
INFORM4 TION SCIENCES X,39-57 t 199 1) 39

A General Heuristic Bottom-up Procedure for Searching AND/OR Graphs

VIPIN KUMAR

Drparfment of Cornpu~rr Scirncr,

Uniwrsify of Minm~sota, Minneapolis, Minmwta 554.55

Communicated by Laveen N. Kanal

ABSTRACT

This paper presents a general heuristic bottom-up procedure for finding a least-cost

solution tree of an AND/OR graph when the cost functions associated with the arcs are

monotone. Since monotone cost functions are very general, the procedure is applicable to a

very large number of problems. The procedure works for both cyclic and acyclic AND/OR

graphs, and subsumes most of the known bottom-up procedures for searching AND/OR

graphs. Many state-space search procedures and dynamic programming procedures are also

special cases of this procedure.

1. INTRODUCTION

This paper presents a general heuristic bottom-up procedure for finding a

least-cost solution tree of an AND/OR graph when the cost functions

associated with the arcs are monotone. Since monotone cost functions are very

general, the procedure is applicable to a very large number of problems. The

procedure works for both cyclic and acyclic AND/OR graphs, and subsumes
most of the known bottom-up procedures for searching AND/OR graphs.

Many state-space search procedures and dynamic procedures are also special
cases of our procedure. The procedure develops solutions for the subproblems
of an AND/OR graph (in an order determined by the heuristic information)

until an optimal solution tree of the AND/OR graph is found. This frame-

work is different from the heuristic top-down search of AND/OR graphs

This work was supported in part by Army Research Office grant #DAAG29-84-K-0060 to

the Artificial Intelligence Laboratory at the University of Texas at Austin, when the author

was on the faculty at the University of Texas.

OElsevier Science Publishing CO., Inc. 1991
655 Avenue of the Americas. New York, NY 10010 0020-0255/91/$03._50

40 VIPIN KUMAR

(e.g., [4], AO* and related search procedures [22], [2], and [17]) and game trees

(e.g., alpha-beta [22], B* [3], and SSS* [24]), in which an optimal solution tree

of the AND/OR graph is found by selectively developing various possible

solutions [16, 23, 141.

In principle, a least-cost solution tree of an AND/OR graph can be found

by performing search in either top-down or bottom-up fashion. But depending

upon the specific problem being solved, one technique may be superior to the

other.’ If the problem is such that its AND/OR graph contains only a few

terminal nodes but has very many solution trees stemming from the root (e.g.,

problem 1.3, p. 32 in [23]), then it would be more efficient to perform the

search in a bottom-up fashion. In some problems, it may be more natural to

generate the graph bottom-up, as the problem reduction operators may only

be known in the reverse direction. For example, the generalized state-space

graphs described in [25] can be viewed as AND/OR graphs in which the

problem reduction operators are described in reverse. See [25] for a discussion

of problem characteristics that may influence the direction of search in an

AND/OR graph.

Many breadth-first, depth-first, and heuristic strategies for conducting

top-down search are already well known (e.g., AO*, alpha-beta, SSS*, B*).

But all the known bottom-up search procedures to date (with the exception of
algorithms in [ll] and [18], which use a limited amount of problem-specific

information to constrain search) are essentially breadth-first. The procedure

presented in this paper provides a mechanism for using problem-specific

heuristic information in the bottom-up search of AND/OR graphs. The
actual amount of benefit gained is dependent upon the kind of heuristic

information available and the problem domain itself. A preliminary version of

this paper appeared in [13].

In Section 2 we briefly review AND/OR graphs, define a cost function on
the solution trees of an AND/OR graph, and discuss the relationship between

the problem of finding a least-cost solution tree of an AND/OR graph and

the problems solved by dynamic programming. In Section 3 we present a

general bottom-up procedure and show that a number of bottom-up proce-

dures for searching AND/OR graphs [18, 19, 111 as well as dynamic program-
ming procedures [l] are special cases of this procedure. In Section 4, we show
that the A* algorithm for state-space search [22] can be viewed as a special

case of our general bottom-up procedure. Section 5 discusses the significance
of this work in the context of the author’s previous work on a unified approach
to search procedures.

‘Many top-down procedures for searching AND/OR graphs (such as given in 1221, [2]
and [17]) use a bottom-up procedure to compute the merit/cost of partial solution trees.
These procedures still search the solution-space in a top-down fashion.

SEARCHING AND/OR GRAPHS 41

2. AND/OR GRAPHS

Following the terminology in [22] and [lo], we define AND/OR graphs as
hypergraphs. Each node of an AND/OR graph represents a problem, and a
special node root(G) called root of G represents the original problem to be

solved. Transformation of a problem into a set of subproblems is depicted by a
hyperarc directed from a parent node to a set of successor nodes. These
hyperarcs are also called connectors. A hyperarc p: II + n ,, . . , uk is a k-con-

nector that shows that the problem II can be solved by solving the subprob-

lems ?I,, . .,nx. A node having successors is called nonterminal. In general, a
nonterminal node can have more than one hyperarc directed from it. Nodes

with no successors are called terminal, and each terminal node represents a

primitive problem.’

An AND/OR graph G is cyclic if no node of G is a successor of itself. An
AND/OR graph G is called an AND/OR tree if G is acyclic and every node

except root(G) has exactly one parent. Every AND/OR graph G can be
unfolded (by creating duplicates of all nodes of G having multiple parents) to

build an equivalent AND/OR tree called unfold(G). Note that if G is not

acyclic, then unfold(G) will be an infinite structure.
Given an AND/OR graph representation of a problem, we can identify its

different solutions, each one represented by a solution tree. A solution tree T

of an AND/OR graph G is an AND/OR tree with the following properties:

(i) root(G) = root(T); (ii) if a nonterminal node tI of unfold(G) is in T, then

exactly one hyperarc p: tz ---) tz ,,.. , n, is directed from it in T, where p is one
of the hyperarcs directed from n in unfold(G).

A solution tree T of G represents a plausible “problem reduction scheme”

for solving the problem modeled by the root node of G. The subgraph G,; of

G rooted at a node n is in fact a problem reduction formulation of the
problem represented by n, and a solution tree of GA represents a solution to

that problem. By a solution tree rooted at n we mean a solution tree of G;. We
define height(T) as the distance (in terms of number of arcs) between root(T)
and a farthest terminal node of T.

Often, a cost function f is defined on the solution trees of G, and a
least-cost solution tree of G is desired.’ There are various ways in which a

‘The assumption that each terminal node is a primitive node is made only to simplify the

definition of cost (to be defined later) of solution trees. If a terminal node represents a

nonprimitive problem (i.e., a problem whose solution is not known). then the cost of the node

is taken to be infinite.

‘In many problem domains, f(r) denotes the merit of the solution tree T, and a

largest-merit solution tree of G is desired. The discussion in this paper is applicable to such

cases with obvious modifications.

42 VIPIN KUMAR

cost function can be defined; the one defined below is applicable in a large
number of problem domains.4

For a terminal node II of G, let c(n) denote the cost of n, i.e., the cost of
solving the problem represented by n. With each k-connector p: n -+ n,, . . . , nk
we associate a k-ary cost function t&r,,.. ., r,) which denotes the cost of

solving n if n is solved by solving n,,. .., nk at costs r,,. .., rk, respectively.

For a solution tree T, we define its cost f(T) recursively as follows: if T
consists only of a single node n = root(T), then

f(T) = c(n). (2.la)

Otherwise, n = root(T) has children n,,. . . ,nk such that p: n + n,,. ..,nk is a

connector. Let T,, . . . , Tk be the subtrees of T rooted at n,,. . .,nk. Then

f(T) =t,(f(T,),...,f(Tk)). (2.lb)

Thus the cost of a solution tree is defined recursively as a composition of the

cost of its subtrees. Figure 1 shows a cyclic AND/OR graph, associated cost

functions, and the computation of the cost of one of its solution trees. We
define c*(n) for nodes n of an AND/OR graph G to be the minimum of the

costs of the solution trees rooted at n. Thus, c*(root(G>> denotes the cost of

an optimum solution tree of G. Note that if n is nonterminal, then c*(n) may

be undefined, as there may be an infinite number of solution trees of

decreasing costs rooted at n. A cost function t(. , . . , .> is monotone if it is

monotonically nondecreasing in each variable. For example, t,,, tP2 and tP3 in
Figure 1 are monotone. The following theorem gives a recursive formula for

c*(n).

THEOREM 2.1. If the cost functions t,,(.,..., .) are monotone and if c*(n) is
defined for all nodes n of G,I then for the nodes n of an AND/ OR graph the
following recursiue equations hold. (1) If n is a terminal node, then c*(n) = c(n).
(2) If n is a nonterminal node, then c*(n) = min{t,(c*(n,), . . . , c*(n,))lp: n +
n,, . . . , nk is a hyperarc directed from n}.

Proof. See [12].

Thus if the cost functions t, are monotone, then c*(root(G)), the smallest
of the costs of the solution trees of G, can be found by solving the above
system of equations. The procedures for solving these equations can often be
easily modified to build a least-cost solution tree of G. Note that we can try to
find a least-cost solution tree of G by exhaustive generation and evaluation of

4The definition of cost functions given here is similar to the definition of recursive weight

functions given in [231. See [231 and [161 for many practical examples.

SEARCHING AND/OR GRAPHS 43

Cost limctions associated with
the hyperarcs of G:

Terminal cost function E:
c(a) = 10; c(b) = 2.

f(T)=C+)=4+8=12

C,(b) = 2

C,(b) = 2

(b)

Fig. I. (a) An And/Or graph G. and the associated cost functions. (b) Computation of ,f(T)
of a solution tree T of G.

44 VIPIN KUMAR

all solution trees of G. But in practical problems this turns out to be far more

expensive than solving the recursive equations. Of course, the exhaustive
generation is not even feasible if G has an infinite number of solution trees.

RELATIONSHIP WITH DYNAMIC PROGRAMMING

Note that solving an optimization problem by Bellman’s dynamic program-

ming technique also involves converting the optimization problem into a

problem of solving a set of recursive equations. Interestingly, most of the

discrete optimization problems solved by dynamic programming can be formu-

lated as the problem of finding a least-cost solution tree of an AND/OR

graph with suitably defined monotone cost functions [12, 71. We can also state

a principle similar to Bellman’s principle of optimality (all subpolicies of an
optimum policy are also optimal). First, let us define the optimality criterion

for a solution tree (the counterpart of Bellman’s “policy” in our formulation).

A solution tree rooted at a node n of G is called an optimum solution tree
rooted at n if its cost is the smallest of all the solution trees rooted at IZ.

LEMMA 2.1. If the cost functions t, are monotone and if c*(n) is defined for
all nodes n of G, then for ecery node n of G there exists an optimum solution tree
rooted at n, all of whose subtrees (rooted at the immediate successors of n) are
also optimal.

Proof. See [121.

This lemma says that due to the monotonicity of t,(.,. . ., .>, an optimal

solution tree can always be built by optimally choosing from the alternate

compositions of only the optimal subtrees. This technique of first finding the
optimal solution to small problems and then using them to construct optimal
solutions to successively bigger problems is at the heart of all bottom-up

procedures for searching AND/OR graphs and of all dynamic programming

algorithms. Hence a bottom-up search procedure for AND/OR graphs (such
as the one given in the next section) can be viewed as a dynamic programming

algorithm.

3. BOTTOM-UP SEARCH OF AND/OR GRAPHS

3.1. A GENERAL BOTTOM-UP SEARCH PROCEDURE

In this section we present a general bottom-up search procedure for finding
an optimum solution tree of an AND/OR graph with monotone cost func-
tions. The procedure makes use of a “lower bound” function defined as
follows. If n is a node of G and x is the cost of some solution tree T rooted at

SEARCHiNG AND/OR GRAPHS 45

n, then LB(n, x) is defined as a lower-bound on the cost of a solution tree of

G (i.e., rooted at root(G)) and having T as a subtree; i.e., LB(n,x) <

min{f(T,)(T, is a solution tree of G, and T is a subtree of T,}. For a given
AND/OR graph G, the following procedure finds (on terminating success-
fuliy) an optimum solution tree of G. The procedure maintains two sets of

nodes called OPEN and CLOSED.

3.1, I. Procedure BUS

1. (Initialization): Initialize CLOSED to the set of terminal nodes of G. For
all (terminal} nodes IZ in CLOSED, set q(n) = c(n). Initialize OPEN with those

nonterminal nodes n of G for which p: n -+ n,, . . . , nk is a connector such that

fn ,, . . . , Ok} c: CLOSED (i.e., III,. . . , nk are terminal nodes of G). For nodes II in

OPEN, compute q(n)=min{t,(q(n,),...,q(nk))lp: n+n,,...,nk isaconnector

and In,,..., nk}c CLOSED].

2. (Termination test): If root(G) is in OPEN or CLOSED and q(root(G)k
~B(~,q(~~~ for ali n in OPEN, then terminate. The cost of an optimum solution

tree of G is q(root(G)). Otherwise, if OWN is empty, then terminate with

failure.
3a. Select and remove a node from OPEN and add it to CLOSED.

3b. For all nodes n in CLOSED, if p: n + n ,, . . . , nk is a connector such that

fn ,, _ . . , tzk} C CLOSED and q(n) > t,,(q(n ,), . . . ~ q(n,)). then recompute

q(n)=min{t,(q(n,),...,q(n,))lp: tr-+trI,...,nk isaconnector

and {n,,....nk) ECLOSED)?

and remove n from CLOSED and put it back in OPEN.

3c. For ah nodes n in OPEN, if p: tz + t?,, . . , tzk is a connector such that

{n ,, . . . , nk} E: CLOSED and q(n) > t,Jq(n ,I,. . . , q(n,)), then recompute

q(n)=min{r,(q(n,),...,q(n,))lp: n-+n,,...,nk isaconnector

and {~,....,n~} ~CLOSED).

3d. For all nodes n of G that are neither in OPEN nor in CLOSED, if p:
n + n,, . , tlk is a connector such that (I!,, n,} L cxosEr>, then add n to
OPEN, and compute

q(n)=min(r,(q(n,) ,..., q(n,))Ip:n-+n ,,.... trk isaconnector

and {tl,,..., nk}c OLOStD).

46 VIPIN KUMAR

4. Go to Step 2.

For a node n in OPEN or CLOSED, it is easily seen that q(n) denotes the cost

of a solution tree rooted at n such that all nodes of T are in OPEN IJ CLOSED.

The following two loop invariants are maintained by GBUS (they are true

after the initialization step, and are true at the end of every execution of

Step 31.

In~rianr I,. For all nodes n in OPEN or CLOSED, q(n) G min{t,(q(n,),. ..,

q(nk)llp: n +Izi,..., nk is a connector and (n ,, . . , nk} c CLOSED}.

Incariant I,. For all nodes n of G if p: n --) n ,,..., nk and {n ,,..., nk} c
CLOSED, then n is in OPEN or CLOSED.

Lemma 3.1 follows from Invariant I, and the monoto%city of t,.

LEMMA 3.1. For a node m on OPEN or CLOSED, if T is a solution tree rooted
at m such that all nodes of T (except possibly m) are in CLOSED, then

q(m) < f(T).

Proof. See Appendix I.

From Lemma 3.1, it is clear that, as CLOSED contains more nodes, q(n)
becomes closer to c*(n). (In the limiting case, if CLOSED contains all the nodes

of G, then q(n) = c*(n) for all n.) The idea behind Step 3a of BUS is (to try)
to increase the size of CLOSED by transferring a node from OPEN to CLOSED.

The following lemma follows from I, and the initialization step.

LEMMA 3.2. Any solution tree T that has a node not in CLOSED has a subtree
T, such that root(T,) E OPEN and all the nodes of T, except root(T,) are in
CLOSED.

Proof. See Appendix I.

Lemmas 3.1 and 3.2 have the following corollary.

COROLLARY 3.1. min{LB(n, q(n))1 n E OPEN) is a lower bound on the cost of
all solution trees of G (i.e., the solution trees rooted at root(G)> that have at
least one node that is not in CLOSED.

The following theorem says that when BUS terminates successfully,
q(root(G)) = c*(root(G)).

THEOREM 3.1. In BUS, when root(G) is in OPEN or CLOSED and q(root(G))
< LB(n, q(n)) for all n E OPEN then q(root(G)) = c*(root(G)).

SEARCHING AND/OR GRAPHS 47

Proof‘. Let T be a solution tree rooted at root(G) (i.e., root(G)= root(T)).

Case 1: All nodes of T are in CLOSED. Then from Lemma 1, q(root(G))<

f(T).

Case 2: Otherwise, from Lemma 2, there is a subtree T, of T such that
root(T,) E OPEN and all nodes of T, except root(T,) are in CLOSED. From

Lemma 1. f(T,) > q(root(T,).

f(T) a LB(root(T,),q(root(T,)) (from the definition of LB)

2 min(LB(n.s(n))l n E OPEN) (root(T,) is in OPEN)

>q(root(G)).

Thus for any solution tree T rooted at root(G), q(root(G))< f(T). But

q(root(G)) is the cost of some solution tree rooted at root(G), hence

q(root(G)) = c*(root(G)). n

3.1.2. Correctness Proof of BUS

If BUS terminates unsuccessfully, then OPEN is empty and root(G) is not in
CLOSED; hence, obviously G does not have any solution tree. Otherwise, if

BUS terminates successfully, then from Theorem 3.1, q(root(G)) = c*(root(G)).

By keeping track (during the execution of BUS) of the connectors directed out

of the nodes n on OPEN and CLOSED that result in the current q(n) value for
the node n, an optimum solution tree of G can be constructed at the

successful termination of BUS.s
Even though upon successful termination the procedure is guaranteed to

find an optimum solution tree of G, the termination itself is not guaranteed.
As proved in [12], the general problem of finding an optimum solution tree of
an AND/OR graph with monotone cost functions is unsolvable. The reason is

that, while executing Step 3, CLOSED can grow or shrink depending upon how

many nodes are transferred out of CLOSED in Step 3b. But if sufficient
problem-specific information is available, termination can be guaranteed.

“For solution trees having cycles. it may be necessary to keep more than one “incarna-

tion” of a node.

48 VIPlN KUMAR

3.2. USING A HEURISTIC FUNCTION TO SELECT A NODE FROM OPEN

For a node n on OPEN, let hf(n,x) denote the (heuristic) promise that a

solution tree rooted at n of cost x will be a subtree of an optimum solution
tree of G. If available, this information can be used to select the most

promising node from OPEN in Step 4. If !zf provides reasonable estimates, then

the procedure can be speeded up substantially. A useful heuristic is hf(n, x) =

LB(n,xI; because if tB(. , .) is a tight bound, then the smaller the LB(n,x)

value the greater the possibility that a solution tree rooted at n of cost x is a
part of an optimal solution tree of C. When hf(n, x) = LB(n, XI, hf is called a

lower-bound heuristic function. If in Step 4 of BUS a node rz with smallest

LB(n,q(n)) is moved from OPEN to CLOSED, then we call it procedure BUS*.

If the lower bounds are perfect, i.e., LB(n, XI = min(f(T)i T is a solution

tree of G and has a subtree rooted at n of cost x), then hf(n, XI = LB(n, xj is

a perfect heuristic and BUS” will transfer only those nodes from OPEN to
CLOSED that belong to an optimum solution tree of G.

The following lemma gives the condition on the lower-bound function,
under which procedure BUS* can terminate whenever root(G) is transferred

from OPEN t0 CLOSED.

LEMMA 3.3. If LB(root(G),x) = x, then in BUS* whenecer root(G) is
selected from OPEN in step 3a, q(root(G)) = c*(root(G)).

Proof. See Appendix I.

Hence, if LB(root(G), x) = x, then Steps 2 and 3a of BUS* can be
modified as follows:

2. If OPEN is empty, then terminate with failure.
3a. Let n be a node on OPEN such that LB(n, q(n)) < LB(m, q(m)) for all

nodes m on OPEN. If n = root(G), then terminate (q(n) is the cost of an
optimal solution tree of GI, else remove n from OPEN and put it in

CLOSED.

A lower-bound function is logically consistent if for all nodes n of G,
x > y * LB(n, x> > LB(n, y). A lower bound function is heuristically consis-
tenf if whenever T, is a solution tree of cost x rooted at a node n i, and T, is
a solution tree of cost y rooted at n2, and Tz is a subtree of T,, then
LB(n,, XI > LB(n,, y). The following theorem states the condition under
which a node will never be transferred from CLOSED back to OPEN (i.e., Step 2b
would become superfluous in BUS*).

SEARCHING AND/OR GRAPHS 49

THEOREM 3.2. If LB(. , .) is both logically and heuristically consistent, ther7
in BUS* wheneller a node is selected and transferred from OPEN to CLOSED,

q(n) = c*(n).

Proof. Let T be a solution tree rooted at 17.

Cuse 1: All nodes of T are in CL.OSED. Then from Lemma 3.1, q(r7) < ,/(T).

Case 2; Otherwise, from Lemma 3.2, there is a subtree T, of T such that
root(T,) E OPEN and all nodes of T, except root(T,) are in CLOSEI). From

Lemma 3.1, f(T,) > q(root(T,). 1. LB(n,q(n)) < LB(root(T,), q(root(T,))
(from Step 3a of BUS*) < LB(root(T,), f(T,)) (from logical consistency of

LB). 2. LB(root(T,), f(T,)) G LB(n,f(T)) (from heuristic consistency of LB).

From (1) and (2), LB(n,q(n)) 6 LB(n, f(T)). It follows from logical consis-

tency of LB that q(n)< f(T).
Thus for any solution tree T rooted at tz, q(n) < f(T). But q(n) is the cost

of some solution tree rooted at n, hence q(n) = c*(n). W

From Theorem 3.2, it follows that if LB is heuristically and logically

consistent, then in each execution of Step 3, BUS* finds an optimal solution
tree for some new nonterminal node of G. Hence, in this case, BUS*

terminates in no more steps than the number of nonterminal nodes in G. If

LB is a good bound, then BUS* could terminate in much fewer steps. The
following lemma follows from the logical and heuristic consistency of LB.

LEMMA 3.4. If LB is both logically and heuristically consistent, then in BUS”
min{LB(n, x)ln E OPEN} is always nondecreasing.

3.3. POSITIVE MONOTONE COST FUNCTIONS

A function t(x ,, . . . , x,) is positilye monotone if in addition to being mono-

tone nondecreasing in each variable it satisfies the following property:

tb,,..., x,)> max{x,,..., xk}. For example, tp, in Figure 1 is positive mono-

tone. For positive arguments, t,, and tp2 are also positive monotone. If all the
cost functions t, of G are positive monotone, then it is easily seen that we can
use LB(n, x) = x (any solution tree containing a subtree rooted at n of cost x

will have cost x or more). It follows that this lower-bound function is logically
consistent and (owing to the positive monotonicity of t,]) heuristically consis-
tent.

If the cost functions are positive monotone, then BUS* using LB(n,q(n))
= q(n) becomes virtually identical to Knuth’s generalization of Dijkstra’s

50 VIPIN KUMAR

algorithm [ll]. For sumcost functions (t(x,,..., xk)= x1 + . - * + xk), BUS*
using LB(n, q(n)) = g(n) is identicat to the heuristic bottom-up algorithm for

searching AND/OR graphs by Martelli and Montanari 1181.

3.4. SEARCHING ACYCLIC AND/OR GRAPHS

When G is acyclic, we can associate an integer level(n) with each node II of

G such that, for any two nonterminal nodes n and m, if n is a successor of m

in G, then level(n) < level(m). For each terminal node n, level(n)= 0. If

level(n) is used as a heuristic for selecting a node from OPEN, then it is easily

seen that (because G is acyclic) whenever a node II is transferred from OPEN

to CLOSED, q(n) = c*(n). When root(G) is transferred from OPEN to CLOSED

then (because of the numbering scheme used) OPEN becomes empty and the

procedure terminates successfully. For sumcost functions, this procedure be-

comes identical to the DP algorithm given in [19].

Note that this procedure does not use a lower-bound function; hence it can
be called “breadth-first.” The termination is guaranteed by the acyclic nature

of G. The procedure terminates after as many cycles as there are nodes in G

at level below level(root(G>). This is how most of the dynamic programming
procedures (with some exceptions, e.g., [201 and [lo]) perform search.

If G is acyclic, then no matter what heuristic is used to select a node from
OPEN in Step 2 of BUS, the procedure will terminate. The reason is that a
node n is transferred from CLOSED back to OPEN only if a better solution tree

rooted at n is found. Since, in an acyclic AND/OR graph, there are only a

finite number of solution trees rooted at a node, a node can shuttle back and

forth between OPEN and CLOSED only a finite number of times. But the

complexity of the procedure can be bad, as nodes can be repeatedly trans-
ferred between OPEN and CLOSED. For many problems (e.g., a matrix multipli-
cation problem [l]), BUS with a “random” selection strategy in Step 2 will
have exponential complexity, whereas BUS using a level heuristic will have

polynomial complexity.
Note that the level heuristic is effective only if the cost functions are

monotone.6 Together they guarantee that whenever a node is transferred from

OPEN to CLOSED, q(n)= c*(n). Discovery of this phenomenon in certain
problems led Belfman to formulate the dynamic programming paradigm. (The
problems originally tackled by Bellman were limited to those described by type
3 AND/OR graphs discussed in Section 4). As pointed out in Section 2,

61f the cost functions are nonmonotone, then BUS using level may not terminate with an
optimal solution tree.

SEARCHING AND/OR GRAPHS 51

monotonicity of cost functions and Bellman’s principle of optimality are

closely related.

4. RELATIONSHIP WITH STATE-SPACE SEARCH PROCEDURES

4.1. TYPE 3 AND/OR GRAPHS

We define type 3 AND/OR graphs to be those AND/OR graphs that have

only two types of connectors: (i) 2-connectors II --) nItI such that tl, is a

nonterminal and tz2 is a terminal; (ii) l-connectors n + n, such that n, is a

terminal. There is a natural correspondence between type 3 AND/OR graphs
and type 3 grammars that follows from the natural correspondence between

AND/OR graphs and context-free (i.e., type 2) grammars [91. Furthermore,

because of equivalence of finite state-space graphs, finite-state automata and
type 3 grammars, it is possible to construct a type 3 AND/OR graph given a

state-space graph, and vice versa. Figure 2 shows a state-space graph SS and

its equivalent type 3 AND/OR graph G. A state M; of SS corresponds to a
node N, in G. N, represents the problem of getting to M, from the start state

M, of SS. The goal state M, of SS corresponds to the root node N4 of G‘. For

every arc in SS from M, to M,, there is a hyperarc N, --f N,tz, ,, where the
terminal node tz, , . represents the (primitive) problem of going from M, to M,

in SS. A solution tree rooted at a node N, corresponds to the path between

the source node and M, of SS. The source node M, of SS corresponds to the
node N, of G‘. A special null hyperarc’ (N, + E) originates from N, in <;,

which denotes that the problem of going from M, to M, in SS is trivial.

BUS* is essentially a generalization of the classical A* algorithm. OPEN and

CLOSHI in BUS* correspond to the OWN and CLOSED lists in A*. The

initialization step of BUS* corresponds to putting the start node on OPEN in
A*. Step 2 corresponds to the termination check in A*. Step 3a corresponds to
moving the first node tt of OPEN (i.e., the node with least lower bound) to

CLOSED. Step 3d corresponds to installing those children of n on OPEN that do

not already exist in OP~.N or (‘LOSHI. Step 3c corresponds to possibly revising

‘The null hyperarc in an AND/OR graph corresponds to an empty production in a
context-free grammar. The existence of the null arc is assumed only to avoid a superficial

difference (at the initialization step) between BUS* (working on type 3 AND/OR graphs)

and A*.

Source node

ww -
+

(b) &

Fig. 2. (a) A state-space graph SS. (b) A regular And/Or graph G equivalent to the

state-space graph SS.

SEARCHING AND/OR GRAPHS 53

g(n,) and f(ni) for each child n, of n such that ni is already on OPEN. Step 3b

corresponds to possibly revising g(n,) and f(ni) for each successor ni of n

that is on CLOSED, and moving it to OPEN if necessary. Corollary 3.1 for BUS

corresponds to result #2 for A* in [22l.
Execution of A* on a state-space graph is identical to the execution of

BUS* on a corresponding type 3 AND/OR graph whose cost functions have

the following properties: (1) t&x,, x,) = x, + x2, (2) r,(x,)=x,; (3) c(n)>0
(i.e., arc costs in the state-space graph are positive). For this case, it is possible

to define LB(n,x)= x + h(n), where n represents the cost of the current

“type 3” solution tree rooted at n, and h(n) represents the lower bound on
the remaining cost (in the context of state-space graphs, x is the cost of the

path from source node to n, and h(n) is the lower bound on the cost of the

path from n to the goal node). Since I&root(G), X) = x (because h(root(G)

= 0), BUS* (like A*) terminates whenever root(G) is transferred from OPEN to

CLOSED. Clearly LB(n, X) as defined here is logically consistent. Furthermore

the heuristic consistency assumption on the lower-bound function (LB(n, x) =
x + h(n)) is virtually identical to the so called “monotone” restriction’ on h in

[22] (which, if satisfied, guarantees that a node is never transferred back from

CLOSED to OPEN). Thus, Theorem 3.2 and Lemma 3.4 can be viewed as

generalizations of results #7 and #8 in [22]. Various dynamic programming

procedures for finding a shortest path in a graph (e.g., [6] and [lo]) are also
special cases of procedure BUS for finding a least-cost solution tree of a type

3 AND/OR graph.

5. CONCLUDING REMARKS

The paradigm presented in this paper provides a general framework for

using problem-specific knowledge in bottom-up search. As noted in [18], a

bottom-up search algorithm generates a simpler structure than the one gener-
ated by a top-down search algorithm like AO*. At any time, for a node n,

BUS only needs to keep track of one outgoing connector, which gives the
current best cost solution tree rooted at n. In contrast, in AO* (or its

generalizations as in [16] and [23]), all outgoing connectors have to be
retained. Furthermore, the process of selecting a node in BUS (or BUS*) is

much simpler than in AO*, where a graph has to be searched bottom-up to
update heuristic values and top-down to select a node for expansion. Hence,
for problems in which both bottom-up and top-down search are natural,

‘Note that the monotone restriction on heuristic function h as defined in [22] has no

connection with the monotonicity property of the cost functions t,.

54 VIPIN KUMAR

bottom-up search may be a better choice because of less overhead. Note that
GBUS is applicable to both cyclic and acyclic AND/OR graphs, whereas AO*

and its variations [2, 171 work only for acyclic graphs.
The general procedure presented in this paper was inspired by a unified

approach to search procedures developed in [12], where it was shown that

most of the procedures for finding an optimum solution tree of an AND/OR
graph can be classified as either top-down or bottom-up. In addition to the

general bottom-up procedure presented here, we have developed a general
top-down search procedure for AND/OR graphs, which subsumes most of the

known top-down search procedures (e.g., AO*, B*, SSS*, alpha-beta) 1161. It is
natural to view the top-down search procedures for AND/OR graphs as

branch-and-bound (B&B) [12, 211. On the other hand, in the context of the

general model for discrete optimization problems developed in [12] and [15],
the bottom-up procedure presented in this paper can be viewed as a general-

ized version of dynamic programming.

Note that state-space search procedures such as A* can be considered both
top-down [21] and bottom-up. The reason is that for any state-space graph, it

is possible to construct two equivalent type 3 AND/OR graphs such that the

top-down search in one is equivalent to the bottom-up search in the other, and
vice versa [12]. This explains the confusion prevalent in the operations re-

search literature as to whether certain shortest-path algorithms are DP or
B&B. For example, Dijkstra’s algorithm for shortest path [51 (an algorithm

very similar to A*) has been claimed to be both DP [6] and B&B [8].

By viewing A* as a bottom-up search procedure for type 3 AND/OR
graphs, we developed BUS* as a generalization of A*. (AO* can also be

viewed as a generalization of A* if we view A* as a top-down search

procedure for type 3 AND/OR graphs [15].) It is noteworthy that the basic
structure of A* and its various properties survive two levels of generalizations:
(1) in terms of cost (from sumcost to monotone cost functions); and (21 in

terms of graph structure (from state-space graphs to AND/OR graphs). As
discussed in Section 4.2, the steps of BUS* have almost one-to-one correspon-
dence with the steps of A*.

APPENDIX I

LEMMA 3.1. For a node m on OPEN or CLOSED, if T is a solution tree rooted
at m such that all nodes of T (except possibly m> are in CLOSED, then

s(m) G f(T).

Proof. By induction on the height of T.

SEARCHING AND/OR GRAPHS 5s

Base case: Height(T) = 0, that is, T consists only of a terminal node (which is

in CLOSED). f(T) = c(root(T)) = q(root(T)).

Induction step: Suppose the lemma holds for all solution trees of height x or
less, and let T be any solution tree of height x + 1.

Let p: m + m,,.. .,mk be the connector at the root node m of T, and let

T ,,..., Tk be subtrees of T rooted at m,,. . , mL. Clearly, for 1 < i < k, height

(Tj)< x. From the induction assumption, for 1 < i G k, q(m,) < f(T,).

q(m)<min{t,(q(n,),...,q(~z,))lp:m~nl,...,n, isaconnector

and {n,,..., nk} Z CLOSED) (from I,).

G t,(q(m,),..., q(m,)) (m,,...,m, are in CLOSED)

(from the monotonicity of t, and the induction assumption)

= f(T) (from the definition of f) W

LEMMA 3.2. Any solution tree T, which has a node not in CLOSED, has a

subtree T, such that root(T, 1 E OPEN and all the nodes of T, except root(T,) are
in CLOSED.

Proof. 1. All subtrees of T height 0 (i.e., containing only a terminal node)
are in CLOSED. 2. If all subtrees of T of height h or less are in CLOSED, then

from Invariant I,, roots of all subtrees of height h + 1 are in OPEN U CLOSED;
i.e., either there exists a subtree T, qf T such that height (T,) = h + 1 and

root(T,) E OPEN (and of course, all other nodes of T, except root(T,) are in

CLOSED) or all subtrees of height h + 1 are in CLOSED.
Since at least one node of T is not in CLOSED, it follows from (1) and (2)

that there exists a subtree T, of T (such that 0 < height(T,) < height(T) such
that root(T,) E OPEN and all nodes of T, except root(T,) are in CLOSED. I

LEMMA 3.3. lf LB(root(G), x) = x, then in BUS* wheneller root(G) is
selected from OPEN in step 3a, q(root(G)) = c*(root(G)).

56 VIPIN KUMAR

Proof. If root(G) is selected in BUS* in Step 3a, then L&root(G),

q(root(G)) = min(LB(n, q(n))ln E OPEN = q(root(G))j.

Hence, from Theorem 3.1, q(root(G)) = c*(root(G)), and BUS* can terminate.

n

REFERENCES

1. A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorifhms,
Addison-Wesley, Reading, MA, 1974.

2. A. Bagchi and A. Mahanti, Admissible heuristic search in AND/OR graphs, Theor.
Camp. Sci. 24207-219 (1983).

3. H. Berliner, The B* tree search algorithm: A best-first proof procedure, Arfificial
InteNigence 12:23-40 (1979).

4. C. L. Chang and J. R. Slagle, Arfificial Intelligence 1971.
5. E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math.

1:269-271 (1959).
6. S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic Programming, Academic

Press, New York, 1977.
7. S. Gnesi, A. Martelli, and U. Montanari, Dynamic programming as graph searching,

JACM 28:737-751 (1982).
8. P. A. V. Hall, Branch-and-bound and beyond, in Proceedings of the Second International

Joint Conference on Artificial Intelligence, 1971, pp. 641-658.
9. P. A. V. Hall, Equivalence between AND/OR graphs and context-free grammars,

Commun. ACM 16:444-445 (1973).
10. T. Ibaraki, Solvable classes of discrete dynamic programming, J. Math. Anal. Appl.

43:642-693 (1973).
11. D. E. Knuth, A generalization of Dijkstra’s algorithm, Inform. Process. Lett. 6:1-6

(1977).
12. V. Kumar, A Unified Approach to Problem Solving Search Procedures, Ph.D. thesis,

University of Maryland, 1982.
13. V. Kumar, A general bottom-up procedure for searching And/Or graphs, in Proceedings

of the National Conference on Artificial Intelligence (AAAI-84), Austin, Texas, 1984, pp.
182-187.

14. V. Kumar and L. Kanal, A general branch and bound formulation for understanding and
synthesizing and/or tree search procedures, Artificial Intelligence 21(1):179-198 (1983).

15. V. Kumar and L. N. Kanal, The CDP: A unifying formulation for heuristic search,
dynamic programming and branch and bound, in Search in Arfificial Intelligence (L. N.

Kanal and V. Kumar, Eds.), Springer-Verlag, 1988.

16. V. Kumar, D. S. Nau, and L. N. Kanal, A general branch-and-bound formulation for

AND/OR graph and game tree search, in Search in Artificial Intelligence (L. N. Kanal
and V. Kumar, Eds.), Springer-Verlag, 1988.

17. A. Mahanti and A. Bagchi, AND/OR graph heuristic search methods, JACM, pp. 28-51

(January 1985).

18. A. Martelli and U. Montanari, Additive AND/OR graphs, in Proceedings of the Third
International Joint Conference on Artificial Intelligence, 1973, pp. l-l 1.

SEARCHING AND/OR GRAPHS 51

19. A. Martelli and U. Montanari, Optimizing decision trees through heuristically guided

search, Commun. ACM 21:1025-1039 (1978).

20. T. L. Morin and R. E. Marsten, Branch and bound strategies for dynamic programming.

Operations Res. 24161 l-627 (1976).
21. D. S. Nau, V. Kumar. and L. N. Kanal, General branch-and-bound and its relation to A*

and AO*, Artificial Infe/ligence 23:29-58 (1984).

22. N. Nilsson, Prituxples of Artificial InteNigence, Tioga Publ. Co., Palo Alto, CA, 19X0.

23. J. Pearl. Heuristrcs: Intelligent Srurch Strcrtegies for Computer Problem Sohkg , Addison-

Wesley. Reading, MA, 1984.

24. G. C. Stockman, A minimax algorithm better than alpha-beta?, Artificial Intelligence

12:17Y-196 (lY7Y).

25. G. J. VanderBrug and J. Minker. State-space problem-reduction, and theorem

proving--Some relationships, Commun. ACM 1X:107-1 15 (February 1975).

