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ABSTRACT 

This paper presents a general heuristic bottom-up procedure for finding a least-cost 

solution tree of an AND/OR graph when the cost functions associated with the arcs are 

monotone. Since monotone cost functions are very general, the procedure is applicable to a 

very large number of problems. The procedure works for both cyclic and acyclic AND/OR 

graphs, and subsumes most of the known bottom-up procedures for searching AND/OR 

graphs. Many state-space search procedures and dynamic programming procedures are also 

special cases of this procedure. 

1. INTRODUCTION 

This paper presents a general heuristic bottom-up procedure for finding a 

least-cost solution tree of an AND/OR graph when the cost functions 

associated with the arcs are monotone. Since monotone cost functions are very 

general, the procedure is applicable to a very large number of problems. The 

procedure works for both cyclic and acyclic AND/OR graphs, and subsumes 
most of the known bottom-up procedures for searching AND/OR graphs. 

Many state-space search procedures and dynamic procedures are also special 
cases of our procedure. The procedure develops solutions for the subproblems 
of an AND/OR graph (in an order determined by the heuristic information) 

until an optimal solution tree of the AND/OR graph is found. This frame- 

work is different from the heuristic top-down search of AND/OR graphs 
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(e.g., [4], AO* and related search procedures [22], [2], and [17]) and game trees 

(e.g., alpha-beta [22], B* [3], and SSS* [24]), in which an optimal solution tree 

of the AND/OR graph is found by selectively developing various possible 

solutions [16, 23, 141. 

In principle, a least-cost solution tree of an AND/OR graph can be found 

by performing search in either top-down or bottom-up fashion. But depending 

upon the specific problem being solved, one technique may be superior to the 

other.’ If the problem is such that its AND/OR graph contains only a few 

terminal nodes but has very many solution trees stemming from the root (e.g., 

problem 1.3, p. 32 in [23]), then it would be more efficient to perform the 

search in a bottom-up fashion. In some problems, it may be more natural to 

generate the graph bottom-up, as the problem reduction operators may only 

be known in the reverse direction. For example, the generalized state-space 

graphs described in [25] can be viewed as AND/OR graphs in which the 

problem reduction operators are described in reverse. See [25] for a discussion 

of problem characteristics that may influence the direction of search in an 

AND/OR graph. 

Many breadth-first, depth-first, and heuristic strategies for conducting 

top-down search are already well known (e.g., AO*, alpha-beta, SSS*, B*). 

But all the known bottom-up search procedures to date (with the exception of 
algorithms in [ll] and [18], which use a limited amount of problem-specific 

information to constrain search) are essentially breadth-first. The procedure 

presented in this paper provides a mechanism for using problem-specific 

heuristic information in the bottom-up search of AND/OR graphs. The 
actual amount of benefit gained is dependent upon the kind of heuristic 

information available and the problem domain itself. A preliminary version of 

this paper appeared in [13]. 

In Section 2 we briefly review AND/OR graphs, define a cost function on 
the solution trees of an AND/OR graph, and discuss the relationship between 

the problem of finding a least-cost solution tree of an AND/OR graph and 

the problems solved by dynamic programming. In Section 3 we present a 

general bottom-up procedure and show that a number of bottom-up proce- 

dures for searching AND/OR graphs [18, 19, 111 as well as dynamic program- 
ming procedures [l] are special cases of this procedure. In Section 4, we show 
that the A* algorithm for state-space search [22] can be viewed as a special 

case of our general bottom-up procedure. Section 5 discusses the significance 
of this work in the context of the author’s previous work on a unified approach 
to search procedures. 

‘Many top-down procedures for searching AND/OR graphs (such as given in 1221, [2] 
and [17]) use a bottom-up procedure to compute the merit/cost of partial solution trees. 
These procedures still search the solution-space in a top-down fashion. 



SEARCHING AND/OR GRAPHS 41 

2. AND/OR GRAPHS 

Following the terminology in [22] and [lo], we define AND/OR graphs as 
hypergraphs. Each node of an AND/OR graph represents a problem, and a 
special node root(G) called root of G represents the original problem to be 

solved. Transformation of a problem into a set of subproblems is depicted by a 
hyperarc directed from a parent node to a set of successor nodes. These 
hyperarcs are also called connectors. A hyperarc p: II + n ,, . . , uk is a k-con- 

nector that shows that the problem II can be solved by solving the subprob- 

lems ?I,, . .,nx. A node having successors is called nonterminal. In general, a 
nonterminal node can have more than one hyperarc directed from it. Nodes 

with no successors are called terminal, and each terminal node represents a 

primitive problem.’ 

An AND/OR graph G is cyclic if no node of G is a successor of itself. An 
AND/OR graph G is called an AND/OR tree if G is acyclic and every node 

except root(G) has exactly one parent. Every AND/OR graph G can be 
unfolded (by creating duplicates of all nodes of G having multiple parents) to 

build an equivalent AND/OR tree called unfold(G). Note that if G is not 

acyclic, then unfold(G) will be an infinite structure. 
Given an AND/OR graph representation of a problem, we can identify its 

different solutions, each one represented by a solution tree. A solution tree T 

of an AND/OR graph G is an AND/OR tree with the following properties: 

(i) root(G) = root(T); (ii) if a nonterminal node tI of unfold(G) is in T, then 

exactly one hyperarc p: tz ---) tz ,,.. , n, is directed from it in T, where p is one 
of the hyperarcs directed from n in unfold(G). 

A solution tree T of G represents a plausible “problem reduction scheme” 

for solving the problem modeled by the root node of G. The subgraph G,; of 

G rooted at a node n is in fact a problem reduction formulation of the 
problem represented by n, and a solution tree of GA represents a solution to 

that problem. By a solution tree rooted at n we mean a solution tree of G;. We 
define height(T) as the distance (in terms of number of arcs) between root(T) 
and a farthest terminal node of T. 

Often, a cost function f is defined on the solution trees of G, and a 
least-cost solution tree of G is desired.’ There are various ways in which a 

‘The assumption that each terminal node is a primitive node is made only to simplify the 

definition of cost (to be defined later) of solution trees. If a terminal node represents a 

nonprimitive problem (i.e., a problem whose solution is not known). then the cost of the node 

is taken to be infinite. 

‘In many problem domains, f(r) denotes the merit of the solution tree T, and a 

largest-merit solution tree of G is desired. The discussion in this paper is applicable to such 

cases with obvious modifications. 
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cost function can be defined; the one defined below is applicable in a large 
number of problem domains.4 

For a terminal node II of G, let c(n) denote the cost of n, i.e., the cost of 
solving the problem represented by n. With each k-connector p: n -+ n,, . . . , nk 
we associate a k-ary cost function t&r,,.. ., r,) which denotes the cost of 

solving n if n is solved by solving n,,. .., nk at costs r,,. .., rk, respectively. 

For a solution tree T, we define its cost f(T) recursively as follows: if T 
consists only of a single node n = root(T), then 

f(T) = c(n). (2.la) 

Otherwise, n = root(T) has children n,,. . . ,nk such that p: n + n,,. ..,nk is a 

connector. Let T,, . . . , Tk be the subtrees of T rooted at n,,. . .,nk. Then 

f(T) =t,(f(T,),...,f(Tk)). (2.lb) 

Thus the cost of a solution tree is defined recursively as a composition of the 

cost of its subtrees. Figure 1 shows a cyclic AND/OR graph, associated cost 

functions, and the computation of the cost of one of its solution trees. We 
define c*(n) for nodes n of an AND/OR graph G to be the minimum of the 

costs of the solution trees rooted at n. Thus, c*(root(G>> denotes the cost of 

an optimum solution tree of G. Note that if n is nonterminal, then c*(n) may 

be undefined, as there may be an infinite number of solution trees of 

decreasing costs rooted at n. A cost function t(. , . . , .> is monotone if it is 

monotonically nondecreasing in each variable. For example, t,,, tP2 and tP3 in 
Figure 1 are monotone. The following theorem gives a recursive formula for 

c*(n). 

THEOREM 2.1. If the cost functions t,,(.,..., .) are monotone and if c*(n) is 
defined for all nodes n of G,I then for the nodes n of an AND/ OR graph the 
following recursiue equations hold. (1) If n is a terminal node, then c*(n) = c(n). 
(2) If n is a nonterminal node, then c*(n) = min{t,(c*(n,), . . . , c*(n,))lp: n + 
n,, . . . , nk is a hyperarc directed from n}. 

Proof. See [12]. 

Thus if the cost functions t, are monotone, then c*(root(G)), the smallest 
of the costs of the solution trees of G, can be found by solving the above 
system of equations. The procedures for solving these equations can often be 
easily modified to build a least-cost solution tree of G. Note that we can try to 
find a least-cost solution tree of G by exhaustive generation and evaluation of 

4The definition of cost functions given here is similar to the definition of recursive weight 

functions given in [231. See [231 and [161 for many practical examples. 
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Cost limctions associated with 
the hyperarcs of G: 

Terminal cost function E: 
c(a) = 10; c(b) = 2. 

f(T)=C+)=4+8=12 

C,(b) = 2 

C,(b) = 2 

(b) 

Fig. I. (a) An And/Or graph G. and the associated cost functions. (b) Computation of ,f(T) 
of a solution tree T of G. 
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all solution trees of G. But in practical problems this turns out to be far more 

expensive than solving the recursive equations. Of course, the exhaustive 
generation is not even feasible if G has an infinite number of solution trees. 

RELATIONSHIP WITH DYNAMIC PROGRAMMING 

Note that solving an optimization problem by Bellman’s dynamic program- 

ming technique also involves converting the optimization problem into a 

problem of solving a set of recursive equations. Interestingly, most of the 

discrete optimization problems solved by dynamic programming can be formu- 

lated as the problem of finding a least-cost solution tree of an AND/OR 

graph with suitably defined monotone cost functions [12, 71. We can also state 

a principle similar to Bellman’s principle of optimality (all subpolicies of an 
optimum policy are also optimal). First, let us define the optimality criterion 

for a solution tree (the counterpart of Bellman’s “policy” in our formulation). 

A solution tree rooted at a node n of G is called an optimum solution tree 
rooted at n if its cost is the smallest of all the solution trees rooted at IZ. 

LEMMA 2.1. If the cost functions t, are monotone and if c*(n) is defined for 
all nodes n of G, then for ecery node n of G there exists an optimum solution tree 
rooted at n, all of whose subtrees (rooted at the immediate successors of n) are 
also optimal. 

Proof. See [121. 

This lemma says that due to the monotonicity of t,(.,. . ., .>, an optimal 

solution tree can always be built by optimally choosing from the alternate 

compositions of only the optimal subtrees. This technique of first finding the 
optimal solution to small problems and then using them to construct optimal 
solutions to successively bigger problems is at the heart of all bottom-up 

procedures for searching AND/OR graphs and of all dynamic programming 

algorithms. Hence a bottom-up search procedure for AND/OR graphs (such 
as the one given in the next section) can be viewed as a dynamic programming 

algorithm. 

3. BOTTOM-UP SEARCH OF AND/OR GRAPHS 

3.1. A GENERAL BOTTOM-UP SEARCH PROCEDURE 

In this section we present a general bottom-up search procedure for finding 
an optimum solution tree of an AND/OR graph with monotone cost func- 
tions. The procedure makes use of a “lower bound” function defined as 
follows. If n is a node of G and x is the cost of some solution tree T rooted at 
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n, then LB(n, x) is defined as a lower-bound on the cost of a solution tree of 

G (i.e., rooted at root(G)) and having T as a subtree; i.e., LB(n,x) < 

min{f(T,)( T, is a solution tree of G, and T is a subtree of T,}. For a given 
AND/OR graph G, the following procedure finds (on terminating success- 
fuliy) an optimum solution tree of G. The procedure maintains two sets of 

nodes called OPEN and CLOSED. 

3.1, I. Procedure BUS 

1. (Initialization): Initialize CLOSED to the set of terminal nodes of G. For 
all (terminal} nodes IZ in CLOSED, set q(n) = c(n). Initialize OPEN with those 

nonterminal nodes n of G for which p: n -+ n,, . . . , nk is a connector such that 

fn ,, . . . , Ok} c: CLOSED (i.e., III,. . . , nk are terminal nodes of G). For nodes II in 

OPEN, compute q(n)=min{t,(q(n,),...,q(nk))lp: n+n,,...,nk isaconnector 

and In,,..., nk}c CLOSED]. 

2. (Termination test): If root(G) is in OPEN or CLOSED and q(root(G)k 
~B(~,q(~~~ for ali n in OPEN, then terminate. The cost of an optimum solution 

tree of G is q(root(G)). Otherwise, if OWN is empty, then terminate with 

failure. 
3a. Select and remove a node from OPEN and add it to CLOSED. 

3b. For all nodes n in CLOSED, if p: n + n ,, . . . , nk is a connector such that 

fn ,, _ . . , tzk} C CLOSED and q(n) > t,,(q(n ,), . . . ~ q(n,)). then recompute 

q(n)=min{t,(q(n,),...,q(n,))lp: tr-+trI,...,nk isaconnector 

and {n,,....nk) ECLOSED)? 

and remove n from CLOSED and put it back in OPEN. 

3c. For ah nodes n in OPEN, if p: tz + t?,, . . , tzk is a connector such that 

{n ,, . . . , nk} E: CLOSED and q(n) > t,Jq(n ,I,. . . , q(n, )), then recompute 

q(n)=min{r,(q(n,),...,q(n,))lp: n-+n,,...,nk isaconnector 

and {~,....,n~} ~CLOSED). 

3d. For all nodes n of G that are neither in OPEN nor in CLOSED, if p: 
n + n,, . , tlk is a connector such that (I!,, . . . . n,} L cxosEr>, then add n to 
OPEN, and compute 

q(n)=min(r,(q(n,) ,..., q(n,))Ip:n-+n ,,.... trk isaconnector 

and {tl,,..., nk}c OLOStD). 
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4. Go to Step 2. 

For a node n in OPEN or CLOSED, it is easily seen that q(n) denotes the cost 

of a solution tree rooted at n such that all nodes of T are in OPEN IJ CLOSED. 

The following two loop invariants are maintained by GBUS (they are true 

after the initialization step, and are true at the end of every execution of 

Step 31. 

In~rianr I,. For all nodes n in OPEN or CLOSED, q(n) G min{t,(q(n,),. .., 

q(nk)llp: n +Izi,..., nk is a connector and (n ,, . . , nk} c CLOSED}. 

Incariant I,. For all nodes n of G if p: n --) n ,,..., nk and {n ,,..., nk} c 
CLOSED, then n is in OPEN or CLOSED. 

Lemma 3.1 follows from Invariant I, and the monoto%city of t,. 

LEMMA 3.1. For a node m on OPEN or CLOSED, if T is a solution tree rooted 
at m such that all nodes of T (except possibly m) are in CLOSED, then 

q(m) < f(T). 

Proof. See Appendix I. 

From Lemma 3.1, it is clear that, as CLOSED contains more nodes, q(n) 
becomes closer to c*(n). (In the limiting case, if CLOSED contains all the nodes 

of G, then q(n) = c*(n) for all n.) The idea behind Step 3a of BUS is (to try) 
to increase the size of CLOSED by transferring a node from OPEN to CLOSED. 

The following lemma follows from I, and the initialization step. 

LEMMA 3.2. Any solution tree T that has a node not in CLOSED has a subtree 
T, such that root(T,) E OPEN and all the nodes of T, except root( T,) are in 
CLOSED. 

Proof. See Appendix I. 

Lemmas 3.1 and 3.2 have the following corollary. 

COROLLARY 3.1. min{LB(n, q(n))1 n E OPEN) is a lower bound on the cost of 
all solution trees of G (i.e., the solution trees rooted at root(G)> that have at 
least one node that is not in CLOSED. 

The following theorem says that when BUS terminates successfully, 
q(root(G)) = c*(root(G)). 

THEOREM 3.1. In BUS, when root(G) is in OPEN or CLOSED and q(root(G)) 
< LB(n, q(n)) for all n E OPEN then q(root(G)) = c*(root(G)). 
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Proof‘. Let T be a solution tree rooted at root(G) (i.e., root(G)= root(T)). 

Case 1: All nodes of T are in CLOSED. Then from Lemma 1, q(root(G))< 

f(T). 

Case 2: Otherwise, from Lemma 2, there is a subtree T, of T such that 
root(T,) E OPEN and all nodes of T, except root(T,) are in CLOSED. From 

Lemma 1. f(T,) > q(root(T,). 

f(T) a LB(root(T,),q( root( T,)) (from the definition of LB) 

2 min(LB( n.s( n))l n E OPEN) (root( T,) is in OPEN) 

>q(root(G)). 

Thus for any solution tree T rooted at root(G), q(root(G))< f(T). But 

q(root(G)) is the cost of some solution tree rooted at root(G), hence 

q(root(G)) = c*(root(G)). n 

3.1.2. Correctness Proof of BUS 

If BUS terminates unsuccessfully, then OPEN is empty and root(G) is not in 
CLOSED; hence, obviously G does not have any solution tree. Otherwise, if 

BUS terminates successfully, then from Theorem 3.1, q(root(G)) = c*(root(G)). 

By keeping track (during the execution of BUS) of the connectors directed out 

of the nodes n on OPEN and CLOSED that result in the current q(n) value for 
the node n, an optimum solution tree of G can be constructed at the 

successful termination of BUS.s 
Even though upon successful termination the procedure is guaranteed to 

find an optimum solution tree of G, the termination itself is not guaranteed. 
As proved in [12], the general problem of finding an optimum solution tree of 
an AND/OR graph with monotone cost functions is unsolvable. The reason is 

that, while executing Step 3, CLOSED can grow or shrink depending upon how 

many nodes are transferred out of CLOSED in Step 3b. But if sufficient 
problem-specific information is available, termination can be guaranteed. 

“For solution trees having cycles. it may be necessary to keep more than one “incarna- 

tion” of a node. 
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3.2. USING A HEURISTIC FUNCTION TO SELECT A NODE FROM OPEN 

For a node n on OPEN, let hf(n,x) denote the (heuristic) promise that a 

solution tree rooted at n of cost x will be a subtree of an optimum solution 
tree of G. If available, this information can be used to select the most 

promising node from OPEN in Step 4. If !zf provides reasonable estimates, then 

the procedure can be speeded up substantially. A useful heuristic is hf(n, x) = 

LB(n,xI; because if tB(. , .) is a tight bound, then the smaller the LB(n,x) 

value the greater the possibility that a solution tree rooted at n of cost x is a 
part of an optimal solution tree of C. When hf(n, x) = LB(n, XI, hf is called a 

lower-bound heuristic function. If in Step 4 of BUS a node rz with smallest 

LB(n,q(n)) is moved from OPEN to CLOSED, then we call it procedure BUS*. 

If the lower bounds are perfect, i.e., LB(n, XI = min(f(T)i T is a solution 

tree of G and has a subtree rooted at n of cost x), then hf(n, XI = LB(n, xj is 

a perfect heuristic and BUS” will transfer only those nodes from OPEN to 
CLOSED that belong to an optimum solution tree of G. 

The following lemma gives the condition on the lower-bound function, 
under which procedure BUS* can terminate whenever root(G) is transferred 

from OPEN t0 CLOSED. 

LEMMA 3.3. If LB(root(G),x) = x, then in BUS* whenecer root(G) is 
selected from OPEN in step 3a, q(root(G)) = c*(root(G)). 

Proof. See Appendix I. 

Hence, if LB(root(G), x) = x, then Steps 2 and 3a of BUS* can be 
modified as follows: 

2. If OPEN is empty, then terminate with failure. 
3a. Let n be a node on OPEN such that LB(n, q(n)) < LB(m, q(m)) for all 

nodes m on OPEN. If n = root(G), then terminate (q(n) is the cost of an 
optimal solution tree of GI, else remove n from OPEN and put it in 

CLOSED. 

A lower-bound function is logically consistent if for all nodes n of G, 
x > y * LB(n, x> > LB(n, y). A lower bound function is heuristically consis- 
tenf if whenever T, is a solution tree of cost x rooted at a node n i, and T, is 
a solution tree of cost y rooted at n2, and Tz is a subtree of T,, then 
LB(n,, XI > LB(n,, y). The following theorem states the condition under 
which a node will never be transferred from CLOSED back to OPEN (i.e., Step 2b 
would become superfluous in BUS*). 
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THEOREM 3.2. If LB(. , .) is both logically and heuristically consistent, ther7 
in BUS* wheneller a node is selected and transferred from OPEN to CLOSED, 

q(n) = c*(n). 

Proof. Let T be a solution tree rooted at 17. 

Cuse 1: All nodes of T are in CL.OSED. Then from Lemma 3.1, q(r7) < ,/(T). 

Case 2; Otherwise, from Lemma 3.2, there is a subtree T, of T such that 
root(T,) E OPEN and all nodes of T, except root(T,) are in CLOSEI). From 

Lemma 3.1, f(T,) > q(root(T,). 1. LB(n,q(n)) < LB(root(T,), q(root(T,)) 
(from Step 3a of BUS*) < LB(root(T,), f(T,)) (from logical consistency of 

LB). 2. LB(root(T,), f(T,)) G LB(n,f(T)) (from heuristic consistency of LB). 

From (1) and (2), LB(n,q(n)) 6 LB(n, f(T)). It follows from logical consis- 

tency of LB that q(n)< f(T). 
Thus for any solution tree T rooted at tz, q(n) < f(T). But q(n) is the cost 

of some solution tree rooted at n, hence q(n) = c*(n). W 

From Theorem 3.2, it follows that if LB is heuristically and logically 

consistent, then in each execution of Step 3, BUS* finds an optimal solution 
tree for some new nonterminal node of G. Hence, in this case, BUS* 

terminates in no more steps than the number of nonterminal nodes in G. If 

LB is a good bound, then BUS* could terminate in much fewer steps. The 
following lemma follows from the logical and heuristic consistency of LB. 

LEMMA 3.4. If LB is both logically and heuristically consistent, then in BUS” 
min{LB(n, x)ln E OPEN} is always nondecreasing. 

3.3. POSITIVE MONOTONE COST FUNCTIONS 

A function t(x ,, . . . , x,) is positilye monotone if in addition to being mono- 

tone nondecreasing in each variable it satisfies the following property: 

tb,,..., x,)> max{x,,..., xk}. For example, tp, in Figure 1 is positive mono- 

tone. For positive arguments, t,, and tp2 are also positive monotone. If all the 
cost functions t, of G are positive monotone, then it is easily seen that we can 
use LB(n, x) = x (any solution tree containing a subtree rooted at n of cost x 

will have cost x or more). It follows that this lower-bound function is logically 
consistent and (owing to the positive monotonicity of t,]) heuristically consis- 
tent. 

If the cost functions are positive monotone, then BUS* using LB(n,q(n)) 
= q(n) becomes virtually identical to Knuth’s generalization of Dijkstra’s 
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algorithm [ll]. For sumcost functions (t(x,,..., xk)= x1 + . - * + xk), BUS* 
using LB(n, q(n)) = g(n) is identicat to the heuristic bottom-up algorithm for 

searching AND/OR graphs by Martelli and Montanari 1181. 

3.4. SEARCHING ACYCLIC AND/OR GRAPHS 

When G is acyclic, we can associate an integer level(n) with each node II of 

G such that, for any two nonterminal nodes n and m, if n is a successor of m 

in G, then level(n) < level(m). For each terminal node n, level(n)= 0. If 

level(n) is used as a heuristic for selecting a node from OPEN, then it is easily 

seen that (because G is acyclic) whenever a node II is transferred from OPEN 

to CLOSED, q(n) = c*(n). When root(G) is transferred from OPEN to CLOSED 

then (because of the numbering scheme used) OPEN becomes empty and the 

procedure terminates successfully. For sumcost functions, this procedure be- 

comes identical to the DP algorithm given in [19]. 

Note that this procedure does not use a lower-bound function; hence it can 
be called “breadth-first.” The termination is guaranteed by the acyclic nature 

of G. The procedure terminates after as many cycles as there are nodes in G 

at level below level(root(G>). This is how most of the dynamic programming 
procedures (with some exceptions, e.g., [201 and [lo]) perform search. 

If G is acyclic, then no matter what heuristic is used to select a node from 
OPEN in Step 2 of BUS, the procedure will terminate. The reason is that a 
node n is transferred from CLOSED back to OPEN only if a better solution tree 

rooted at n is found. Since, in an acyclic AND/OR graph, there are only a 

finite number of solution trees rooted at a node, a node can shuttle back and 

forth between OPEN and CLOSED only a finite number of times. But the 

complexity of the procedure can be bad, as nodes can be repeatedly trans- 
ferred between OPEN and CLOSED. For many problems (e.g., a matrix multipli- 
cation problem [l]), BUS with a “random” selection strategy in Step 2 will 
have exponential complexity, whereas BUS using a level heuristic will have 

polynomial complexity. 
Note that the level heuristic is effective only if the cost functions are 

monotone.6 Together they guarantee that whenever a node is transferred from 

OPEN to CLOSED, q(n)= c*(n). Discovery of this phenomenon in certain 
problems led Belfman to formulate the dynamic programming paradigm. (The 
problems originally tackled by Bellman were limited to those described by type 
3 AND/OR graphs discussed in Section 4). As pointed out in Section 2, 

61f the cost functions are nonmonotone, then BUS using level may not terminate with an 
optimal solution tree. 
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monotonicity of cost functions and Bellman’s principle of optimality are 

closely related. 

4. RELATIONSHIP WITH STATE-SPACE SEARCH PROCEDURES 

4.1. TYPE 3 AND/OR GRAPHS 

We define type 3 AND/OR graphs to be those AND/OR graphs that have 

only two types of connectors: (i) 2-connectors II --) nItI such that tl, is a 

nonterminal and tz2 is a terminal; (ii) l-connectors n + n, such that n, is a 

terminal. There is a natural correspondence between type 3 AND/OR graphs 
and type 3 grammars that follows from the natural correspondence between 

AND/OR graphs and context-free (i.e., type 2) grammars [91. Furthermore, 

because of equivalence of finite state-space graphs, finite-state automata and 
type 3 grammars, it is possible to construct a type 3 AND/OR graph given a 

state-space graph, and vice versa. Figure 2 shows a state-space graph SS and 

its equivalent type 3 AND/OR graph G. A state M; of SS corresponds to a 
node N, in G. N, represents the problem of getting to M, from the start state 

M, of SS. The goal state M, of SS corresponds to the root node N4 of G‘. For 

every arc in SS from M, to M,, there is a hyperarc N, --f N,tz, ,, where the 
terminal node tz, , . represents the (primitive) problem of going from M, to M, 

in SS. A solution tree rooted at a node N, corresponds to the path between 

the source node and M, of SS. The source node M, of SS corresponds to the 
node N, of G‘. A special null hyperarc’ (N, + E) originates from N, in <;, 

which denotes that the problem of going from M, to M, in SS is trivial. 

BUS* is essentially a generalization of the classical A* algorithm. OPEN and 

CLOSHI in BUS* correspond to the OWN and CLOSED lists in A*. The 

initialization step of BUS* corresponds to putting the start node on OPEN in 
A*. Step 2 corresponds to the termination check in A*. Step 3a corresponds to 
moving the first node tt of OPEN (i.e., the node with least lower bound) to 

CLOSED. Step 3d corresponds to installing those children of n on OPEN that do 

not already exist in OP~.N or (‘LOSHI. Step 3c corresponds to possibly revising 

‘The null hyperarc in an AND/OR graph corresponds to an empty production in a 
context-free grammar. The existence of the null arc is assumed only to avoid a superficial 

difference (at the initialization step) between BUS* (working on type 3 AND/OR graphs) 

and A*. 
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Fig. 2. (a) A state-space graph SS. (b) A regular And/Or graph G equivalent to the 

state-space graph SS. 
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g(n,) and f(ni) for each child n, of n such that ni is already on OPEN. Step 3b 

corresponds to possibly revising g(n,) and f(ni) for each successor ni of n 

that is on CLOSED, and moving it to OPEN if necessary. Corollary 3.1 for BUS 

corresponds to result #2 for A* in [22l. 
Execution of A* on a state-space graph is identical to the execution of 

BUS* on a corresponding type 3 AND/OR graph whose cost functions have 

the following properties: (1) t&x,, x,) = x, + x2, (2) r,(x,)=x,; (3) c(n)>0 
(i.e., arc costs in the state-space graph are positive). For this case, it is possible 

to define LB(n,x)= x + h(n), where n represents the cost of the current 

“type 3” solution tree rooted at n, and h(n) represents the lower bound on 
the remaining cost (in the context of state-space graphs, x is the cost of the 

path from source node to n, and h(n) is the lower bound on the cost of the 

path from n to the goal node). Since I&root(G), X) = x (because h(root(G) 

= 0), BUS* (like A*) terminates whenever root(G) is transferred from OPEN to 

CLOSED. Clearly LB(n, X) as defined here is logically consistent. Furthermore 

the heuristic consistency assumption on the lower-bound function (LB(n, x) = 
x + h(n)) is virtually identical to the so called “monotone” restriction’ on h in 

[22] (which, if satisfied, guarantees that a node is never transferred back from 

CLOSED to OPEN). Thus, Theorem 3.2 and Lemma 3.4 can be viewed as 

generalizations of results #7 and #8 in [22]. Various dynamic programming 

procedures for finding a shortest path in a graph (e.g., [6] and [lo]) are also 
special cases of procedure BUS for finding a least-cost solution tree of a type 

3 AND/OR graph. 

5. CONCLUDING REMARKS 

The paradigm presented in this paper provides a general framework for 

using problem-specific knowledge in bottom-up search. As noted in [18], a 

bottom-up search algorithm generates a simpler structure than the one gener- 
ated by a top-down search algorithm like AO*. At any time, for a node n, 

BUS only needs to keep track of one outgoing connector, which gives the 
current best cost solution tree rooted at n. In contrast, in AO* (or its 

generalizations as in [16] and [23]), all outgoing connectors have to be 
retained. Furthermore, the process of selecting a node in BUS (or BUS*) is 

much simpler than in AO*, where a graph has to be searched bottom-up to 
update heuristic values and top-down to select a node for expansion. Hence, 
for problems in which both bottom-up and top-down search are natural, 

‘Note that the monotone restriction on heuristic function h as defined in [22] has no 

connection with the monotonicity property of the cost functions t,. 
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bottom-up search may be a better choice because of less overhead. Note that 
GBUS is applicable to both cyclic and acyclic AND/OR graphs, whereas AO* 

and its variations [2, 171 work only for acyclic graphs. 
The general procedure presented in this paper was inspired by a unified 

approach to search procedures developed in [12], where it was shown that 

most of the procedures for finding an optimum solution tree of an AND/OR 
graph can be classified as either top-down or bottom-up. In addition to the 

general bottom-up procedure presented here, we have developed a general 
top-down search procedure for AND/OR graphs, which subsumes most of the 

known top-down search procedures (e.g., AO*, B*, SSS*, alpha-beta) 1161. It is 
natural to view the top-down search procedures for AND/OR graphs as 

branch-and-bound (B&B) [12, 211. On the other hand, in the context of the 

general model for discrete optimization problems developed in [12] and [15], 
the bottom-up procedure presented in this paper can be viewed as a general- 

ized version of dynamic programming. 

Note that state-space search procedures such as A* can be considered both 
top-down [21] and bottom-up. The reason is that for any state-space graph, it 

is possible to construct two equivalent type 3 AND/OR graphs such that the 

top-down search in one is equivalent to the bottom-up search in the other, and 
vice versa [12]. This explains the confusion prevalent in the operations re- 

search literature as to whether certain shortest-path algorithms are DP or 
B&B. For example, Dijkstra’s algorithm for shortest path [51 (an algorithm 

very similar to A*) has been claimed to be both DP [6] and B&B [8]. 

By viewing A* as a bottom-up search procedure for type 3 AND/OR 
graphs, we developed BUS* as a generalization of A*. (AO* can also be 

viewed as a generalization of A* if we view A* as a top-down search 

procedure for type 3 AND/OR graphs [15].) It is noteworthy that the basic 
structure of A* and its various properties survive two levels of generalizations: 
(1) in terms of cost (from sumcost to monotone cost functions); and (21 in 

terms of graph structure (from state-space graphs to AND/OR graphs). As 
discussed in Section 4.2, the steps of BUS* have almost one-to-one correspon- 
dence with the steps of A*. 

APPENDIX I 

LEMMA 3.1. For a node m on OPEN or CLOSED, if T is a solution tree rooted 
at m such that all nodes of T (except possibly m> are in CLOSED, then 

s(m) G f(T). 

Proof. By induction on the height of T. 
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Base case: Height(T) = 0, that is, T consists only of a terminal node (which is 

in CLOSED). f(T) = c(root(T)) = q(root(T)). 

Induction step: Suppose the lemma holds for all solution trees of height x or 
less, and let T be any solution tree of height x + 1. 

Let p: m + m,,.. .,mk be the connector at the root node m of T, and let 

T ,,..., Tk be subtrees of T rooted at m,,. . , mL. Clearly, for 1 < i < k, height 

(Tj)< x. From the induction assumption, for 1 < i G k, q(m,) < f(T,). 

q(m)<min{t,(q(n,),...,q(~z,))lp:m~nl,...,n, isaconnector 

and {n,,..., nk} Z CLOSED) (from I,). 

G t,(q(m,),..., q(m,)) (m,,...,m, are in CLOSED) 

(from the monotonicity of t, and the induction assumption) 

= f(T) (from the definition of f) W 

LEMMA 3.2. Any solution tree T, which has a node not in CLOSED, has a 

subtree T, such that root(T, 1 E OPEN and all the nodes of T, except root( T,) are 
in CLOSED. 

Proof. 1. All subtrees of T height 0 (i.e., containing only a terminal node) 
are in CLOSED. 2. If all subtrees of T of height h or less are in CLOSED, then 

from Invariant I,, roots of all subtrees of height h + 1 are in OPEN U CLOSED; 
i.e., either there exists a subtree T, qf T such that height (T,) = h + 1 and 

root(T,) E OPEN (and of course, all other nodes of T, except root(T,) are in 

CLOSED) or all subtrees of height h + 1 are in CLOSED. 
Since at least one node of T is not in CLOSED, it follows from (1) and (2) 

that there exists a subtree T, of T (such that 0 < height(T,) < height(T) such 
that root(T,) E OPEN and all nodes of T, except root(T,) are in CLOSED. I 

LEMMA 3.3. lf LB(root(G), x) = x, then in BUS* wheneller root(G) is 
selected from OPEN in step 3a, q(root(G)) = c*(root(G)). 
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Proof. If root(G) is selected in BUS* in Step 3a, then L&root(G), 

q(root(G)) = min(LB(n, q(n))ln E OPEN = q(root(G))j. 

Hence, from Theorem 3.1, q(root(G)) = c*(root(G)), and BUS* can terminate. 

n 
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