belief states. Given a world
state represented in terms of a conjunction of boolean state variables, a belief state BSi
is an arbitrary propositional formula, representing a set of states (also referred to as a set
of possible worlds). We consider two special canonical representations of BSi – clausal
representation κ(BSi), which is in CNF (clauses C over literals L), and constituent repre-
sentation, ξ̂(BSi), which is in DNF (constituents Ŝ over literals L). In regression, we’re
dealing with partial descriptions of belief states, so the constituents of ξ̂(BSi) may not ex-
plicitly represent all states in a belief state. Thus, we define ξ(BSi) as the complete set of
states consistent with BSi. We differentiate states S from constituents Ŝ; states give values
to every literal, whereas constituents leave some literals free.

We use the bomb and toilet with clogging problem, BTC [McDermott, 1987], as a
running example for this paper. For the uninitiated, here are the arcana of the Bomb in the
Toilet family of problems: Bomb in the Toilet (BT) – the problem includes two packages,
one of which contains a bomb, and a toilet. The goal is to disarm the bomb and the only
allowable actions are dunking a package in the toilet. The variation “bomb in the toilet with
clogging” (BTC) says that the toilet will clog unless it is “flushed” after each “dunking”
action. The literals encoding the problem denote that the bomb is armed or not (arm), the
bomb is in a package or not (inP1, inP2), and that the toilet is clogged or not (clog).

The belief state representation of BTC’s initial condition, in clausal representation,
is: κ(BSI) = arm ∧ ¬clog ∧ (inP1 ∨ inP2) ∧ (¬inP1 ∨ ¬inP2), or in constituent
representation: ξ̂(BSI) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2) ∨ (arm ∧ ¬clog ∧ ¬inP1 ∧
inP2). BTC’s goal state is partial, its clausal representation is: κ(BSG) = ¬arm, and
its constituent representation is: ξ̂(BSG) = ¬arm. However, its complete set of states:
ξ(BSG) = {(¬arm ∧ clog ∧ inP1 ∧ ¬inP2), (¬arm ∧ clog ∧ ¬inP1 ∧ inP2), (¬arm ∧
¬clog ∧ inP1 ∧ ¬inP2), (¬arm ∧ ¬clog ∧ ¬inP1 ∧ inP2), (¬arm ∧ clog ∧ ¬inP1 ∧
¬inP2), (¬arm ∧ clog ∧ inP1 ∧ inP2), (¬arm ∧ ¬clog ∧ ¬inP1 ∧ ¬inP2), (¬arm ∧
¬clog ∧ inP1 ∧ inP2)}.
Action Representation: A causative action a, of the action set A, is described in terms
of (i) an executability precondition ρe, and (ii) several conditional effects ϕj of the form
(ρj =⇒ εj), where the antecedent ρj and the consequent εj are, in general, formulas.
The executability precondition ρe, also a formula, of the action must hold for the action to
be executable. We define ϕ0 as the unconditional effect of an action where by convention
ρ0 = � and ε0 is given.

As an example, the actions for BTC are:
DunkP1 : {ρe : ¬clog,

ρ0 : � =⇒ ε0 : clog,
ρ1 : inP1 =⇒ ε1 : ¬arm}

4

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

DunkP2 : {ρe : ¬clog,
ρ0 : � =⇒ ε0 : clog,

ρ1 : inP2 =⇒ ε1 : ¬arm}
F lush : {ρe : �,

ρ0 : � =⇒ ε0 : ¬clog}
Observation Representation: An observational action a, of the action set A, is described
in terms of (i) an executability precondition ρe and (ii) a set of observational partition
formulas O. Like causative actions, an observational action is only executable when its ex-
ecutability precondition is entailed by the current belief state. Each observational partition
formula oj ∈ O defines the properties of a distinct outcome of the observation, where each
outcome is non-overlapping with others (i.e. ∀i,j oi ∧ oj |=⊥).

As an example, we can add observational actions to BTC to determine if a package
contains a bomb:
SniffP1 : {o1 : inP1,

o2 : ¬inP1}
SniffP2 : {o1 : inP2,

o2 : ¬inP2}
Our observation representation is more expressive than planners like MBP [Bertoli et

al., 2001a], which do not allow the observation of formulas, do not have observational
preconditions, and require observations to occur after a causative action (similar to the
POMDP model). Our observational representation is less expressive than planners like C-
Buridan [Draper et al., 1994], which allows observations in the consequents of conditional
effects, so that possible sets of observations are conditional.

2.1 Regression

We perform regression in the CAltAlt planner to find conformant plans by starting with
the goal belief state and regressing it non-deterministically over all relevant actions. An
action is relevant for regressing a belief state if (i) its unconditional effect is consistent with
the belief state and (ii) at least one effect consequent entails a literal that is present in the
constituent representation of the belief state.

Following Pednault [1987], regressing a belief state BSi over an action a, with condi-
tional effects, involves finding the executability, causation, and preservation formulas. We
define regression in terms of clausal representation, but it can be generalized for arbitrary
formulas. The regression of a belief state is a conjunction of the regression of clauses in
κ(BSi). Formally, the result BSi′ of regressing the belief state BSi over the action a is
defined as:3

3. Note that BSi′ may not be in clausal form after regression (especially when an action has multiple con-
ditional effects).

5

BRYCE, KAMBHAMPATI, & SMITH

BSG

BS1

BS2

BS3

DunkP1

Flush

DunkP2

Figure 1: Illustration of regression search for a conformant plan in the BTC problem.

BSi′ = Regress(BSi, a) = Πa ∧

 ∧
C∈κ(BSi)

∨
l∈C

(
Σl
a ∧ IP l

a

) (1)

where
Executability formula (Πa) is the executability precondition ρe of a. This is what must
hold in BSi′ for a to have been applicable.
Causation formula (Σl

a) for a literal l w.r.t all effects ϕj of an action a is defined as the
weakest formula that must hold in the state before a such that l holds in BSi. Formally Σl

a

is defined as:

Σl
a = l ∨

∨
j:εj|=l,
j �=0

ρj (2)

Preservation formula (IP l
a) of a literal l w.r.t. all effects ϕj of action a is defined as the

weakest formula that must be true before a such that l is not violated by any effect εj.
Formally IP l

a is defined as:

IP l
a =

∧
j:εj|=¬l,
j �=0

¬ρj (3)

6

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

Termination: Regression terminates when search node expansion generates a belief state
BSi which is entailed by the initial belief state BSI . The plan is the sequence of actions
regressed from BSG to obtain BSi. For example, in the BTC problem, Figure 1, we have:
BS1 = Regress(BSG, DunkP1) = ¬clog ∧ (¬arm ∨ inP1).

The first clause is the executability formula and the second clause is the causation for-
mula for DunkP1’s conditional effect and ¬arm. Regressing BS1 with F lush gives:
BS2 = Regress(BS1, F lush) = (¬arm ∨ inP1)

For BS2, the executability precondition of F lush is �, the causation formula is � ∨
¬clog = � and (¬arm ∨ inP1) comes through persistence in the causation formula.
Finally,
BS3 = Regress(BS2, DunkP2) = ¬clog ∧ (¬arm ∨ inP1 ∨ inP2).

From our example, we terminate at BS3 because BSI |= BS3. The plan is DunkP2,
F lush, DunkP1.

2.2 Progression

We use progression in the POND planner to generate conformant and contingent plans as
(possibly cyclic) hyper-graphs with LAO* search. POND uses the progression function,
Progress(BSi, a), Figure 2, which returns a set of belief states B. When a is not applica-
ble to BSi or the only element of B is BSi (meaning a new belief state was not generated)
then Progress returns ∅. Since actions are either strictly causative or strictly observational,
the Progress function either generates a single successor or partitions the states of BSi
into several belief states, as outlined in pseudo-code in Figure 2. When a is causative (lines
2-18), we apply a to all states S ∈ ξ(BSi) and take the disjunction of all resulting formulas
as the result (lines 4-17). The result of applying a to a state S is constructed by taking the
conjunction of the consequents εj of applicable effects ϕj of a where S |= ρj (lines 6-8),
then taking the conjunction of it with the persistence literals of S (lines 9-15). When a

is observational (lines 19-24), Progress returns a set of successors, where each element
is the conjunction of a distinct observational partition o ∈ O with BSi.4 As previously
mentioned, we change the result of Progress to ∅ if applying an action does not result in a
new belief state (lines 25-27).

Intuitively, strictly causative actions – which can be non-deterministic – have one suc-
cessor belief state (requiring a single edge to represent the relation), but observational
actions have several successors (requiring a hyper-edge to represent the relation). Since

4. The semantics for observations are that the belief state BS i is partitioned immediately instead of main-
taining the epistemic knowledge, as would a planner like PKSPlan [Bacchus, 2002]. The plan branches
after an observation may be identical, simulating a deferred branch after observation, but the contingent
plan extraction does not collapse the segments. A more sophisticated extraction of a contingent plan from
the policy could take advantage of repeated actions and simulate the deferred branching.

7

BRYCE, KAMBHAMPATI, & SMITH

Progress(BSi, a) :

1: B := ∅
2: if a is causative then
3: BSi′ :=⊥
4: for each S ∈ ξ(BSi) do /* Apply Action to Each State */
5: BSi′′ := �
6: for each ϕj of a, where S |= ρj do /* Apply Each Applicable Effect */
7: BSi′′ := BSi′′ ∧ εj
8: endfor
9: P := �
10: for each l ∈ L do /* Determine Persistence Literals */
11: if BSi′′ �|= ¬l and S |= l then
12: P := P ∧ l

13: endif
14: endfor
15: BSi′′ := BSi′′ ∧ P

16: BSi′ := BSi′ ∨ BSi′′

17: endfor
18: B := B ∪ BSi′

19: else /* a is observational */
20: for each oj ∈ O of a do /* Apply Each Observation to Belief State */
21: BSi′ := oj ∧BSi
22: B := B ∪ BSi′

23: endfor
24: endif
25: if | B |= 1 and BSi ∈ B then /* Check if result is productive */
26: B := ∅
27: endif
28: return B

Figure 2: Progression function pseudo-code.

8

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

simple edges are a special case of hyper-edges, during search node expansion we add a
set of hyper-edges to the search graph (one hyper-edge for each action). The edges for a
single action connect the progressed belief state BSi to each successor in B; each of these
edges must reach a goal in a feasible solution. The hyper-edge for each action applied to
a belief state is an “or”-edge (where one hyper-edge of a node is used in a solution), and a
hyper-edge is a collection of “and”-edges (where all edges must reach a goal belief state in
a solution). This gives rise to an And/Or graph search problem.

2.3 POND

Progression planning in POND uses LAO* to find plans. LAO* [Hansen and Zilberstein,
2001] is a search algorithm that generalizes AO* to find solutions with cycles, as required in
stochastic shortest path (SSP) problems. In SSP, LAO* has major advantage over standard
value or policy iteration algorithms in that it leverages having an initial state to visit only the
reachable parts of the state space when finding goal states. Our requirements exactly match
the properties of LAO*, namely we have an initial node to direct search and would like
to find solutions with branches and loops. However, our use of LAO* is slightly different
than the formulation for SSP. In POND we assume non-stochastic actions and partial-
observability. With partial-observability we cannot assume every state is fully-observable
at every step of the plan, hence belief states (as opposed to states) are nodes in the search
graph. Next, observational actions (as opposed to non-deterministic actions, as in LAO*)
are associated with the hyper-edges in the search graph because observability is localized to
the available observational actions. Lastly, non-deterministic actions generate belief states
instead of splitting the resulting states into the search graph.

In POND, LAO* decides the nodes to expand with Progress and when the search
graph contains a solution. LAO* decides a solution exists by first determining that its best
solution graph does not contain any unexpanded nodes, and then performing a final set of
dynamic programming backups to make sure that the error bound on the solution is ac-
ceptable (i.e. a better solution cannot be found).5 Should the solution contain unexpanded
nodes or if the dynamic programming introduces unexpanded nodes, then search continues
by expanding the unexpanded nodes. Termination occurs via the error bound’s convergence
to zero because a solution without a goal, that is reachable by all paths, will have a non-zero
error bound. The reason for a feasible solution’s non-zero error bound is that the dynamic
programming will lower the solution’s cost by changing the best actions for nodes until all
nodes in the best solution have a path to reach the goal. Dynamic programming chooses
best actions based on the rationale that the goal state is the least costly state to reach and
the overall value of the solution is minimized when all paths reach the goal. Note, mini-

5. We use an error bound of zero.

9

BRYCE, KAMBHAMPATI, & SMITH

mizing the cost of a solution only guarantees an optimal solution when heuristic values for
unexpanded nodes are admissible.

The solution exists as subgraph of the search graph, and we extract the solution by
following the hyper-edges marked by LAO*. We extract a plan from the search graph by
starting at the initial belief state’s node (keeping a list of visited nodes and the associated
best actions) and traversing the edges of marked hyper-edges depth first. The action as-
sociated with each marked hyper-edge is added to the current branch of the plan until the
traversal reaches the node of a goal belief state or an already encountered node. When
a goal belief state is encountered, recursion backs up to the last node whose hyper-edge
has unexplored edges, and new branch is started. Should the traversal encounter a node
already visited, then a goto action is added to the plan, that refers to the action of the re-
encountered node. In this manner we are able to extract, in the most general case, cyclic
contingent plans. For example, POND generates the following cyclic contingent plan for
the omelette problem (detailed in Appendix A):

1: (grab)

2: (break_egg large)

3: (inspect large)

IF: (NOT n0bads_large)

4: (clean large)

GOTO 1

IF: n0bads_large

DONE

As an example of search in POND, consider the BTC example (Figure 3) with obser-
vational actions. Applying actions to the initial belief state, we get:
BS4 = Progress(BSI, DunkP1)

= (inP1 ∧ ¬inP2 ∧ clog ∧ ¬arm) ∨ (¬inP1 ∧ inP2 ∧ clog ∧ arm),
and

B1 = Progress(BSI, SniffP1) = {BS5, BS6}
= {(inP1 ∧ ¬inP2 ∧ ¬clog ∧ arm), (¬inP1 ∧ inP2 ∧ ¬clog ∧ arm)}.
Say we explore BS4, then it can be progressed further to form:

BS7 = Progress(BS4, F lush)

= (inP1 ∧ ¬inP2 ∧ ¬clog ∧ ¬arm) ∨ (¬inP1 ∧ inP2 ∧ ¬clog ∧ arm),
and we can finish the plan with:

BS8 = Progress(BS7, DunkP2)

= (inP1 ∧ ¬inP2 ∧ ¬clog ∧ ¬arm) ∨ (¬inP1 ∧ inP2 ∧ ¬clog ∧ ¬arm).

10

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

BS8

BS7

BS4

BSI

DunkP2

Flush

DunkP1

BS10BS9

BS5

DunkP2DunkP1

BS6

SniffP1
O1 O2

B1

Figure 3: Illustration of progression search for a conformant plan (left) and a contingent
plan (right) in the BTC problem.

BS8 is a terminal belief state because its formula entails the goal belief state.
Alternatively, consider if we expanded BS5 and BS6 instead of BS4. We could find:

BS9 = Progress(BS5, DunkP1) = inP1 ∧ ¬inP2 ∧ clog ∧ ¬arm,
which is a goal belief state. We could expand further to find:

BS10 = Progress(BS6, DunkP2) = ¬inP1 ∧ inP2 ∧ clog ∧ ¬arm,
which is a goal belief state.
A more complex example of the omelette problem, which involves a cycle in the solu-

tion, is discussed in Appendix A.

3. Belief State Distance

Before getting into heuristics we must start by discussing what measures are worth estimat-
ing. In this section we consider heuristic guidance for belief space planning in the specific
case of regression search (pointing out differences in progression search). Consider the
example in Figure 4; there are two belief states BS1 and BS2 that we are trying to assign
heuristic measures for the difficulty of reaching the initial belief state BSI . We would like

11

BRYCE, KAMBHAMPATI, & SMITH

h(BS1) = d1

h(BS2) = d2

I1 : d11−1

I3 : d11−3

I2 : d11−2

I2 : d12−2

I3 : d12−3

I1 : d13−1

I2 : d13−2

I3 : d13−3

I1 : d14−1

I2 : d14−2

I3 : d14−3

I1 : d21−1

I2 : d21−2

I3 : d21−3

I1 : d12−1

I1 : d2−1

I2 : d2−2

I3 : d2−3

I1 : d1−1

I2 : d1−2

I3 : d1−3

di : distance from BSi to BSI

di−k: distance from BSi to state k

k - state in BSI

i - belief state
j - state in BSi

I3

I2

I1

D2

D1

I1 : d22−1

I2 : d22−2

I3 : d22−3

BS2

BS1

dij−k: distance from state k to j

χ2

χ1: Combination of dij−k values

χ2: Combination of di−k values

to compute di−k value

to compute di value

Di: # of conformant actions
from BSI to BSi

BSI

S2

S1

S3

S4

S2

χ1

χ1
χ1

S1

Figure 4: Conformant Plan Distance Estimation in Belief Space

to estimate D1 and D2, the actual lengths of plans from BSI to BS1 and BS2, respectively.
The arcs on BS2 labelled χ1 and χ2 are showing how state distance measures are combined.

There are several factors to consider and leverage in making this estimation of D1 and
D2:

1. ξ(BSi), the set of states in the belief state.

2. Reachability measures between pairs of individual states, dij−k, where each pair is a
state Sk from BSI and Sj from BSi, as well as χ1 and χ2, the combination techniques
for the distances of individual states to obtain di, a distance estimate to Di.

3. The overlap of independent plans that reach the relevant states of BSi from states in
BSI .

12

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

Preferring belief states with a high cardinality – the number of states in the belief state
(| ξ(BSi) |) – can be a heuristic that assumes for regression that a larger belief state has a
higher probability of containing the states of the initial belief state. In progression, a belief
state with smaller cardinality may seem preferable because there is less uncertainty about
the current state, making planning easier. However, cardinality can be misleading because
even though a belief state is large (or small), we may not be able to extend it to include the
initial states (or to reach a goal state).

The reachability measures of pairs of states (dij−k) or pairs of belief states and states
(di−k) also reflect how difficult a plan will be to construct. These dij−k and di−k measures
can be handled as either numbers estimating the plan length or sets of actions estimating
a plan. Also important is how to combine the dij−k and di−k measures to ultimately get
the estimate for the distance between belief states, di. We define two combinations: χ1,
which uses the dij−k’s to get the di−k measures, and χ2, which combines the di−k measures
to get di.6 The operations allowable in χ1 and χ2 for numerical estimates are minimum,
maximum, and average; and for estimated sets of actions we can take the minimum cardi-
nality set, maximum cardinality set, or the union of sets. Note that the sets of actions can
be turned into numerical estimates by taking the cardinalities of the sets; this necessarily
happens before we get a final number for di.

An important point to note is that in regression not all of the states Sj ∈ BSi need
to have reachability estimates with respect to each of the initial states, only the min-cost
reachable Sj for each Sk ∈ BSI . Similarly, in progression, with multiple goal states,
we only care that each of the states in the current belief state has finite distance to one of
the goal states. So we may wish to take the max of the distances from each state to its
minimum cost goal state because some of the states in the current state may not be able to
reach all of the goal states.

Furthermore, of the reachability measures for Sj ∈ BSi there can be much redundancy.
The same actions may be used in many of the individual plans that transition the initial
states BSI to BSi. Hence the plans have high overlap. We define three classes of distance
estimates to formalize the idea of overlap:

• Max S-S: Maximum state to state distance relates to using the maximum di−k mea-
sure as the estimate. This measure has no notion of overlap.

• Weak BS-BS: Weak belief state to belief state distance relates to an aggregation
of di−k measures that considers some overlap (e.g. summing over k for the di−k
measures).

6. Notice that we aggregate over the j states for each k state when deriving the measure for d i. However, an
alternative that aggregates over the k states for each j state is also possible to derive d i.

13

BRYCE, KAMBHAMPATI, & SMITH

• Strong BS-BS: Strong belief state to belief state distance relates to a systematic
consideration of overlap.

Later, we use these classes to categorize the different planning graph heuristics. As we
will show, keeping sets of actions instead of numerical estimates for the d measures will
improve our ability to reason about overlap. Planning graphs can aid in finding the sets of
actions that improve the measure of plan overlap.

4. Heuristics

Planning graphs serve as the basis for our belief state distance estimation. Planning graphs
were initially introduced in GraphPlan [Blum and Furst, 1995] for representing an opti-
mistic, compressed version of the state space progression. The compression lies in union-
ing the literals from every state at subsequent steps from the initial state. The optimism
relates to underestimating how many steps it takes to use actions to support sets of liter-
als. GraphPlan searches the planning graph once the compressed progression (or planning
graph) achieves the goal literals in a step’s literal list. The search tries to find actions to
support the top level goal literals, then find actions to support those actions preconditions
and so on until reaching the first step. Planners such as CGP [Smith and Weld, 1998] and
SGP [Weld et al., 1998] adapt this idea of compressing the search space with a planning
graph by using multiple planning graphs, one for each possible world in the belief state
space. CGP and SGP search on these planning graphs, similar to GraphPlan, to find con-
formant and contingent plans. The work in this paper seeks to apply the idea of extracting
search heuristics from planning graphs, previously used in state space search [Nguyen et
al., 2002] to belief space search. The basic idea behind using planning graphs for search
heuristics is that we can find the first step of a planning graph where a literal in a state ap-
pears; this step is a lower bound on the number of actions that are needed to achieve a state
with the literal. There are also techniques for estimating the number of actions required to
achieve sets of literals. The planning graphs serve as ways to estimate the reachability of
state literals and discriminate between the “goodness” of different search states. This work
generalizes such literal estimations to belief space search by considering both GraphPlan
and CGP style planning graphs.

This section proceeds by describing four sets of heuristics to estimate belief state dis-
tance NG, SG,MG, and LUG. NG heuristics are techniques existing in the literature that
are not based on planning graphs, SG are techniques based on a single classical planning
graph, MG are techniques based on the multiple planning graphs (similar to those used in
CGP and SGP) and LUG uses a new labelled planning graph that combines the advantages
of SG and MG to reduce the representation size and maintain informedness. Note, we do
not include observations in any of the planning graph structures as SGP would, however

14

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

we do include this feature for future work. The contingent planning formulation directly
uses the planning graph heuristics by ignoring observations, and our results show that this
still gives good performance.

To illustrate the computation of each heuristic, we use an example from BTC called
Courteous BTC (CBTC) where a courteous package dunker has to disarm the bomb and
leave the toilet unclogged. This problem is used because the goal state has two con-
juncts, allowing better illustration of heuristic computation that combines the costs of in-
dividual subgoals. The initial belief state of CBTC in clausal representation is arm ∧
¬clog ∧ (inP1 ∨ inP2) ∧ (¬inP1 ∨ ¬inP2), and the goal is ¬clog ∧ ¬arm. The op-
timal action sequences to reach BSG from BSI are: DunkP1, F lush,DunkP2, F lush,
and DunkP2, F lush,DunkP1, F lush, thus the optimal heuristic estimate for BSG, in
regression, is h∗(BSG) = 4 because in either plan there are four actions.

The heuristics we evaluate for each of the planning graph structures fall into four cat-
egories: max, sum, level, and relaxed plan. These heuristics are well known in classical
planning, but require special considerations in the extension to belief space planning, as
the following sections illustrate. To help the reader, we outline the major characteristics of
these heuristics here. The max and sum heuristics measure the cost of individually achiev-
ing components of a belief state (literals or clauses) and take the max or sum of these costs.
The level heuristic measures the cost of co-achieving all components of a belief state. The
relaxed plan heuristic measures the number of actions used in a relaxed (backtrack-free)
GraphPlan [Blum and Furst, 1995] search to support the belief state.

The heuristics are computed on the three types of planning graph structures (SG, MG,
and LUG) and fall into three classes of distance estimates (Max S-S, Weak BS-BS, and
Strong BS-BS), as shown in Figure 5. When the graph structure changes, the corresponding
heuristics may change the distance measure they are estimating. The rough classes of
distance measures that the heuristics fall into are max state to state distance, weak belief
state to belief state distance, and strong belief state to belief state distance. Most of the
heuristics fall into the max state to state distance class because they are limited by the graph
structure or are maximizations by design. Some heuristics fall into the weak belief state to
belief state distance measure because they do not take a maximum of state to state distances
and do not properly account for all overlap of state to state distances. The strong belief state
to belief state distance measure is found by only two heuristics, those that take into account
multiple possible worlds and their overlapping plans. As our empirical studies will show,
performance is relatively similar for heuristics falling into each of the respective distance
measures with variations attributed to the type of graph used for deriving the heuristics.

As in classical planning, in regression search the heuristic estimates the cost of the
current belief state w.r.t. the initial belief state and in progression search the heuristic
estimates the cost of the goal belief state w.r.t. the current belief state. Thus, in regression

15

BRYCE, KAMBHAMPATI, & SMITH

Max
S-S

Strong
BS-BS

SG

MG

LUG

Max

Sum

Level

RP

Max Sum Level RPURPM

Plan Distance Measure

RP

Level

Sum

Weak
BS-BS

Max

Figure 5: Schematic view of the different heuristics for the various planning graph types
and the distance measures they estimate.

search the planning graph(s) are built (projected) once from the possible worlds of the
initial belief state, but in progression search they need to be built at each search node
(the projected belief state is denoted as BSP). In the following subsections we describe
computing heuristics for regression, but they are generalized for progression by changing
the belief state that the planning graph(s) are projected from and the belief state whose cost
is estimated.

There are a few techniques which we do not describe or evaluate for progression be-
cause of their obvious inefficiencies. Namely, we do not try (i) multiple planning graph
heuristics for progression because the number of planning graphs needed in search is

O(222|L|
) where L is the set of literals (i.e. the belief space is double exponential in the

number of literals, and an exponential number of planning graphs may be needed for each

16

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

belief state), and (ii) mutex computation techniques because they increase the cost of build-
ing planning graphs for every search node.

4.1 Non Planning Graph-based Heuristics (NG)

Breadth First Search The simplest heuristic to search for plans is h0, where the heuristic
value is set to zero.

h0(BSi) = 0 (4)

We mention this heuristic so that we can have a control for evaluating our planners’
baseline performance.

Cardinality The idea behind the cardinality heuristic is to count the number of states that
are represented by a belief state. This can be useful in regression because the more states
in a belief state the better chance that the initial states are in the belief state. In progression
fewer states in a belief state means lower uncertainty, hence a better chance of reaching a
single goal state. We measure a belief state’s cardinality by finding its set of constituents,
ξ̂(BSi) (which approximates ξ(BSi) in regression7), and count them. Formally,

hcard(BSi) =| ξ̂(BSi) | (5)

For instance in CBTC, hcard(BSG) = 1 because ¬arm∧¬clog is the only constituent
of BSG.

To compensate for regression’s partial belief states, we can also measure the number of
complete states consistent with the constituent representation :

hcard′(BSi) =| ξ(BSi) | (6)

In CBTC, hcard′(BSG) = 8 because BSG has eight states consistent with it. Notice,
this may be uninformed for BSG because some of the states in ξ(BSG) are not reachable,
like inP1 ∧ inP2 ∧ ¬clog ∧ ¬arm.

4.2 Single Graph (SG)

The base approach for using planning graphs for belief space planning heuristics is to use a
“classical” planning graph by taking all the literals of the projected belief state and inserting
each literal individually into the initial layer of the planning graph, ignoring interactions

7. In regression search, the belief states are partial, whereas in progression they are complete, so cardinality
varies in its accuracy between these cases.

17

BRYCE, KAMBHAMPATI, & SMITH

¬clog

inP1

¬inP1

inP2

¬inP2

arm

¬arm

clog

¬clog

inP1

¬inP1

inP2

¬inP2

arm

DunkP1

DunkP2

Flush

0 0 0 1

¬arm

clog

¬clog

inP1

¬inP1

inP2

¬inP2

arm

DunkP1

DunkP2

Flush

1 1 2

Figure 6: Single planning graph for CBTC, with literals used for hSGmax(BSG) and
hSGsum(BSG) circled, literals used for hSGlevel(BSG) in boxes, and actions for
hSGRP (BSG) in ovals.

between possible worlds. Graph construction is identical to classical planning graphs (in-
cluding mutex propagation) and stops when all literals in BSG are present in a level of the
graph.

Thus, for CBTC, assuming regression search with BSI as the projected belief state,
the initial level of the planning graph is {arm,¬clog, inP1, inP2,¬inP1,¬inP2}, ignor-
ing the “xor” connective between inP1 and inP2 (Figure 6). Once the planning graph
is computed, the level lev at which a set of literals appears non pair-wise mutex in the
planning graph is later used as the set’s cost. Notice, the combination χ2 is not applicable
because there is only one di−k value estimated by a single planning graph.

Max: (hSGmax) The first belief space planning heuristic to compute on a planning graph,
assuming a clausal representation of belief states, is the max clause achievement cost:

hSGmax(BSi) = max
C∈κ(BSi)

cost(C) (7)

18

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

where the cost of a clause is

cost(C) = min
l∈C

lev(l) (8)

Here we estimate χ1 by finding the cheapest literal as the cost of each clause and taking
the max cost clause. This is an underestimate of the most distant state and falls into the
max state to state distance measure.

For the CBTC problem we need to find the cost of clauses ¬arm and ¬clog, as shown
in Figure 6 by the circled literals, to find hSGmax(BSG). The heuristic value is 1 because the
max cost clause is ¬arm, with cost 1, and ¬clog has cost 0.

Sum: (hSGsum) Another heuristic that can be more aggressive than hSGmax is to sum the costs
of clauses:

hSGsum(BSi) =
∑

C∈κ(BSi)

cost(C) (9)

It sums the costs of the literals of the closest estimated state in the belief state to estimate
χ1. This measures a weak belief state to belief state distance because the sum accounts for
the cost of achieving the clauses of several states independently.

For the CBTC problem we need to find the cost of clauses ¬arm and ¬clog, as shown
in Figure 6 by the circled literals, to find hSGsum(BSG). The heuristic value is 1 because the
cost of ¬arm is 1, and ¬clog is 0.

Level: (hSGlevel) A heuristic that maintains the admissibility of the max heuristic but improves
the lower bound is to find the level of a set of clauses. The level heuristic is computed by
taking the minimum among the Ŝ ∈ ξ̂(BSi), of the first level (lev(Ŝ)) in the planning
graph where literals of Ŝ are present with none of them marked mutex. Formally:

hSGlevel(BSi) = min
Ŝ∈ξ̂(BSi)

lev(Ŝ) (10)

For the CBTC problem we need to find lev(¬arm ∧ ¬clog), as shown in Figure 6
by the literals in squares, to find hSGlevel(BSG). The heuristic value is 2 because ¬arm and
¬clog do not appear together non-mutex until level 2.

Relaxed Plan: (hSGRP) The level heuristic misses the fact that several actions per step may
be needed to support the clauses. To better account for the actual number of actions used,
the relaxed plan is computed. We find the relaxed plan to support the maximum level
constituent Ŝ ∈ ξ̂(BSi) that contributes to the hSGlevel(BSi) and take the number of actions
in the relaxed plan as the heuristic value.

The relaxed plan for a belief state BSi is computed by a backward chaining search
on the planning graph. We start at the constituent Ŝ ∈ ξ̂(BSi), such that lev(Ŝ) = b =

19

BRYCE, KAMBHAMPATI, & SMITH

hSGlevel(BSi). From Ŝ at level b, for each subgoal l ∈ Ŝ, a supporting action is selected
(ignoring mutexes) from the b − 1 action level. We treat persistence of literals and actions
equally in supporting literals by arbitrarily selecting either. Once a supporting set of actions
(stepb−1) is determined, the needed preconditions for the actions in stepb−1 are added to
the list of subgoals to support for level b − 2. Then, we look at level b − 2 for actions.
The algorithm repeats until the initial level is reached. Thus, a relaxed plan RP is the set
{step0, ..., stepi, ..., stepb−1}. Formally, when hlevel(BSi) = b:

hSGRP (BSi) =

b−1∑
i=0

| stepi | (11)

For the CBTC problem we find a relaxed plan, as shown in Figure 6 by the actions
in ovals, where hSGRP (BSG) = 3 because the relaxed plan is {step0 = {F lush}, step1 =

{DunkP1, F lush}}. The step1 contains F lush to support ¬clog and DunkP1 to support
¬arm. Then, in step0 F lush is used to support DunkP1’s precondition ¬clog. We could
have used persistence of literals to get a lower cost relaxed plan, but as stated before, we
arbitrarily select persistence or actions. Notice, the relaxed plan does not use DunkP2

with DunkP1 to support ¬arm.
Despite the relaxed plan’s inherent status as an estimate, ¬arm is not supported com-

pletely because one possible world is not considered. A single, unmodified classical plan-
ning graph cannot capture support from all possible worlds. Another disadvantage of single
planning graph heuristics are that they make it hard to reason about the overlap of indepen-
dent plans from states in the projected belief state.

4.3 Multiple Graphs (MG)

Single graph heuristics are mostly uninformed because the projected belief state often cor-
responds to multiple possible states. The lack of accuracy is because single graphs are not
able to capture propagation of specific possible world support information. Consider, in
CBTC where the projected belief state is BSI , if DunkP1 was the only action we could
say that ¬arm is reachable in level 1, but in fact the cost of ¬arm is infinite (since there is
no DunkP2 to support ¬arm from all possible worlds), and there is no conformant plan.8

To account for lack of support in all possible worlds and sharpen the heuristic estimate,
a set of planning graphs Γ is considered.9 Given the projected belief state BSP , we project a

8. If any of the planning graphs does not “reach” all of the goals, then this is an indication that a conformant
plan does not exist.

9. These multiple graphs are similar to CGP’s graphs, but lack the more general cross-world mutexes. The
mutexes are only computed within each graph, i.e. only same-world mutexes are computed. We also
differ from CGP in that we do not create planning graphs for possible worlds created by non-deterministic
actions. We treat the disjunctions in non-deterministic effects as conjunctions.

20

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

¬clog

inP1

¬inP2

arm

¬arm

clog

¬clog

inP1

¬inP2

arm

DunkP1

DunkP2

Flush

0 0 0 1

¬arm

clog

¬clog

inP1

¬inP2

arm

DunkP1

DunkP2

Flush

1 1 2

¬clog

¬inP1

inP2

arm

¬arm

clog

¬clog

¬inP1

inP2

arm

DunkP1

DunkP2

Flush

¬arm

clog

¬clog

¬inP1

inP2

arm

DunkP1

DunkP2

Flush

γ1

γ2

Figure 7: Multiple planning graphs for CBTC, with literals used for hMG
max(BSi) and

hMG
sum(BSi) circled, literals used for hMG

level(BSi) in boxes, and actions for
hMG
RP (BSi) and hMG

RPU (BSi) in ovals.

planning graph γk ∈ Γ for each constituent of ξ̂(BSP). With multiple graphs, the heuristic
value of a belief state is computed in terms of all the graphs. We now can estimate many
di−k measures and need to define χ2 methods to combine them.

For example, consider regression search in CBTC; there would be two graphs built
(Figure 7) for the projected BSI . They would have the respective initial levels:

Ŝ1 = {arm,¬clog, inP1,¬inP2}
Ŝ2 = {arm,¬clog,¬inP2, inP2}
In the graph for the first possible world, Ŝ1, ¬arm comes in only through DunkP1 at

level 1. In the graph for the second world, Ŝ2, ¬arm comes in only through DunkP2 at
level 1. Thus, the multiple graphs show which actions in the different worlds contribute to
the same fact’s support.

21

BRYCE, KAMBHAMPATI, & SMITH

There are several ways to compute the achievability cost of a belief state with multiple
graphs, as follows:

Max:(hMG
max) The first heuristic to compute with multiple planning graphs is hMG

max. The
hMG
max(BSi) computes the max cost clause in κ(BSi) for each graph γk ∈ Γ, similar to how

hSGmax(BSi) is computed, and takes the maximum. Formally:

hMG
max(BSi) = max

γk∈Γ
(hγk
max(BSi)) (12)

In this heuristic we estimate χ1, and χ2 is a maximum. hMG
max considers the minimum

cost, relevant literals of a belief state (those that are reachable given a possible world for
each graph γk) to get di−k measures. The max is taken because the estimate accounts for
the worst (i.e., the plan needed in the most difficult world to achieve the subgoals). This
max nullifies the chance of getting any overlap information between the possible worlds.
However, using a sum may give a weak estimate of overlap.

For CBTC, the goal is BSG = ¬clog ∧ ¬arm. Computing the hMG
max(BSG) for re-

gression (Figure 7) finds hγ1max = 1 (denoted by circled facts in the top graph), hγ2max = 1

(denoted by the circled facts in the bottom graph), and the max, hMG
max(BSG) = 1.

Sum: (hMG
sum) The next heuristic with multiple planning graphs is hMG

sum. hMG
sum(BSi) com-

putes the sum of the cost of the clauses in κ(BSi) for each graph γk ∈ Γ and takes the
maximum. Formally:

hMG
sum(BSi) = max

γk∈Γ
(hγk
sum(BSi)) (13)

In this heuristic we estimate χ1, and χ2 is a maximum. hMG
sum considers the minimum

cost, relevant literals of a belief state (those that are reachable given the possible worlds
represented for each graph γk) to get di−k measures. As with hMG

max, the max is taken
because the estimate accounts for the worst. Again, taking a max nullifies the chance of
getting any overlap information between the worlds.

From the CBTC, the goal is BSG = ¬clog ∧ ¬arm. Computing hMG
sum(BSG) for

regression (Figure 7) finds hγ1sum = 1 (denoted by circled facts in the top graph), hγ2sum = 1

(denoted by the circled facts in the bottom graph), and the max, hMG
sum(BSG) = 1.

Level: (hMG
level) Similar to hMG

max and hMG
sum, hMG

level is found by first finding hγk

level to get di−k
for each graph γk ∈ Γ, and then taking the max of this value across the graphs. hγk

level(BSi)

is computed by taking the minimum among the Ŝ ∈ ξ̂(BSi), of the first level levγk(Ŝ) in
the planning graph γk where literals of Ŝ are present with none of them marked mutex.
Formally:

hγk

level(BSi) = min
Ŝ∈ξ̂(BSi)

levγk(Ŝ) (14)

22

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

and
hMG
level(BSi) = max

γk∈Γ
(hγk

level(BSi)) (15)

Here we use χ1 as a minimum to get hγk

level, then χ2 as a maximum for hMG
level. Note that

this heuristic is admissible. By the same reasoning as in classical planning, the first level
where all the subgoals are present and non-mutex is an underestimate of the true cost of
a state. This holds for each of the graphs. Taking the max accounts for the most difficult
world in which to achieve a constituent of BSi and is thus a provable underestimate of h∗.
GPT’s max heuristic [Bonet and Geffner, 2000] is similar to hMG

level, but is computed with
dynamic programming rather than planning graphs.

For the CBTC goal BSG = ¬clog∧¬arm, computing the hMG
level(BSG) (Figure 7) finds

hγ1level = 2 (denoted by the level containing facts inside boxes for the top graph), hγ2level = 2

(denoted by the level containing facts inside boxes for the bottom graph), and the max,
hMG
level(BSG) = 2.

Relaxed Plan: (hMG
RP) Following the same maximization logic as the other MG heuristics

for χ2, but to account for the actual number of actions used, hMG
RP is computed by finding

the relaxed plan from the constituent Ŝ ∈ ξ̂(BSi) that contributes to the hγk

level(BSi) for
each γk ∈ Γ and taking the max of the number of actions across the relaxed plans.

The relaxed plan for a belief state BSi is computed by a backward chaining search on
the planning graph. We start at the constituent Ŝ ∈ ξ̂(BSi), such that levγk(Ŝ) = b =

hγk

level(BSi). From Ŝ at level b, for each subgoal l ∈ Ŝ, a supporting action is selected (ig-
noring mutexes) from the b− 1 action level. Again, as with the single graph, we arbitrarily
select between persistence of literals and actions for supporting literals. Once, a supporting
set of actions (stepb−1) is determined, the needed preconditions for the actions in stepb−1

are added to the list of subgoals to support for level b − 1. Then, we support literals at
level b − 1 with actions at b − 2. The algorithm repeats until the initial level is reached.
Thus, a relaxed plan RPγk

is the set {step0,γk
, ..., stepi,γk

, ..., stepb−1,γk
}. Formally, when

hγk

level(BSi) = b:

hMG
RP (BSi) = max

γk∈Γ

(
b−1∑
i=0

| stepi,γk
|
)

(16)

In this heuristic χ1 is a minimum to get the cheapest estimated relaxed plan for each
projected state, then χ2 is a maximum to get di. This gives an inadmissible heuristic for the
number of actions to reach the easiest constituent state from the most difficult world.

For CBTC, the goal is BSG = ¬clog ∧ ¬arm. Computing the hMG
RP (BSG) (Figure 7)

finds hγ1RP = 3 (step0,γ1 = {F lush}, step1,γ1 = {DunkP1, F lush}; actions in ovals for
the top graph), hγ2RP = 3 (step0,γ2 = {F lush}, step1,γ2 = {DunkP2, F lush}; actions in
ovals for the bottom graph), and the max, hMG

RP (BSG) = 3. Notice that this is the closest

23

BRYCE, KAMBHAMPATI, & SMITH

multiple graph estimate, so far, for h∗(BSG), but it can be improved by accounting for
overlap.

RP-union (hMG
RPU): Observing the relaxed plans computed by hMG

RP in the CBTC example,
we see that the relaxed plans extracted from each graph are different. This information can
be leveraged to account for the interaction or overlap of the two possible worlds. Notice,
that step1,γ1 and step1,γ2 contain a F lush action irrespective of which package the bomb
is in. Also, step1,γ1 contains DunkP1, and step1,γ2 contains DunkP2. Now, taking the
union of the two relaxed plans, would give step1,union = {DunkP1, DunkP2, F lush},
accounting for the actions that are the same between possible worlds and the actions that
differ.

In order to get the union relaxed plan, first a relaxed plan is computed for each graph
γk ∈ Γ, as in hMG

RP . Then, starting from the last step and repeating for each step, we union
the sets of actions for each relaxed plan at each level into another relaxed plan. The relaxed
plans are right-aligned, hence the unioning of steps proceeds from the last step of each
relaxed plan to create the last step (stepb−1,union) of the RPunion relaxed plan, then the
second to last step for each relaxed plan is unioned for stepb−2,union and so on. Then the
sum of the numbers of actions of each step in the union relaxed plan (RPunion) is used as
the heuristic value. Formally, when hMG

level(BSi) = b:

hMG
RPU(BSi) =

b−1∑
i=0

| stepi,union | (17)

Here χ1 is a minimum, and χ2 is a union.
hMG
RPU doesn’t follow the same form as the rest of the techniques, rather it estimates di

by finding the relaxed plans corresponding to min
j

di−j for each graph γk, then unions the

relaxed plans to get the overlap of plans for relevant states.
The insight of this heuristic is that taking the union of steps of relaxed plans between

graphs will account for the same action being used at the same level in multiple worlds.
Thus the unioned relaxed plan contains a representative set of overlapping actions for
achieving the relevant states for all source states in the projected belief state.

For the CBTC goal BSG = ¬clog ∧ ¬arm, computing the hMG
RPU(BSG) in regression

(Figure 7) finds RPγ1 = {step0,γ1 = {F lush}, step1,γ1 = {DunkP1, F lush}}, RPγ2 =

{step0,γ2 = {F lush},step1,γ2 = {DunkP2, F lush}}, and RPunion = {step0,union =

{F lush}, step1,union = {DunkP1, DunkP2, F lush}}. Thus, hMG
RPU(BSG) = 4, which is

equal to the optimum estimate h∗(BSG).

24

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

4.4 Labelled Uncertainty Graph (LUG)

The multiple graph technique has the advantage of informative heuristics, but the disadvan-
tages of computing redundant support information in different graphs and looking at every
graph to compute heuristics. Our next approach condenses the multiple planning graphs to
a single planning graph, called a labelled uncertainty graph (LUG), that retains the multiple
possible world causal structure. Loosely speaking, this single graph unions the causal sup-
port information present in the multiple graphs and pushes the disjunction, describing sets
of possible worlds, into “labels” (.). The union of support information is efficiently found
by projecting all possible worlds at once, rather than one-by-one. The graph elements are
the same as those present in multiple graphs, but represented only once. For instance an
action that was present in all of the multiple planning graphs would be present only once
in the LUG and labelled to indicate that it is applicable in a projection from each possible
world of BSP .

The worst-case complexity of the LUG is equivalent to the MG representation. The
LUG’s complexity savings is not realized when the projected possible worlds and the rele-
vant actions for each are completely disjoint; however, this does not often appear in practice
– in such cases no conformant plans would exist. The space savings comes in through two
aspects: (1) redundant representation of actions and literals is avoided, and (2) labels that
facilitate non-redundant representation are stored as BDDs. In practice, the LUG contains
the same information as MG with much lower construction and usage costs.

The LUG adds labels to graph elements to symbolically represent which projections
through the graph relate to which constituents of BSP . The labelled elements are each
action a, each conditional and unconditional effect relation ϕ of an action, each literal
l, and each mutex relation of the graph. In general, a label is an arbitrary propositional
formula describing a set of possible worlds for which a graph element is reachable. The
way the LUG is constructed is to label the set of literals in the projected belief state with
the possible worlds where they hold and propagate these labels through actions as the graph
is built. Construction ends when the goal belief state can be satisfied by literals present in
a graph level and the literals are labelled to indicate that the goal belief state is supported
by all possible worlds, i.e. the goal is fully-supported. Note, we are constructing the LUG

in terms of literals, whereas the search is in terms of formulas. By using literals rather
than formulas in the graph layers, we need labels to preserve the disjunction. Later, we
describe how to determine if formulas are possibly supported by examining the labels of
the formula’s literals at levels in the LUG.

The LUG is based on IPP ’s [Koehler, 1999] planning graph, where there are three
layers in a planning graph level: the action layer, effect layer, and literal layer. The exten-
sions are to (i) keep sets of labelled action A, effect relation E , and literal L layers, and
(ii) keep sets of labelled binary mutexes for actions Â, effect relations Ê , and literals L̂. In

25

BRYCE, KAMBHAMPATI, & SMITH

¬clogT

inP1inP1 ∧ ¬inP2

¬inP1¬inP1 ∧ inP2

inP2¬inP1 ∧ inP2

¬inP2inP1 ∧ ¬inP2

armT

¬arm

clogT

¬clogT

inP1inP1 ∧ ¬inP2

¬inP1¬inP1 ∧ inP2

inP2¬inP1 ∧ inP2

¬inP2inP1 ∧ ¬inP2

armT

DunkP1T

DunkP2T

FlushT

inP1 ∧ ¬inP2

¬inP1 ∧ inP2

L0

(¬inP1 ∧ inP2) ∨
(inP1 ∧ ¬inP2)

T
T

T

A0 E0 L1

Figure 8: LUG for CBTC, with no mutexes. The labels are the superscripts. Literals used
for hLUGmax (BSG) and hLUGsum (BSG) circled, literals used for hLUGlevel (BSG) in boxes,
and actions for hLUGRP (BSG) in ovals.

the following subsections, we define the terms fully-supported and supported to aid in the
discussion of the label propagation. Then, we describe how to compute mutex relations.
Many of the previously mentioned heuristics generalize fairly easily to the LUG, and we
end the section by showing how to compute them.

4.4.1 LABEL PROPAGATION

Recall that a label is a formula describing a set of possible worlds from which a graph
element is reachable. Labels (.) are represented as arbitrary propositional formulas and
efficient propagation of labels is handled using BDDs. The propagation of labels is based
on the intuition that (i) actions and effects are applicable in the possible worlds specified by

26

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

the conjunction of the precondition literals’ labels10 and (ii) a literal is supported in possible
worlds specified by the disjunction of labels of effect relations that support the literal.

We do not propagate labels to account for the non-deterministic outcomes of actions
because there is no guarantee that the non-deterministic actions will be used to reach the
goals, but it is a requirement that each possible world needs to reach the goals. All effects,
including non-deterministic effects, get labels to signify the possible worlds where they are
supported, but possible worlds created by non-deterministic effects are not given labels.

During the LUG construction, a common operation is to determine if a formula is
fully-supported (i.e. all possible world projections can reach a belief state that entails the
formula), or supported (i.e. there exists a possible world whose projection can reach a be-
lief state that entails the formula). We introduce three notations for support to differentiate
how they incorporate mutexes, namely NX for no mutexes, SX for same-world mutexes,
and CX for cross-world mutexes. We start with NX to ease the description of label prop-
agation, but describe SX later in this section (and CX in Appendix B). When any of the
three support types is applicable, we indicate so with the * symbol.

A formula f is fully-supported (FSpNX(f, k)) at level k when for all possible worlds
S of BSP , f is supported by S.11

A formula f is supported (SpNX(f, S, k)) at level k by a possible world S of BSP
when the labels of the literals in f indicate support by S. The labels of literals indicate
support by S when the formulas’ literals are substituted by their labels at k and S entails
the substituted formula. To ease the definition, we consider a canonical form for f , namely
a CNF, C, that is supported when:

S |=
(∧
C∈C

∨
l∈C

.k(l)

)
(18)

Here .k(l) is the label of the literal l at level k . Note that full-support is checked for all
possible worlds at once by replacing S with BSP . Note that the LUG is an approximation
to the belief space projection from the belief state BSP , so when we refer to something as
supported we mean possibly supported.

In Figure 8, ¬arm is not fully-supported at level zero because it is not present (i.e.
its label is ⊥). At level one ¬arm is fully-supported because its label (inP1 ∨ inP2) ∧
(¬inP1 ∨ ¬inP2) is entailed by BSI .

We now describe label propagation, first by showing how to construct the initial literal
layer L0 of the graph, and then showing how a graph level {Lk,Ak, Ek} is built.

10. Here we are assuming conjunctive preconditions, but in our formulation we will consider preconditions
as general formulas.

11. The notion of fully-supported is a generalization of the level heuristic for classical planning [Nguyen et
al., 2002]. It is also similar to the max heuristic used in GPT [Bonet and Geffner, 2000].

27

BRYCE, KAMBHAMPATI, & SMITH

L0 ← insertInitialLiterals(BSP):
The initial literal layer L0 contains all literals l in the problem. The literals not present

in BSP are labelled ⊥. Each literal l is labelled .0(l) to indicate the set of possible worlds
where it holds. The label of literal l is found by the conjunction of l with the formula for
the projected belief state BSP , formally:

.0(l) = l ∧BSP (19)

Assume we are building the LUG once for regression for the remainder of this section.
CBTC has the initial layer shown in Figure 8. The known literals (arm and ¬clog) are
labelled �, and the unknown literals (inP1 and inP2) are labelled to indicate the possible
worlds that contain them.12 The labels in Figure 8 are the most general formulas to express
the possible worlds (to conserve space), but in practice the labels involve all literals deemed
necessary by the BDD package. For instance, the label for inP1 is denoted in Figure 8 as
inP1∧¬inP2, but represents the possible world inP1∧¬inP2∧arm∧¬clog. The label
for inP1 is found by taking the conjunction of inP1 with BSI , which is inP1 ∧ arm ∧
¬clog ∧ (inP1∨ inP2)∧ (¬inP1∨ ¬inP2), reducing to inP1∧ ¬inP2 ∧ arm∧¬clog.
The label for arm is found similarly by taking its conjunction with BSI , which reduces
to BSI . The reason arm is given the label �, as are all initial level literals that belong to
all possible worlds, is due to implementation efficiency and no generality is lost. The fact
that � is entailed by possible worlds that are not part of the projected belief state is not
problematic because it suits our purposes that all possible worlds in the projected belief
state entail �.

Ak ← insertActions(Lk):
Once the previous literal layer Lk is computed, we compute the labelled action layer

Ak. Ak is defined as all applicable actions from the action set A, plus all literal persistence
♦l.13 An action’s executability precondition must be supported for some possible world at
level k for the action to be applicable. If applicable, the action’s label at level k, using a
CNF for the formula of ρe, is:

.k(a) =
∧
C∈ρe

∨
l∈C

.k(l) (20)

The labels of all the actions in CBTC, Figure 8, are� since the enabling preconditions
for all actions are either empty or labelled �.

Ek ← insertEffects(Lk,Ak) :

12. As an efficiency measure without loss of generality, we replace the label of every element x with � if
BSP |= �(x).

13. Persistence for a literal l, denoted by ♦l, is represented as an action where ρ e = ε0 = l.

28

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

The labelled effect relations Ek depend both on the literal layer Lk and action layer Ak.
Ek is the set of applicable labelled effect relations at level k. An effect relation is applicable
when the associated action is applicable and the antecedent of the effect is supported. The
label is the conjunction of the label of the associated action with the label of the formula of
the effect’s antecedent. The label of an effect i at level k, using a CNF for the formula of
ρi, is:

.k(ϕi) = .k(a) ∧
(∧
C∈ρi

∨
l∈C

.k(l)

)
(21)

The conditional effects of the Dunk actions in CBTC, Figure 8, have labels to indicate
the possible worlds for which they will give ¬arm because their antecedents do not hold in
all possible worlds. For example, the conditional effect of DunkP1 has the label found by
taking the conjunction of the action’s label � with the antecedent’s label inP1 ∧ ¬inP2,
which is inP1 ∧ ¬inP2. The other effects have labels � because they are unconditional
and the associated action has label �.

Lk ← insertLiterals(Ek−1), k > 0:
The literal layer at k is the set of labelled literals that are added by consequents of

effects in Ek−1.
A literal is added to the literal layer if it is present in the formula of a consequent of an

effect in the previous layer. The label of a literal, .k(l), is the disjunction of the labels of
each effect that has the literal in its consequent’s formula, using a CNF for the formula of
εi, it is:

.k(l) =
∨
l∈C,
C∈εi,
ϕi∈Ek−1

.k−1(ϕi) (22)

The labels of the literals for level 1 of CBTC, Figure 8, indicate that ¬arm is fully-
supported because its label is entailed by BSI . The label of ¬arm is found by taking the
disjunction of the labels of effects that give it, namely, inP1∧¬inP2 from the conditional
effect of DunkP1 and ¬inP1 ∧ inP2 from the conditional effect of DunkP2, to get
(inP1 ∧ ¬inP2) ∨ (¬inP1 ∧ inP2). Construction can stop here because BSI entails the
label of the goal ¬arm. Equivalently, LUG construction stops when the formula for the
goal belief state BSG is fully-supported.

Same-World Labelled Mutexes There are several types of mutexes that can be found
within the LUG. To start with, we only concentrate on those that can evolve from the
same possible world because same-world mutexes are more effective as well as easier to

29

BRYCE, KAMBHAMPATI, & SMITH

understand. In Appendix B we describe how to handle cross-world mutexes, despite their
lack of effectiveness in the experiments we conducted.

Same-world mutexes can be represented with a single label, .̂k(x1, x2), between two
elements (actions, effect relations, or literals). The mutex holds between elements x1 and x2

in all worlds S where S |= .̂k(x1, x2). We discuss how the labelled mutexes are discovered
and propagated for actions, effect relations, and literals.

The use of mutexes requires an extension of the definitions for “supported” and “fully-
supported”. It is not enough that the labels of literals indicate the appropriate possible
worlds support the literals, but also there are no mutexes in each of those possible worlds.

A formula f is fully-mutex-supported (FSpSX(f, k)) at level k, if it is supported for
all possible worlds S.

A formula f is mutex-supported (SpSX(f, S, k)) at level k for a possible world S that
entails BSP when (i) the labels of the literals in f indicate f is supported from the possible
world S, and (ii) there is no mutex that invalidates f ’s support. To ease the definition, we
consider a canonical form for f , namely a CNF, C. A formula f is inconsistent in a possible
world S when there are two clauses where all literals are mutex for S. The formula C is
mutex-supported SpSX(f, S, k) when:

SpNX(C, S, k)

and
¬∃ C∈C

C′∈C
C �=C′

∀ l∈C
l′∈C′
∃%̂k(l,l′)∈L̂k

S |= .̂k(l, l
′) (23)

The second part of Formula 23 states that there does not exist two different clauses
of C for which all pairs of literals from the clauses are mutex in world S. This assertion
means that fully-mutex-supported, unlike fully-supported, cannot be found for all possible
worlds by replacing S by BSP in the above formulas, rather because of mutexes it needs
be checked for all S that entail BSP .

Action Mutexes Âk: The action mutexes are a set of labelled pairs of actions. Each pair
is labelled with a formula that indicates the set of possible worlds where the actions are
mutex. The possible reasons for mutex actions are interference and competing needs.

• Interference is a set of labelled mutexes for all pairs of actions interfering because
(1) the formula of the unconditional effect consequent of one when taken in con-
junction with the formula of either the (a) enabling precondition or (b) unconditional
effect consequent of the other is inconsistent, or (2) the conjunction of the formulas
from both actions’ enabling preconditions is inconsistent. The mutex will exist in
all possible world projections, so the label of the mutex is �. Formally, a and a ′

30

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

a

a’

p

q

¬q

r

l

1a

l’

l l

l’ l’

a

a’

p

r

¬q

q

l

1b

l’

l l

l’ l’

a

a’

¬q

q

p

r

l

2

l’

l l

l’ l’
> > >

Figure 9: Example of a same-world action interference mutex.

interfere if:

(1a)
ε0 ∧ ρ′e |=⊥ or

(1b)
ε0 ∧ ε′0 |=⊥ or

(2)
ρe ∧ ρ′e |=⊥ (24)

Should a and a′ interfere, the label of the mutex is:

.̂k(a, a
′) := � (25)

Examples of same-world action interference mutexes are shown in Figure 9. For sce-
nario 1a, actions a and a′ are mutex with label � because a has the unconditional
effect ¬q and a′ has the enabling precondition q. For scenario 1b, action a is mutex
with a′ with label � because a has the unconditional effect ¬q and a′ has the un-
conditional effect q. For scenario 2, a and a′ are mutex with label � because a has
enabling precondition ¬q and a′ has enabling precondition q.

• Competing Needs is a set of labelled mutexes for all actions that have competing
needs at level k. This means that there exists a possible world where the conjunc-
tion of enabling preconditions is not supported because of a same-world literal mutex
(¬SpSX). The label of the action mutex is the disjunction of all possible world for-
mulas where the conjunction of the pair of actions’ enabling precondition formulas
are supported, but mutex. The possibly empty label of a mutex between a and a ′ is:

31

BRYCE, KAMBHAMPATI, & SMITH

a

a’

p

q

S1, S2, S4 ² l

l

l’

S1, S3, S4 ² l’

l

l’

S1, S4 S1

r

S4 ² l’’

l’’

Figure 10: Example of a same-world action competing needs mutex.

.̂k(a, a
′) :=

∨
S:¬SpSX(ρe∧ρ′e,S,k)

S (26)

An example of a same-world action competing needs mutex is illustrated in Figure
10. Literal p holds in possible worlds S1, S2, and S4 (denoted by label .), q holds in
possible worlds S1, S3 and S4 (denoted by label .′), and r holds in world S4 (denoted
by .′′), but p and q cannot hold together in possible worlds S1 and S4 because they
are mutex in those possible worlds. The action a′ has the enabling precondition q∨r.
When checking for a competing needs mutex between a and a′, we see that the only
possible world S where ¬SpSX(p∧ (q ∨ r), S, k) holds is S1 because even though q

and p are mutex in world S4, r can support the enabling precondition of a′ in S4 and
is not mutex with p.

Effect Mutexes Êk: The effect mutexes are a set of labelled pairs of effects. Each pair is
labelled with a formula that indicates the set of possible worlds where the effects are mu-
tex. The possible reasons for mutex effects are interference, competing needs, or induced
effects. The unconditional effect of an action will become mutex with all unconditional
effects of actions where the actions were mutex; futher, these mutexes will be propagated
to the conditional effects via the induced mutex rule.

• Interference is a set of labelled mutexes for all effects interfering because (1) the
formula of the antecedent of one effect when conjoined with the formula of either the
(a) antecedent or (b) consequent of the other is inconsistent, or (2) the conjunction of
the formulas from both effects’ antecedents is inconsistent. The mutex will exist in
all possible world projections, so the label of the mutex is �. Formally, ϕ i of a and
ϕ′
j of a′ interfere if:

32

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

a

a’

p

q

¬q

r

l

1a

l’

l l

l’ l’

a

a’

p

r

¬q

q

l

1b

l’

l l

l’ l’

a

a’

¬q

q

p

r

l

2

l’

l l

l’ l’>>>

Figure 11: Example of a same-world effect interference mutex.

(1a)
εi ∧ ρ′j |=⊥ or

(1b)
εi ∧ ε′j |=⊥ or

(2)
ρi ∧ ρ′j |=⊥ (27)

Should ϕi of a and ϕ′
j of a′ interfere, the label of the mutex is:

.̂k(ϕi, ϕ
′
j) := � (28)

An example of a same-world effect interference mutex is shown in Figure 11. For
scenario 1a, the conditional effects of actions a and a′ are mutex with label� because
the conditional effect of a has the consequent ¬q and the conditional effect of a′ has
the antecedent q. For scenario 1b, the conditional effect of action a is mutex with
the conditional effect of a′ with label � because the conditional effect of a has the
consequent ¬q and the conditional effect of a′ has the consequent q. For scenario
2, the conditional effects of a and a′ are mutex with label � because a’s conditional
effect has the antecedent ¬q and the conditional effect of a′ has the antecedent q.

• Competing Needs is a set of labelled mutexes for all pairs of effect relations having
competing needs at level k because the conjunction of their antecedent formulas are
not fully-supported at level k. This means that there exists a possible world where
the conjunction of effect antecedents is not supported because of a literal mutex. The

33

BRYCE, KAMBHAMPATI, & SMITH

a

a’

p

q

l

l’

l

l’
S1, S4 S1

r

l’’

S1, S2, S4 ² l

S1, S3, S4 ² l’

S4 ² l’’

Figure 12: Example of a same-world effect competing needs mutex.

label of the effect mutex is the disjunction of all possible world formulas where the
conjunction of the pair of actions’ enabling precondition formulas are mutex. The ϕi
of action a and effect ϕ′

j of action a′ have the possibly empty label:

.̂k(a, a
′) :=

∨
S:¬SpSX(ρi∧ρ′j ,S,k)

S (29)

An example of a same-world effect competing needs mutex is illustrated in Figure
12. Literal p holds in possible worlds S1, S2, and S4 (denoted by label .), q holds in
possible worlds S1, S3 and S4 (denoted by label .′), and r holds in world S4 (denoted
by .′′), but p and q cannot hold together in possible worlds S1 and S4 because they
are mutex in those possible worlds. The conditional effect of a′ has the antecedent
q ∨ r. When checking for a competing needs mutex between a and a′, we see that
the only possible world S where ¬SpSX(p ∧ (q ∨ r), S, k) holds is S1 because even
though q and p are mutex in world S4, r can support the antecedent of the conditional
effect of a′ in S4 because it is not mutex with p in S4.

• Induced is a set of labelled mutexes that result for effects of each action from having
another effect of the same action (i) mutex with effects of other actions, and (ii) the
effects of the same action that can be executed together (i.e. induce each other).
The simplest example of one effect inducing another is a conditional effect and an
unconditional effect inducing each other because any scenario where a conditional
effect executes, the unconditional effect must also execute. An effect is induced by
another in the possible worlds where they are both supported, or more generally, the
effects induce each other in all possible worlds entailed by the conjunction of their
labels. Formally, an action a has an effect ϕi that induces effect ϕj, at level k, in the
possible worlds described by :

34

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

a

a’

ϕi

ϕj

ϕh’

induces, S1

mutex, S1
induced
mutex, S1

p

q

S1, S2 ² l

S1, S3 ² l’

l

l’

S1

r

S1, S4 ² l’’

l’’

Figure 13: Effect ϕi induces effect ϕj . ϕi is mutex with ϕ′
h, so ϕj is induced mutex with

ϕ′
h.

.k(ϕi) ∧ .k(ϕj) (30)

The mutex is between (a) the effect mutex with the inducing effect and (b) the in-
duced effect. The label of the mutex is the conjunction of the label of the effect that
is mutex with the inducing effect, the label of the inducing effect and the label of the
induced effect. If ϕi of action a is mutex with ϕ′

h of action a′ in the possible worlds
described by .̂k(ϕi, ϕ

′
h), and ϕi induces effect ϕj of action a, at level k, in the pos-

sible worlds described by .k(ϕi) ∧ .k(ϕj), then there is an induced mutex between
ϕj and ϕ′

h for all possible worlds specified by the conjunction of .k(ϕi)∧ .k(ϕj) and
.̂k(ϕi, ϕ

′
h) (see Figure 13). The label of the induced mutex between ϕj and ϕ′

h, at
level k, is:

.̂k(ϕj, ϕ
′
h) := .k(ϕi) ∧ .k(ϕj) ∧ .̂k(ϕi, ϕ

′
h) (31)

For a more thorough discussion of the methodology behind induced mutexes see
[Smith and Weld, 1998].

An example of a same-world induced effect mutex is shown in Figure 13. Literal p
holds in possible worlds S1 and S2 (denoted by label .), q holds in possible worlds

35

BRYCE, KAMBHAMPATI, & SMITH

S1 and S3 (denoted by label .′), and r holds in worlds S1 and S4 (denoted by .′′).
Literals p and q are mutex in possible world S1. The effect ϕi of a induces ϕj
in possible world S1, ϕi is mutex with effect ϕ′

h of action a′ in possible world S1

because of the mutex between p and q, and ϕj becomes induced mutex with ϕ′
h in

possible world S1.

Literal Mutexes L̂k: The literal mutexes are a set of labelled pairs of literals. Each pair
is labelled with a formula that indicates the set of possible worlds where the literals are
mutex. The reason for mutex literals is inconsistent support.

• Inconsistent Support is a set of labelled mutexes for all pairs of literals having
inconsistent support in a possible world at level k because each literal is supported,
but the conjunction of the literals is not supported in that world at level k because
of an effect mutex. The label of the literal mutex at level k is a disjunction of all
worlds where the literals are not supported together. The label for a possibly empty
inconsistent support mutex between l and l ′ is:

.̂k(l, l
′) :=

∨
S:¬SpSX(l∧l′,S,k)

S (32)

An example of a same-world inconsistent literal mutex is shown in Figure 14. Action
a has an effect that is supported in worlds S1 and S2 (denoted by .) and gives p, action
a′ has an effect that is supported in worlds S1 and S3 (denoted by .′) and gives q, and
action a′′ has an effect supported in world S4 (denoted by .′′) and gives p∧q. There is
an same-world effect mutex between the effects of a and a′ in worlds S1 and S4. The
only possible world S where literals p and q are ¬SpSX(p∧ q, S, k) is S1 because a′′

can give support to p ∧ q in S4.

4.4.2 LUG HEURISTICS

The heuristics computed on the LUG capture measures similar to the equivalent heuristics
for MG. All of the LUG heuristics estimate di directly, thus their combinations χ1 and χ2

are also estimates.

Max: (hLUGmax) The max heuristic for the LUG finds the maximum across clauses of the
literal level Lk where a clause in κ(BSi) first becomes fully-supported. Formally:

hLUGmax (BSi) = max
C∈κ(BSi)

(
min

i:FSp∗(C,i)
i

)
(33)

For the CBTC problem we need to get the cost of clauses ¬arm and ¬clog, as shown
in Figure 8 by the circled literals, for hLUGmax (BSG). The heuristic value is 1 because the max
level where a clause is fully-supported is 1 for ¬arm and ¬clog is fully-supported at 0.

36

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

a

a’

p

q

S1, S2 ² l

l

l ’

S1, S3 ² l ’

l ∨ l ’’

l ’ ∨ l ’’
S1S1, S4

S4 ² l ’’

a’’
l ’’

Figure 14: Example of a same-world inconsistent support mutex.

Sum: (hLUGsum) The sum heuristic for the LUG sums the individual levels where each clause
in κ(BSi) is fully-supported. Formally:

hLUGsum (BSi) =
∑

C∈κ(BSi)

(
min

i:FSp∗(C,i)
i

)
(34)

For the CBTC problem we need to get the cost of clauses ¬arm and ¬clog, as shown
in Figure 8 by the circled literals, for hLUGsum (BSG). The heuristic value is 1 because the
level where ¬arm is fully-supported is 1 and for ¬clog is 0.

Level: (hLUGlevel) The level heuristic is the index of the first level where all the clauses of
κ(BSi) are fully-supported. Formally:

hLUGlevel (BSi) = min
i:FSp∗(κ(BSi),i)

i (35)

For the CBTC problem we need to find the level of full support for ¬arm and ¬clog,
as shown in Figure 8 by the literals in squares, for hLUGlevel (BSG). The heuristic value is 1
because the level where ¬arm and ¬clog are fully-supported is 1.

Relaxed Plan: (hLUGRP) The relaxed plan heuristic we extract from the LUG is similar to
the hMG

RPU heuristic. Recall that the hMG
RPU heuristic extracts a relaxed plan from each of the

multiple planning graphs (one for each possible world) and unions the set of actions chosen
at each step in each of the relaxed plans. The LUG relaxed plan heuristic is similar in that
it counts actions that are applicable in multiple worlds only once and accounts for actions
that are used in subsets of the possible worlds. The advantage is that we find these actions
by looking at only one planning graph.

This relaxed plan is representative of a belief space plan because at each level of the
graph we ensure that the chosen actions will support the subgoals from all possible worlds.

37

BRYCE, KAMBHAMPATI, & SMITH

In many cases the relaxed plan can use one action to supporting subgoals from several pos-
sible worlds. This is useful in guiding the search towards plans with lower overall plan
length and higher world overlap in achieving the goal from all possible worlds. The re-
laxed plans extracted from the LUG assume independence between actions because mutex
relations are ignored. This property is not as harmful in the contingent planning scenario
because action interference can be ignored when actions can be placed in separate branches.

We extract the relaxed plan for a belief state BSi by starting at level b, where FSp∗(BSi, b)

first holds, by supporting the formula for BSi with sets of actions at b−1 (forming stepb−1),
then support the conjunction of those actions’ preconditions at the next lower level of the
LUG, and so on. When supporting a formula, it is treated as a CNF. This means that for
each clause we find a set of effect relations where (i) each effect gives at least one of the
literals in the clause and (ii) the disjunction of labels of literals at b in the clause entails
the disjunction of chosen effect relation labels at level b − 1. The actions in a stepi are
determined by the set of effects chosen. This means the possible worlds that can reach the
clause are covered by the set of chosen actions. For example, {ϕ1, ..., ϕi, ...} at level b− 1

support a clause with literals {l1, ..., lj, ...} at level b if:(∨
j

.b(lj)

)
|=
(∨

i

.b−1(ϕi)

)
(36)

This is similar to how we find relaxed plans on normal planning graphs, but the differ-
ences are in how we determine that a formula is supported by a set of actions and that we
prefer supporting with literal persistence before actions. Formally, the value of the relaxed
plan heuristic for the LUG is:

hLUGRP (BSi) =
b−1∑
i=0

| stepi | (37)

A relaxed plan to support BSG is DunkP1, DunkP2, F lush. The first clause, ¬arm,
is fully-supported through DunkP1 and DunkP2 because the disjunction of the labels of
their conditional effects at level 0 entails the label of ¬arm at level 1. Similarly, ¬clog
is fully-supported through F lush because the label of F lush’s effect at level 0 entails the
label of ¬clog at level 1. Thus hLUGRP (BSG) = 3.

5. Empirical Evaluation

This section presents our implementation of the CAltAlt and POND planners and the
results of our experimentation with the heuristics within them.14 We also compare with

14. All tests were run in Linux on a Pentium 4 2.66GHz w/ 1GB RAM. Both CAltAlt and POND used a
weight of five in the, respective, A* and LAO* searches.

38

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

A* Search Engine

(HSP-r)

Heuristics

Planning

Graph(s)

(IPP)

Belief

States

Labels

(CUDD)

Model

Checker

(NuSMV)

IPC PDDL

Parser

S
ea

rc
he

s

G
ui

de
d

B
y

Input forInput for

C
o
n
d
en

se

Validates

E
xtracted

F
rom

Figure 15: The implementation of CAltAlt relies on a regression search engine that
searches over belief states. The search engine is guided by heuristics extracted
from planning graphs.

the competing approaches (CGP, SGP, GPT 1.40, MBP 0.91, HSCP, and KACMBP) for
several domains and problems.15

5.1 Implementation

CAltAlt The implementation of CAltAlt uses several off-the-shelf planning software
packages. Figure 15 shows a diagram of the system architecture. The components of
CAltAlt are the IPC parser for PDDL 2.1 (slightly extended to allow disjunction) , the
HSP-r search engine [Bonet and Geffner, 1999], the IPP planning graph [Koehler et al.,
1997], and CUDD [Brace et al., 1990] and NuSMV [Cimatti et al., 2002] to implement
the LUG labels. The custom parts of the implementation include the action representation,
belief state representation and regression operator, not to mention the heuristic calculation.

15. All domain and problem files for all of the compared planners can be found at
http://rakaposhi.eas.asu.edu/belief-search/

39

BRYCE, KAMBHAMPATI, & SMITH

Problem Initial Goal Literals Causative Observational Optimal Optimal
States Literals Actions Actions Parallel Serial

Rovers1 1 1 66 88 0 {12} 5 {5} 5 {5}
Rovers2 2 1 66 88 0 {12} 8 {7} 8 {7}
Rovers3 3 1 66 88 0 {12} 10 {?} 10 {8}
Rovers4 4 1 66 88 0 {12} 13 {?} 13 {10}
Rovers5 16 3 71 97 0 {12} ? {?} 20 {?}
Rovers6 12 3 119 217 0 {18} ? {?} ? {?}
Logistics1 2 1 29 70 0 {10} 6 {6} 9 {7}
Logistics2 4 2 36 106 0 {20} 6 {?} 15 {12}
Logistics3 2 1 58 282 0 {21} 8 {?} 11 {8}
Logistics4 4 2 68 396 0 {42} 8 {?} 18 {?}
Logistics5 8 3 78 510 0 {63} ? {?} 28 {?}
BT (n) n 1 n+1 n 0 {n} 1 {1} n {n-1}
BTC(n) n 1 n+2 n+1 0 {n} 2n-1 {2} 2n-1 {n-1}

CubeCorner(n) n3 3 3n 6 0 n-1 3n-3
CubeFace(n) n3 1 3n 6 0 n n

CubeCenter(n) n3 3 3n 6 0 (3n-3)/2 (9n-3)/2
Ring(n) n3n n 4n 4 0 3n-1 3n-1

Figure 16: Features of test domains and problems - Number of initial states, Number of
goal literals, Number of literals, Number of causative actions, Number of Ob-
servational Actions, Optimal number of parallel plan steps, Optimal number of
serial plan steps. Data for contingent versions of domains is in braces; plan
lengths are max contingent branch length.

POND The implementation of POND is very similar to CAltAlt aside from the search
engine and state representation. POND uses LAO* source code from Eric Hansen to
perform the search, and BDDs to represent belief states and actions. Implementation of the
heuristics is identical to CAltAlt.

5.2 Domains

Figure 16 shows some of the relative features of the different problems we used to evaluate
our approach. The table shows the number of initial states, goal literals, literals, actions,
and optimal plan lengths. This can be used as a guide to gauge the difficulty of the prob-
lems, as well as our performance.

Conformant Problems In addition to the standard domains used in conformant planning–
such as Bomb-in-the-Toilet, Ring, and Cube variants, we also developed two new domains.
We chose these new domains because they demonstrate higher difficulty in the attainment
of subgoals, and have many plans of varying length.

40

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

The Rovers domain is a conformant adaptation of the analogous domain of the classical
planning track of the International Planning Competition [IPC, 2003]. The added uncer-
tainty to the initial state is conditions that rule whether an image objective is visible from
various vantage points due to weather as well as the availability of rock and soil samples.
The goal is to upload an image of an objective and some rock and soil sample data, thus
a conformant plan requires visiting all of the possible vantage points and taking a picture,
plus visiting all possible locations of soil and rock samples to draw samples.

The first five Rovers problems have 4 waypoints. Problems one through four have one
through four locations, respectively, at which a desired imaging objective is possibly visible
(at least one will work, but we don’t know which one). Problem 5 adds some rock and soil
samples as part of the goal and a couple waypoints where one of each can be obtained
(again, we don’t know which waypoint will have the right sample). Problem 6 adds two
more waypoints, keeps the same goals as Problem 5 and changes the possible locations of
the rock and soil samples. In all cases the waypoints are connected in a tree structure, as
opposed to completely connected.

The Logistics domain is a conformant adaptation of the classical Logistics domain
where trucks and airplanes move packages. The uncertainty is the initial locations of pack-
ages. Thus, any actions relating to the movement of packages have a conditional effect
that is predicated on the package actually being at a location. In the conformant version,
the drivers and pilots cannot sense or communicate a package’s actual whereabouts. The
problems scale by adding packages and cities.

The Logistics problems consist of one airplane, and cities with an airport, a post office,
and a truck. The airplane can travel between airports and the trucks can travel within cities.
The first problem has two cities and one package that could start at either post office, and
the goal is to get the package to the second city’s airport. The second problem adds another
package at the same possible starting points and having the same destination. The third
problem has three cities with one package that could be at any post office and has to reach
the third airport. The fourth problem adds a second package to the third problem with the
same starting and ending locations. The fifth problem has three cities, three packages, each
at one of two of the three post offices and having to reach different airports.

Contingent Problems For contingent planning we consider several domains from the
literature: bomb in the toilet with sensing (BTS), bomb in the toilet with clogging and
sensing (BTCS), Medical [Weld et al., 1998], and Omelette [Levesque, 1996]. We also
extend the conformant Logistics and Rovers to include observational actions.

The Rovers problem allows for the rover, when it is at a particular waypoint, to sense
the availability of image, soil, or rock data at that location. The locations of the collectable
data are expressed as one-of constraints, so the rover can deduce the locations of collectable
data by failing to sense the other possibilities.

41

BRYCE, KAMBHAMPATI, & SMITH

Logistics has observations to determine if a package at a location exists, and the obser-
vation is assumed to be made by a driver or pilot at the particular location. Since there are
several drivers and a pilot, different agents make the observations. The information gained
by the agents is assumed to be automatically communicated to the others, as the planner is
the agent that has all the knowledge.16

5.3 Conformant Planning

We start by comparing the heuristic approaches within our planners for conformant plan-
ning. We continue by describing how our planners, using the best heuristics, compare
against other state of the art approaches.

5.3.1 CAltAlt AND POND

Within CAltAlt we show how every heuristic performs for each graph structure, then show
how adjusting the computation of mutexes for the LUG can improve performance. Within
POND we show how the heuristics perform for the single (SG) and label (LUG) graphs
without mutexes, as well as for NG. We abstain from computing mutexes in progression
because we build new planning graphs for each search node and we want to keep graph
computation time low.

NG heuristics CAltAlt performs best, as shown in Figure 17, with the hcard′ heuristic
in the BT and BTC problems (this confirms the results originally seen in [Bertoli et al.,
2001a]). However, this heuristic does not perform as well in the Rovers and Logistics

problems because the size of a belief state, during planning, does not necessarily indicate
that the belief state will be in a good plan. The hcard heuristic proves to do worse than
the other NG heuristics because it does not take into account enough information. As
expected, h0, giving breadth-first search, does not perform well in a large portion of the
problems.

POND (Figures 19 and 20) does slightly better than CAltAlt with the NG heuristics
because progression admits no inconsistent states. In the tests of Figure 19, the h0 and
hcard′ heuristics perform similarly in all cases except for BTC. It is interesting to note that
the number of nodes expanded by each is almost the same in all problems, showing that
hcard′ is just as uninformed as breadth-first search in progression. However, in the tests of
Figure 20, the hcard′ heuristic does very well by outperforming most of the other heuristics
in terms of time and scalability.

SG heuristics For a single planning graph (Figure 17), CAltAlt performs best with the
hSGsum and hSGRP heuristics, but fails to scale very well on a large portion of the problems. As

16. This problem may be interesting to investigate in a multi-agent planning scenario, assuming no global
communication (e.g. no radio dispatcher).

42

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

Problem h0 hcard hcard′ hSGmax hSGsum hSGlevel hSGRP
Rovers1 2255/5 5580/5 18687/14 66402/5 145604/5 66442/5 543/5

2 49426/8 - - 9754/8 12483/8 9207/8 78419/8
3 - - - - 42732/10 - 91672/10
4 - - - - - - -
5 - - - - - - -
6 - - - - - - -

Logistics1 1108/9 - 4268/9 737/9 126/9 765/9 198/9
2 - - - - 2282/15 - 7722/15
3 - - - - 1938/14 - 3324/14
4 - - - - - - 141094/19
5 - - - - - - -

BT2 19/2 19/2 14/2 13/2 16/2 18/2 18/2
10 4837/10 - 56/10 4751/10 4856/10 4842/10 5158/10
20 - - 418/20 - - - -
30 - - 1698/30 - - - -
40 - - 5271/40 - - - -
50 - - 12859/50 - - - -
60 - - 26131/60 - - - -
70 - - 48081/70 - - - -
80 - - 82250/80 - - - -

BTC2 30/3 22/3 16/3 47/3 14/3 14/3 16/3
10 15021/19 - 161/19 14894/19 14850/19 15085/19 15679/19
20 - - 1052/39 - - - -
30 - - 3823/59 - - - -
40 - - 11285/79 - - - -
50 - - 26514/99 - - - -
60 - - 55687/119 - - - -
70 - - 125594/140 - - - -

Figure 17: Results for CAltAlt using all NG, and SG heuristics for conformant Rovers,
Logistics, BT , and BTC. The data is Total Time / # Expanded Nodes, “-”
indicates no solution.

43

BRYCE, KAMBHAMPATI, & SMITH

Problem hMG
max hMG

sum hMG
level hMG

RPM hMG
RPU h

LUG(FX)
max h

LUG(FX)
sum h

LUG(FX)
level h

LUG(FX)
RP

Rovers1 62266/5 142516/5 62398/5 542/5 185/5 15809/5 16582/5 15153/5 15164/5
2 91815/8 90256/8 96642/8 8327/8 29285/9 33991/8 40348/8 32599/8 32969/8
3 82695/10 91747/10 92890/10 20162/10 2244/11 58146/10 26596/10 16924/10 16668/10
4 - - - 61521/16 3285/15 - - 32490/13 31584/13
5 - - - - - - - - -
6 - - - - - - - - -

Logistics1 1013/9 201/9 1098/9 183/9 1109/9 2434/9 1395/9 1603/9 1340/9
2 19051/15 15766/15 23648/15 15491/15 69818/19 - 59379/15 39656/15 18535/15
3 - 6231/14 - 70882/14 - - 22330/14 32142/14 16458/15
4 - - - - - - - - 178068/19
5 - - - - - - - - -

BT2 18/2 17/2 18/2 20/2 21/2 50/2 11/2 11/2 12/2
10 5366/10 4808/10 6062/10 8988/10 342/10 4846/10 4813/10 4791/10 71/10
20 - - - - 2299/20 - - - 569/20
30 - - - - 9116/30 - - - 2517/30
40 - - - - 44741/40 - - - 7734/40
50 - - - - - - - - 18389/50
60 - - - - - - - - 37820/60
70 - - - - - - - - 70538/70
80 - - - - - - - - 188603/80

BTC2 15/3 14/3 15/3 33/3 23/3 231/3 18/3 19/3 18/3
10 15863/19 14874/19 17526/19 41805/19 614/19 16811/19 16633/19 16818/19 1470/19
20 - - - - 2652/39 - - - 51969/39
30 - - - - 9352/59 - - - 484878/59
40 - - - - 51859/79 - - - -
50 - - - - - - - - -
60 - - - - - - - - -
70 - - - - - - - - -

Figure 18: Results for CAltAlt using all MG, and LUG heuristics for conformant Rovers,
Logistics, BT , and BTC. The data is Total Time / # Expanded Nodes, “-”
indicates no solution. Here the LUG heuristics use all cross-world mutexes
(the FX scheme).

in classical planning [Nguyen et al., 2002], sum and relaxed plan heuristics, despite being
inadmissible, tend to generate solutions much more quickly than the more conservative
max and level heuristics.

In POND, Figures 19 and 20, the SG heuristics performed similarly, providing search
guidance comparable to breath-first search (as evidenced by the number of expanded nodes),
but with the added cost of computation (as evidenced by the total time).

MG heuristics As with the SG heuristics, Figure 18, CAltAlt using MG does best with
the sum and relaxed plan heuristics. An interesting point to note on the BT and BTC prob-
lems is that the hMG

RPU significantly outperforms the others because it accounts for different

44

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

actions being used for each possible world. The relaxed plan heuristics tend to expand
fewer search nodes than the other heuristics, but in some cases their total planning time is
longer because they take longer to compute.

POND was not evaluated with the MG heuristics because of the prohibitive cost of
building multiple planning graphs for each search node.

LUG heuristics In CAltAlt, Figure 18, the hLUGRP heuristic outperforms all other heuris-
tics on all problems. The relaxed plan works well because it helps give better discrimi-
nation between search choices, where other heuristics may give many similar evaluations
for search nodes. Here the mutex scheme for the LUG is the (FX) scheme using all possi-
ble cross and same world mutexes. Naturally, this increases the LUG construction time as
problems become more complex. Shortly, we will consider the relaxations to computing
mutexes to improve graph computation time and scalability.

In POND, Figures 19 and 20, the LUG heuristics also do the best. The relaxed plan
heuristic tends to scale best because it expands fewer search nodes. The use of helpful
actions [Hoffmann and Nebel, 2001] in hLUGRP−ha is also useful in cutting down time in the
Logistics, Rovers, and CubeCenter problems, but for other problems it does not help as
much.

LUG Mutexes Since the LUG is used for heuristic guidance only and the number of
possible mutexes we can find is quite large, we can use several schemes to relax the com-
plexity of the mutex computations. The schemes combine different types of mutexes with
types of cross world checking. The mutex types are: (NX) computing no mutexes, (StX)
computing only interference mutexes, (DyX) computing (StX) plus inconsistent support,
and competing needs mutexes, and (FX) computing (DyX) plus induced mutexes. The
cross world checking reduction schemes are: (SX) computing mutexes across same-worlds
(mentioned previously in this section) and (IX) computing mutexes across pairs of worlds
in the intersection (conjunction) of element labels.

Figure 21 shows that within CAltAlt, using the relaxed plan heuristic and changing
the way we compute mutexes on the LUG can drastically alter performance. Often, the
possible number of cross world mutexes are so numerous that building the LUG takes too
much time. So, we evaluated hLUGRP when the LUG is built (a) considering all cross world
relations, for the schemes (NX), (StX), (DyX), and (FX); and (b) same world relations for
the schemes (DyX-SX) and (FX-SX), and (c) cross world relations for all possible worlds
pairs in the intersection of element’s labels (DyX-IX) and (FX-IX).

The results show that simpler problems like BT and BTC do not benefit as much from
advanced computation of mutexes beyond static interference. However, for the Rovers

and Logistics problems, advanced mutexes play a larger role. Mainly, interference, com-
peting needs, and inconsistent support mutexes are important. The competing needs and

45

B
R

Y
C

E,
K

A
M

B
H

A
M

PA
T

I,
&

S
M

IT
H

Problem h0 hcard′ hSGmax hSGsum hSGlevel hSGRP hLUGmax hLUGsum hLUGlevel hLUGRP hLUGRP−ha
Rovers1 230/26 220/26 470/16 700/26 470/16 710/26 1580/26 1580/26 330/5 360/5 230/5

2 1970/187 1970/187 4430/137 5160/187 4430/137 5260/187 15170/187 15050/187 2830/30 3500/34 1790/21
3 11340/897 11460/897 27720/765 28190/897 28220/765 29040/897 88760/897 - 7640/65 8220/62 7570/62
4 75840/4725 76230/4725 - - - - - - 30620/207 28670/192 27650/191
5 - - - - - - - - - 82240/235 65510/172
6 - - - - - - - - - - -

Logistics1 280/95 280/95 880/105 820/95 870/105 940/105 990/40 990/40 450/15 420/12 330/11
2 21090/2314 21970/2560 - - - - 22950/304 18680/223 8250/112 2040/18 1590/17
3 60840/2208 37160/1361 - - - - 71880/511 71700/511 31400/201 7510/36 3770/21
4 - - - - - - - - - 34830/117 13400/49
5 - - - - - - - - - - 50650/62

BT2 0/2 0/2 0/2 0/2 0/2 10/2 0/2 0/2 0/2 0/2 0/2
10 20/10 20/10 80/10 90/10 90/10 90/10 130/10 130/10 130/10 120/10 130/10
20 320/20 320/20 1010/20 1010/20 980/20 1020/20 1470/20 1460/20 1470/20 1530/20 1550/20
30 1970/30 1960/30 4530/30 4540/30 4540/30 4670/30 6800/30 6870/30 6820/30 7060/30 7170/30
40 6550/40 6500/40 13660/40 13660/40 13710/40 13870/40 20180/40 20340/40 20380/40 20860/40 21040/40
50 18100/50 17920/50 34150/50 34130/50 34120/50 35000/50 51910/50 52350/50 51960/50 53810/50 54160/50
60 40380/60 43600/60 - 88360/60 87780/60 88020/60 119740/60 120110/60 - - 122110/60
70 95610/70 96150/70 - - - - - - - - -
80 261260/80 264300/80 - - - - - - - - -

BTC2 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3
10 2340/19 2420/19 5230/19 5200/19 5170/19 5500/19 7300/19 7340/19 7390/19 230/19 230/19
20 - 440/39 - - - - - - - 2830/39 2840/39
30 - 2220/59 - - - - - - - 12060/59 12180/59
40 - 7400/79 - - - - - - - 35950/79 36750/79
50 - 18510/99 - - - - - - - 91170/99 95130/99
60 - 40140/119 - - - - - - - - -
70 - 91460/139 - - - - - - - - -

Figure
19:

R
esults

for
P
O
N
D

using
all

N
G

,
SG

,
and

L
U

G
heuristics

for
conform

ant
R
ov

ers,
L
og

istics,
B
T

,
and

B
T
C

.
T

he
data

is
Total

T
im

e
/

#
E

xpanded
N

odes,“-”
indicates

no
solution.46

P
L

A
N

N
IN

G
G

R
A

P
H

H
E

U
R

IS
T

IC
S

F
O

R
B

E
L

IE
F

S
PA

C
E

S
E

A
R

C
H

Problem h0 hcard′ hSGmax hSGsum hSGlevel hSGRP hLUGmax hLUGsum hLUGlevel hLUGRP hLUGRP−ha
CubeCnr3 40/85 10/25 230/94 230/85 250/94 270/94 50/6 50/6 340/94 70/6 60/6

4 640/661 120/299 2250/720 2260/661 2260/720 2410/720 170/9 180/9 1740/175 200/9 210/9
5 5220/2540 540/787 12710/2481 12760/2540 13090/2481 13790/2481 430/12 440/12 8210/444 530/12 540/12
6 39720/7979 2000/1815 - - - - 950/15 940/15 33300/1016 1160/15 1210/15
7 184360/18721 6260/3526 - - - - 1830/18 1830/18 - 2240/18 2380/18
8 715640/40078 20620/6667 - - - - 3290/21 3260/21 - 3980/21 4310/21
9 - 43810/9966 - - - - 5560/24 5540/24 - 6750/24 7420/24
10 - 95670/15181 - - - - 9280/27 9300/27 - 11280/27 12380/27
11 - 201960/22550 - - - - 15830/30 15830/30 - 19090/30 20990/30
12 - 359680/30180 - - - - 26500/33 26440/33 - 31030/33 34070/33
13 - - - - - - 41970/36 41960/36 - 48490/36 52910/36
14 - - - - - - 64950/39 65120/39 - 72870/39 79530/39
15 - - - - - - 96610/42 96650/42 - 108610/42 118250/42
16 - - - - - - 144270/45 144050/45 - 162060/45 176400/45
17 - - - - - - 217990/48 219840/48 - 242190/48 260460/48
18 - - - - - - 344380/51 341580/51 - 373370/51 401070/51
19 - - - - - - - 535870/54 - 585440/54 -

CubeCtr3 60/196 10/40 310/198 300/196 300/198 330/198 360/193 350/154 310/196 340/165 180/41
4 480/423 20/24 1520/337 1710/423 1500/337 1600/255 1790/423 1810/423 1750/423 510/50 120/9
5 5910/3284 430/661 14730/3356 14610/3284 14790/3356 15610/3356 19820/3301 17000/2132 18350/3300 15240/1567 15180/1419
6 40280/8180 730/762 - - - - - - - 35430/1630 16910/604
7 211380/21936 5580/3292 - - - - - - - - -
8 - 8510/3883 - - - - - - - - -
9 - 47730/10570 - - - - - - - - -
10 - 54990/10780 - - - - - - - - -
11 - 215520/22869 - - - - - - - - -
12 - 236960/22385 - - - - - - - - -

CubeFace3 10/17 10/9 50/11 80/17 60/11 70/11 120/16 120/16 20/2 20/2 0/2
4 170/88 20/13 480/66 590/88 480/66 560/66 620/45 610/45 80/3 80/3 20/3
5 1080/219 60/17 2510/224 2430/219 2500/224 2800/224 2780/109 2760/109 190/4 210/4 70/4
6 5460/502 150/21 10120/513 9510/502 10130/513 10810/513 10050/235 9920/235 430/5 480/5 140/5
7 19310/893 330/25 42490/1345 29440/893 42460/1345 45090/1345 31150/443 30710/443 850/6 940/6 300/6
8 65400/1678 690/29 - 91050/1678 - - 86810/782 85360/782 1600/7 1710/7 0570/7
9 202670/3038 1410/33 - - - - - - 2920/8 3080/8 1000/8
10 - 2990/37 - - - - - - 5400/9 5760/9 1830/9
11 - 7370/41 - - - - - - 10730/10 11100/10 3400/10
12 - 15970/45 - - - - - - 19490/11 19870/11 6100/11
13 - 29780/49 - - - - - - 33310/12 33710/12 10500/12
14 - 49990/53 - - - - - - 53760/13 54830/13 16640/13
15 - 81440/57 - - - - - - 80870/14 81720/14 25170/14
16 - 127450/61 - - - - - - 122260/15 123350/15 37400/15
17 - 198680/65 - - - - - - 184410/16 186190/16 55300/16
18 - 304720/69 - - - - - - 275860/17 276490/17 80950/17
19 - 430140/73 - - - - - - 411220/18 411520/18 118710/18
20 - - - - - - - - - - 172970/19

Ring2 0/13 10/7 10/12 30/13 20/12 10/12 30/13 30/13 20/8 30/7 20/7
3 100/62 30/11 200/61 190/62 180/61 200/61 0390/62 410/62 320/36 530/51 530/51
4 1570/239 130/15 2230/249 2210/239 2220/249 2290/249 4730/239 4750/239 4680/224 6490/221 6460/221
5 24540/1017 840/19 30200/1004 30170/1017 30190/1004 30240/1004 51940/1017 52900/1017 49170/792 70330/938 70620/938
6 554350/4066 7830/23 - - - - - - - - -
7 - 55920/27 - - - - - - - - -
8 - 292230/31 - - - - - - - - -

Figure
20:

R
esults

for
P
O
N
D

using
all

N
G

,
SG

,
and

L
U

G
heuristics

for
conform

ant
C
u
beC

orn
er,

C
u
beC

en
ter,

C
u
beF

a
ce,

and
R
in
g.

T
he

data
is

Total
T

im
e

/
#

E
xpanded

N
odes,“-”

indicates
no

solution.

47

B
R

Y
C

E,
K

A
M

B
H

A
M

PA
T

I,
&

S
M

IT
H

Problem h
LUG(NX)
RP h

LUG(StX)
RP h

LUG(DyX)
RP h

LUG(FX)
RP h

LUG(DyX−SX)
RP h

LUG(DyX−IX)
RP h

LUG(FX−SX)
RP h

LUG(FX−IX)
RP

Rovers1 13/1112/51 19/1119/51 15453/89/6 15077/87/6 15983/87/6 15457/87/6 15098/86/6 15094/85/6
2 20/904/41 16/903/41 13431/138/8 32822/147/8 10318/139/8 10625/134/8 10523/138/8 14550/138/8
3 13/8704/384 17/8972/384 17545/185/10 16481/187/10 10643/185/10 11098/209/10 10700/191/10 11023/184/10
4 - - 32645/441/14 31293/291/14 14988/291/14 16772/291/14 14726/290/14 16907/290/14
5 - - 698575/3569/45 - 61373/3497/45 379230/3457/45 60985/3388/45 378869/3427/45
6 - - - - 217507/3544/37 565013/3504/37 225213/3408/37 588336/3512/37

Logistics1 5/868/81 10/868/81 1250/117/9 1242/98/9 791/116/9 797/117/9 796/115/9 808/115/9
2 10/63699/1433 88/78448/1433 16394/622/15 18114/421/15 2506/356/15 7087/428/15 2499/352/15 6968/401/15
3 - - 17196/1075/15 16085/373/15 10407/403/15 10399/408/15 10214/387/15 10441/418/15
4 - - 136702/1035/19 176995/1073/19 24214/648/19 71964/871/19 23792/642/19 71099/858/19
5 - - - - 52036/2690/41 328114/4668/52 52109/2672/41 324508/4194/52

BT2 1/34/2 0/13/2 0/13/2 0/12/2 0/16/2 0/15/2 0/25/2 0/13/2
10 4/72/10 4/56/10 13/57/10 13/58/10 12/59/10 14/59/10 13/59/10 14/56/10
20 19/452/20 22/448/20 120/453/20 120/449/20 102/450/20 139/454/20 105/444/20 137/454/20
30 62/1999/30 59/1981/30 514/1999/30 509/2008/30 421/1994/30 600/2007/30 413/1986/30 596/2002/30
40 130/6130/40 132/6170/40 1534/6432/40 1517/6217/40 1217/6326/40 1822/6163/40 1196/6113/40 1797/6127/40
50 248/14641/50 255/14760/50 3730/14711/50 3626/14763/50 2866/14707/50 4480/14676/50 2905/14867/50 4392/14683/50
60 430/30140/60 440/29891/60 7645/30127/60 7656/30164/60 5966/30017/60 9552/30337/60 5933/30116/60 9234/29986/60
70 680/55202/70 693/55372/70 15019/55417/70 14636/55902/70 11967/55723/70 18475/55572/70 11558/55280/70 18081/55403/70
80 1143/135760/80 1253/140716/80 26478/132603/80 26368/162235/80 21506/136149/80 32221/105654/80 21053/139079/80 32693/109508/80

BTC2 0/62/3 1/16/3 0/15/3 4/14/3 0/16/3 1/14/3 1/13/3 2/14/3
10 4/93/19 4/77/19 14/78/19 1388/82/19 13/76/19 16/75/19 14/75/19 440/81/19
20 21/546/39 32/545/39 139/553/39 51412/557/39 105/546/39 140/549/39 110/555/39 19447/568/39
30 58/2311/59 61/2293/59 543/2288/59 482578/2300/59 427/2294/59 606/2300/59 444/2287/59 199601/2401/59
40 133/6889/79 149/6879/79 1564/6829/79 - 1211/6798/79 1824/6816/79 1253/6830/79 1068019/???/79
50 260/15942/99 261/16452/99 - - 2890/16184/99 4412/16414/99 2926/16028/99 -
60 435/32201/119 443/32923/119 - - 6045/32348/119 9492/32350/119 6150/32876/119 -
70 742/62192/139 745/61827/139 - - - - - -

Figure
21:

R
esults

forC
A

ltA
ltusing

h
L
U
G

R
P

heuristic
w

ith
differentm

utex
schem

es
forcon-

form
ant

R
ov

ers,
L
og

istics,
B
T

,
and

B
T
C

.
T

he
data

is
G

raph
C

onstruction
T

im
e

/A
llO

ther
N

on
G

raph
C

onstruction
T

im
e

/#
E

xpanded
N

odes,“-”
indi-

cates
no

solution.
48

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

inconsistent support mutexes seem to have a large impact on the informedness of the guid-
ance given by the LUG, as scalability improves most here. Induced mutexes don’t improve
search time much, and only add to graph computation time. Reducing cross world mu-
tex checking also helps quite a bit. It seems that only checking same world mutexes is
sufficient to solve large problems. Interestingly, the MG graphs compute same-world in-
terference, competing needs, and inconsistent support mutexes within each graph, equating
to the same scenario as (DyX-SX), however, the LUG provides a much faster construction
time, evidenced by the LUG’s ability to out-scale MG.

Comparison of Graph Types All of the heuristics from the single graph fail to account
for different possible worlds supporting the same literals and reduce to BFS in the BT

and BTC problems. However, single graph heuristics can leverage a bit more structure
in the Rovers and Logistics problems because each possible world has several actions
that need to be performed. The multiple graph heuristics tend to account better for the
multiple possible worlds of the problems and give better estimates. However, the downfall
of multiple graphs is the large construction time and exponential increase of the number of
graphs with the number of uncertain projected belief state literals. The labelled uncertainty
graph takes the best of the single graph and multiple graphs by having a fast computation
time, compact structure, and a wealth of information to compute informed heuristics.

In summary, we have learned three points:

• The labelled uncertainty graph with the relaxed plan heuristic is the most cost-effective
and informed heuristic that we have presented.

• Reachability heuristics are needed for conformant planning domains adapted from
IPC classical planning domains.

• Same world mutexes from the (DyX-SX) mutex scheme for the LUG provide the
best cost benefit ratio for regression search.

5.3.2 COMPARISON WITH OTHER CONFORMANT PLANNERS

Although this work is aimed at giving a general comparison of heuristics for belief space
planning, we also present a comparison of the best heuristics within CAltAlt and POND

to some of the other leading approaches to conformant planning. Note, since each approach
uses a different planning representation (BDDs, GraphPlan, or explicit state space), not
all of which even use heuristics, it is hard to get a standardized comparison of heuristic
effectiveness. Furthermore, not all of the planners use PDDL-like syntax; MBP, HSCP, and
KACMBP use AR encodings which may give them an advantage in reducing the number

49

BRYCE, KAMBHAMPATI, & SMITH

Problem CAltAlt POND MBP KACMBP HSCP GPT CGP SGP

h
LUG(DyX−SX)
RP hLUGRP−ha

Rovers1 16070/5 230/5 66/5 9293/5 - 3139/5 70/5 70/5
2 10457/8 1790/8 141/8 9289/15 - 4365/8 180/8 30/8
3 10828/10 7570/15 484/10 9293/16 - 5842/10 460/10 1750/10
4 15279/13 27650/19 3252/13 9371/18 - 7393/13 1860/13 -
5 64870/29 65510/33 - 39773/40 - 399525/20 - -
6 221051/25 - 727/32 - - - - -

Logistics1 907/9 330/11 37/9 127/12 352/9 916/9 60/6 70/6
2 2862/15 1590/17 486/24 451/19 - 1297/15 290/6 510/6
3 10810/15 3770/14 408/14 1578/18 - 1711/11 400/8 4620/8
4 24862/19 13400/21 2881/27 8865/22 - 9828/18 1170/8 447470/8
5 54726/34 50650/30 - 226986/42 - 543865/28 - -

BT2 16/2 0/2 6/2 10/2 8/2 487/2 20/1 0/1
10 71/10 130/10 119/10 16/10 6/10 627/10 520/1 30/1
20 552/20 1550/20 - 84/20 23/20 472174/20 3200/1 290/1
30 2415/30 7170/30 - 244/30 47/30 - 10330/1 1170/1
40 7543/40 21040/40 - 533/40 80/40 - 24630/1 3320/1
50 17573/50 54160/50 - 1090/50 148/50 - 49329/1 7550/1
60 35983/60 122110/60 - 2123/60 340/60 - 87970/1 83494/1
70 67690/70 - - 3529/70 - - 145270/1 114340/1
80 157655/80 - - - - - - -

BTC2 16/3 0/3 8/3 18/3 2/3 465/3 0/3 0/3
10 89/19 230/19 504/19 45/19 25/19 715/19 39370/19 -
20 651/39 2840/39 98/39 211/39 98/39 - - -
30 2721/59 12180/59 268/59 635/59 293/59 - - -
40 8009/79 36750/79 615/79 1498/79 674/79 - - -
50 19074/99 95130/99 1287/99 10821/99 1352/99 - - -
60 38393/119 - 2223/119 5506/119 5100/119 - - -
70 - - 3625/139 9334/139 - - - -

Figure 22: Results for CAltAlt using h
LUG(DyX−SX)
RP , POND using hLUGRP−ha, MBP,

KACMBP, HSCP, GPT, CGP, and SGP for conformant Rovers, Logistics, BT ,
and BTC. The data is Total Time / # Plan Steps, “-” indicates no solution.

50

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

of literals and actions.17 Nevertheless, Figure 22 compares MBP, KACMBP, HSCP, GPT,
CGP, and SGP with h

LUG(DyX−SX)
RP in CAltAlt and hLUGRP−ha in POND with respect to run

time and plan length.
An observation independent of the planning substrate is the optimality of plans. Opti-

mality can be ensured by using admissible heuristics, but of the heuristic approaches that
are inadmissible it is interesting to note that in many cases MBP, HSCP, and KACMBP tend
to generate plans that are much longer than plans generated by CAltAlt using h

LUG(DyX−SX)
RP

in the Rovers and Logistics domains. Furthermore, the optimal approaches (CGP, SGP,
and GPT) cannot scale as well, despite their good solutions.

For Rovers, hLUG(DyX−SX)
RP in CAltAlt provides the best guidance by outperforming

all other planners on most of the instances. POND outperforms CAltAlt in the Logistics

problems, and is competitive with the other planners. GPT finds optimal serial plans but is
not as effective when the size of the search space increases. CGP has trouble constructing
its planning graphs as the conformant depth of the goal increases. The LUG in CAltAlt can
handle large domains better than CGP’s planning graphs, and thus h

LUG(DyX−SX)
RP scales

much better. MBP does outperform CAltAlt using h
LUG(DyX−SX)
RP in some cases on Rovers

problems, but at the cost of generating sub-optimal plans (most likely a by-product of its
depth first search).18 Logistics is a more fertile domain for comparisons. The lesson to be
learned is that HSCP’s cardinality heuristic, similar to hcard′ , does not scale well. Yet HSCP
does better than CAltAlt with hcard′ , indicating that the planning substrate, as opposed to
the heuristic, may be responsible for the performance. The BT and BTC domains show
that CAltAlt is competitive with CGP and GPT, but is dominated by HSCP and KACMBP
with respect to handling common structure in problems.

In summary, we have shown that CAltAlt with the h
LUG(DyX−SX)
RP heuristic and POND

with the similar hLUGRP−ha heuristic provide superior search guidance for conformant planning
problems adapted from the IPC. The same heuristics prove to also give good guidance for
traditional conformant planning problems.

5.4 Contingent Planning

In contingent planning we first discuss the effectiveness of our heuristics in POND, and
then compare to competing planners.

17. We gave the MBP planners the same grounded and filtered action descriptions that we used in CAltAlt
and POND. We also tried, but do not report results, giving the MBP planners the full set of ground
actions without filtering irrelevant actions. It appears that the MBP planners do not use any sort of action
pre-processing because performance was much worse with the full grounded set of actions.

18. Surprisingly, MBP (used here in depth first progression search with a cardinality heuristic) performs well,
beating out KACMBP and HSCP on almost all the Logistics and Rovers domains. This is strange because
KACMBP and HSCP are supposed to be improvements upon the original MBP.

51

BRYCE, KAMBHAMPATI, & SMITH

5.4.1 POND

Figure 23 shows that within POND, the LUG heuristics generate better plans than blind
search and the cardinality heuristic because they do not model any notion of reachability
for belief space. This is evident in the Logistics and Rovers problems (where reachabil-
ity is important) through better plans and scalability. We refer the reader to Appendix C
for a sample plan found by POND for the most difficult Rovers problem. The LUG is
somewhat expensive to build for every search node, so we tried helpful actions [Hoffmann
and Nebel, 2001]. Helpful actions are actions that have the same effects as actions in the
first step of a relaxed plan; the search’s branching factor is drastically decreased by con-
sidering helpful actions, at the expense of an incomplete search. Helpful actions improved
POND’s scalability in the Logistics and Rovers domains because the LUG is already giv-
ing good guidance to the planner, but we avoid wasting time generating un-helpful belief
states with un-helpful actions.

5.4.2 COMPARISON WITH OTHER CONTINGENT PLANNERS

Figure 24 shows the results for testing the contingent versions of the domains on POND,
MBP, GPT, and SGP.19 The major point to notice is that MBP tends to generate solutions
much faster but of very poor quality, and GPT and SGP generate better solutions but very
slowly. The POND planner is very similar to MBP in that it uses progression search.
However, POND uses an LAO* search, whereas the MBP binary we used uses a depth
first And-Or search. The DFS used by MBP contributes to highly sub-optimal max length
branches (as much as 25 times longer than with POND with hLUGRP−ha), but allows for
efficient plan generation times. For instance, the plans generated by DFS in MBP for the
Rovers domain have the rover navigating back and forth between locations several times
before doing anything useful; this is not a situation beneficial for actual mission use. A
reason why the quality of plans generated by MBP has not previously come into question
is that MBP has only been evaluated on problems that do not have a variety of feasible
solutions of different lengths.

5.5 Comprehensive Summary of Empirical Results

• Planning graph heuristics for belief space search help control conformant and con-
tingent plan length because, as opposed to cardinality, the heuristics model desirable
plan quality metrics.

• Planning graph heuristics for belief space search scale better than planning graph
search and admissible heuristic search techniques.

19. There were a few differences in the problem encodings related to observation preconditions. The MBP
planner does not allow preconditions to observations, so the planner could observe variables at any time.

52

P
L

A
N

N
IN

G
G

R
A

P
H

H
E

U
R

IS
T

IC
S

F
O

R
B

E
L

IE
F

S
PA

C
E

S
E

A
R

C
H

Problem h0 hcard′ hSGmax hSGsum hSGlevel hSGRP hLUGmax hLUGsum hLUGlevel hLUGRP hLUGRP−ha
Rovers1 220/26 220/26 470/16 690/26 450/16 710/26 1570/26 1590/26 340/5 350/5 230/5

2 870/108 300/38 2140/58 2960/108 2120/58 2700/95 7210/95 7230/95 900/12 850/11 620/11
3 1110/144 410/54 2890/75 4180/144 2900/75 2700/86 7580/86 7570/86 1340/16 1310/15 990/15
4 1660/205 500/67 4700/131 6340/205 4680/131 4900/158 11920/131 11950/131 2510/27 1920/20 1490/20
5 - - - - - - - - - 32750/208 21510/182
6 - - - - - - - - - 88890/210 48730/156

Logistics1 190/69 100/35 500/33 630/69 500/33 540/33 1330/56 1310/56 290/10 320/10 210/10
2 10620/1616 2360/476 - - - - 29600/811 32880/417 2440/45 2370/36 1930/36
3 14490/657 3250/189 - - - - - - 3210/18 3390/19 2100/19
4 - 103440/2625 - - - - - - - 23620/83 11300/54
5 - - - - - - - - - - -

BT2 0/3 0/3 0/2 0/3 0/2 0/3 0/2 0/2 0/3 0/3 0/3
10 10/19 20/19 130/19 120/19 130/19 130/19 190/19 190/19 180/19 190/19 200/19
20 220/39 210/39 1250/39 1240/39 1240/39 1280/39 1950/39 1900/39 1930/39 2030/39 2090/39
30 1200/59 1200/59 5200/59 5200/59 5200/59 5300/59 8370/59 8330/59 8370/59 8930/59 9060/59
40 3670/79 3830/79 14790/79 14740/79 14780/79 15150/79 24020/79 23890/79 24000/79 26180/79 26420/79
50 10990/99 11810/99 36380/99 37960/99 36150/99 37290/99 61160/99 59910/99 60570/99 65170/99 66320/99
60 23170/119 23400/119 - - - - - - - - -
70 54050/139 53750/139 - - - - - - - - -
80 150420/159 153360/159 - - - - - - - - -

BTC2 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 10/3 0/3
10 20/19 20/19 160/19 160/19 160/19 170/19 540/29 540/29 240/19 310/19 310/19
20 230/39 250/39 1570/39 1570/39 1560/39 1640/39 2720/39 2730/39 2700/39 3380/39 3400/39
30 1250/59 1260/59 6130/59 6150/59 6100/59 6330/59 11240/59 11290/59 11190/59 13990/59 14100/59
40 4110/79 4100/79 17980/79 18440/79 18080/79 18290/79 33690/79 33530/79 33770/79 41820/79 42580/79
50 10620/99 12490/99 43410/99 43330/99 44140/99 43550/99 83560/99 81840/99 83160/99 103900/99 -
60 22160/119 23680/119 - - - - - - - - -
70 46360/139 48240/139 - - - - - - - - -

Omelette1 10/6 10/6 60/5 70/6 70/5 80/5 - - 100/5 100/5 130/8
2 10/12 30/21 200/10 160/12 210/10 220/10 - - 320/14 310/11 -
3 80/50 70/63 480/28 770/50 480/28 510/28 - - 1570/48 1240/31 -

Medical1 0/1 0/1 0/1 10/1 0/1 0/1 80/1 80/1 80/1 70/1 80/1
2 0/5 0/4 20/14 20/14 20/14 10/14 2000/14 2010/14 1560/4 2630/12 -
3 0/7 0/7 30/22 30/22 30/22 40/20 4830/25 4870/25 3290/7 5570/19 -
4 10/9 0/10 80/54 60/54 60/54 70/25 10570/52 10570/52 5860/10 8210/22 -
5 0/11 0/12 80/47 90/47 80/47 70/27 13110/54 13230/54 8460/12 13290/27 -

Figure
23:

R
esults

for
P
O
N
D

using
all

N
G

,
S
G

,
and

L
U
G

heuristics
for

contingent
R
ov

ers,
L
og

istics,
B
T
S

,
B
T
C
S

,
O
m
elette,and

M
ed

ica
l.

T
he

data
is

Total
T

im
e

/#
E

xpanded
N

odes,“-”
indicates

no
solution.

53

BRYCE, KAMBHAMPATI, & SMITH

Problem POND MBP GPT SGP
hLUGRP−ha

Rovers1 230/5 3328/11 3148/5 70/5
2 620/7 7066/57 5334/7 760/7
3 990/8 4818/61 7434/8 -
4 1490/10 4939/57 11430/10 -
5 21510/19 1389/81 - -
6 48730/23 3145/158 - -

Logistics1 210/7 31/17 1023/7 5490/6
2 1930/12 - 5348/12 -
3 2100/9 2120/45 2010/8 -
4 11300/17 1086/650 - -
5 - 5768/1977 - -

BT2 0/2 8/3 510/2 0/1
10 200/10 12/19 155314/10 70/1
20 2090/20 78/39 - 950/1
30 9060/30 305/59 - 4470/1
40 26420/40 887/79 - 13420/1
50 66320/50 2350/99 - 32160/1
60 - 4479/119 - 90407/1
70 - - - 120010/1
80 - - - -

BTC2 0/2 10/3 529/2 10/2
10 310/10 53/19 213277/10 -
20 3400/20 518/39 - -
30 14100/30 2551/59 - -
40 42580/40 8475/79 - -
50 - 20684/99 - -
60 - 47375/119 - -
70 - - - -

Omelette1 130 - 250 -
2 - - 4297 -
3 - - 12866 -

Medical1 80/1 12/3 506/1 0/1
2 - 12/3 514/3 20/3
3 - 6/3 541/5 70/3
4 - 12/4 531/5 630/3
5 - 16/4 547/5 4550/3

Figure 24: Results for POND using hLUGRP−ha, MBP, GPT, and SGP for contingent Rovers,
Logistics, BT , BTC, Omelette, and Medical. The data is Total Time / # Max
possible steps in a execution, “-” indicates no solution.

54

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

• Of the planning graph heuristics presented, relaxed plans that take into account the
overlap of individual plans between states of the source and destination belief states
are the most informed.

• The LUG is an effective planning graph data structure for both regression and pro-
gression search heuristics.

• In regression search, planning graphs that maintain only same-world mutexes provide
the best trade-off between graph construction cost and heuristic informedness.

• The LUG heuristics help our contingent planner, POND, to scale up and well, de-
spite the fact that the heuristic computation phase does not model observation actions.

6. Related Work

The recent interest in conformant and contingent planning can be traced to CGP [Smith
and Weld, 1998], a conformant version of GraphPlan [Blum and Furst, 1995], and SGP
[Weld et al., 1998], the analogous contingent version of GraphPlan. Here the graph search
is conducted on several planning graphs, each constructed from one of the possible initial
states. More recent work on C-plan [Castellini et al., 2001] and Frag-Plan [Kurien et al.,
2002] generalize the CGP approach by ordering the searches in the different worlds such
that the plan for the hardest to satisfy world is found first, and is then extended to the other
worlds. Although CAltAlt and POND utilize planning graphs similar to CGP and Frag-
plan, in contrast to them, it only uses them to compute reachability estimates. The search
itself is conducted in the space of belief states.

Another strand of work models conformant and contingent planning as a search in the
space of belief states. This started with Genesereth and Nourbakhsh [1993], who concen-
trated on formulating a set of admissible pruning conditions for controlling search. There
were no heuristics for choosing among unpruned nodes. GPT [Bonet and Geffner, 2000]
extended this idea to consider a simple form of reachability heuristic. Specifically, in com-
puting the estimated cost of a belief state, GPT assumes that the initial state is fully ob-
servable. The cost estimate itself is done in terms of reachability (with relaxed dynamic
programming rather than planning graphs). GPT’s reachability heuristic is similar to our
hMG
level heuristic because they both underestimate the cost of the farthest (max distance) state

by looking at a deterministic relaxation of the problem. In comparison to GPT, CAltAlt

and POND can be seen as using heuristics that do a better job of considering the cost of
the belief state across the various possible worlds.

Another family of planners that search in belief states is the MBP-family of planners—
MBP [Bertoli et al., 2001a], CMBP [Cimatti and Roveri, 2000], HSCP [Bertoli et al.,
2001b] and KACMBP [Bertoli and Cimatti, 2002]. In comparison to CAltAlt and POND,

55

BRYCE, KAMBHAMPATI, & SMITH

the MBP-family of planners all represent belief states in terms of binary decision diagrams.
Action application is modelled as modifications to the BDDs. CMBP and HSCP sup-
port both progression and regression in the space of belief states, while KACMBP is a
purely progression planner. While CMBP concentrated on efficient BDD manipulations,
HSCP employs a cardinality heuristic in addition. Before computing heuristic estimates,
KACMBP pro-actively reduces the uncertainty (disjunction) in the belief state by taking
actions that effectively force the agent into states with reduced uncertainty. The motivation
for this approach is that applying heuristics to belief states containing multiple states may
not give accurate enough direction to the search. While reducing the uncertainty seems
to be an effective idea, we note that (a) not all domains may contain actions that reduce
belief state uncertainty and (b) the need for uncertainty reduction may be reduced when we
have heuristics that effectively reason about the multiple worlds (viz., our multiple planning
graph heuristics). Nevertheless, it would be very fruitful to integrate knowledge goal ideas
of KACMBP and the reachability heuristics of CAltAlt and POND to handle domains
that contain both high uncertainty and costly goals.

In contrast to these domain-independent approaches that only require models of the
domain physics, PKSPlan [Bacchus, 2002] is a forward-chaining knowledge-based planner
that requires richer domain knowledge. The planner makes use of several knowledge bases
that are updated by actions, opposed to a single knowledge base taking the form of a belief
state. The knowledge bases separate binary and multi-valued variables and planning and
execution time knowledge.

Finally, CAltAlt and POND are also related to, and an adaptation of the work on,
reachability heuristics for classical planning, including AltAlt [Nguyen et al., 2002], FF
[Hoffmann and Nebel, 2001] and HSP-r [Bonet and Geffner, 1999]. CAltAlt is the confor-
mant extension to AltAlt that uses regression search (similar to HSP-r) guided by planning
graph heuristics. POND is similar to FF in that it uses progression search based on plan-
ning graph heuristics.

7. Conclusion

With the intent of scaling belief space planning to domains where reachability of subgoals
is a non-trivial search problem, we have:

1. Discussed what the heuristic measures should be estimating.

2. Shown how to compute such heuristic measures on planning graphs.

3. Provided empirical comparisons of these measures.

4. Learned that a labelled uncertainty graph can capture the same support information
as multiple graphs, and reduces the cost of heuristic computation.

56

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

5. Learned that the labelled uncertainty graph is very useful for conformant planning
and, without considering observational actions and knowledge, can perform well in
contingent planning.

We’ve shown that planning with a Labelled Uncertainty planning Graph LUG, a con-
densed version of the multiple graphs is useful for encoding conformant reachability in-
formation. Our main innovation is the idea of “labels” – labels are attached to all literals,
actions, effect relations, and mutexes to indicate the set of worlds in which those respective
elements hold. Our experimental results show that the LUG can outperform the multi-
ple graph approach by reducing memory requirements and heuristic computation time. In
comparison to other approaches, we’ve also been able to demonstrate the utility of struc-
tured reachability heuristics in controlling plan length for both conformant and contingent
planning.

We intend to investigate two additions to this work. The first, and easier, addition is
to incorporate sensing and knowledge into the heuristics. We already have some promis-
ing results without these features in the planning graphs, but hope that they will help the
approaches scale even further on contingent problems. We see a regression contingent
planner, like the planner described in [Rintanen, 2003], being the best approach because,
as in CAltAlt the planning graph would be built once per problem, rather than for each
search node.

The second addition will be to consider heuristics for stochastic planning problems.
We foresee that planners such as Buridan [Kushmerick et al., 1994] could use these types
of heuristics to create a seed plan, which would then be order generalized, and improved
through adding support to weakly supported conditions. The advantage would be that these
heuristics would help generate a starting plan very quickly, one that is aware of some of the
non-determinism and incompleteness of the problem and much more robust than a simple
classical plan.

Acknowledgments We would like to thank the many anonymous reviewers of this work,
as well as Minh B. Do, Romeo Sanchez, Terry Zimmermam, Satish Kumar Thittamarana-
halli, and Eric Hansen for helpful discussions and feedback, and Piergiorgio Bertoli for
helping with the MBP planner. This work was supported in part by NASA grants NCC2-
1225 and NAG2-1461, and the NSF grant IIS-0308139, as well as the 2003 NASA RIACS
SSRP.

References

Ronald P.A. Petrick Fahiem Bacchus. A knowledge-based approach to planning with in-
complete information and sensing. In Artificial Intelligence Planning Systems, pages
212–221, 2002.

57

BRYCE, KAMBHAMPATI, & SMITH

Piergiogio Bertoli and Alessandro Cimatti. Improving heuristics for planning as search in
belief space. In Artificial Intelligence Planning Systems, pages 143–152, 2002.

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Planning in
nondeterministic domains under partial observability via symbolic model checking. In
Bernhard Nebel, editor, Proceedings of the seventeenth International Conference on Ar-
tificial Intelligence (IJCAI-01), pages 473–486, San Francisco, CA, August 4–10 2001.
Morgan Kaufmann Publishers, Inc.

Piergorgio Bertoli, Alessandro Cimatti, and Marco Roveri. Heuristic search + symbolic
model checking = efficient conformant planning. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence (IJCAI-01), 2001.

Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 95),
pages 1636–1642, 1995.

Blai Bonet and Hector Geffner. Planning as heuristic search: New results. In Proceedings
of the Euoropean Conference of Planning, pages 360–372, 1999.

Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic search
in belief space. In Artificial Intelligence Planning Systems, pages 52–61, 2000.

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a bdd
package. In Conference proceedings on 27th ACM/IEEE design automation conference,
pages 40–45. ACM Press, 1990.

Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. Improvements to sat-
based conformant planning. In 6th European Conference on Planning, 2001.

Alessandro Cimatti and Marco Roveri. Conformant planning via symbolic model checking.
Journal of Artificial Intelligence Research, 13:305–338, 2000.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model Check-
ing. In CAV 2002, volume 2404 of LNCS, Copenhagen, Denmark, July 2002. Springer.

Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with information
gathering and contingent execution. In K. Hammond, editor, Proceedings of the Second
International Conference on AI Planning Systems, pages 31–36, Menlo Park, California,
1994. American Association for Artificial Intelligence.

58

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

Michael R. Genesereth and Illah R. Nourbakhsh. Time-saving tips for problem solving with
incomplete information. In Proceedings of the 11th National Conference on Artificial
Intelligence, pages 724–730, Menlo Park, CA, USA, July 1993. AAAI Press.

Eric A. Hansen and Shlomo Zilberstein. LAO: A heuristic-search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1–2):35–62, 2001.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

Volume 20, special issue on the 3rd international planning competition. Journal of Artificial
Intelligence Research, 2003.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs to an
ADL subset. Technical Report report00088, IBM, 1, 1997.

Jana Koehler. Handling of conditional effects and negative goals in IPP. Technical Report
report00128, IBM, 17, 1999.

James Kurien, P. Pandurang Nayak, and David E. Smith. Fragment-based conformant
planning. In Artificial Intelligence Planning Systems, pages 153–162, 2002.

Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An algorithm for probabilistic least-
commitment planning. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), volume 2, pages 1073–1078, Seattle, Washington, USA, 1994.
AAAI Press/MIT Press.

Hector Levesque. What is planning in the presence of sensing. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI-96), 1996.

Drew McDermott. A critique of pure reason. Computational Intelligence, 3(3):151–237,
1987.

XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez Nigenda. Planning
graph as the basis for deriving heuristics for plan synthesis by state space and CSP search.
Artificial Intelligence, 135(1-2):73–123, 2002.

Edwin P. D. Pednault. Synthesizing plans that contain actions with context-dependent
effects. Technical Memorandum, AT&T Bell Laboratories, Murray Hill, NJ, 1987.

Jussi Rintanen. Product representation of belief spaces in planning under partial observabil-
ity. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI-
03), Aculpulco, Mexico, August 2003.

59

BRYCE, KAMBHAMPATI, & SMITH

David E. Smith and Daniel S. Weld. Conformant graphplan. In (AAAI-98) and (IAAI-98),
pages 889–896, Menlo Park, July 26–30 1998. AAAI Press.

Daniel S. Weld, Corin Anderson, and David E Smith. Extending graphplan to handle
uncertainty and sensing actions. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI-98). AAAI Press, 1998.

60

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

Appendix A. Omelette Example

We present an example of POND search where there is a cycle in the solution. The
omelette problem, first described in [Levesque, 1996], is simplified here to have the objec-
tive of getting one (rather than three) good eggs in one bowl. The actions are to grab a new
egg, break the held egg into a bowl, clean the contents of a bowl, and observe if a bowl
contains at least one bad egg. The action descriptions are as follows:
Grab : {ρe : ¬holding,

ρ0 : � =⇒ ε0 : (haveGood ∨ haveBad) ∧ (¬haveGood ∨ ¬haveBad)}
Break : {ρe : holding,

ρ0 : � =⇒ ε0 : ¬holding ∧ ¬empty

ρ1 : haveGood =⇒ ε1 : good,
ρ2 : haveBad =⇒ ε2 : bad}

ObserveBad : {ρe : ¬empty

o1 : good,
o2 : bad}

Clean : {ρe : �,
ρ0 : � =⇒ ε0 : empty ∧ ¬good ∧ ¬bad}

The initial belief state is:
BSI′ = ¬holding ∧ empty ∧ ¬good ∧ ¬bad ∧ ¬haveGood ∧ ¬haveBad

The goal state is:
BSG′ = good The plan (Figure 25) contains a cycle because there is no deterministic
length plan that ensures that the agent grabs a good egg, rather they have to grab, break,
and observe until getting a good egg. The solution is found by expanding the initial belief
state to get:
BS11 = Progress(BSI′, Grab)

= holding ∧ empty ∧ ¬good ∧ ¬bad∧
(haveGood ∨ haveBad) ∧ (¬haveGood ∨ ¬haveBad),

then
BS12 = Progress(BS11, Break)

= ¬holding∧¬empty∧(good∨bad)∧(¬good∨¬bad)∧¬haveGood∧¬haveBad,
and then

B2 = {BS13, BS14} = Progress(BS12, ObserveBad)

= {¬holding ∧ ¬empty ∧ good ∧ ¬bad ∧ ¬haveGood ∧ ¬haveBad,

¬holding ∧ ¬empty ∧ bad ∧ ¬good ∧ ¬haveGood ∧ ¬haveBad}.
and finally,

BS15 = Progress(BS14, Clean)

= ¬holding ∧ empty ∧ ¬bad ∧ ¬good ∧ ¬haveGood ∧ ¬haveBad,
which entails BSI′ .

61

BRYCE, KAMBHAMPATI, & SMITH

BS13

BS12

BS11

BSI’

ObserveBad

Break

Grab

BS14

Clean

O1 O2

Figure 25: Illustration of progression search for a contingent plan in the omelette problem.

We add a cycle between BS14 and BSI′ (without adding the redundant belief state
BS15).

Appendix B. Cross-World Mutexes

Mutexes can develop not only in the same possible world but also between two possible
worlds, as described in [Smith and Weld, 1998]. We describe cross-world mutexes in the
appendix because we implemented them but found that the cost of computing them out-
weighed their benefit.

Cross-world mutexes appear in our running example CBTC. For instance, L̂1 can
have a cross-world mutex between ¬arm in one world and ¬arm in the other world. This
mutex arises from the fact that the two Dunk actions – the only ways to support ¬arm
– cannot both be performed at level zero because they negate each-other’s executability
precondition. The mutex is cross-world because the respective conditional effects that give
¬arm are supported in different possible worlds. Checking only same-world mutexes, we
would not find this mutex and think ¬arm is reachable after one step, as without using any
mutexes.

The representation of cross-world mutexes requires another generalization for the la-
belling of mutexes. Same world mutexes require keeping only one label for the mutex to
signify all same possible worlds for which the mutex holds. The extended representation

62

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

keeps a pair of labels, one for each element in the mutex; if x in possible world S is mutex
with x′ in possible world S ′, we denote the mutex as the pair (.̂k(x) = S, .̂k(x

′) = S ′).
For the example of ¬arm in the previous paragraph, the mutex would be (.̂1(¬arm) =

inP1 ∧ ¬inP2, .̂1(¬arm) = ¬inP1 ∧ inP2).
The use of cross-world mutexes requires an extension of the definitions for fully-mutex-

supported and mutex-supported. We need to consider that for any pair of possible worlds
there may exist a mutex that makes a formula f not supported.

A formula f is fully-cross-mutex-supported (FSpCX(f, k)) at level k for all possible
worlds of BSP when there are no two possible worlds S and S ′ that entail BSP where f is
not supported for both worlds.

A formula f in possible world S and f ′ in possible world S ′ are cross-mutex-supported
(SpCX(f, S, f ′, S ′, k)) at level k when (i) the labels of the literals in f indicate f is sup-
ported in both S and likewise for f ′ in S ′, and (ii) there is no cross-world mutex between
the two possible worlds S and S ′ for f and f ′. For SpCX to hold for both f and f ′, SpNX

must hold for both f and f ′, and there must not exist a mutex between f and f ′. To ease
the definition, we consider a canonical form for f (and f ′), namely a CNF, C (and C′), that
are supported when:

SpNX(C, S, k) ∧ SpNX(C′, S ′, k)

and
¬∃ C∈C

C′∈C′
∀ l∈C
l′∈C′
∃(%̂k(l),%̂k(l′))∈L̂k

S |= .̂k(l) ∧ S ′ |= .̂k(l
′) (A-1)

The computation of cross-world mutexes requires changes to some of the mutex formu-
las, as outlined next. The major change is to check, instead of all the single possible worlds
S, all pairs of possible worlds S and S ′ for mutexes.

Action Mutexes Âk: The action mutexes can now hold for actions that are executable in
different possible worlds.

• Interference does not change for cross-world mutexes, except that there is a pair of
labels where (.̂k(a) = �, .̂k(a′) = �), instead of a single label.

An example of cross-world action interference mutexes is shown in Figure 26. The
discussion surrounding the reasons for mutexes is identical to the example in Figure
9, with the exception that there are two labels to each mutex, namely (�,�).

• Competing Needs changes for cross-world mutexes because two actions a and a′, in
worlds S and S ′ respectively, could be competing. Formally, a cross-world compet-
ing needs mutex ((.̂k(a) = S, .̂k(a

′) = S ′) exists between a and a′ in worlds S and
S ′ if:

63

BRYCE, KAMBHAMPATI, & SMITH

a

a’

p

q

¬q

r

l

1a

l’

l l

l’ l’

a

a’

p

r

¬q

q

l

1b

l’

l l

l’ l’

a

a’

¬q

q

p

r

l

2

l’

l l

l’ l’

>

>

>

>

>

>

Figure 26: Example of a cross-world action interference mutex.

a

a’

p

q

S1, S2 ² l

l

l’

S1, S3 ² l’

l

l’

S1

r

S3 ² l’’

l’’

S3

S2

S1

S2

S1

Figure 27: Example of a cross-world action competing needs mutex.

¬SpCX(ρe, S, ρ
′
e, S

′, k) (A-2)

An example of a cross-world action competing needs mutex is illustrated in figure 27.
Literal p holds in possible worlds S1 and S2 (denoted by label .), q holds in possible
worlds S1 and S3 (denoted by label .’), and r holds in world S3 (denoted by .”), but p
and q cannot hold together when they hold in the possible worlds (S1, S3) and (S2, S1)
because they are mutex across those possible worlds. The action a′ has the enabling
precondition q ∨ r. When checking for a competing needs mutex between a and a′,
we see that the only pair of possible worlds (S, S ′) where ¬SpCX(p, S, (q∨r), S ′, k)

holds is (S2, S1) because even though q and p are cross-world mutex for (S1, S3) and
(S2, S1) r can support a′ in S3.

Effect Mutexes Êk: The effect mutexes can now hold for effects that occur in different
possible worlds.

64

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

a

a’

p

q

¬q

r

l

1a

l’

l l

l’ l’

a

a’

p

r

¬q

q

l

1b

l’

l l

l’ l’

a

a’

¬q

q

p

r

l

2

l’

l l

l’ l’
>

>

>

>

>

>

Figure 28: Example of a cross-world effect interference mutex.

a

a’

p

q

S1, S2 ² l

l

l’

S1, S3 ² l’

l

l’

S1

r

S3 ² l’’
l’’

S3

S2
S1 S2

S1

Figure 29: Example of a cross-world effect competing needs mutex.

• Interference does not change for cross-world mutexes, except that there is a pair of
labels where (.̂k(ϕi) = �, .̂k(ϕ′

j) = �), instead of a single label.

An example of cross-world effect interference mutexes is shown in Figure 28. The
discussion surrounding the reasons for mutexes is identical to the example in Figure
11, with the exception that there are two labels to each mutex, namely (�,�).

• Competing Needs changes for cross-world mutexes because two effects ϕi of a and
ϕ′
j of a′, in worlds S and S ′ respectively, could be competing. Formally, a cross-

world competing needs mutex (.̂k(ϕi) = S, .̂k(ϕ
′
j) = S ′) exists between ϕi of a and

ϕ′
j of a′ in worlds S and S ′ if:

¬SpCX(ρi, S, ρ
′
j , S

′, k) (A-3)

65

BRYCE, KAMBHAMPATI, & SMITH

a

a’

ϕi

ϕj

ϕh’

induces, S1

mutex, S2
S1

induced
mutex, S2

S1

p

q

S1, S2 ² l

S1, S3 ² l’

l

l’S1

r

S1, S4 ² l’’
l’’

S2

Figure 30: Example of a cross-world induced effect mutex.

An example of a cross-world effect competing needs mutex is illustrated in figure 29.
Literal p holds in possible worlds S1 and S2 (denoted by label .), q holds in possible
worlds S1 and S3 (denoted by label .′), and r holds in world S3 (denoted by .′′), but p
and q cannot hold together when they hold in the possible worlds (S1, S3) and (S2, S1)
because they are mutex across those possible worlds. The conditional effect of action
a′ has the antecedent q ∨ r. When checking for a competing needs mutex between
the conditional effects of a and a′, we see that the only pair of possible worlds (S,
S ′) where ¬SpCX(p, S, (q ∨ r), S ′, k) holds is (S2, S1) because even though q and p

are cross-world mutex for (S1, S3) and (S2, S1) r can support the antecedent of the
conditional effect of a′ in S3.

• Induced mutexes change slightly for cross-world mutexes. The formula f , repre-
senting the worlds where one effect induces another, remains the same, but the mutex
changes slightly. If there exists a mutex (.̂k(ϕi), .̂k(ϕ′

h)), and ϕi induces ϕj, then the
mutex (.̂k(ϕj) = f ∧ .̂k(ϕi), .̂k(ϕ

′
h) = .̂k(ϕ

′
k)) holds.

An example of a cross-world induced effect mutex is shown in Figure 30. Literal p
holds in possible worlds S1 and S2 (denoted by label .), q holds in possible worlds
S1 and S3 (denoted by label .′), and r holds in worlds S1 and S4 (denoted by .′′).
Literals p and q are mutex across possible worlds (S2, S1). The effect ϕi of a induces
ϕj in possible world S1, ϕ′

h is mutex with effect ϕi across possible worlds (S2, S1)

66

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

a

a’

p

q

S1, S3 ² l

l

l ’
S2, S3 ² l ’

l ∨ l ’’

l ’

S1
S1

S2 ² l ’’

a’’
l ’’

S2

S3

S2
S2

Figure 31: Example of a cross-world inconsistent support mutex.

because of the mutex between p and q, and ϕj becomes induced mutex with ϕ′
h across

possible world (S2, S1).

Literal Mutexes L̂k: The literal mutexes can now hold for literals that are supported in
different possible worlds.

• Inconsistent Support changes for cross-world mutexes. A mutex (.̂k(l) = S, .̂k(l
′) =

S ′) holds for l in S and l′ in S ′ if:

¬SpCX(l, S, l′, S ′, k) (A-4)

An example of a cross-world inconsistent literal mutex is shown in Figure 31. Action
a has an effect that is supported in worlds S1 and S3 (denoted by .) and gives p,
action a′ has an effect that is supported in worlds S2 and S3 (denoted by .′) and gives
q, and action a′′ has an effect supported in world S2 (denoted by .′′) and gives p ∧ q.
There is a cross-world effect mutex between the effects of a and a′ across worlds
(S1, S2) and (S3, S2). The only possible worlds (S, S ′) where literals p and q are
¬SpCX(pS, q, S ′, k) is (S1, S2).

Appendix C. Sample POND Plan

Following is a sample plan constructed by POND using the hLUGRP−ha heuristic. The plan
is for the Rovers domain, problem 6. This is one of the more difficult problems we used
for evaluation, and we show it here to give the reader a better sense of the size of the
problems POND can solve. MBP was the only other planner that could find a solution for
this problem, but its solution had a maximum branch length of 158 actions, compared to
POND’s 23.

67

BRYCE, KAMBHAMPATI, & SMITH

1: (navigate rover0 waypoint3 waypoint0 camera0 objective1)
2: (sense_vis rover0 objective1 waypoint0)

IF: (NOT visible_from_objective1_waypoint0)
3: (navigate rover0 waypoint0 waypoint3 camera0 objective1)
4: (navigate rover0 waypoint3 waypoint1 camera0 objective1)
5: (navigate rover0 waypoint1 waypoint4 camera0 objective1)
6: (sense_vis rover0 objective1 waypoint4)

IF: (NOT visible_from_objective1_waypoint4)
7: (sense_rock rover0 objective1 waypoint4)

IF: (NOT at_rock_sample_waypoint4)
8: (sense_soil rover0 objective1 waypoint4)

IF: (NOT at_soil_sample_waypoint4)
9: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
10: (calibrate rover0 camera0 objective1 waypoint5)
11: (take_image rover0 waypoint5 objective1 camera0 high_res)
12: (sample_soil rover0 rover0store waypoint5)
13: (drop rover0 rover0store)
14: (sample_rock rover0 rover0store waypoint5)
15: (navigate rover0 waypoint5 waypoint4 camera0 objective1)
16: (navigate rover0 waypoint4 waypoint1 camera0 objective1)
17: (communicate_image_data rover0 general objective1 high_res

waypoint1 waypoint0)
18: (communicate_soil_data rover0 general waypoint1 waypoint0)
19: (communicate_rock_data rover0 general waypoint1 waypoint0)
DONE

IF: at_soil_sample_waypoint4
20: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
21: (calibrate rover0 camera0 objective1 waypoint5)
22: (take_image rover0 waypoint5 objective1 camera0 high_res)
23: (sample_rock rover0 rover0store waypoint5)
24: (navigate rover0 waypoint5 waypoint4 camera0 objective1)
25: (drop rover0 rover0store)
26: (sample_soil rover0 rover0store waypoint4)
GOTO 16

IF: at_rock_sample_waypoint4
27: (sense_soil rover0 objective1 waypoint4)

IF: (NOT at_soil_sample_waypoint4)
28: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
29: (calibrate rover0 camera0 objective1 waypoint5)
30: (take_image rover0 waypoint5 objective1 camera0 high_res)
31: (sample_soil rover0 rover0store waypoint5)
32: (navigate rover0 waypoint5 waypoint4 camera0 objective1)
33: (drop rover0 rover0store)
34: (sample_rock rover0 rover0store waypoint4)
GOTO 16

IF: at_soil_sample_waypoint4
35: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
36: (calibrate rover0 camera0 objective1 waypoint5)
37: (take_image rover0 waypoint5 objective1 camera0 high_res)
38: (navigate rover0 waypoint5 waypoint4 camera0 objective1)

68

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

39: (sample_soil rover0 rover0store waypoint4)
GOTO 33

IF: visible_from_objective1_waypoint4
40: (sense_rock rover0 objective1 waypoint4)

IF: (NOT at_rock_sample_waypoint4)
41: (sense_soil rover0 objective1 waypoint4)

IF: (NOT at_soil_sample_waypoint4)
42: (calibrate rover0 camera0 objective1 waypoint4)
43: (take_image rover0 waypoint4 objective1 camera0 high_res)
44: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
45: (sample_soil rover0 rover0store waypoint5)
46: (navigate rover0 waypoint5 waypoint4 camera0 objective1)
47: (drop rover0 rover0store)
48: (navigate rover0 waypoint4 waypoint1 camera0 objective1)
49: (communicate_image_data rover0 general objective1 high_res

waypoint1 waypoint0)
50: (communicate_soil_data rover0 general waypoint1 waypoint0)
51: (navigate rover0 waypoint1 waypoint4 camera0 objective1)
52: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
53: (sample_rock rover0 rover0store waypoint5)
54: (navigate rover0 waypoint5 waypoint4 camera0 objective1)
55: (navigate rover0 waypoint4 waypoint1 camera0 objective1)
56: (communicate_rock_data rover0 general waypoint1 waypoint0)
DONE

IF: at_soil_sample_waypoint4
57: (calibrate rover0 camera0 objective1 waypoint4)
58: (take_image rover0 waypoint4 objective1 camera0 high_res)
59: (sample_soil rover0 rover0store waypoint4)
GOTO 47

IF: at_rock_sample_waypoint4
60: (sense_soil rover0 objective1 waypoint4)

IF: (NOT at_soil_sample_waypoint4)
61: (calibrate rover0 camera0 objective1 waypoint4)
62: (take_image rover0 waypoint4 objective1 camera0 high_res)
63: (sample_rock rover0 rover0store waypoint4)
64: (drop rover0 rover0store)
65: (navigate rover0 waypoint4 waypoint1 camera0 objective1)
66: (communicate_image_data rover0 general objective1 high_res

waypoint1 waypoint0)
67: (communicate_rock_data rover0 general waypoint1 waypoint0)
68: (navigate rover0 waypoint1 waypoint4 camera0 objective1)
69: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
70: (sample_soil rover0 rover0store waypoint5)
71: (navigate rover0 waypoint5 waypoint4 camera0 objective1)
72: (navigate rover0 waypoint4 waypoint1 camera0 objective1)
73: (communicate_soil_data rover0 general waypoint1 waypoint0)
DONE

IF: at_soil_sample_waypoint4
74: (calibrate rover0 camera0 objective1 waypoint4)
75: (take_image rover0 waypoint4 objective1 camera0 high_res)
76: (sample_soil rover0 rover0store waypoint4)

69

BRYCE, KAMBHAMPATI, & SMITH

77: (drop rover0 rover0store)
78: (sample_rock rover0 rover0store waypoint4)
79: (navigate rover0 waypoint4 waypoint1 camera0 objective1)
80: (communicate_image_data rover0 general objective1 high_res

waypoint1 waypoint0)
81: (communicate_soil_data rover0 general waypoint1 waypoint0)
GOTO 56

IF: visible_from_objective1_waypoint0
82: (calibrate rover0 camera0 objective1 waypoint0)
83: (take_image rover0 waypoint0 objective1 camera0 high_res)
84: (navigate rover0 waypoint0 waypoint3 camera0 objective1)
85: (navigate rover0 waypoint3 waypoint1 camera0 objective1)
86: (communicate_image_data rover0 general objective1 high_res

waypoint1 waypoint0)
87: (navigate rover0 waypoint1 waypoint4 camera0 objective1)
88: (sense_rock rover0 objective1 waypoint4)

IF: (NOT at_rock_sample_waypoint4)
89: (sense_soil rover0 objective1 waypoint4)

IF: (NOT at_soil_sample_waypoint4)
90: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
91: (sample_soil rover0 rover0store waypoint5)
92: (drop rover0 rover0store)
93: (sample_rock rover0 rover0store waypoint5)
94: (navigate rover0 waypoint5 waypoint4 camera0 objective1)
95: (navigate rover0 waypoint4 waypoint1 camera0 objective1)
96: (communicate_soil_data rover0 general waypoint1 waypoint0)
97: (communicate_rock_data rover0 general waypoint1 waypoint0)
DONE

IF: at_soil_sample_waypoint4
98: (sample_soil rover0 rover0store waypoint4)
99: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
GOTO 92

IF: at_rock_sample_waypoint4
100: (sense_soil rover0 objective1 waypoint4)

IF: (NOT at_soil_sample_waypoint4)
101: (sample_rock rover0 rover0store waypoint4)
102: (drop rover0 rover0store)
103: (navigate rover0 waypoint4 waypoint5 camera0 objective1)
104: (sample_soil rover0 rover0store waypoint5)
GOTO 94

IF: at_soil_sample_waypoint4
105: (sample_soil rover0 rover0store waypoint4)
106: (drop rover0 rover0store)
107: (sample_rock rover0 rover0store waypoint4)
GOTO 95

70

