
A Candidate Set based analysis of Subgoal Interactions in conjunctive goal planning

Subbarao Kambhampati�, Laurie Ihrig and Biplav Srivastava
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

email: f rao , biplav , ihrig g@asu.edu
WWW: http://rakaposhi.eas.asu.edu:8001/yochan.html

Abstract

Subgoal interactions have received considerable attention in
AI Planning. Earlier analyses by Korf [11] and Joslin and
Roach [6] were done in terms of the topology of the space of
world states. More recent analyses by Barrett and Weld [1]
and Veloso and Blythe [14] were done in terms of the nature
of the planner. In this paper, we will argue that subgoal
interactions are best understood in terms of the candidate
sets of the plans for the individual subgoals. We will
describe a generalized representation for partial plans that
applies to a large class of refinement planners,and discuss the
notion of mergeability and serial extensibility of these partial
plans. The concepts of independence and serializability of
subgoals are derived by generalizing mergeability and serial
extensibility over classes of partial plans. Unlike previous
work, our analysis also applies to multi-method refinement
planners such as UCP [7]. We will show that all existing
characterizations of serializability differ only in terms of the
specific class of partial plans that they implicitly address.
Finally, we will use our interaction analysis to explore factors
affecting the selection of a refinement planner for a given
domain.

1 Introduction
One of the important ways of characterizing the complexity
of planning in a domain involves analyzing the interrelation
between the subgoals that arise in the problems in that
domain. Korf’s 1987 paper [11] characterized a set of
subgoals as independent, serializable or non-serializable,
and argued that the cost of planning increases as the subgoals
go from independent to non-serializable. Intuitively,
independence means that the subgoals can be achieved
independently and their plans concatenated to form a plan
for the conjunctive goal; while serializability means that
there exists some ordering of the subgoals in which we
can achieve the first goal, and then achieve the second one
without ever passing through a state of the world where the
first one does not hold. Korf’s definition of serializability
is couched in the state-space terminology and thus does

�This research is supported in part by NSF research initia-
tion award (RIA) IRI-9210997, NSF young investigator award
(NYI) IRI-9457634 and ARPA/Rome Laboratory planning initia-
tive grants F30602-93-C-0039 (Phase 2) and F30602-95-C-0247
(Phase 3). We Eric Jacopin and the AIPS reviewers for their
critical comments.

not readily generalize to planners that do not search in
the space of states. Barrett and Weld [1] extended Korf’s
analysis by shifting the emphasis from the state space
characterization to the nature of the planner that is used
to solve the problems. They showed that a given set of
subgoals may be serializable for a plan space planner while
being non-serializable for a state space planner. Veloso
and Blythe extend this planner based analysis of subgoal
interactions by defining a complementary characterization
of subgoal interactions they call ‘‘linkability’’ [14], arguing
that a given problem may be easily linkable for state space
planners, while being laboriously linkable for plan space
planners.

Given that there are a great variety of refinement planners
(c.f. [10, 7]), characterization of subgoal interactions that
depend on the details of the planners tie us to specific
brand-name planners in terms of which the analysis is
done, and make it hard to see the essential structure of the
interactions. It would be better if the analysis framework
were independent of planner details, and be dependent only
on some common currency, such as the subgoals and the
types of plans generated for them. Such an analysis has
hitherto been impossible since the plan representations used
by different types of planners have been incomparable.

More recently, as part of our efforts to develop a com-
mon framework for refinement planning [10, 7], we have
developed a general representation for partial plans that
is suitable for most classical refinement planners, includ-
ing state-space, plan-space, goal protection oriented, and
means-ends analysis planners. Semantics for these partial
plans are provided in terms of candidate sets, i.e., sets
of ground operator sequences that are consistent with the
constraints on the partial plans.

Since subgoals interact in terms of their subplans, we will
start by characterizing two important ways -- mergeability
and serial extensibility -- in which partial plans may inter-
act. The concepts of independence and serializability of
subgoals are derived by generalizing mergeability and se-
rial extensibility over classes of partial plans. We will then
show that all existing characterizations of serializability
can be cast as specializations of the notion of serializability
developed here, and differ only in terms of the specific class
of partial plans that they implicitly address. Our analysis is
focused on partial plans as opposed to details of the plan-

ning algorithm and defines subgoal interactions in terms of
the plans used to achieve individual subgoals. We will end
with a discussion of how our analysis can help in selecting
refinement planners for a given domain.

The rest of this paper is organized as follows. The next
section contains an overview of our planning framework. It
describes a representation for partial plans that supports a
variety of classical refinement planners, and discusses how
state-space and plan-space refinements can be modeled on
top of it. Section 3 describes two candidate set based
characterizations of subgoal interactions called mergeabil-
ity and serial extensibility, and discusses their properties.
Section 4 generalizes the analysis for individual plans over
classes of subplans for the subgoals. Section 5 describes
how mergeability and serial extension cover the previous
analyses of subgoal interactions Section 6 discusses how the
analysis of subgoal interactions can be useful in selecting an
appropriate refinement planner given a domain. Section 7
summarizes the contributions of the paper.

2 Overview of Refinement Planning
A planning problem is a 3-tuple hI;G;Ai, where I is the
description of the initial state, G is the (partial) description
of the goal state, and A is the set of actions (also called
‘‘operators’’). An action sequence (also referred to as
ground operator sequence) S is said to be a solution for
a planning problem, if S can be executed from the initial
state of the planning problem, and the resulting state of the
world satisfies all the goals of the problem.

Refinement planners [10, 8] attempt to solve a planning
problem by navigating the space of sets of potential solu-
tions (ground operator sequences). The potential solution
sets are represented and manipulated in the form of ‘‘partial
plans.’’1 Syntactically, a partial plan P can be seen as a set
of constraints. Semantically, a partial plan is a shorthand
notation for the set of ground operator sequences that are
consistent with its constraints. The latter set is called the
candidate set of the partial plan, and is denoted by hhPii.

Refinement planning consists of starting with a ‘‘null
plan’’ (denoted by P;, whose candidate set corresponds to
all possible ground operator sequences) and successively
refining the plan (by adding constraints, and thus splitting
their candidate sets) until a solution is reached. Semanti-
cally, a refinement operatorRmaps a partial planP to a set
of partial plans fP 0ig such that the candidate sets of each of
the children plans are proper subsets of the candidate set of
P (i.e., 8P0

i
hhP0iii � hhPii). Refinement planning involves

repeatedly applying refinement operators to a partial plan
until a solution can be picked up from the candidate set of
the resulting plan.

A refinement operator R is said to be complete if every
solution belonging to the candidate set of P belongs to the
candidate set of at least one of the children plans. It is easy
to see that as long as a planner uses only refinement
operators that are complete, it never has to backtrack
over the application of a refinement operator. In [7], we
showed that state-space planning and plan-space planning

1For a more formal development of the refinement search
semantics of partial plans, see [8, 10]

approaches can essentially be modeled as different varieties
of refinement operators operating on the same partial plan
representation.

2.1 Representation of partial plans
In this section, we will develop a syntactic and semantic
representation of partial plans that is adequate to support
both state-space and plan-space refinements.

A partial plan is a 5-tuple hT;O;B;ST ;Li where: T is
the set of steps in the plan; T contains two distinguished
step names t0 and t1. ST is a symbol table, which
maps step names to actions. The special step t0 is always
mapped to the dummy operator start, and similarly t1
is always mapped to finish. The effects of start
and the preconditions of finish correspond, respectively,
to the initial state and the desired goals of the planning
problem. O is a partial ordering relation over T . B
is a set of codesignation (binding) and non-codesignation
(prohibited binding) constraints on the variables appearing
in the preconditions and post-conditions of the operators. A
ground linearization of P is a permutation on its steps that
is consistent withO, with all variables instantiated to values
that are consistent withB. L is a set of auxiliary constraints
that restrict the allowable orderings and bindings among the
steps. Three important types of auxiliary constraints are:
Interval Preservation Constraints: An interval preser-

vation constraint (IPC) is specified as a 3-tuple: t
p

� t0.
Syntactically, it demands that the condition p be preserved
between t and t0 in every ground linearization of the plan.
Semantically, it constrains the candidates of the partial
plan such that in each of them, p is preserved between the
operators corresponding to steps t and t0.
Point Truth Constraints: A point truth constraint (PTC)
is specified as a 2-tuple: hp@ti. Syntactically, it demands
that the condition p be necessarily true [2] in the situation
before the step t. Semantically, it constrains all solutions
of the partial plan to have p true in the state in which the
operator corresponding to t is executed.
Contiguity Constraints: A contiguity constraint is speci-
fied as a relation between two steps: ti � tj . Syntactically,
it demands that no step intervene between ti and tj in any
ground linearization of P. Semantically, it constrains all
candidates of the partial plan such that nothing intervenes
between the operators corresponding to ti and tj.

Example: Figure 1 illustrates these definitions
through an example plan PE , which contains the
steps ft0; t1; t2; t3; t4; t5; t1g, the symbol table ft0 !
start; t1 ! end; t1 ! o1; t2 ! o2; t3 ! o3; t4 !
o4; t5 ! o5g, the ordering constraints ft1 � t2; t2 �
t3; t3 � t5; t1 � t4; t1 � t5; t4 � t5g, the contiguity con-
straints ft0 � t1; t5 � tGg, the interval preservation con-

straints ft1
q

� t2; t3
r
� t1g, and the point truth constraints

fhr@t1i; hu@t1i; hv@t1i; hw@t1ig. The ground op-
erator sequence o1o2o4o3o2o2o5 is a candidate of the plan
PE . Notice that the candidate of a partial plan may contain
operators that are not present in the partial plan, as long as
those operators do not violate the auxiliary constraints. In
contrast, the ground operator sequences o3o1o2o3o3o5 and

hr@t1i

hv@t1i
hw@t1i

hu@t1it0 t1:o1

t2:o2 t3:o3

t4:o4

t5:o5 t1

(p)

(q) (s)

:s

+r, +p

+r

:r , +u , +s

t3
r

�t1

t1
q

�t2

t0*t1 t5*t1

+w, +v

(r, u , v , w)

: r, +q

Figure 1: Example Partial Plan PE . The effects of the steps are shown above the steps, while the preconditions are shown
below the steps in parentheses. The ordering constraints between steps are shown by arrows. The interval preservation
constraints are shown by arcs, while the contiguity constraints are shown by thick dotted lines. The PTCs are used to specify
the goals of the plan

o1o2o3o4o5 are not candidates of PE (the former violates
the contiguity constraint t0 � t1, and the latter violates the

interval preservation constraint t3
r
�t1).

2.2 Goal Achievement
A ground linearization is said to be a safe ground lineariza-
tion if it syntactically satisfies all the contiguity constraints,
and the interval preservation constraints [10]. The semantic
notion of the candidate set of the partial plan is tightly
related to the syntactic notion of safe ground linearizations
[10, 8]. Specifically, safe ground linearizations correspond
to minimal length candidates (or simply ‘‘minimal candi-
dates’’) of the partial plan [10]. If a partial plan has no safe
ground linearizations, it has an empty candidate set.

In the example in Figure 1, t0t1t2t4t3t5t1 is a safe ground
linearization, while t0t1t2t3t4t5t1 is not a safe ground

linearization (since the interval preservation constraint t3
r

�
t1 is not satisfied by the linearization). The safe ground
linearization corresponds to the minimal candidate (ground
operator sequence) o1o2o4o3o5.

A ground operator sequence G is said to achieve a goal
g1 if executing G from the initial state leads to a world
state where g1 is true. A partial plan P is said to achieve a
goal g1 when all its ground linearizations are safe ground
linearizations, and the operator sequences corresponding to
them achieve g1.

Notice the dual view of plans that is being developed
here. The solution-ness and the execution semantics of
a plan P are defined in terms of its minimal candidates
alone, while its refinements are defined in terms of its full
candidate set. The candidate set of P may contain possibly
infinitely more other ground operator sequences each of
which may or may not be solutions.2

2.3 Refinement of Partial Plans
As mentioned earlier, a partial plan can be refined by
replacing it with a set of partial plans whose candidate
sets are subsets of the original plan. Three well known
refinement operations are: Forward State Space Refinement
(FSS), Backward State Space Refinement (BSS) and Plan

2In [4], Ginsberg argues for an elimination of this separation
saying that a ‘‘good’’ plan will have a large candidate set most of
which will be able to achieve the goals of the problem.

Space Refinement (PS). FSS involves growing the prefix
of a plan by introducing a contiguity constraint between
the last step of the current prefix and any operator o (either
currently in the plan, or taken from the library) that will
be applicable in the state of the world after the steps in
the current prefix are executed. An FSS refinement of
the example plan shown in Figure 1 will be to make the
operator o2 (either the instance in the plan t2 or a fresh
instance from outside) contiguous to the step t1 (i.e., put a
constraint t1 � t2). This is allowed since the preconditions
of o2 will be true in the state after the execution of t1 : o1 in
the initial state. The BSS refinement is similar to the FSS
refinement, except that it considers all feasible suffixes of
the plan. In the example in Figure 1, a BSS refinement
will involve putting a contiguity constraint between t 3 and
t5. Finally, a plan space refinement involves establishing a
precondition of a step with the help of existing or new steps,
and introducing sufficient number of ordering, binding and
IPC constraints to ensure this establishment. An example of
plan space refinement of the plan in Figure 1 will be to use
the effect s of the step t4 to establish the precondition s of
the step t3. This will involve adding the constraints t4 � t3,
and the constraint t2 � t4 (so that t2 will not violate the

established condition). Optionally, an IPC t4
s

�t3 can also be
added to the plan to protect this establishment with respect
to further step additions. A more complete discussion of
these three types of refinements and their many variations
can be found in [7].

If a planner uses FSS or BSS refinement alone, it is called
a pure state-space planner, and if it uses a PS refinement
alone, it is called a pure plan-space planner. Since all three
refinements are complete -- in that they split the candidate
set of a plan without losing any potential solutions, we can
use them all within a single problem solving episode. This
removes the strong distinctions between state-space and
plan-space planners, and allows planners that use multiple
refinements. In [7], we describe a planner called UCP that
allows arbitrary interleaving of refinements, and show that
it leads to performance improvements over pure state-space
and plan-space planners.

2.4 Classification of Partial Plans
The plan representation discussed in this section is fairly
general to allow many varieties of plans. In the following

C

A

B

Sussman Anomaly

A B C

t α

t α

t α t α

Suffix Plan

An elastic plan

Prefix Plan

On(B,C)

 Protected Prefix Plan

P1

Puton(B,C)P2

Puton(B,C)P3

Puton(B,C)

Puton(B,C)P’1

t0

t0

t0 t0

Figure 2: The Sussman Anomaly problem, and a variety of plans for solving the subgoal On(B;C).

we identify subclasses of partial plans which have inter-
esting properties from subgoal interaction point of view.
The subclasses will be identified in terms of the syntactic
restrictions on the plan constraints (see Figure 2).

A plan P for achieving a goal g from the initial state I is
called prefix plan if all the steps of the plan, except t1, are
all contiguous. Any feasible prefix plan will also have the
property that the prefix steps can all be executed from the
initial state in sequence (as otherwise, their candidate sets
cannot contain any executable operator sequences). For
example, a prefix plan for the subgoal On(B;C) in the
sussman anomaly problem is P1: t0 � Puton(B;C) � t1.
Planners that do forward search in the space of states
produce feasible prefix plans.

Similarly, a plan is said to be a suffix plan if the steps of
the plan except t0 are contiguous to each other. Any feasible
suffix plan will have the property that the result of regressing
the goal state through the plan suffix is a feasible state. A
suffix plan for On(B;C) is P2: t0 � Puton(B;C) � t1.
Suffix plans are produced by planners that do backward
search in the space of states.

Planners that search in the space of plans typically gen-
erate plans in which actions are ordered only by precedence
(‘‘�’’) relations. Since any arbitrary number of new steps
can come in between two steps ordered by a precedence
relation, we shall call such plans ‘‘elastic plans.’’ An
elastic plan for the subgoal On(B;C) in sussman anomaly
is P3: t0 � Puton(B;C) � t1.

A plan P for a subgoal g is called a protected plan
if it has IPC constraints to protect the subgoal as well
as every precondition of every step of P . Protection
of a condition c at a step s is done by adding an IPC

s0
c
� s where s0 is a step in P which gives the condi-

tion c to s. For example, a protected prefix plan for
On(B;C) in sussman anomaly is P 0

1 : t0 �Puton(B;C) �

t1 with the IPCs Puton(B;C)
On(B;C)
� t1; t0

clear(B)
�

Puton(B;C); t0
Clear(C)
� Puton(B;C). (Note that since

the partial plan is a prefix plan, no new steps can come
before Puton(B;C) in the plan. Thus, the last two IPCs
are redundant, as they can never be violated by new steps.)

Finally, it is useful to distinguish a fourth kind of plan
that we call blocked plan. A blocked plan P for a
goal g1 contains contiguity constraints that set the absolute
distance between every pair of steps in P except the t0
and t1 steps. As an example, a blocked plan for the

subgoal On(A;B) in Sussman Anomaly problem will be
t0 � Puton(C; Table) � Puton(A;B) � t1.

3 Candidate Set Based definitions of
Subplan Interactions

Given two goals g1 and g2 to be achieved conjunctively
from an initial state I, and specific subplans for achieving
either of those goals, there are two scenarios in which the
combinatorics of finding a plan achieving both goals is
controlled:

1. We can find a plan P1 for g1 and a plan P2 for g2
independently, and then merge the plans together to
produce a plan for g1 and g2. When subplans are
mergeable this way, then we can parallelize the planning
effort by working independently on the subgoals first and
then working on merging the plans.

2. We can find a plan P1 for g1 that can be refined into a
new plan for achieving both g1 and g2 without violating
any commitments made in P1. When serial extension
is possible, we will essentially be able to work on the
second subgoal without ever having to backtrack on (i.e.,
undoing) the refinements made in planning for the first
subgoal.

We will capture these two notions from a candidate
set perspective through the definitions of mergeability and
serial extension below.

Definition 1 (Mergeability) We say that a plan P1 for
achieving a goal g1 from an initial state I is mergeable
with respect to a plan P2 for achieving goal g2 if there is a
plan P 0 that achieves both g1 and g2 (from the same initial
state), and hhP 0ii � hhP1ii \ hhP2ii. (Thus syntactically, P 0

contains all the constraints of P1 and P2).
In addition, the plans are said to be simple mergeable if

every step in P 0 is present in either P1 or P2 (i.e., P 0 does
not contain any new steps), and the number of steps in P 0 is
the sum of number of steps in P1 and P2. Finally, the plans
are said to be trivial mergeable if P 0 contains no more
or less constraints (steps, orderings, bindings) than P1 and
P2.

In general, merging two plans involves either combining
steps in the plans being merged, or adding steps that are not
present in either of them. Simple mergeability essentially
ensures that the plans can be merged without adding any
new steps, or combining existing steps (thus bounding

the amount of effort required in the merging phase). In
contrast, the merging involving addition and combination
of steps can be as costly as planning itself [15]. Even
simple mergeability can lead to costly merging phases (as a
possibly exponential number of combined linearizations of
the two plans need to be considered). Trivial mergeability is
the most restrictive as it requires that the merging operation
only involve unioning the constraint sets of the two plans.

To illustrate these ideas, consider the blocks world sit-
uation where we have four blocks A;B;C and D all on
table in the initial state. The plan t0 � Puton(A;B) � t1
for subgoal On(A;B) is trivial mergeable with the plan
t0 � Puton(C;D) � t1 for On(C;D). In contrast,
the plan t0 � Puton(A;B) � t1 for On(A;B) is sim-
ple mergeable with the plan t0 � Puton(B;C) � t1
for On(B;C) (but not trivial mergeable). The plan
t0 � Puton(A;B) � t1 for On(A;B) is not simple
mergeable with the plan t0 � Puton(B;C) � t1 for
On(B;C), although it is mergeable. This is because the
only way of merging these plans will be to insert additional
steps giving rise to a plan such as t0 � Puton(A;B) �
Puton(A; Table) � Puton(B;C) � Puton(A;B) � t1.

Finally, an example of mergeability that requires combin-
ing steps in the plans being merged is the ‘‘one-way rocket’’
problem which involves transporting objects A and B from
the earth to the moon with the help of a single one-way
rocket. The plan for taking object A to the moon will be
P1 : t0 � load(A) � F ly(Rocket) � unload(A) � t1,
and the plan for taking object B to Moon will be
P2 : t0 � load(B) � F ly(Rocket) � unload(B) � t1,
However, mergingP1 andP2 to solve both the goals requires
combining the two instances of F ly(Rocket), since every
complete plan can only have one instance of F ly(Rocket).

Next, we will consider the idea of serial extention:

Definition 2 (Serial Extension) We say that a plan P for
achieving g1 from a given initial state I (i.e., executing
P from I will get us to a state where g1 is true) is
serially extensible with respect to a second goal g2 if
hhP ii \ L(g1 ^ g2) 6= ;, where L(g1 ^ g2) is the set of all
ground operator sequences that can achieve g2 from the
initial state.

Any plan P 0 whose candidate set is a subset of hhP ii \
L(g1 ^ g2) will achieve both g1 and g2. Since all candidates
of P 0 are also candidates of P , P 0 has all the constraints of
P (plus more). Thus, we never have to backtrack over any
refinements that lead to P in coming up with P 0.

Continuing the three block stacking example, the plan
t0 � Puton(A;B) � t1 for On(A;B) is serially ex-
tensible with respect to the goal On(B;C), but the plan
t0 � Puton(B;C) � t1 for On(B;C) is not serially ex-
tensible with respect to the subgoal On(A;B). To see the
latter, note that no solution for sussman anomaly can have
Puton(B;C) as the final step.

3.1 The Role of Planner vs. Partial Plans in
subplan interactions

Perhaps surprisingly, our characterization of subgoal inter-
actions shifts the attention from the type of planner to the
nature of partial plans that are being merged or extended.

The critical role played by the ‘‘planner’’ is in coming up
with the plan for the initial subgoal. If the candidate set of
that plan does contain a solution for the two goals together,
then any refinement planner which uses only complete re-
finement operators -- be they forward state space, backward
state space, plan-space or a combination thereof -- will be
able to extend the plan. This distinction may seem artificial
given that most traditionalplanners use the same refinement
strategy to generate the first subplan as well as to extend
it. However, the distinction becomes more useful when we
consider planners which can use multiple refinements, such
as UCP [7].

For example, we noted that the plan P1 : t0 �
Puton(B;C) � t1 for subgoal On(B;C) in the suss-
man anomaly is serially extensible with respect to subgoal
On(A;B). This means that any complete refinement --
including forward and backward state space refinement
strategies -- can extend this plan into a solution. To illus-
trate, here is a series of forward state space refinements
that will convert P1 into a solution. (i) Apply an instance
of the operator Puton(C; Table), to the head state giving
P2: t0 � Puton(C; Table) � Puton(B;C) � t1. (ii) Ap-
ply the Puton(B;C) step to the head state of P2 giving
P3: t0 �Puton(C; Table)�Puton(B;C) � t1 and finally
(iii) Apply an instance of the step Puton(A;B) to the head
state of P3 giving rise to a solution. It is not the case that
we need a plan space refinement for this purpose.

4 Characterizing Subgoal interactions
Mergeability and serial extension are defined in terms of
specific plans for individual subgoals. Since a particular
subgoal may have a variety of plans, given two subgoals
g1 and g2, some of the plans for g1 may be mergeable with
some of the plans of the second subgoal g2, while some
others may be serially extensible with respect to g2. In order
to exploit the computational advantages of mergeability and
serial extension, we need to consider ‘‘all possible’’ plans
of g1 (and g2). Since, as discussed in Section 2.4, there
are in general a variety of partial plans and, depending on
the refinements one uses, only a subset of these plans may
actually be realized by a refinement planner, it makes more
sense to qualify the claims with respect to a class of plans,
as we do below:

Definition 3 (Parellelizability) We will say that two sub-
goals g1 and g2 are parallelizable modulo a class of plans
P, if each plan P1 2 P for achieving g1 is mergeable with
any plan P2 2 P that achieves g2.

The subgoals g1 and g2 are said to be simple paralleliz-
able modulo the class of plans P if any plan of g1 in P is
simple mergeable with any plan of g2 in P to give rise to a
plan for g1 and g2. The subgoals are trivial parallelizable
if the plans for the subgoals are trivially mergeable.

The subgoals g1 and g2 are said to be optimal paral-
lelizable modulo the class of plans P if any optimal plan of
g1 from P is mergeable with any optimal plan of g2 of P to
give rise to an optimal plan for g1 and g2.

From the complexity point of view, parellelizability al-
lows us to use divide-and-conquer approaches for planning.
If g1 and g2 are parallelizable, then the cost of solving

the conjunctive goal is additive in the cost of solving the
individual goals, plus the cost of merging the plans. How-
ever, parallelizability does not in itself imply that actually
parallelizing the goals is either efficient (since the merging
phase can be costly) or desirable (since the merged plan
may be in optimal). For parallelization to be a win, the cost
of merging should be small. The cost depends upon the type
of merging (trivial, simple or non-simple). While trivial
mergeability takes constant time, and simple mergeability
can be NP-hard [15], merging involving the addition and
deletion of tasks can be as costly as planning itself.

Given any domain where all the actions are reversible,
any pair of subgoals from that domain will be paralleliz-
able (since we we can always ‘‘undo’’ the actions of the
individual plans for both the goals and then add actions to
find a correct plan for the overall problem). Of course, this
not only makes the merging step costlier than the original
planning problem, but also leads to very inefficient plans.
Thus, for parallelizability to be desirable, we need to have
the guarantee that the divide and conquer approach will
find ‘‘optimal plans’’ for the conjunctive goal by starting
from optimal plans for the individual goals. This leads to
the notion of optimal parallelizability. The optimality and
efficiency restrictions on parallelizability can of course be
combined. In fact, Korf’s definition of subgoal indepen-
dence [11], implies optimal and trivial parallelizability of
all subgoals.

Definition 4 (Serializability) Given a class P of plans, we
will say that g1 is serializable with respect to g2 modulo P
if every planP1 2 P of g1 is serially extensible with respect
to g2.

Serializability does not necessarily give rise to savings
in planning effort. The main reason is that while par-
ellelizability is a commutative relation, serializability is
non-commutative. It is possible for g1 to be serializable
with respect to g2 but for g2 not to be serializable with
respect to g1. Thus for the planner to be able to exploit
serializability, it needs to work on g1 first and then on g2.
When there are multiple subgoals, the chance of picking the
correct goal order is low and thus serializabilitydoes not im-
ply improvements in planning cost. Following Barrett and
Weld [1], we thus further extend the notion of serializability
to consider trivial and laborious serializability.

Definition 5 (Serialization Order [1]) Given a set of n
subgoals g1; g2 : : : gn, a permutation� on these subgoals is
considered a serialization order (modulo a class of plans
P), if every plan for achieving�[1] can be serially extended
to �[2] and any resulting plan can be serially extended �[3]
and so on.

The set of subgoals are considered trivially serializable if
all the permutations correspond to serializationorders, and
are considered laboriously serializable if a significantnum-
ber of permutations (> 1

n
) correspond to non-serialization

orderings.

Relation Between Serializability and Parallelizability:
Finally, it is instructive to note that while any form of paral-
lelizability implies serializability, even trivial serializability
does not guarantee any form of parallelizability. To see

this, consider a simple domain with only two goals g1 and
g2 and four operators defined below:

A trivially serializable but un-parallelizable domain
Op Prec Add Del
O1 p g1 w

O0
1 r g1 q

O2 w g2 p
O0

2 q g2 r

Suppose in a given problem, the initial state contains
p; q; r and w and we want to achieve g1 and g2. It is easy
to see that if g1 is achieved by O1 then we cannot achieve
g2 using O2 and have to use O02. Thus not all plans of g1
are mergeable with all plans of g2. However, g1 and g2
are trivially serializable since any plan for g1 or g2 can be
extended into a plan for both goals.

5 Relation to existing work
Readers familiar with previous efforts on characterization
of subgoal interaction will note that our notions of serial-
izability and parallelizability are defined modulo a class of
plans. In this section, we will explain how our characteriza-
tion subsumes the existing work by identifying the specific
classes of plans over which the existing characterizations
of subgoal interactions are implicitly based.

5.1 Korf’s Subgoal Interactions
Korf [11] defines two subgoals to be serializable if there
exists an ordering among the subgoals such that they can
be planned for sequentially, such that once the first goal is
achieved, the agent never passes through a state where the
first goal is violated.3

The Sussman anomaly has non-serializable subgoals ac-
cording to this definition. For example, suppose we work
on On(B;C) first and then On(A;B). A state in which
On(B;C) is true is: S:On(B;C) ^ On(C;A). However,
we cannot go from S to any goal state without violating
On(B;C).4

The following proposition shows that Korf’s definition
can be seen as a special case of our subgoal serializability
for the class of protected prefix plans.

Proposition 1 (Korf’s Serializability) Two subgoals g1
and g2 are Korf-Serializable, if they are serializable with
respect to the class of protected prefix plans.

3Joslin and Roach [6] give a similar analysis of subgoal
interactions in terms of the state space graph. In particular, they
consider the state transition graph of the domain, and identify each
subgoal with a subgraphof the transition graph (where all the states
in that subgraph satisfy that goal). These subgraphs in general
may contain several connected components. The set of subgoals
is said to be nonlinear if any of the subgraphs corresponding to the
subgoals have a connected component that does not contain a goal
state. The idea is that if the planner finds itself in a component
of the sub-graph of the goal, it cannot achieve the second goal
without undoing the first.

4There is of course another state On(B;C)^On(C;Table)^
On(A; Table) from which we can reach a solution state without
violating On(B;C). However, serializability requires that this be
true of every state that has On(B;C) true.

The qualification about ‘‘protected plans’’ is needed as
Korf requires that the goal g1 remains achieved while P1 is
being extended. The ‘‘prefix plan’’ qualification is needed
since Korf’s analysis assumes that the search is being done
in the space of world states and that the plan for the first goal
takes us to a completely specified world state. Indeed, in
sussman anomaly, the plan t0 � Puton(B;C) � t1, with

the IPCPuton(B;C)
On(B;C)
� t1 is serially extensible with

respect toOn(B;C); although the plan t0 �Puton(B;C)�
t1, with the same IPC is not.

5.2 Barrett and Weld’s Serializability
Barett and Weld [1] extended Korf’s [11] subgoal inter-
action analysis to plan space planners, and showed that
problems like sussman anomaly are serializable for the
partial order planner SNLP. Although their analysis con-
centrated on specific planning algorithms, it can also be
understood in terms of the class of plans with respect to
which serializability is being defined. Specifically, we
have:

Proposition 2 (Barrett and Weld’s Serializability)
Two subgoals g1 and g2 are serializable by Barrett and
Weld’s definition if they are serializable with respect to the
class of protected elastic plans.

Since prefix plans have smaller candidate sets than elas-
tic plans with the same set of steps, the latter naturally
have higher likelihood of being serially extensible with
the second goal. Indeed, the sussman anomaly problem is
‘‘serializable’’ for the class of elastic plans.

5.3 Relaxing the protected plan requirement
We saw that both Korf’s and Barrett & Weld’s notions of
serializability implicitly involve protected plans, which post
IPCs to protect the establishment of all the preconditions
in the plan. Relaxing the requirement for protected plans
leads to classes of problems that may not be serializable for
the class of protected plans, but are serializable for the class
of unprotected plans. This should not be surprising, given
the discussion above, since everything else being equal,
plans with IPCs have higher commitment (and thus smaller
candidate sets) than plans without IPCs.

Note that the sussman anomaly problem is indeed serializ-
able for the class of un-protected prefix plans. In particular,
the plan t0 � Puton(B;C) � t1 is serially extensible to
the solution plan t0 � Puton(B;C) � Puton(B; Table) �
Puton(C; Table) � Puton(B;C) � Puton(A;B) � t1
(which happens to be a non-minimal solution).5

We note that the protected plans made by a causal
link planner such as SNLP are more constrained than the
unprotected plans made by non-causal link planners such as
TWEAK [2] and UA [13], or planners that use disjunctive

5On the other hand, the one way rocket problem is not seri-
alizable even without the protection restriction; the critical issue
for this problem is the prefix plan requirement. Since by Korf’s
original definition, both these problems are non-serializable, and
thus indistinguishable, we note that by considering serializability
in terms of classesof plans, we can make finer-grained distinctions
among different problems.

protections (e.g. multi-contributor causal links) such as
MP and MP-I [9]. Thus, there may be domains with
subgoals that are not serializable with respect to SNLP but
are serializable with respect to these latter planners. ART-
MD-RD, first described in [9], and shown below, is one
such domain:

ART-MD-RD domain from [9]
Op Prec Add Del

Ai (i even) Ii; he Gi; hf fIjjj < ig [fheg
Ai (i odd) Ii; hf Gi; he fIj jj < ig [fhfg

To see this, consider a problem where the initial state
contains I1; I2; : : : In and he and we want to achieve two
subgoals g1 and g2. If we consider the class of protected
elastic plans, we are forced to decide which step gives the
condition he to the step A2 achieving g2, and since some of
the possibilities, such as the initial state, eventually become
infeasible in the presence of the second subgoal g1, the
problem will not be trivially serializable for this class. This
difficulty goes away when we restrict our attention to the
class of unprotected elastic plans.

In [14], Veloso and Blythe also provide a range of
domains where protection commitments become the critical
issues with respect to serializability. In particular, they
compare SNLP with a state space means ends analysis
planner which doesn’t use any protection and conclude that
in these domains, the protections can hurt the performance
of SNLP.

Although Veloso and Blythe’s observations have been
made in the context of a state-space vs. plan-space planner
comparison, they can be generalized by noting that the
critical issue once again is the commitment inherent in the
plan for the first subgoal, rather than the planner being used
to extend it. In particular, similar performance tradeoffs
would be observed if the planners being compared were
both state-space or both plan-space planners (e.g., one
being TWEAK [2] and the other being SNLP), as long as
one planner uses protections and the other doesn’t.

6 Factors Influencing the Selection of a
Refinement Planner

One of the prime motivations for understanding subgoal
interactions in refinement planning is to see if such an
understanding would help us in selecting the right type
of refinement planner (including multi-method refinement
planners such as UCP [7]) for a given domain. In this
section, we will use our analysis of subgoal interactions to
explore the various factors that affect this decision.

Based on our characterization of subgoal interactions, a
general method for selecting a refinement planner involves
(a) delineating the class of plans with respect to which most
of the goals of the domain are trivially serializable, and (b)
finding a refinement planner that is capable of generating
exactly that class of plans. However, ‘‘a’’ and ‘‘b’’ are
not completely independent. Since the serializability and
parallelizability notions are defined in terms of a given
class of plans (see Sections 2.4 and 4), and we have
not put any restrictions on the legal classes of plans, it is
theoretically possible to find a sufficiently small class of

plans with respect to which any given set of subgoals are
trivially serializable. This is not useful in and of itself if
there is no (domain-independent) refinement planner that
can generate exactly that class of plans.

Consider, for example, the artificial domain shown below
(originally described as the D�S1C2 domain by Barrett and
Weld [1]):

D�S1C1 domain of Barrett and Weld
Op Prec Add Del

A1
i Ii Gi G�

A2
i Ii Gi

All problems have the initial state where all Ii and G�

are true. Whenever the goals of the problem include both
Gi (i � n) and G�, the problems will not be trivially
serializable for the class of elastic plans, since some of
the elastic plans for the Gi subgoals will contain the steps
A1
i which delete G�. The problems will however be

serializable for the subclass of elastic plans that do not
contain any of the steps A1

i steps. Unfortunately, this latter
fact is of little help in exploiting the subgoal interactions in
the domain since elastic plans are generally generated by
plan space refinements, and domain independent plan-space
refinement will not be able to avoid generating the plans
with A1

i steps. The domain is also trivially serializable with
respect to the class of feasible suffix plans (see Section 2.4),
which can be produced by BSS refinements. This leads to
the following guideline:

Guideline 1 Given a domain, we should try to select a sub-
class of plans with respect to which the subgoals are trivially
serializable, such that there is a domain independent way
of generating that subclass of plans.

6.1 Least committed plans and Serializability
Often, we have more than one subclass of plans that satisfy
the requirements of the guideline 1. One feature that
affects the selection of subclasses in such cases is the
commitment level inherent in the various subplan classes.
The conventional wisdom is that least committed plans lead
to more efficient planning, and we will evaluate this idea
here.

Although given two plans with the same set of steps, the
plan with lesser commitment is always more likely to be
serially extensible with respect to another goal than a more
committed one, this dominance does not directly translate
to subgoal serializability, which is defined in terms of all
plans of a specific class.6 In particular, as we saw above,
the domainD�S1C2 is not trivially serializable for the class
of elastic plans, but is trivially serializable for the class
of feasible suffix plans (even though the latter are more
constrained).

The intuition about least commitment being more con-
ducive to efficient planning is true in general however when

6If we are considering case-based planning, rather than gen-
erative planning, then generating and storing partial plans with
fewer constraints is more likely to be a win, as they can be reused
and extended in more novel situations; see [5].

the domain contains a set of goals, not all of which are se-
rializable with respect to any one subclass of plans. To
see this, consider the domain below which is similar to the
domain D�S1C2 except for the augmented delete lists of
the actions.

Variant of D�S1C1 domain
Op Prec Add Del

A1
i Ii Gi G�, Ii�1

A2
i Ii Gi Ii�1

These delete lists ensure that every solution for a problem
involving the goals Gi and Gj (i < j) will have the action
achieving Gi before the action achieving Gj. Now, in
this situation, if the problem contains more than one of the
Gi subgoals, then it will not be trivially serializable with
respect to the class of suffix plans, whereas any problem
that does not contain G� will be trivially serializable for
the class of elastic plans. If we have to pick a plan for
the first subgoal without knowing what the next subgoal is
going to be, we are still better off in general picking a less
constrained partial plan. The empirical results of Barrett
and Weld [1] in domains that are laboriously serializable
for all their planners, do support this view to some extent.

Although less constrained plans are more likely to be
serially extensible, more constrained plans do have their
advantages. They are typically easier to ‘‘handle’’ in terms
of consistency and terminations checks [10]. Given a
domain containing subgoals that are trivially serializable
for two classes of plans P1 and P2, it can be more efficient
to do planning with the more constrained class of plans.
The foregoing discussion can be summarized as follows:

Guideline 2 If the set of subgoals in a domain are trivially
serializable with respect to two different subclasses of plans,
choose the subclass containing more constrained plans.

Guideline 3 If the set of subgoals in a domain are not
trivially serializable with respect to any one subclass of
plans, and no subclass is a clear winner in terms of
percentage of problems that will be trivially serializable
with respect to it, choose the subclass containing the less
constrained plans.

6.2 A Preliminary Evaluation
Although the guidelines 1-3 above are still very high level
and need to be fleshed out further, they do extend our
understanding about the selection of refinement planners.
For example, they tell us that given a planning domain con-
taining arbitrary subgoals, a reasonable way of improving
average case performance would be to consider the most
constrained class of subplans with respect to which the
maximum number of subgoals are trivially serializable, and
use a refinement planner, which only produces plans in this
class. Given a domain, where the individual subgoals are all
serializable by Korf’s definition, but the subplans for these
subgoals can contain many potential interactions, the set of
goals will be trivially serializable for both the class of elastic
plans and the class of blocked plans. However, the latter are
more restrictive class of plans, and thus using a refinement
strategy that produces them can lead to improved planning
performance.

1.0 2.0 3.0 4.0 5.0 6.0
goals

0.0

1000.0

2000.0

3000.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

ART-MD Variation
Nodes expanded

UCP-PS
UCP-BLK
UCP-MEA
UCP-FSS

Figure 3: Results showing that the right class of subplans for
a given domain may have intermediate level of commitment

We tested this hypothesis in a variation of Barrett and
Weld’s D1S2 domain shown below:

Variant of D1S2 domain
Op Prec Add Del

Ai (i odd) Ii Mi; he hf
Ai (i even) Ii Mi; hf he
Bi (i odd) Mi; he Gi he
Bi (i even) Mi; hf Gi hf

The domain contains a set of goals of the form gi which
can be achieved by actions Bi. Each Bi in turn needs
the condition Mi given by action Ai. Ai also provides
he or hf conditions to Bi, and Bi. Because he and hf
conditions are deleted by many steps, the subplans for
individual top-level goals will have many interactions, even
though the overall plans are all serially extensible. We
tested this domain on several instantiations of UCP [7]
that generate different subclasses of plans, including prefix
plans (UCP-FSS), protected elastic plans (UCP-PSS) and
blocked plans (UCP-BLK). The results are shown in the plot
in Figure 3. Our results show that blocking of steps of a top-
level goal in a serializable domain improves performance
both over plan-space (PS) refinements alone or over state-
space refinements alone. The former is because of the plan
handling cost while the latter is because the domain is not
trivially serializable for prefix or suffix plans.

7 Summary
In this paper, we addressed the issue of subgoal interactions
by concentrating on the patterns in which subplans for
conjunctive goals may be combined to form complete plans
in refinement planning. We started with a generalized
representation and semantics for partial plans, and based
the characterizations of subplan interactions in terms of
two simple notions -- mergeability and serial extensibility
of subplans for subgoals. The concepts of independence
and serializability of subgoals are derived by generalizing

mergeability and serial extensibility over classes of partial
plans. We then showed that existing characterizations of
serializability differ only in terms of the specific class
of partial plans that they implicitly address. Finally, we
used our analysis of subgoal interactions to generate some
preliminary guidelines for selecting a refinement planner
given a domain. In future, we hope to flesh out these
guidelines further.

References
[1] A. Barrett and D. Weld. Partial Order Planning: Evaluating

Possible Efficiency Gains. Artificial Intelligence, Vol. 67,
No. 1, 1994.

[2] D. Chapman. Planning for conjunctive goals. Artificial
Intelligence, 32:333--377, 1987.

[3] R. Fikes and N. Nilsson. STRIPS: A new approach to
the application of theorem proving to problem solving. In
Readings in Planning. Morgan Kaufmann, 1990.

[4] M. Ginsberg. Approximate Planning. Artificial Intelligence,
special issue on Planning and Scheduling. Vol. 76. 1995.

[5] L. Ihrig and S. Kambhampati. On the Relative Utility of Plan-
space vs. State-space planning in a case-based framework
ASU CSE TR 94-006; Dec 1994. (Submitted for publication)

[6] D. Joslin and J. Roach. A Theoretical Analysis of Conjunc-
tive Goal Problems. Research Note, Artificial Intelligence,
Vol. 41, 1989/90.

[7] S. Kambhampati and B. Srivastava. Universal Classical
Planner: An algorithm for unifying state space and plan
space approaches. In Current Trends in AI Planning: EWSP
95, IOS Press, 1995.

[8] S. Kambhampati. Refinement search as a unifying frame-
work for analyzing planning algorithms. In Proc. KR-94,
May 1994.

[9] S. Kambhampati. Multi-Contributor Causal Structures for
Planning: A Formalization and Evaluation. Artificial Intelli-
gence, Vol. 69, 1994. pp. 235-278.

[10] S. Kambhampati, C. Knoblock and Q. Yang. Planning as
Refinement Search: A Unified framework for evaluating
design tradeoffs in partial order planning. Artificial Intel-
ligence special issue on Planning and Scheduling. Vol. 76.
1995.

[11] R. Korf. Planning as Search: A Quantitative Approach.
Artificial Intelligence, Vol. 33, 1987.

[12] D. McAllester and D. Rosenblitt. Systematic Nonlinear
Planning. In Proc. 9th AAAI, 1991.

[13] S. Minton, J. Bresina and M. Drummond. Total Order and
Partial Order Planning: a comparative analysis. Journal of
Artificial Intelligence Research 2 (1994) 227-262.

[14] M. Veloso and J. Blythe. Linkability: Examining causal
link commitments in partial-order planning. Proceedings of
AIPS-94, 1994.

[15] Q. Yang, D. Nau and J. Hendler. Merging separately gen-
erated plans with restricted interactions. Computational
Intelligence, 8(2):648-676, February 1992

