Artificial
P, B Intelligence

ELSEVIER Artificial Intelligence 93 (1997) 29-61

Processing disjunctions in
temporal constraint networks *

Eddie Schwalb*, Rina Dechter '

Department of Information and Computer Science, University of California at Irvine, CA 92717, USA

Received October 1995; revised December 1996

Abstract

Temporal constraint satisfaction problems (TCSPs) provide a formal framework for represent-
ing and processing temporal knowledge. Deciding the consistency of TCSPs is known to be
intractable. We demonstrate that even local consistency algorithms like path-consistency (PC)
can be exponential on TCSPs due to the fragmentation problem. We present two new polynomial
approximation algorithms, Upper-Lower Tightening (ULT) and Loose Path-Consistency (LPC),
which are efficient yet effective in detecting inconsistencies and reducing fragmentation. Our
experiments on hard problems in the transition region show that LPC has the best effectiveness~
efficiency tradeoff for processing TCSPs. When incorporated within backtrack search, LPC is
capable of improving search performance by orders of magnitude. ©) 1997 Published by Elsevier
Science B.V.

1. Introduction

Problems involving temporal constraints arise in various areas including temporal
databases [6], diagnosis [13], scheduling [24,25], planning [19], common sense rea-
soning [28] and natural language understanding [2]. Among the formalisms for express-
ing and reasoning about temporal constraints are the interval algebra [1], point algebra
[32], Temporal constraint satisfaction problems (TCSPs) {8] and models combining
quantitative and qualitative constraints [14,20].

* This work was partially supported by NSF grant IRI-9157636, by Air Force Office of Scientific Research
grant AFOSR 900136 and by grants from TOSHIBA of America and Xerox.

* Corresponding author. E-mail: eschwalb@ics.uci.edu.

VE-mail: dechter@ics.uci.edu.

0004-3702/97/$17.00 © 1997 Published by Elsevier Science B.V. All rights reserved.
PII S0004-3702(97)00009-X

30 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

The two main types of Temporal Constraint Networks can be characterized as qual-
itative [1,32] and quantitative [8]. In the qualitative model, variables are time in-
tervals or time points and the constraints are qualitative. In the quantitative model,
variables represent time points and the constraints are metric. These two types have
been combined into a single model [14,20]. In this paper we build upon the model
proposed by Meiri [20], in which variables are either points or intervals and there are
three types of constraints: metric point-point and qualitative point-interval and interval-
interval.

Answering queries in constraint processing reduces to the tasks of determining
consistency, computing a consistent scenario and computing the minimal network.
When time is represented by (or isomorphic to the) integers?, deciding consistency
is NP-complete [8,20]. For qualitative networks, computing the minimal network
is NP-hard [8,11]. In both qualitative and quantitative models, complexity stems
from disjunctive relationships between pairs of variables and occur in many applica-
tions.

Example 1. A large NAVY cargo must leave New York starting on March 7, go through
Chicago and arrive at Los Angeles within 8-10 days. From New York to Chicago the
delivery requires 1-2 days by air or 10-11 days on the ground. From Chicago to Los
Angeles the delivery requires 3-4 days by air or 13-15 days on the ground. In addition,
we know that an AIRFORCE cargo needs to be transported using the same terminal in
Chicago as required for the NAVY’s cargo transportation (i.e. the intervals of NAVY and
AIRFORCE shipments should not overlap). The transportation of the AIRFORCE cargo
should start between March 17 and March 20 and requires 3-5 days by air or 7-9 days
on the ground.

Given the above constraints, we are interested in answering questions such as: “are
the constraints satisfiable?”, “can the NAVY cargo arrive in Los Angeles on March
13-1477, “when should the cargo arrive in Chicago?”, “how long may the NAVY cargo
transportation take?”. The first two queries reduce to deciding consistency and the third
and fourth queries reduce to computing the minimal network.

Since answering such queries is inherently intractable, this paper focuses on the design
of efficient and effective polynomial approximation algorithms for deciding consistency
and computing the minimal network. The common approximation algorithm enforces
path-consistency (PC) [8]. As we demonstrate, in contrast to discrete CSPs, enforcing
path-consistency on quantitative TCSPs is exponential. This is because in the path-
consistent quantitative TCSP intervals are broken into several smaller subintervals. This
may result in an exponential blowup, leading to what we call fragmentation.

We present two algorithms for bounding fragmentation called Upper-Lower Tighten-
ing (ULT) and Loose Path-Consistency (LPC). We show that these algorithms avoid
fragmentation and are effective in detecting inconsistencies. We also discuss five variants
of the main algorithms, called ULT-2, Directional ULT (DULT), LPC-2, Directional
LPC (DLPC) and Partial LPC (PLPC).

2 This is always the case in practice.

E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61 31

We address two questions empirically:

(1) which of the algorithms presented is preferable for detecting inconsistencies, and

(2) how effective are the proposed algorithms when used to improve backtrack search

by preprocessing and (guiding the search) by forward checking.

To answer the first question, we show that enforcing path-consistency may indeed
be exponential in the number of intervals per constraint while ULT’s execution time is
almost constant. Nevertheless, ULT is able to detect inconsistency in about 70% of the
cases in which PC does. Algorithm LPC further improves on ULT; it is both efficient
and capable of detecting almost all of the inconsistencies detected by PC.

To answer the second question, we apply the new algorithms in three ways:

(1) in a preprocessing phase for reducing the fragmentation before initiating search,

(2) in a forward checking algorithm for reducing the fragmentation during the search

and detecting dead-ends early, and

(3) in an advice generator for dynamic variable ordering.

Through experiments with hard problems which lie in the transition region (defined by
[4,21]), we show that both ULT and LPC are preferred to PC and that LPC is the
best algorithm overall. We conclude that the performance of backtrack search can be
improved by several orders of magnitude when using LLPC for preprocessing, forward
checking and dynamic variable ordering.

The organization of the paper is as follows. Section 2 summarizes the model of
TCSPs and the known algorithms for processing them. Section 3 presents algorithm
Upper-Lower Tightening (ULT) and Section 4 presents a new tractable class based on
ULT. Section 5 presents Loose Path-Consistency (LPC). Section 6 extends the results
of Sections 3, 4 and 5 to networks of combined qualitative and quantitative constraints.
Section 7 presents backtracking algorithms and Section 8 provides an empirical evalua-
tion.

2. Temporal Constraint Networks

There are three kinds of temporal constraint satisfaction problems (TCSPs):

(1) gualitative TCSPs, widely known as Allen’s interval algebra [1],

(2) quantitative TCSPs, introduced in [8], and

(3) combined qualitative and quantitative TCSPs, introduced in [20].

For simplicity of exposition, we will present our algorithms for the restricted model of
quantitative TCSPs first. Thereafter, in Section 6, we extend these algorithms to process
Meiri’s combined model [20].

A quantitative TCSP involves a set of variables, X,..., X,, having continuous do-
mains, each representing a time point. Each constraint C is a set of intervals

CE {h,.... 1} = {lanbil..... [an by1},

A unary constraint C; restricts the domain of the variable X; to the given set of
intervals

Cidif(al gX,gbl)UU(anSngbn)

32 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

L.A. AirforceStart

(ground) [13, 15]
(airy [3,4]

[3,5]
Chicago [7.9]

@n [1,2]
(ground) [10, 11]

' (10, 13] }
N.Y. AirforceEnd

Fig. 1. The constraint graph for the metric portion of the logistics problem.
A binary constraint C;; over X;, X; restricts the permissible values for the distance
X; — X;; it represents the disjunction

C,‘jd=ef(al SX;—Xi<b)U---U(an < X;— X; < by).

All intervals are assumed to be open and pairwise disjoint.

Example 2. Consider the cargo example given in the Introduction. Let the variables be:

Xo =Jan 1, namely the beginning of the time line,
XNy = time point at which the NAVY cargo was shipped out of N.Y.,

Xchicago = time point at which the NAVY cargo arrived into
and was shipped out of CHICAGO,

X1.a. = time point at which the cargo arrived into L.A.,
X AirforceStart = time point at which the AIRFORCE shipment starts,

X airforceEnd = time point at which the AIRFORCE shipment ends.
The metric constraints are:

Xny — Xo € [March 7,March 7],
Xchicago — XNy, € [1,2] U [10,11],
Xra. — Xcnicago € [3,4] U [13,15],
Xia — Xny € [8,10],
XairforceEnd — XAirforceBegin € [3,5] U [7,9],
XairforceBegin — XNy, € [10, 13].
Definition 3 (Solution). A tuple X = (xy,...,x,) is called a solution if the assignment

Xy =x1,...,X, = x, satisfies all the constraints. The network is consistent iff at least
one solution exists.

A quantitative TCSP can be represented by a directed constraint graph, where nodes
represent variables and an edge { — j indicates that a constraint C;; is specified. Every
edge is labeled by the interval set as illustrated in Fig. 1. A special time point X is

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 33

introduced to represent the “beginning of the world”. All times can be specified relative
to Xo and thus each unary constraint C; can be represented as a binary constraint C,
(having the same interval representation). The constraint graph representing the logistics
example is given in Fig. 1.

The minimal network is useful for answering a variety of queries, as described below,
because it describes explicitly all the implicit (induced) binary constraints.

Definition 4 (Minimal nerwork). A value v; and v;; is a feasible value of X; and
X; — X;, respectively, if there exists a solution in which X; = v and X; — X; = vy
respectively. The minimal domain of a variable is the set of all feasible values of that
variable. A minimal constraint C;; between X; and X; is the set of feasible values for
X; — X;. A network is minimal iff its domains and constraints are minimal.

2.1. Answering queries

For completeness, we describe the set of queries that the quantitative TCSP model is
designed to support. Consider the following sample queries:

(1) Is the network consistent, and if so, what is a possible scenario?

(2) Can X; occur 5 to 10 minutes after X;?

(3) Must X; occur 5 to 10 minutes after X;?

(4) At what possible times can event X; occur?

(5) Given the time at which event X; occurred, when can X; occur?

These queries can be partitioned into two groups: those that can be reduced to the
task of deciding consistency and those that require computing the minimal network.

Clearly, Query 1 requires testing the consistency of the TCSP. To answer Query 2, we
add the constraint X; — X; € [5, 10] and test for consistency. If the resulting network is
consistent the answer to the query is yes; otherwise it is no. Query 3, often referred to as
entailment, can be answered by adding (to the network) the negation of the constraint,
namely X; — X; € [—o0,5) U (10,00], and checking for inconsistency. If consistency
was detected by computing a solution, that solution provides a counter example that
shows how X; can occur less than 5 minutes or more than 10 minutes after X;.

Queries 4 and 5 can be processed in constant time by a simple table lookup, after
the equivalent minimal network (recall Definition 4) has been computed. The event
associated with X; can occur at time ¢ for every t € Cp;, where Cy; is the constraint
between Xy and X; in the minimal network. Given that X; occurs at time ¢,, event X;
can occur at time t; € C;; — t;, where Cj; is the constraint between X; and X; in the
minimal network.

2.2. Path-consistency

Deciding whether a given network is consistent is NP-complete [8] and deciding
whether it is minimal is NP-hard (which subsumes NP-complete). Therefore, it is
common to use algorithms that detect some (but not all) inconsistencies and tighten the
constraints to obtain an approximation of minimal constraints. Such algorithms enforce
local k-consistency by ensuring that every subnetwork with k variables is minimal

34 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

T = {[-1.25,0.25), [2.75,4.25]}
S = {[-0.25,1.25], [3.77,4.25]}
TNS = {[—0.25,0.25], [3.75,4.25]}
T® S = {[-1.50,1.50], [2.50,5.50], [6.50,8.50]}

Fig. 2. An illustration of the N and the © operations.

[7]. Here, we present path-consistency (3-consistency) for quantitative TCSPs. For
qualitative TCSPs, 3,4-consistency algorithms are covered by [30].
Path-consistency is defined using the N and the © operations (see Fig. 2):

Definition 5 (Operators). Let T = {I),...,1;}} and S = {Ji,...,Jn} be two sets of
intervals which can correspond to either unary or binary constraints.
(1) The intersection of T and S, denoted T N S, admits only values that are allowed
by both of them.
(2) The composition of T and S, denoted T ® S, admits only values r for which there
exists t € T and s € S such that r =t + s (Fig. 2).

The intuition behind enforcing path-consistency is as follows: We would like to
compute the constraints induced by the composition of Ci2 ® C23 ® - - - © Cy_ 1 along
the path from X; to X;. After path-consistency is enforced, we are guaranteed that C x
is tighter than or equal to the constraint induced along this path.

Definition 6. A constraint C;; is path-consistent iff Cij C Ny (Cir ©Cy;) and a network
is path-consistent iff all its constraints are path-consistent.

Any arbitrary consistent quantitative TCSP with non-dense time domains (as is always
the case in practice) can be converted into an equivalent path-consistent network by
repeatedly applying the relaxation operation C;; «— C;; N (Cy @ Cy;) until a fixed point is
reached. If the domains are dense, it is unclear under what conditions a fixed point can
be reached in finite time. Fig. 3 presents an algorithm for enforcing path-consistency. For
completeness, we also describe a weaker yet more efficient version of path-consistency,
called Directional Path-Consistency (DPC), which is tied to a particular ordering of the
variables [9].

Theorem 7 (Dechter et al. [8]). If time is not dense then algorithms PC and DPC
terminate in O(n*R3) and O(n®R?) steps respectively, where n is the number of vari-
ables and R is the range of the constraints, i.e. the difference between the lowest and
highest numbers specified in the input network.

E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61 35

Algorithm PC

1 Q — {(i,k,g)I(i < 5) and (k #i,5))

2. while @ # {} do

3 select and delete a path (3, k,7) from Q

4 if C','J #Cix ® Ch; then

5. Ci; — Ci; N (Cix ® Ckj)

6 if Ci;j ={} then exit (inconsistency)

7 Q—=Q U {(i, 3, k), (k,iyi) | 1<k <miskk#j)
8 end-if

9. end-while

Algorithm DPC

1. for k — n downto 1 by -1 do

2 for Vi, j < k such that (z,k), (k,7) € £ do

3 if Ci; #Cix ©®Cx; then

4. E—~FEu(,;)

5. Cij — Ci; N {Ci © Cyj)

6 if C;; ={} then exit (inconsistency)
7 end-if
8 end-for
9. end-for

Fig. 3. Algorithms PC and DPC.

[11,12) [16,17] w [11,12) [16,17]

[23,24] [21,22] {23,24)

[0,22] [23.33] [34,50] [1.3] (11,13] [17.19] [21.22}] [23.23]
[24.26] [27,29] {34,36] (37,39] [44.46]

Fig. 4. The fragmentation problem.

Example 8. Consider a constraint X; — X; € [—1000,-990] U [—800,+800] U
[990, 1000]. The range R of this constraint is [—1000, 1000]. For such R, the bound
given in Theorem 7 suggests that PC might need to update the constraints thousands of
times.

2.3. Fragmentation

In contrast to discrete CSPs, enforcing path-consistency on quantitative TCSPs is
problematic when the range R is large or the domains are continuous [8,24]. An upper
bound on the number of intervals in 7 ® S is |T] - |S|, where |T| and |S| are the number
of intervals in 7 and § respectively. As a result, the total number of intervals in the
path-consistent network might be exponential in the number of intervals per constraint
in the input network, yet bounded by R when integer domains are used.

36 E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61

Floyd - Warshall
Minimal Distance
4 Algorithm

Distance Graph

{0,15)
[2,20)

Fig. 5. Processing an STP.

Example 9. Consider the network presented in Fig. 4, having three variables, three
constraints and three intervals per constraint. After enforcing path-consistency, two con-
straints remain unchanged in the path-consistent network while the third is broken into
10 subintervals. As this behavior is repeated over numerous triangles in the network,
the number of intervals may grow exponential in the number of intervals per con-
straint.

3. Upper-Lower Tightening (ULT)

Enforcing path-consistency computes a tighter equivalent network that approximates
the minimal network and is useful for answering a variety of queries. The problem with
enforcing path-consistency is that the relaxation operation Cjj < C;; N (Cy © Cy;j) may
increase the number of intervals in Cj;. Our idea is to compute looser constraints which
consist of fewer intervals that subsume all the intervals of the path-induced constraint.

3.1. Simple temporal problems

Fragmentation does not occur when we enforce path-consistency on the special class
of quantitative TCSPs called the Simple Temporal Problem (STP). In these networks,
only a single interval is specified per constraint.

An STP can be associated with a directed edge-weighted graph, Gy, called a distance
graph (d-graph), having the same vertices as the constraint graph G; each edge i — j
is labeled by a weight w;; representing the constraint X; — X; < wyj, as illustrated in
Fig. 5. An STP is consistent iff the corresponding d-graph G4 has no negative cycles and
the minimal network of the STP corresponds to the minimal distances in G4. Therefore,
an all-pairs shortest path procedure (Fig. 5) is equivalent to enforcing path-consistency
and is complete for STPs [8].

3.2. Avoiding fragmentation

The algorithm for approximating path-consistency, called Upper-Lower Tightening
(ULT), utilizes the fact that an STP is tractable. The algorithm treats the extreme points

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 37

Algorithm Upper-Lower Tightening (ULT)

1 input: N

2 NI” — N

3. repeat

4, N « N

5 compute N', N”, N'.

6. until Vij (low(Ci}) = low(Ci;)) and (kigh(Cl)) = high(Ci;))

; which implies no change
or iy (high{Cl}) < low(C!"))

7 3

7. if Vij (high(Cl) > low(C!})) output: N
otherwise output: “Inconsistent.”

Fig. 6. The Upper-Lower Tightening (ULT) algorithm.

of all the intervals associated with a single constraint as one big interval, yielding an STP,
and then performs path-consistency on that STP. This process cannot increase the num-
ber of intervals per constraint. Finally, we intersect the resulting simple path-consistent
minimal network with the input network.

Definition 10 (Upper-Lower Tightening). Let C;; = [I), ..., I,] be the constraint over
variables X; and X; and let low(C;;) and high(C;;) be the lower and upper bounds of
Cij, respectively. We define N, N/, and N" as follows:

e N'is an STP derived from N by relaxing its constraints to

C,.’j = [low(Ci;), high(Cy;)].

e N'" is the minimal network of N’ (N’ is an STP).
e N is the intersection of N and N, namely C//" = C// N C;;.

Algorithm Upper-Lower Tightening (ULT) is presented in Fig. 6. The network N’ is
a relaxation of N. N” is computed by applying the all-pairs shortest path algorithm on
N’. Because N is equivalent to N, intersecting N with N results in a network that is
equivalent to N.

Lemma 11. Let N be the input to ULT and R be its output.
(1) The networks N and R are equivalent.
(2) Every iteration of ULT (except the last one) removes at least one interval.

Proof. (1) Let Sol(N) denote the set of solutions of the network N, then Sol(N) C
Sol(N') = Sol(N"). This implies that Sol(N) N Sol(N") = Sol(N) and therefore
Sol(N"") = Sol(N).

(2) Let N! and N/ be the networks N’ and N at iteration i. If an interval is not

i
removed at iteration i, N/’ = N/, = N/ |, which implies no change. [

+1 7 i

38 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Algorithm ULT computes looser networks than those resulting from enforcing full
path-consistency. A qualitative worst-case comparison is given in Section 5.1 and is
depicted in Fig. 14. A quantitative empirical comparison is given in Section 8.

Example 12. An example run of ULT on a sample problem instance is given in Fig. 7.
We start with N and compute N{,), N¢,, and N{,. Thereafter, we perform the second
iteration in which we compute N{,,, N{,, and N}, and finally, in the third iteration, there
is no change. The first iteration removes two intervals, while the second iteration removes
one. In addition, ULT computes an induced constraint Cyz, which allows inferring a new
implicit fact that was not specified explicitly in the input network.

Theorem 13. Algorithm ULT terminates in O(n’ek+e*k?) steps where n is the number
of variables, e is the number of edges, and k is the maximal number of intervals in
each constraint.

Proof. Because computing N’ requires processing every interval in the network at most
once, this computation requires O(ek) steps. Computing N” from N’ can be done by
applying the all-pairs shortest path algorithm (e.g. Floyd—-Warshall) and thus requires
O(n?) steps. Computing the intersection NS of two sorfed constraints requires O(|T|+
[S|) steps, thus computing N’ from N’ requires O(ek) steps. This means that each
iteration requires O(n® + ek) steps. The halting condition (Fig. 6, line 6) implies that at
every iteration at least one interval must be removed (Lemma 11). Therefore, at most
O(ek) iterations are performed yielding a total complexity of O(n’ek +¢%k?) steps. [

To explain the difference between ULT and PC, we view every disjunctive constraint
as a single interval with holes. The single interval specifies the upper and lower bounds
of legal values while the holes specify intervals of illegal values.

Lemma 14. Algorithms ULT and PC compute the same upper and lower bounds.

Proof. The lower and upper bounds are modified using the N and the & opera-
tors. We observe that low(Cy © Cyj) = low(Cy) + low(Cyi;) which is equal to the
lower bound of [low(Cy),high(Ciy)1 @ [low(Cy;),high(Cy;)]. A similar observa-
tion is made for the upper bound. Consequently, the lower and upper bounds of
Cii N ([Low(Cy), high(Cit)] © [low(Cy;), high(Cy;) 1) and C;j N (Cyx ® Cy;) are equal.
Additional iterations performed by PC only enlarge the “holes”. [J

Thus, the difference between ULT and PC is the propagation of the holes. In contrast
to PC, ULT is guaranteed to converge in O(ek) iterations even if the interval boundaries
are not rational numbers.

3.3. Variations of ULT

While an iteration of ULT is divided into three sequential stages that involve the
whole network, algorithm PC uses simpler local operations over triplets of variables and
admits parallel execution. We next present two variations on ULT, called ULT-2 and

E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61 39

{teration 1 Iteration 2 Iteration 3

X

{20,40]
[60,70]

X3 050 X,

120,70}

[10,40]

(20.70]

[20.40]

[20,40]
[60,70]

160,70]

[20.40)
160,70}

[30,110]

Fig. 7. A sample run of ULT.

Directional ULT (DULT), which perform such local computations (see Fig. 8). We

use low(C;;) and high(C;;) to denote, respectively, the lowest lower bound and highest
upper bound of the union of the intervals in Cj;.

Theorem 15. Given a network N, let n be the number of variables, e the number of
constraints and k the maximum number of intervals per constraint.
(1) Algorithms ULT-2 and DULT terminate in O(n’k? + ek’n) and O(n’k?*) steps
respectively and compute a network equivalent to their input network.
(2) Algorithm ULT-2 computes a tighter network than DULT.

40 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Algorithm ULT-2

L Qo {(ik,)I(i < 7) ond (k #1,7)}
2. while Q # {} do
3. select and delete a path (i, k,) from Q
4. Ti'; — Ci; 0 ([low(Cix), high(Cix)} © [low(Cx;), high(Ck;)])
5. if T{; ={} then exit (inconsistency)
6. if T!] # Ci; then
Q=Q U {5k (ki) [1<k <mizh#])
7. Cij — T:}’
8. end-while

Algorithm DULT

1 for k «— n downto 1 by -1 do

2 for V1, j < k such that (i, k), (k,7) € E do

3 Til;’ —~Ciyn ([low(C.'k), high(c,'k)] ® [low(Ck]), hz’gh(ij)])
4, if T}) ={} then exit (inconsistency)

5. if T); # Ci; then E — EU(s,j)

6 Cyy = T

7 end-for

8 end-for

Fig. 8. Algorithms ULT-2 and DULT.

Proof. (1) Algorithm ULT-2 initializes the queue with O(n?) triangles. A set of O(n)
triangles is added to Q (Fig. 8, Algorithm ULT-2, line 6) only if at least one interval
was removed from the network, and therefore at most O(ekn) triangles are added.
Since computing T © S requires at most O(k?) steps, the total complexity for ULT-2 is
O(n*k? + ek®n). Algorithm DULT performs a single pass of O(n*) triangles and each
triangle requires O(k?) steps.

(2) Every triangle that is processed in DULT is also processed in ULT-2 but not vice
versa, thus DULT is weaker. 0O

Algorithm ULT can be extended to process discrete constraint satisfaction problems
(see Appendix A).

4, The STAR tractable class

This section analyzes the class of quantitative TCSPs in which the binary constraints
C;; specify single intervals but the unary constraints Cyp; may specify an arbitrary number
of intervals. It subsumes the class of convex point algebra networks with holes in their
domains [20], but it is not comparable to the class of STPs with disjunctions of
inequations [15] over dense domains.

Definition 16 (STP upper bound). The STP upper bound of a network N, denoted
N’ = STP(N) is such that C}; = [low(C;), high(Cy;)].

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 41

Lemma 17 (Dechter et al. [8]). For a minimal STP with constraints C;; = [L;;, U;;],
the instantiation X; = Ly; is a solution.

Lemma 18. For every quantitative TCSP N, if STP(N) is minimal, then the instanti-
ation X; = low(Cy;) is a solution of N if all the binary constraints (i.e. Cj, ¥i > 0,
Vj > 0) specify a single interval.

Proof. From Lemma 17 it follows that this instantiation is a solution of STP(N). Thus,
all the binary constraints are satisfied by this instantiation. Clearly, because Ly; € Cy; =
C;, all the disjunctive constraints Cy; are also satisfied by this instantiation. [

Lemma 19. Algorithm ULT computes a network N whose STP(N) is minimal.
Proof. Follows immediately from Definition 10. O
From Lemmas 18 and 19 we obtain the following theorem.

Theorem 20. Algorithm ULT correctly decides consistency of TCSPs in which Cj;,
Vi > 0, Vj> 0, is specified by a single interval.

This class of problems is frequently encountered. Consider, for example, scheduling
tasks that use resources available in a set of time windows. The availability of resources
constrains the times at which tasks can be accomplished and can be describe by unary
constraints. For example, suppose we would like to transport cargo from the east coast to
the west coast. To use an air carrier we need to consider resource availability constraints
described by disjunctive unary constraints on the times that cargo loading and unloading
can occur.

This class can be generalized using the notion of a disjunctive constraint graph
G(V,E) whose vertices V correspond to variables and edges E specify disjunctive con-
straints only.

Corollary 21. ULT is complete for TCSPs whose disjunctive constraint graph is a
STAR, namely a tree in which all edges are incident on a single node.

Proof. Label the root of the STAR by X, and apply Theorem 20. [

Moreover, even if the input TCSP is not a STAR, ULT may remove disjunctions and
obtain a STAR network. In such cases, ULT is complete.

An important consequence of the above is that ULT reduces the search space by
an exponential factor. Since the search algorithm need not consider all the disjunctive
constraints connected to the node with the maximal degree, the search space is reduced
by a factor of O(k%‘?)), where G is the disjunctive constraint graph, d(G) is the
maximal degree of G and k is the disjunction size, namely the number of intervals in
each constraint. In Section 8.2.1 we show empirically that without preprocessing with
ULT even tiny problems were computationally prohibitive and could not be solved in a
reasonable amount of time.

42 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Algorithm Loose Path-Consistency (LPC)

1. input: N
2. N'—N
3. repeat
4. N — N
5 Compute N’ by assigning 7,, = Nvk(Cix ® Cx;), for all 4, 5.
6 Compute N by loosely intersecting T}; = C;; « T);, for all 4, 5.
7. ountil 30,5 (T]] = ¢) ; inconsistency, or
or Vi,j |T{; =|Ci;| ; mo interval removed.

8. if 345 (T=¢) then output “inconsistent.”
else output: N”.

Fig. 9. The Loose Path-Consistency (LPC) algorithm.

Unfortunately, our analysis cannot be extended to networks whose disjunctive con-
straint graph is a general tree. Consider a triangle X;, X;, X, with the constraint bounds
[Lij, Uij], [Li,Ui] and [Ly;, Uy;] respectively. When STP(N) is minimal we are
guaranteed that L;; > Ly + Ly;. Thus, instantiating Xz = X; + Ly and X; = Xi + Ly
does not guarantee that X; — X; € [L;;, U;;].

5. Loose Path-Consistency (LPC)

Now we present algorithm Loose Path-Consistency (LPC), which is stronger than
ULT and its variants, namely it generates tighter approximations to PC. The algorithm
is based on the following loose intersection operator.

Definition 22. Let 7={/},5,...,I,} and S ={J1, J2,...,J,} be two constraints. The
loose intersection, T< S consists of the intervals {I{,..., 1/} such that Vi 1/ = [L;, U;]
where [L;, U;] are the lower and upper bounds of the intersection /; N S.

It is easy to see that the number of intervals in C;; is not increased by the operation
C,'j — C,‘j < (Cik © ij). In addition, V& C,‘j) C,‘j < (Cik © ij) 2 C,‘j n (C,‘k © ij) and
TS #+ SaT.

Example 23. Let 7 = {[1,4],[10,15]} and S = {[3,11],[14,19]}. Then T« S =
{[3.41,[10,15]}, 84T = {[3, 11], [14,15]} while SNT = {[3,41,[10,11],[14,15]}.

According to Definition 6, a constraint C;; is path-consistent iff C;; C Ny (Cy © Cyj).
By replacing the intersection operator N with the loose intersection operator <, we can
bound the fragmentation.

Algorithm LPC is presented in Fig. 9. The network N’ is a relaxation of N and
therefore loosely intersecting N” with N results in an equivalent network.

E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61 43

Iteration 1 Iteration 2 Tteration 3

N X, 110201 100,110 X,

180.100]
[150,160) 20,40
1801901 (1001301
J>——‘—:é
|
X2 X,
(50,701 1110,)20) :
1130.140] (160.190)
60-30] 110,30] (40.70]
, , .
s ., ' {10.30] g 10,301
N, [110,130] (140.160] N, N,
170.90] {-i60-120]
140.60] 1130.150} I L10.70) 1130,150) (130,150]
/ 130,160y | [160.180] L6301 (1a6.160] | 110,30} ’/ 1140.160) 11301
(12302501 | e090] (1240.250] |s }
\ | \ Ve \
A \\
-100,.60]] 1100,020] 1100.120)]
1-10.40] [90.120] //
30.50]
{30,601 (120.140]
. [10:200 10,0101 + 10,20 s 10.20)
N, NG, N v

1 |
{130,140 1130,140) ! 1130.140)
120301 120,301 120,301
{ 1150.160] J |

(£150.160) i 1150, 160}
|

\ \

\ \

1oy1120) { .20 { 1110120

/

Fig. 10. A sample run of LPC.

Example 24. In Fig. 10 we show a trace of LPC on a sample quantitative TCSP. We
start with N and compute N{, and N{},. Thereafter, we perform a second iteration in
which we compute N{,, and N{;,. Finally, in the third iteration, there is no change.
The first iteration removes seven intervals while the second iteration removes a single
interval. We see that LPC explicates an induced constraint Cpy, which allows to infer a
new implicit fact about the times that event X; can occur. Note that applying ULT on
the same network will have no effect and applying PC on it results in the same network
as results from applying LPC.

Lemma 25. Let N be the input to LPC and R be its output.
(1) The networks N and R are equivalent.
(2) Every iteration of LPC (excluding the last) removes at least one interval from
one of the constraints.

Proof. Immediate. []

44 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

[0.1]
[16,17)
[23,24]

[0,1] [1.2)
[16,17] Loose Path-Consistency {11,12]

[11,12]
[21,22] (23,24} [21,22]

[0,22] [23,33] [34,50] {1,22] [23,29] [34.46]

Fig. 11. Solving the fragmentation problem.

Theorem 26. Algorithm LPC terminates in O(n’k3e) steps where n is the number of
variables, e is the number of constraints and k is the maximal number of intervals in
each constraint.

Proof. Computing N’ requires processing every triangle in the network once, thus re-
quires O(n’k?) steps. Because in every iteration at least one interval is removed, there
are at most ek iterations. The complexity is therefore O(rn’k3e). O

Algorithm LPC computes tighter networks than ULT. For detailed execution, see
Fig. 10. To clarify the differences among ULT, LPC and PC, we can view every dis-
junctive constraint as a single interval with holes (as in Section 3.2). The single interval
specifies the upper and lower bounds of legal values, while the holes specify intervals
of illegal values.

Lemma 27. Algorithms ULT, LPC and PC compute the same upper and lower bounds.

Proof. Using the same arguments as in the proof of Lemma 14 we show that the lower
and upper bounds of C;; < (Cyx © Cy;) and

Cij N [low(Cix), high(Ci) 1 © [Low(Cy;j), high(Cy;)]
are equal to the bounds of C;; N (Cy © Cy;). O

Thus, the difference among ULT, LPC and PC is in their propagation of holes.
Algorithm ULT does not change the holes. LPC may enlarge the holes, while PC may
increase their number.

5.1. Variations of LPC

We next present two variations on LPC which have the same structure as PC and
DPC. These algorithms, presented in Fig. 12, are called LPC-2 and Directional LPC
(DLPC). They differ from PC and DPC only in using the loose intersection operator <
instead of the strict intersection operator N.

Theorem 28. Given a network N, let n be the number of variables, e be the number
of constraints and k be the maximum number of intervals per constraint. Algorithms
LPC-2 and DLPC terminate in O(n’k? + ek’n)) and O(n’k?) steps, respectively, and
they compute TCSPs which are equivalent to their input.

TR

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 45

Algorithm LPC-2
1 Q<—{(3,k,])|(t<]) and (k5£z:])}
2. while @ # {} do
3. select and delete a path (1, &, j) from Q
4. T,-’J —Cija (C,'k ©® CkJ)
5 if T/, ={} then exit (inconsistency)
6 if |T,"]‘| < lCIJ| then

Q—Q U{(’i,j,k),(k,i,j) I 1<k<ni#k#j }
7. Ci; — T);
8. end-while

Algorithm DLPC

1 for k — n downto 1 by -1 do

2 for Vi, 5 < k such that (¢,k),(k,j) € E do
3. T,'J — Cj; q(CikG)Ck,)

4. if T{, ={} then exit (inconsistency)
5 if |T};| <|Cij| then E — EU(i,j)
6 Cij — T,-'J

7 end-for

8 end-for

Fig. 12. Algorithms LPC-2 and DLPC.

Proof. Algorithm LPC-2 applies the operation Cj; «— Cj; < (Cix © Cyj) which does not
change the set of solutions, and thus the resulting network is equivalent. Initially, the
queue Q consists of O(n®) triangles. A set of O(n) triangles is added to Q (LPC-2,
line 6) only if at least one interval was removed from the network, and therefore at most
O(ekn) triangles are added. Since computing T ® S requires at most O(k?) steps the
total complexity of LPC-2 is O(n*k* + ek>n). Algorithm DLPC applies the operation
Cij « Cij < (Cyx © Cy;) at most O(n’) times. Each such operation does not change
the set of solutions and requires O(k?) steps. Thus the overall complexity of DLPC is
ok, O

5.2. Partial LPC (PLPC)

To refine the tradeoff between effectiveness and efficiency, we suggest another variant
for constraint propagation, called Partial LPC (PLPC). We apply the relaxation opera-
tion C;; « C;; < (Cyx ©® Cy;) only in cases where C;; and at least one of Cy; and Cy; is
non-universal in the input network. Consider, for example, the tree network in Fig. 13(a)
and the circle network in Fig. 13(b). The dashed lines outline several triangles that are
not processed.

5.3. Relative effectiveness

The partial order on the effectiveness of all the algorithms presented in this paper is
shown in Fig. 14. A directed edge from algorithm A4, to A, indicates that A, computes

46 E. Schwalb, R. Dechter/ Ariificial Intelligence 93 (1997) 29-61

Triangles not processed

Exponential

Fig. 14. The partial order on the effectiveness.

an equivalent network which is equal or tighter than 4; on an instance by instance
basis. This means that 4, can detect inconsistencies that .4, cannot detect, but not vice
versa. Note that algorithms PC and DPC are exponential.

6. Combining quantitative and qualitative constraints

In this section, we present Meiri’s extension [20] which combines qualitative and
metric constraints over time points and intervals.

A combined qualitative and quantitative TCSP involves a set of variables and a set
of binary constraints over pairs of variables. There are two types of variables, point and
interval variables. The constraint C;; between a pair of variables, X;, X; is described by
specifying a set of allowed relations, namely

Cij dg(Xi r Xj) V-V (X riXj). (N

There are three types of relations, or alternatively, disjunctive constraints:

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Relation Symbol Inverse Example
X before Y b bi E

X starts Y s si

X during Y d di

X finishes Y f fi

X after Y a ai

Fig. 15. The five qualitative point-interval relations (X is a point and Y is an interval).

Relation Symbol Inverse Example
X before Y b bi
X equal Y = =
X meets Y m mi
X overlaps Y 0 oi
X during Y d di
X starts Y s si
X finishes Y f fi

Fig. 16. The 13 qualitative interval-interval relations.

48 E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61

L.A. AirforceStart

(ground) [13‘ 15]
(air} [3,4]
(3.9]
Chicago @

| 7.9

@) [1,2)
(ground) []0.”]

[10, 13))
N.Y. AirforceEnd

Fig. 17. The complete constraint graph of the logistics problem.

(1) A point-point constraint between two point variables X;, X; is quantitative® and
has the form

Xj—Xi€11U'~'UIk,

where Iy, ..., I are intervals.

(2) A point-interval constraint between a point variable and an interval variable, is
qualitative, and is in the set {before, starts, during,ﬁnishes,after} abbreviated
{b,s.d,f,a}, respectively (see Fig. 15) [20].

(3) An interval-interval constraint between two interval variables is qualitative, and
is in the set

{before, after, meets, met-by, overlaps, overlapped-by, during,
contains, equals, starts, started-by, finishes, finished-by},

abbreviated {b,bi,m, mi, 0, 0i,d, di,=,s,si,f, fi}, respectively (see Fig. 16) [1].

Example 29. Consider the cargo example of Section 1. Let the variables be:

Xp =Jan 1, namely the beginning of the time line,
XNy, = time point at which the NAVY cargo was shipped out of N.Y.,

Xchicago = time point at which the NAVY cargo arrived into
and was shipped out of CHICAGO,

XL . = time point at which the cargo arrived into L.A.,

Inavy = transportation interval of the NAVY cargo.

Tairforce = transportation interval of the AIRFORCE cargo.

X pirforceStart = time point at which the AIRFORCE shipment starts,

X AirforceEnd = time point at which the AIRFORCE shipment ends.

31n [20] a distinction is made between qualitative and quantitative point-point constraints.

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 49

The constraints are:

XNy, — Xo € [March 7,March 7],
Xchicago — XNy, € [1,2] U [10,11],

Xea, — Xchicago € [3,4] U[13,15],

Xia — XNy € [8,10],

XNy {starts } navy

Xi A {ends}Inavy,

X AirforceBegin{ Starts } airforce.

X irforceEnd{ ends }H ajrforces

XaicforceEnd — X AirforceBegin € [3,5]1 U [7,91,
XairforceBegin — XNy, € [10, 13],
Inavy{before, meets, met-by, after }airforce.

The last constraint means that Inayy and Zajyforce are disjoint. The constraint graph
representing this network is given in Fig. 17.

6.1. Extending LPC for combined networks

For brevity we will describe the extension for LPC, but ULT can be extended using the
same methodology. As defined in Section 2, the combined model involves three types of
constraints: point—point (quantitative), point-interval (qualitative) and interval-interval
(qualitative). Each node in a triangle can be either a point or an interval variable,
resulting in 2° = 8 types of triangles. We therefore modify the semantics of the < and
the @ operators to accommodate all 8 types.

Let C;;, Cy and Cy; be the constraints on the pairs X;, X;, X;, Xx and X;, X;. For
computing T,’j — C;; < (Cix © Cyj), we use Meiri’s tables except when quantitative
constraints are used. We consider the following five cases:

Case 1: If X;, X; and X, are interval variables, then Allen’s transitivity table [1] is
used to compute Cy © Cy; and the < operator is interpreted as the usual intersection
operator.

Case 2: If both X; and X; are interval variables and X} is a point variable, then Meiri’s
transitivity tables [20] are used to compute Cy © Cy; and the < operator is interpreted
as the usual intersection.

Case 3: If exactly one of X; and X; is an interval variable and X is a point variable,
then the quantitative point-point constraint, Cy; or Cy;, is translated into a qualitative
point-point constraint (using <, >, =) and Meiri’s transitivity tables [20] are used to
compute Cy, @ Cy;; the < operator is interpreted as the usual intersection.

Case 4: If X; and X; are point variables and X is an interval variable, then Cy © Cy;
is computed using Meiri’s transitivity tables [20]. If Cyx © Ci; # {<,>} then the
resulting constraint is translated into a single interval and the < operator is interpreted
as the M operator in Definition 3. Otherwise, to avoid increasing the number of intervals
in Cyj, we set Tj; «— Cy; (i.e. no change).

50 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Case 5: If X;, X; and X; are point variables, then the composition operation used is
described by Definition 3 and the < operator is described in Definition 5.

With these new definitions of the operators @ and <, we can apply algorithms LPC,
LPC-2 and DLPC for processing combined networks.

7. General backtracking

Algorithms ULT and LPC are useful for detecting inconsistencies and for explicating
constraints, however they are not designed to find a consistent scenario (i.e. a solu-
tion). A brute-force algorithm for determining consistency or for computing consistent
scenarios can decompose the network into separate simple subnetworks by selecting a
single interval from each quantitative constraint and a single relation from a qualitative
constraint [8,20]. Each subnetwork can then be solved separately in polynomial time
by enforcing path-consistency, and the solutions can be combined. Alternatively, a naive
backtracking algorithm can successively select one interval or relation from each disjunc-
tive constraint as long as the resulting network is consistent [8,20]. Once inconsistency
is detected, the algorithm backtracks. This algorithm can be improved by performing
Sforward checking to reduce the number of possible future interval assignments during
the labeling process.

Definition 30 (Meiri [20]). A basic label of an arc i — j is either a selection of a
single interval from the interval set Cj; for quantitative constraints, or a selection of a
single relation for qualitative constraints. A singleton labeling of N is a selection of a
basic label for all the constraints in N and a partial labeling of N is a selection such
that some constraints are assigned basic labels.

A singleton labeling of a combined network can be described by an STP [20]. Thus,
deciding the consistency of a singleton labeling can be done in O(#3) steps, by enforcing
path-consistency [20].

Lemma 31. Algorithms ULT, ULT-2, DULT, LPC, LPC-2 and DLPC and their exten-
sion for processing combined networks decide consistency of a singleton labeling.

Proof. When there are no disjunctions, the quantitative TCSP can be described by an
STP, for which all of the above algorithms are complete. Enforcing path-consistency of
a qualitative TCSP with no disjunctions is known to decide its consistency [1,20]. O

We can apply backtrack search with forward checking in the space of partial labelings
as follows: The algorithm chooses a disjunctive constraint and replaces it with a single
interval (if metric) or a single relation (if qualitative) from that constraint. When the
constraints are chosen in a dynamic order, the constraint with the smallest disjunction
size is selected for labeling. Thereafter, the network can be tightened using ULT and
LPC. Subsequently, the algorithm selects a new constraint from the tightened network,
assigns it a label and tests consistency again. This is repeated until either inconsistency

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 51

is detected (by ULT or LPC) or a consistent singleton labeling is found. When incon-
sistency is detected, a dead-end is declared and the algorithm backtracks by undoing the
last constraint labeling.

Additional improvements we propose are

(1) to avoid constraint propagation on any subnetwork that is already singly labeled

(since it is already consistent);

(2) to avoid using a stack for undoing the last constraint labeling,* and instead, to

reconstruct the previous partial labeling using of the labels;

(3) to avoid instantiating constraints that were universal in the input network but

became non-universal as a result of constraint propagation.

Algorithms ULT and LPC are also useful for preprocessing before initiating search.
They reduce the number of disjuncts in the constraints, that is the number of intervals in
quantitative constraints and the number of allowed relations in qualitative constraints. As
a result, the branching factor of the search space is reduced. In addition to reducing the
disjunction size, these algorithms render all the universal constraints non-universal. In
contrast, using path-consistency algorithms for preprocessing increases the fragmentation
and the branching factor.

8. Empirical evaluation

Our empirical evaluation is addressing two questions:

(1) which of the polynomial approximation algorithms presented in this paper is

preferable for detecting inconsistencies, and

(2) how effective are these algorithms when used to improve backtrack search via

preprocessing, forward checking and dynamic variable ordering.

Section 8.1 presents experiments addressing the first question by measuring the trade-
off between efficiency and effectiveness. Section 8.2 presents experiments addressing
the second question.

The problems were generated with the following parameters: #n and e are the number of
variables and constraints respectively, and k is the number of intervals per quantitative
point-point constraint. These quantitative constraints specify integers in the domain
[~R. R}, and the tightness & of a constraint T = {I},..., It} is (|f1| + -+ |L])/2R
where |[;| is the size of /;. We used uniform tightness for all constraints. The parameter
£ is the number of relations in every point-interval constraint and the parameter y is
the number of relations in every interval-interval constraint.

8.1. Comparing constraint propagation algorithms

We evaluate the tradeoff between efficiency and effectiveness of ULT and LPC.
Efficiency is measured by comparing the execution time. The effectiveness or accuracy
of an algorithm A4 is the fraction of times A returns a correct consistency decision. Since
comparing the correct answer by search is too time consuming, we propose to measure

4 In the stack there would be O(n?) entries of size O(n?) each—this was the major problem in [17].

52 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Efficiency of ULT, DPC, PC-2, PC-1 (20 reps) Approximation Quality relative to PC
on 10 variables, tightness .95, Pc=0.14 on 10 variables, tightness .95, Pc=.14
1000 — s 10
e 2 —e— ULT
100] —#&— DPC
- & 091
'E 10 &
g g
7] 2 038
E 2
=]
= @ 07
01 o
: 8
- 5
001 - & 06 —
0 40 80 = 0 20 40 &0 80

Number of Intervals Number of Intervals

Fig. 18. Execution times and quality of the approximations obtained by DPC and ULT relative to PC. Each
point represents 20 runs on networks with 10 variables, 95% tightness.

relative effectiveness instead. To define the notion of relative effectiveness, we rely on
the observation that all the approximation algorithms described in this paper are sound,
namely when a problem is classified as inconsistent this classification is correct. Thus,
two approximation algorithms can differ only in the number of problems they incorrectly
classify as consistent. We therefore define the relative effectiveness of two algorithms
as the ratio between the number of inconsistencies detected by the algorithms evaluated.
In all accuracy plots we use the strong algorithm as the reference point, namely it has
100% accuracy.

8.1.1. Path-consistency versus ULT

In this subsection, we discuss two variants on PC: algorithms PC-1 and PC-2. By
PC-1 we refer to the brute-force path-consistency algorithm presented in [8] and by
PC-2 we refer to the algorithm presented in Fig. 3(a). We use PC as a collective name
for both PC-1 and PC-2.

We next present a quantitative empirical comparison of algorithms PC-1, PC-2, DPC
and ULT.’ In Fig. 18 we show that both PC-1, PC-2 and DPC may be impractical even
for small problems with 10 variables. We see that although ULT is orders of magnitude
more efficient than PC-1 and PC-2, ULT is able to detect inconsistency in about 70%
of the cases that PC-1, PC-2 and DPC detect inconsistencies. Subsequently, we measure
the relative efficiency-effectiveness tradeoff for ULT and LPC.

8.1.2. Comparing ULT, LPC, DLPC and PLPC

Here we measure the relative effectiveness tradeoffs of LPC, ULT, DLPC and PLPC.
We test our algorithms on problems having 32 variables. The tightness of interval-
interval constraints is 7 relations allowed out of 13, namely the tightness is y = 7/13;
for point-interval constraints the tightness is 8 = 4/5; and for point-point constraints
the tightness is a = 0.45.

3 Fig. 14 describes qualitatively the strength of the various algorithms.

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 53
Table |
Effectiveness and efficiency of LPC, DLPC, PLPC and ULT
of Acc of Acc of Acc of # Op. # Op. # Op. Time Time Time Time
consts PLPC DLPC ULT LPC PLPC DLPC LPC PLPC DLPC ULT
32 vars, 100% interval variables (pure qualitative), 200 reps.
250 100% 100% 100% 17K 13K 11K 0621 0.467 0417 0.621
300 100% 98% 100% 20K 17K ISK 0748 0632 0551 0.748
350 100% 92% 100% 25K 22K 19K 0.886 0.807 0.689 0.886
400 100% 79% 100% 28K 27K 23K 1.001 0.970 0.807 1.001
450 100% N% 100% 30K 30K 26K 1.056 1.056 0907 1.056
496 100% 73% 100% 28K 28K 25K 0971 0971 0.885 0.971
32 vars, 50% interval variables (mixed), 200 reps.
150 100% 100% 100% 13K 6K 5K 0210 0.121 0.082 0.163
200 99% 98% 97% 18K 11K 8K 0283 0200 0.135 0.174
250 98% 93% 95% 23K 17K 11K 0374 0306 0.199 0.308
300 96% 63% 65% 26K 22K ISK 0456 0406 0266 0422
350 98% 32% 89% 27K 25K 20K 0460 0440 0325 0426
400 100% 46% 98% 24K 23K 20K 0406 0402 0.347 0.385
450 100% 86% 100% 20K 20K 19K 0400 0.400 0343 0.379
496 100% 100% 100% 16K 16K 16K 0359 0353 0294 0.331
32 vars, 100% point variables (pure quantitative), 200 reps.
150 98% 92% 90% 25K 12K 5K 0546 0400 0.165 0.132
200 99% 25% 15% 27K 17K 8K 0623 0533 0259 0.162
250 100% 70% 45% 14K 1K 10K 0380 0.350 0315 0.181
300 100% 99% 77% 9K 8K 8K 0287 0275 0270 0.164
350 100% 100% 94% 7K 7K 7K 0244 0.24] 0235 0.126
400 100% 100% 100% 6K 6K 6K 0211 0212 0204 0.105
Effectiveness of ULT, DLPC and PLPC
Relative to LPC Efficiency of LPC, ULT, DLPC and PLPC
g 07 1 —— TimeLPC
f_d |=—6— TimeULT
] 1.00 0.6 1 —-— Time DLPC
b —8— TimePLPC
o - J
g 0.501 'E 0.5
,% ;“; 0.4 1
£ 0607 £
£ g "
‘i 0‘404 = s
£ e/e/e‘\e\e\e
g o = ene] o
3] —HE— Accof PLPC
0.00 T T - Y 0.0 —— T —
100 200 300 400 500 100 200 300 400
Number of Constraints Number of Constraints
(a) (b)

Fig. 19. Effectiveness and efficiency of LPC, ULT, DLPC and PLPC (from Table 1).

54 E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61

The tradeoff between efficiency and effectiveness is presented in Table 1 and is plotted
in Fig. 19. Each table entry and data point represents the average of 200 instances.
The columns of Table 1 labeled “Acc of (alg)” specify the accuracy of algorithm
(alg) relative to LPC, namely the fraction of cases in which algorithm (alg) detected
inconsistency given that LPC did. The columns labeled “# Op (alg)” describe the
number of revision operations made by algorithm (alg). The basic revision operation
of PCis Cjj «— Cij N (Cy ® Cy;). The basic revision operation of LPC is C;; «— C;; @
(Cik ©Cyj), while the basic operation for ULT is C” « C;; N ([low(Cy), high(Cy)] ©
[low(Cy;),high(Cy;)]). Measuring the number of revision operations is machine- and
implementation-independent, unlike execution time.

For networks with only point variables, having about 200 constraints, ULT detected
15% of the inconsistencies that LPC detected, while DLPC and PLPC detected 25% and
95% inconsistencies respectively. For the same benchmark, the execution time of ULT,
DLPC, PLPC, LPC was 0.162, 0.259, 0.533, 0.623 seconds respectively. The general
trends in Table 1 indicate that

(1) ULT is clearly the most efficient algorithm, and

(2) PLPC is almost as effective as LPC in detecting inconsistencies.

Based on the results in Table 1 it is difficult to select a clear winner. We speculate
that in applications where queries involve a small subset of the variables and efficiency
is crucial (e.g. real-time applications, large databases), ULT will be preferable to LPC
and its variants. However, on our benchmarks, LPC is by far superior to ULT. Based
on experiments made so far, we cautiously conclude that PLPC seems to show the best
overall efficiency-effectiveness tradeoff.

8.2. Backtracking

To improve backtrack search, our polynomial approximation algorithms can be used
in three ways:

(1) in preprocessing to reduce the number of disjuncts before initiating search,

(2) to perform forward checking (within backtracking) for reduction of fragmenta-

tion and early detection of dead-ends, and

(3) as an advice generator to determine the order of constraint labelings.

For simplicity of exposition, we report results of experiments in which the same con-
straint propagation algorithm is used for preprocessing, forward checking and dynamic
variable ordering.

In selecting our benchmark problems, we drew on the recent observation that many
classes of NP-complete problems have hard instances in a transition region [4,21]. We
therefore identified generation patterns that enable generating problems in the transition
region and report the results obtained on those problems. Section 8.2.1 provides results
on quantitative TCSPs and Section 8.2.2 provides results on qualitative networks.

8.2.1. Quantitative TCSPs

In general, constraint propagation algorithms are used as a preprocessing phase before
backtracking in order to reduce the number of dead-ends encountered during search.
When preprocessing with PC, problems become even harder to solve due to increased

E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61 55

The difficulty of various sizes as measured The faction of consistent instancgs for
using the ULT-Backtrack algorithm. complete graphs of different sizes.
1000
- Tightness 36% Lod
——®— Tightness 40% 0
% =+ Tightness 44% E
] J
o 2 034
-] 2
17}
g 2 J
g O § o6
g 107 :8
2 £ % 047
E £ 5
2] E 0.2 m——pm= Tightness 36%
= ’ —®— Tightmess 40%
—t—— Tightness 44%
! J g 0.0 _— ,
5 10 15 20 5 0 5 o
Number of Variables Number of Variables

a)

Difficulty vs Tightness for 10,12,14,16 vars,
complete graphs, 3 intervals, 500 reps,

for IULT-Backtrack + LPC preprocessing.
100000 Il

Phase transition for 10,12 variables,
45,66 constraints, 3 intervals, 500 reps.

& 10 variables
=== 12 variables

% 100007 —e— 14 variables] 0.97
S —+— 16 variables <
= 10001 2 07
) q :
]
Y

1001 S w
| CE 051
3 a2
u 101 °=
é 38 E 041

~—
LI
Bt] 0‘2* =@ |0 variables
—— = 12 variables
01 - — - 007
0 20 40 60 30 100 0 20 40 60 80 100
Tightness Tightness
(c) d

Fig. 20. (a,b) The difficulty as tightness is constant. (c,d) The difficulty as a function of tightness.

fragmentation. In contrast, preprocessing with ULT results in problems on which even
naive backtracking is manageable (for small problems). This can be explained from the
search space reduction argument mentioned at the end of Section 4.

We compare three backirack search algorithms: “Qld-Backtrack+ULT” which uses
ULT as a preprocessing phase with no forward checking and static ordering; “ULT-
Backtrack-+ULT” and “LPC-Backtrack+LPC” which use ULT and LPC respectively for
preprocessing, forward checking and dynamic variable ordering.

The experiments reported in Fig. 20 were conducted with networks of 10-~20 variables,
complete constraint graphs and three intervals in each constraint. Each point represents
500 runs. The region in which about half of the problems are satisfiable, is called the
transition region [4,21]. In Figs. 20(a) and 20(b) we observe a phase transition when
varying the size of the network, while in Figs. 20(¢) and 20(d) we observe a similar
phenomenon when varying the tightness of the constraints.

E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61

ssamysrL,

ov

-daxd 110 + yoensyoeg-L 1N

001
‘doxd DT + NOBINOBI-DdT e

—_—
‘daxd 110 + Yoenyoeg-pl0 ——

‘uotsisuen oseyd ay) ur swajqoxd yndyzp
B0 PaIMSBIU ST IUSWA0IAUN [[BISAC YL

[
—

(ageds Soy)

'Spuodas §'[noqe sem yead oyp e
do1d DT + WorInjorg-Dd'] 10] dum oy,
'$pu03as ()1 Inoqe sem yead oy 1e
doxd [T + yoenyoeg- 110 10} dum dy L,

SPU03JS Ul JUNL],

:EC

‘sdax gog ‘s[eAtaul € ‘SJSU0D 99 ‘sIeA 7]
‘SIIOMIIN JUI0g-Juiod dAneInUEn)
10] sunqjLio31y Suppeappeq Supredwo))

0z
+,.01

.01
5 01
, 01
2 01
¢ 0l
, 01

5 0L
, 01

(31eds 3op)

Spus-pea(] Jo pqumy

Fig. 21. A comparison of three backtracking algorithms on quantitative TCSPs.

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 57

Difficulty peak as tightness changes, for Drop in Accuracy of Path-Consistency for
Interval-Interval Networks, complete graphs, Interval-Interval Networks,
12 vars, 66 consts, 100 reps. £ 12 vars, 66 consts, 100 reps.
1000] B
@
_"q}‘ 1.00 §
; z
g 1003 5 0801
-~ |
3 g
a S 0601
S 107 o
g 4
2 5 0401
g S
F]
g 0201
=3
=
13
]
1 T - T ® (; 0.00 T T l
5 7 9 11 13 5 7 9 11 13
Num of Allowed Relations Num of Allowed Relations

(a)

Fig. 22. The difficulty as a function of tightness for qualitative networks.

The experiments reported in Fig. 21 were conducted with networks having 12 vari-
ables, 66 constraints (i.e. complete constraint graphs) and three intervals in each con-
straint. Each point represents S00 runs. ULT and LPC pruned dead-ends and improved
search efficiency on our benchmarks by orders of magnitude. Specifically, averaged
over 500 instances in the transition region (per point), Old-Backtrack+ULT is about
1000 times slower than ULT-Backtrack+ULT, which is about 1000 times slower than
LPC-Backtrack-+LPC. The latter encounters about 20 dead-ends on the peak (worst per-
formance). As we depart from the transition region the execution times become smaller
and the improvements are less significant.

8.2.2. Qualitative TCSPs

Here we present results obtained with backtracking on qualitative TCSPs. We show
that

(1) a transition region exists for qualitative networks, and

(2) for problems within this region PC [1] is completely ineffective.

The backtracking algorithm is the algorithm used by Ladkin and Reinefeld [17]. In
their implementation, they avoid enforcing path-consistency on any subnetwork that is
already labeled (since it is already consistent).

The experiments reported in Fig. 22 were conducted with networks having 12 vari-
ables, 66 constraints, and each point is averaged over 100 instances. We change the
tightness of the constraints by changing y. We measure the number of dead-ends
(Fig. 22(a)) and the fraction of cases in which enforcing path-consistency correctly
decides consistency (Fig. 22(b)).

Fig. 22(a) shows that qualitative networks exhibit a phase transition at y = §/13.
The only difference between the experiments reported in this section and those reported
in [17] is that the latter used a fixed y = (0.5, namely in about half of the cases, six
relations out of 13 interval relations were allowed and the other half, seven were allowed.

58 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Our results agree with those reported in [17] in that for ¥ = 0.5 most of the generated
problems were inconsistent. However, we see that for y = 9/13, all the problems gener-
ated were consistent. For y = 6/13, the problems were about two orders of magnitude
easier than those at the peak (Fig. 22(a)) because, in most of the cases, PC detected
inconsistency before invoking backtracking search (Fig. 22(b)).

9. Conclusion

Temporal constraint satisfaction problems (TCSPs) provide a formal framework for
reasoning about temporal information, which is derived from the framework of classical
constraint satisfaction problems (CSPs). As in classical CSPs, the central task of decid-
ing consistency is known to be NP-complete. To cope with intractability it is common
to use polynomial approximation algorithms which enforce path-consistency.

In this paper we demonstrated that, in contrast to classical CSPs, enforcing path-
consistency on quantitative TCSPs is exponential due to the fragmentation problem. We
controlled fragmentation using two new polynomial approximation algorithms, Upper—
Lower Tightening (ULT) and Loose Path-Consistency (LPC). When evaluating these
algorithms, we addressed two questions empirically:

(1) which of the algorithms presented is preferable for detecting consistency, and

(2) how effective are they when incorporated within backtrack search.

To answer the first question, we measured the tradeoff between efficiency and effec-
tiveness. Efficiency is measured by execution time while effectiveness is measured by
counting the fraction of cases in which inconsistency was detected. Using some classes
of randomly generated problems, we made two observations:

(1) enforcing path-consistency may indeed be exponential in the number of intervals

per constraint, and

(2) ULT’s execution time is almost constant in that number.

Nevertheless, ULT is able to detect inconsistency in about 70% of the cases in which
path-consistency does. The overall superior algorithm, LPC, is less efficient but more
effective than ULT. It is also very effective relative to path-consistency.

To answer the second question, we applied the new algorithms in three ways:

(1) in a preprocessing phase to reduce fragmentation before search,

(2) as a forward checking algorithm for pruning the search, and

(3) as a heuristic for dynamic variable ordering.

We show that for relatively hard problems, which lie in the transition region [4,
21], incorporating ULT within backtracking search is preferred to incorporating path-
consistency. Algorithm LPC is superior, in all three roles, as it improves the performance
of backtrack search by several orders of magnitude.

Appendix A. ULT for discrete CSPs

The idea of ULT can be extended to approximate path-consistency in classical CSPs.
While enforcing full path-consistency requires O(n*k*) steps [22], approximating with

E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61 59

Algorithm ULT-CSP

1. input: N

2 NI// — AT

3. repeat

4']\7 -—]\]III

5. Compute N’ by computing the row-convex upper bound of N.
6 Compute N” by enforcing path consistency on N'.

7 Compute N by intersecting N’ and N’

8 until N =N.

9. if N’ is consistent, output: N”’.

output: “Inconsistent.”
Fig. A.1. Algorithm ULT-CSP.

a single iteration of ULT requires O(n’k?), and using the complete ULT requires
O(n’ek + €%k*). Using a single ULT iteration (weaker than ULT) may significantly
reduce propagation time (compared to PC) when the domains are large.

A binary relation R;; on X;, X; can be represented by a (0, 1)-matrix with |D;| rows
and |D;| columns by imposing an ordering on the domains. A zero entry at row r and
column s means that the pair consisting of the rth element of D; and the sth element
of D; in not allowed.

Definition A.1 (Row convexity [31]). A (0, 1)-matrix is row convex iff in each row
all of the ones are consecutive, that is no two ones within a single row are separated
by a zero in that same row. A constraint is row convex iff its matrix representation is
row convex and the network is row convex iff all its constraints are row convex. A row
convex relation can be represented by a set of k pairs of integers, (I,,u,), where r is
the row number, I, is the number of the first non-zero column and u, is the number of
the last non-zero column.

It was shown that enforcing path-consistency on row convex networks renders them
globally consistent [31]. In Fig. A.1, we present algorithm ULT-CSP. The algorithm
relaxes the network into a row convex network, enforces path-consistency and intersects
the resulting network with the original network, until there is no change.

Definition A.2. Given an arbitrary matrix A, its upper bound row convex matrix
is obtained by changing, for every row r, all the elements between column [, and
u, {(e.g. a,;, ...a,,) to ones. An upper bound row convex approximation of a bi-
nary constraint is obtained by computing an upper bound row convex approxima-
tion of its matrix representation. The networks N’, N” and N’ are defined as fol-
lows:

e N’ is the row convex upper bound of N.

e N' is the minimal network of N’ (obtained by enforcing path-consistency).

o N is derived from N’ and N” by intersection.

60 E. Schwalb, R. Dechter/Artificial Intelligence 93 (1997) 29-61

Theorem A.3. Let N be the input to ULT-CSP and R be its output.
(1) N and R are equivalent networks.
(2) For row convex networks, ULT-CSP computes the minimal network in a single
iteration.
(3) Every iteration of algorithm ULT-CSP terminates in O(n*k*) steps.

Proof. (1) Let Sol(N) denote the set of solutions of the network N, then Sol/(N) C
Sol(N') = Sol(N'). This implies that Sol(N) N Sol(N") = Sol(N) and therefore
Sol(N"") = Sol(N).

(2) Clearly, if the input network is row convex, then N = N’ and it is known that for
row convex networks path-consistency is complete [31].

(3) Computing /, and u, for every row in every matrix requires O(n“k”) steps and
enforcing path-consistency on row convex networks requires O(n3k?) steps. [

2k2

References

{1} J.E Allen, Maintaining knowledge about temporal intervals, Comm. ACM 26 (1983) 832-843.

[2] J.E Allen, Natural Language Understanding (Benjamin Cummings, Menlo Park, CA, 1987).

[3] M. Boddy, J. Carciofini and B. Schrag, Disjunction for practical temporal reasoning, in: Proceedings
Third International Conference on Principles of Knowledge Representation and Reasoning (KR-92),
Cambridge, CA (1992).

[4] P. Cheeseman, B. Kanefsky and W. Taylor, Where the really hard problems are, in: Proceedings 1JCA{-
91, Sydney, Australia (1991) 163-169.

[5] P. Dagum, Numeric reasoning with relative orders of magnitude, in: Proceedings AAAI-93, Washington,
DC (1993) 541-547.

[6] TL. Dean and D.V. McDermott, Temporal data base management, Artificial Intelligence 32 (1987)
1-55.

[7] R. Dechter, From local to global consistency, Artificial Intelligence 55 (1992) 87-107.

(8] R. Dechter, 1. Meiri and J. Pearl, Temporal constraint satisfaction problems, Artificial Intelligence 49
(1991) 61-95.

[9] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial
Intelligence 34 (1988) 1-38.

[10] A.E. Emerson, A.K. Mox, A.P. Sistla and J. Srinivasan, Quantitative temporal reasoning, in: EM. Clarke,
and R.P. Kurshan, eds., Computer-Aided Verification, Lecture Notes in Computer Science 531 (Springer,
Berlin, 1990) 136-145.

{11] CM. Golumbic and R. Shamir, Complexity and algorithms for reasoning about time: graph theoretic
approach, Rutcor Research Report 22-91 (1991).

[12] S. Hanks and D.V. McDermott, Default reasoning, nonmonotonic logics, and the frame problem, in:
Proceedings AAAI-86 (1986) 328-333.

[13] K. Kahn and G.A. Gorry, Mechanizing temporal knowledge, Artificial Intelligence 9 (1977) 87-108.

[14] H. Kautz and P. Ladkin, Integrating metric and qualitative temporal reasoning, in: Proceedings AAAI-91
(1991) 241-246,

{15] M. Koubarakis, Foundations of temporal constraint databases, Ph.D. Thesis, National Technical
University of Athens (1994).

[16] W. Ho, D.Y.Y. Yun and Y.H. Hu, Planning strategies for switchbox routing, in: Proceedings International
Conference on Computer Design (1985) 463-467.

{17] PB. Ladkin and A. Reinefeld, Effective solution of qualitative interval constraint problems, Artificial
Intelligence 57 (1992) 105-124.

[18] J. Malik and T.O. Binford, Reasoning in time and space, in: Proceedings IJCAI-83, Karlsruhe, Germany
(1983) 343-345.

E. Schwalb, R. Dechter/ Artificial Intelligence 93 (1997) 29-61 61

[19] D.V. McDermott, A temporal logic for reasoning about processes and plans, Cognitive Sci. 6 (1982)
101-155.

{20] 1. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, Ph.D. Thesis, UCLA,
Los Angeles, CA (1991).

[21] D.S. Mitchell, B. Selman and H.J. Levesque, Hard and easy distributions of SAT problems, in:
Proceedings AAAI-92, San Jose, CA (1992).

[22] R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artificial Intelligence 28 (1986)
225-233.

[23] B. Nebel and H.J. Burckert, Reasoning about temporal relations: a maximal tractable subclass of Allen’s
interval algebra, in: Proc AAAI-94, Seattle, WA (1994).

[24} M. Poesio and R.J. Brachman, Metric constraints for maintaining appointments: dates and repeated
activities, in: Proceedings AAAI-91, Anaheim, CA (1991) 253-259.

[25] N. Sateh, Look-ahead techniques for micro-opportunistic job shop scheduling, Ph.D. Thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA (1991).

[26] E. Schwalb and R. Dechter, Coping with disjunctions in temporal constraint satisfaction problems, in:
Proceedings AAAI-93, Washington, DC (1993) 127-132.

[27] E. Schwalb and R. Dechter, Temporal reasoning with constraints on fluents and events, in: Proceedings
AAAI-94, Seattle, WA (1994).

{28] Y. Shoham, Reasoning about change: time and causation from the stand point of artificial intelligence,
Ph.D. Dissertation, Yale University, New Haven, CT (1986).

{29] R.EE. Valdéz-Pérez. Spatio-temporal reasoning with inequalities, AIM-875, Artificial Intelligence
Laboratory, MIT, Cambridge, MA (1986).

130] P. van Beek, Reasoning about qualitative temporal information, Arrificial Intelligence 58 (1992) 297-
326.

[31] P. van Beek, Exact and approximate reasoning about qualitative temporal relations, Ph.D. Dissertation,
Tech. Rept. TR 90-29, University of Alberta, Edmonton, Alta. (1990).

[32] M. Vilain, H. Kautz and P. van Beek, Constraint propagation algorithms for temporal reasoning: a revised
report, in: J. de Kleer and D.S. Weld, eds., Readings in Qualitative Reasoning about Physical Systems,
1989.

[33] C.P. Williams and T. Hogg, A typicality of phase transition search, Computational Intelligence 9 (1993)
211-238.

