Surendra Kumar Singhi

Mini Project 2

CHEF

Introduction

The planning domain which I have decided to describe is cooking. In this domain the planner located in the head of the chef agent has to come up with a plan to help it in deciding what actions to take to serve mouth watering food. The chef, only prefers cooking vegetarian (the chef is a fanatical PETA activist) dishes. The chef can only perform certain number of limited actions and has resource constraint of utensils. The chef also has to be very mobile and hopefully smart so that it can reduce its sorties to the sink and dinner table. It should be also smart enough to figure out other redundancies in the plan. But, in spite of the some extra work which it may do the chef is very much capable of cooking a range of dishes (containing only one vegetable or product). I hope to teach it how to cook some other exquisite stuff and increase its capabilities in very near future.

The chef’s planning domain consists of objects like utensils, vegetables and locations (types). It also has to take the burden of bearing and remembering disjunctive-preconditions, negative-preconditions, and quantified (both existential and universal) preconditions. I was also planning (planning makes you plan yourself() to have durative-actions and continuous-effects, but then thought it will be too much for the chef to digest (he may suffer from constipation).
Detailed Description of the Domain
Our agent is very hygiene conscious so it washes (WASH action) all the vegetables before using them. It can also chop or cut (CHOP action) the vegetables without cutting its finger. Besides, it can also do boiling (BOIL), steaming (STEAM), frying (FRY), roasting (ROAST) and baking (BAKE). No food is complete without proper garnishing (GARNISH) and our agent is an expert in that. And, finally the agent is no good if it decides against serving (SERVE) the food. Unfortunately, because of limited resources the chef may also have to wash utensils (CLEAN_UTENSIL) when there is a need.
The above actions are very trivial for the agent, but the real problem which it faces is how to come up with a feasible (hopefully optimal) plan which will allow it to use its skill to serve some good food to its master (otherwise it may be dismantled). What complicates the task for the small brain (planner) of the agent is that different actions have different preconditions and the presence of resource constraints.
Sometimes (depending upon the problem) the chef agent may have only limited number of utensils to do everything. In such situation it should start cooking a new dish only after it has freed up some utensils (by serving some of the dishes). The chef has to make sure that he does all the washing and cleaning at “sink” (constant location), cook food at “oven” (constant location) and serve food at “dinner-table” (constant location).

It is also possible for the agent to go to other places like patio, garden, etc.

The agent has to be careful that not all actions are applicable to all kinds of vegetable there may be some canned vegetables which shouldn’t be or cannot be washed (not WASHABLE), also some vegetables cannot(or shouldn’t) be chopped (not CHOPPABLE, like peas) or boiled (not BOILABLE). Whether the vegetable should be chopped or boiled depends upon the recipe (problem). The agent should be smart enough to know that what is FRIED or ROASTED or GARNISHED (predicates) shouldn’t be boiled. Once the food is GARNISHED it can only be SERVED. So, all the actions should be done before garnishing. If a vegetable can be chopped then this should be done before frying. The agent should make sure that it washes the vegetable before it has started processing like chopping, frying etc. There are lots of other constraints and features too, for example if something is roasted or fried or baked then the other two actions cannot be applied to it, etc.

While describing this domain one problem which I started facing as the number of actions and predicates started increasing is that it became too unwieldy, I had to check and recheck the description to ensure that there were no inconsistencies. For each action there were lots of preconditions and effects which will seem natural or implied to a human being, but had to be mentioned for the chef agent. Though, it will complicate the task of planning, but it will be nicer to have a more expressible language to describe plans. I believe the holy grail of planning will be to efficiently execute tasks given in natural language.

One feature which I wanted my domain to have is that, a single object should have multiple types or there should be a hierarchy of types. But unfortunately PDDL doesn’t support either of these. This extension can be very useful in encoding lot of domains, for example integers are real numbers and have all the property of real numbers, so it should be possible for actions (instead of using a workaround) which handle real numbers to handle integers too. The reason why I wanted this feature in my domain is because consider utensils; there can be different types of utensils like pans, plates, spoons, etc., each of them have different features but suppose if there was an action in the domain for washing utensils, then it should be possible to apply this action to all the possible utensils.

Another feature which should be there in an ideal cooking domain is the ability to combine multiple ingredients and make one single item which can be treated in the same way as the individual items could. I couldn’t figure out how to do this using the existing features of the language. This problem is somewhat similar to the multiple type issue. A possible way to represent the above can be using a predicate which is true for all the possible combination of the ingredients. But, I decided against doing that and chose the simple representation in which the chef separately cooks and serves everything.
I wanted to have durative actions where the agent may have to wait for some action to finish(like moving, washing) before it does something else as well as actions which will take some time(boiling, baking) but in the meantime the chef can do other works. Also, this extension will make it much more sensible to introduce different types of utensils for different types of cooking actions and multiple ovens so that the chef can do multiple cooking tasks at the same time. But to keep the life of the chef (as well as mine) simple I have postponed these ideas. Also, the AltAlt and FF planners don’t support durative actions. In future I hope to make the chef much smarter so, that it is able to tackle a wider range of recipes and be more efficient with time.
Comparison of Chef with Other Domains
There exists a case-based planner also named “Chef” which can output new recipes given particular ingredients and tastes. It was designed and published by K. Hammond (1989). But the above domain which I described is completely different from his work. This cooking domain at a high level can be viewed as a combination of lot of other domains. Similar to the “driverlog” domain the chef agent has to go from one place to another to accomplish different tasks. This domain in a way is also very similar to the schedule domain, here instead of having different manufacturing options there are options to cook the food in different ways. One important difference which this domain has with other domains used in the mini-project 1 is that this planner uses both existentially and universally quantified preconditions. It also uses conditional effects and disjunctive preconditions which the domains in the mini-project 1(other than Satellite Time domain which uses conditional effect) don’t do.
Comments and Criticism on the Performance of Planners on this Domain

The only planner which I was able to test this domain on is “ff”, unfortunately none of the other planners seemed to work on it. Some planners don’t support types (Alt Alt), some don’t support disjunctive-preconditions (BlackBox), some had problem with universally-quantified effects. Even the “ff” planner didn’t support durative actions forcing me to decide not to use them in my encoding. Either, I have obsolete versions of the planners, or I guess it’s a long way to go before most of the planners will start supporting all the requirements in PDDL 2.1.
Another important thing which I noticed was that in lot of cases the planners don’t output an optimal plan. For example in this domain the planners can have fewer actions if it washes everything at the same time, instead of frequently visiting the sink. Unfortunately, lot of times the plan also depended upon the order of predicates in the initial and goal states. For the same set of predicates different plans were generated. Also, it is a lot harder for the planners to detect that the set of goal predicates are infeasible than to find a plan for set of feasible predicates. In the case of “FF” planner, enforced hill climbing failed in most of the cases and the planner was forced to use best-first search.
P.S. - I have combined the answers to the different parts of the project question in arbitrary manner to give a good structure (hopefully) to the report. (
