Belief Space Reachability Heuristics for Conformant and Contingent Planning

Daniel Bryce & Subbarao Kambhampati

Department of Computer Science and Engineering

Arizona State University, Brickyard Suite 501
699 South Mill Avenue, Tempe, AZ 85281
{dan.bryce, rapasu.edu

Abstract

Although reachability heuristics have been shown to be use-
fulin conformant an contingent planning, the cost of heuristic
computation is still an issue. We present several improve-
ments of our previous work on planning graph heuristics for
planning in belief space. One, we generalize our approach,
based on using multiple planning graphs, to symbolically rep-
resent many planning graphs in a structure we call a “labelled
uncertainty graph”{L,UG). The LU G allows us to compactly
represent a set of planning graphs, needed to extract a confor-
mant relaxed plan. Two, we further generalize fEG to
represent a larger set of planning graphs, one for each state
in the reachable state space, in a structure called the "global
labelled uncertainty graph"@LUG). The GLUG repre-
sents every planning graph we will ever need for a search
episode and is only computed once. Three, we present a post-
processing routine to include sensory actions into conformant
relaxed plans, making them contingent relaxed plans. We
have implemented and evaluated € G and relaxed plans

in a planner calledPOND. We comparePON D to sev-

eral state of the art planners and show our approach is quite
competitive.

Introduction
Planning in non-deterministic and partially observable

worlds is typically posed as search in belief space, where
search nodes are sets of states (belief states). Given the ef-

fectiveness of reachability heuristics in controlling search in
classical planning, in our recent work [Bryce and Kambham-

pati, 2004] we examined the issues involved in extending e

reachability heuristics to search in belief space. In partic-

ular, we developed a spectrum of planning graph heuris-

tics for finding increasingly accurate estimates of belief-

state distance. The most effective of these involves com-

puting relaxed plans simultaneously over multiple planning
graphs (corresponding to the individual states in a belief

state). While this approach has lead to promising results, its

scalability has been limited by the prohibitive cost of con-
structing multiple planning graphs. Another limitation was

that our heuristics do not account for the presence of sensing
actions, and are thus not as effective in guiding contingent
planners. In this paper, we describe three key innovations

that significantly reduce the cost of computing the reachabil-

ity heuristics and extend their coverage to include contingent

planning.

David E. Smith
NASA Ames Research Center
Comp. Sciences Division, MS 269-2
Moffett Field, CA 94035-1000
de2smith@email.arc.nasa.gov

e To avoid building multiple planning graphs explicitly, we

present a novel idea called “labelled uncertainty graph”
(LUG), that symbolically represents the multiple plan-
ning graphs within a single planning graph. Loosely
speaking, this single graph unions the causal support in-
formation present in the multiple graphs and pushes the
disjunction, describing sets of possible worlds, into “la-
bels” (¢). The graph is built efficiently by propagating la-
bels, for sets of worlds, through each layer. The structure
exhibits considerable space and time savings because the
graph elements, which were previously constructed and
represented (potentially many times) in multiple graphs,
are constructed and represented only once. Labels indi-
cate which of the explicit planning graphs/&/G ele-
ment symbolically represents. We extend the relaxed plan
extraction procedure so it operates directly on ZRéG.

We develop a further (natural) extensionf’G called
“Global LUG" (or, more euphonicallyz LU G), which in
effect starts from a belief state corresponding to all states
of the world. TheLUG for any given belief staté3S

can be computed easily as a symbolic restriction of the
GLUG (as we shall show). This extension turns out to be
particularly useful for progression search in belief space,
where, withoutG LU G, we will have to compute AU G

for each belief state encountered during search. With the
G LUG we can attain significant time savings because we
avoid repeated construction of graph components that are
common toLUGs built for different search nodes.

To provide more accurate estimates in the presence of
sensing actions, we develop the notion of “contingent
relaxed plans” which are extracted from the conformant
ones that we build from th&UG. Our extension is mo-
tivated by an attempt to capture two aspects of contin-
gent plans that are not measured by conformant relaxed
plans. The first is that we do not have to execute all ac-
tions in a conformant relaxed plan if we can sense and
decide which actions are irrelevant, and the second is that
sensing may itself require costly set-up actions. The first
concern is that we are overestimating the heuristic for a
search node with a conformant relaxed plan because we
may be able to use a sensory action later in the search
and the actual plan suffix has a lower expected cost. The
second concern is that a conformant relaxed plan under-
estimates cost when sensing is not free because ignoring

sensors also means ignoring the cost of the sensor’s causalbelief states, actions, addJ G labels, so we first explain a
support. We present initial work on a conformant relaxed few conventions. We refer to the set of models of a formula
plan post-processing procedure to capture these notions in f asM (f). We also consider two normal forms of a logical
a contingent relaxed plan. formula f, the first isx(f) which is the CNF, and the sec-

We have implemented all these heuristics and have testedond isé(f) which is the a DNF. The CNF form is seen as a

them on a progression planner that we dald N D—which

can generate both conformant and contingent plans. Our ex-

periments withPON D show that heuristics based on the
LUG and GLUG lead to significant scale-ups over those
based on multiple planning graphs ones, and that contin-
gent relaxed plans can help improve plan quality as well as
scalability in problems with difficult to support sensory ac-

conjunction of “clausestC each of which are a disjunction
of literals, while the DNF form is seen as a disjunction of
“constituents”S each of which is a conjunction of literals.
We find it useful to think of CNF and DNF represented as
sets — CNF is a conjunctive set of clauses while DNF is a
disjunctive set of constituents.

A very important point to understand is that we use canon-

tions! We also report on comparison studies with several ica| forms of CNE and DNE when referring td.) and£(.).
state of the art conformant and contingent planners. These \ye yse a BDD package [Braeeal., 1990] to obtain these

results show thaPON D with our heuristics is competi-
tive with the best conformant planners, and is able to pro-
duce significantly higher quality contingent plans. Our re-
sults are particularly encouraging considering that our cur-
rent implementation oPON D does not take advantage of
the most efficient (BDD-based) child generation techniques,
as in [Bertoliet al., 2001a].

We proceed by describing the representation we use in
PON D and the search algorithm. The main contribution of
the paper, regarding theU G construction, conformant re-
laxed plan extraction, and sensory action insertion follows.
We then evaluaté®ON D with respect to several planners,
on several existing planning domains, as well as new do-
mains, to show that our approach is scalable while retaining
plan quality. We conclude with discussion of related work
and directions for further research.

Representation

Our planning formulation iInPOND uses progression
search to find strong conformant and contingent plans,
with the assumption of partial observability. A strong
plan guarantees that after a finite humber of possibly non-
deterministic actions executed from any of the many pos-
sible initial states, all resulting states will satisfy the goals.

Conformant plans are a special case where the plan is equiv-
alent to a simple sequence, as in classical planning. Contin-

canonical forms. The package allows us represent a gen-
eral propositional formula as a ROBDD, from which we can
obtain the canonical forms as a set of minterms (DNF) and
maxterms (CNF)[Meinel and Theobald, 1998].

Belief State Representation: A world state, S, is repre-
sented as a complete interpretation over fluents. We also
refer to states as possible worlds. A belief st@tg is a set

of states and is symbolically represented as a propositional
formula over fluent literals, and is also referred to as a set of
possible worlds. A stat§ is in the set of states represented
by a belief stateB S if S is a model ofBS.

We use the bomb and toilet with clogging and sensing
problem, BT'CS, as a running example for this pager.
BTCS is a problem that includes two packages, one of
which contains a bomb, and there is also a toilet in which we
can dunk packages to defuse potential bombs. The goal is
to disarm the bomb and the only allowable actions are dunk-
ing a package in the toilet{unkP1, DunkP2), flushing
the toilet after it becomes clogged from dunkingi{sh),
and using a metal-detector to sense if a package contains the
bomb (DetectMetal). The fluents encoding the problem
denote that the bomb is armed-{n) or not, the bomb is in
a packagei@P1, inP2) or not, and that the toilet is clogged
(clog) or not.

The belief state representation Bf'C'S’s initial condi-

gent plans are a more general case where the plan is struc-tion, in clausal representation, is{ BS;) = arm A —clog A
tured as a graph. Contingent plans have graph structure be-(inP1V inP2) A (—inP1 V —inP2), or in constituent rep-

cause they include sensory actions. In this presentation, we resentations (BS;) = (arm A —clog A inP1 A —inP2) V

restrict contingent plans to DAGS, but there is no conceptual
reason why they cannot be general graphs.
We formulate PON D’s search in the space of belief

states, a technique first described by Bonet and Geffner

[2000]. The planning problen® is defined as the tuple
(D, BSy, BSc), whereD is a domain description3.S; is
the initial belief state, and3 S is the goal belief state. The
domainD is atuple(F, A), whereF is a set of all fluents and
A is a set of actions. A solution plan’s quality is measured

by its expected execution length, assuming each branch is Sp

equally likely.

Logical Formula Representation: We make use of logical
formulas overF' extensively in our approach to represent

"We have also experimented with these heuristics in thigATt
regression planner where we also got interesting results.

(arm A —=clog N —inP1 A inP2). BTCS's goal has the
clausal representations(BSg) = —arm, and the con-

stituent representatiog{ BS¢) = —arm.

Action Representation: We represent actions as having
strictly causative or observational effects, the former termed
as causative actions, the latter termed as sensory actions. All

%It is easy to see thatM(f) and £(f) are readily related.
ecifically each constituent contaihf the | F| literals, corre-
sponding t2!¥1=* models.

SWe are aware of the negative publicity associated with the
B&T problems and we do in fact handle more interesting prob-
lems with difficult reachability and uncertainty (e.d.ogistics
and Rovers), but to simplify our discussion we choose this small
problem.

actionsa are described in terms of an executability precon-
dition p. and a set of effectsp,. The executability precon-
dition, p., is a propositional formula that must hold for the

action to be executable. Dunkp1 P

Our causative action representation is similar to the action B B B
formalism described by Rintanen [2003], using the condi- / @ : Bs }
tionality normal form. Causative actions have a set of condi- 21 2

tional effects where each conditional effegtis of the form
pi = (gio|.-.|€i;), where the antecedept is a general

formula and a consequent outcomg is a conjunction of BD"""” BD”"W L "'“P; D"”“;
literals. Whenj > 0 the effect is non-deterministic. By con- 7) ¢ 7
vention the unconditional effects are describech@s= T : BS;, BS,

and a giver(sg o|..-|eo,;).4 _ _
Sensory actions have a sBf = {0y, ..., 0;} of observa- Figure 1: The AO* search graph f@7'C'S. The plan in-

tional effect formulas. Each observational effect formula, cludes the bolded components.
defines the properties of an outcome of the sensor.] o)]
The causative and sensory actions for the exaBl€’s terms of the first-principles progression over every state in
problem are: a belief state. We should note hoyveV(_ar that it is often even
DunkP1 : (pe = —clog, ® punspi {clog, inP1 —> —arm}) more efficient to do the progression in terms of the BDD
DunkP2 : (p. = —clog, ®punpps = {clog,inP2 —> —arm}) representation of the belief state (as done in MBP [Cimatti
Flush : (pe = T, ®prush = {—clog}) and Roveri, 2000]). We are currently working on making
DetectMetal : {pe : T, ®petectaretar = {inP1, ~inP1}) PON D do progression on BDDs and once this is done the

_) _ relative performance aPON D with respect to other plan-
Progression: We progress actions over belief states to gen- ners will improve even more.
erate a set of successor belief states. An actiprogressed
over a belief stateB.S generates a set of successor belief POND Search
statesB. There are three distinct cases in progression, the set _ .))
of resulting belief states is 1) empty when the action is not We use progression-based AO* search [Nilsson, 1980], in
applicable taBS, BS F p., 2) a single belief state if is a the PON D planner to generate conformant and contingent
causative action (even when the action is non-deterministic), Plans. In the search graph, the nodes are belief states and

or 3) several belief statesdfis a sensory action. the AND-connectors (also commonly referred to as hyper-
Progression of a belief staféS over a causative action edges or k-connectors) are actions. We need AO* because
is best understood as the union of the result of applyitay the application of a sensing action to a belief state in essence

effects, we generate a result state for every non-deterministic ions because sensory actions have several outcomes, all if
outcome. The case when an action is sensory is efficient for @ny of which must be included in a solution.

progression because we obtain a set of successors by indi- The AO* algorithm starts with the initial belief state as
vidually taking the conjunction of each observational effect the only node in the search graph. The algorithm consists of

0; with BS. a main outer loop that expands a node in the search graph,
To illustrate progression, consider the successor sets then updates the marked “best” edges and solved nodes of

By = {BSy;} for Progress(BS;, DunkP1) and B, = the graph. The algorithm terminates when the updating pro-

{BSs1, BSys} for Progress(BS;, DetectMetal). We cedure marks the initial belief state as solved. A node is

first progresDunk P1, which is applicable tdS; because solved when all of its marked conjunctive descendants are
BS; = —clog. The first state of3S; is progressed by solved, or it is a goal node. The final set of marked edges

DunkP1 to get the result(clog A —~arm AinP1 A —inP2). corresponds to our plan. .

The second state @8S;, is progressed by unkP1 to get The main (_jlfferences between our formulation of AO*

a result: (clog A arm A —inP1 A inP2). The two re- and that of Nilsson [1980] are that we do not aIIow_ cycles
sults are taken together to geRSy; = (clog A —arm A in the $earch graph, we update the costs o_f nodes with an ex-
inP1 A —inP2) V (clog A arm A —inP1 A inP2). We pectation rather than a sum, and use a weighted f-value. The
next progressDetectMetal by taking the conjunction of first difference is to ensure that plans are strong, the second
its observation formula wittBS;. Forog : inP1 we get is to guide search toward plans with lower expected execu-
BSs1 = arm A —clog AinP1 A —inP2 and foro; : —inP1 tion Iength, rather t_han a best worst-case execution length,
we getBSay = arm A —clog A —~inP1 A inP2. and the third is to bias our search to trust the heuristic func-

For efficiency reasons however, we would like to imple- tion. Our motivation for finding plans with lower expected
ment progression directly in terms of the logical formula l€ngth is that we are likely to expand a shallower search
corresponding t3S. In POND, we currently do this in graph, and it doesn’t change our semantics to assume a uni-

form probability distribution over sensory outcomes when

“For lack of space we do not discuss or evaluate our heuristics there is no distribution provided.
for non-deterministic actions. Please refer to an extended version ~As an example of search RON D, consider theBT'C'S
of this paper at: http://rakaposhi.eas.asu.edu/belief-search/. example whose search graph is shown in Figure 1. The

search graph initially contains onlyS; to which we assign
a cost,f(BSr) = 2, via a heuristic functionh, which we
will describe in the next section. The successor sef3.&f
are{Bj, Bs, B3}, for actionsDunk P1, Detect M etal, and
Dunk P2, respectively —Bs contains a belief stat&.Ss;.
We find a cost for each new node with our heuristic func-
tion, giving: f(BS11) = 2,f(BS21) = 1, f(BSy) =
1, f(BS31) = 2. We then update the cost f@&S; to be
1+ min(2,(1 + 1)/2,2). Since B, contributed to mini-
mizing the cost o8BSy, Detect M etal is marked as the best
action. Next, we determine the next node to expand, which
is BS>;. The successor sets &S5, are {By, Bs}, each
with a single element for actionBunkP1, and Dunk P2,
respectively. We find a cost for each, giving(BS,;) =
0, f(BS51) = 2. We also find that3S,; is labelled solved
because3Sy; = BSi. We then update the cost 855, to
be thel + min(0,2). SinceB, contributed to minimizing
the cost 0fB Sy, the Dunk P1 action is marked. We backup
costs and solved labels tBS;, but BS; is not marked
solved because its best action’s other succeBsp is not
marked solved. We find the last unexpanded nétig,, and
expand itto gef Bs, B}, each with a single element, for ac-
tions DunkP1, and Dunk P2, respectively. We find a cost
for each new node, givingf(BSs1) = 2, f(BS71) = 0.
We find thatB/S7; is labelled solved becaud#S;; = BSe.
We backup costs and solved labels26;, andB.S; is now
marked solved becaus8Ss; and BSy, are both marked
solved.

Our plan is: DetectMetal,if (inP1){DunkP1}, else
if (~inP1){DunkP2}.

Labelled Uncertainty Graph (LUG)

The PON D search algorithm uses a heuristic function to
assign initial costs to search nodes. Naturally, the heuristic
function is a very important consideration for search and it

°00 g0 60 £1
inPl —~inP1
" /ADunkPI AN m
inP2 NG inP2
AP D oo —inP2
DunkP2 ~\ 8,
arm / ~

Figure 2: A portion of theLUG for BT'C'S without labels.
The first level is not shown because it is similar to the zeroth.
The labels of individual elements are described below. A
relaxed plan to suppofiarm from BS} includes the bolded
components

tic measure. When building thel/ G for each search node,
BS; = BSp, but when building thé& LU G we only require
BS; = BSp. Finally, the label of a graph element in level
k is denoted/(.).

The LUG andGLUG have an initial layer consisting of
every literal for every fluentid. In the initial layer the label
£y(1) of each literal is identical td A BSp, which represents
the states oBSp in which! holds. The labels for the initial
layer literals are propagated through actions and effects to
label the next literal layer, as we will describe shortly. We
continue propagation of labels though layers until no label
of any literal changes between layers, a condition referred to
as level off.

An important notion for our discussion of labels is when
a literal or formula isreachable.® We can say a literal is
reachable from a set of states, describedByy;, afterk
steps, ifBS; E BSp and BS; E {;(l). Moreover, we

needs to reflect the reachability measures for features of our can say that any propositional formufais reachable from
search space. Since we are performing progression searchsomeBS; afterk steps ifBS; = BSp andBS; = (4 (f).

over sets of states, to reach a set of goal states, the heuris-since we propagate labels for literals, we examine the la-
tic should reason about the distance between a source set ofye|s of literals essential to the formula to get the label of the

states and a destination set of states, a so called belief stateformula. The label of a propositional formufaat levelk,

to belief state distance [Bryce and Kambhampati, 2004].
Previously [Bryce and Kambhampati, 2004], we built a
planning graph for each constituent that was part of our
source belief state’s constituent representation. We built
each graph until it reached a state in the destination belief

state, then we extracted a relaxed plan. We finished by ag-
gregating the relaxed plans to get a distance measure. We

now generalize this approach to symbolically represent the
multiple graphs in one labelled graph and extract a relaxed

plan that has the same properties as our aggregated relaxe

plan.

Before discussing the labelled graph we present some
notation to aid a generalization we make later. Since we
present two ways of using thel/ G, one where thd UG is
built for each search node, and another whereltbe? is
built once for entire search, we define construction in terms

Li(f), is defined recursively as:

Ce(fNFT) = Le(f) Nk (f7)
Ce(fV) =Lu(f) vV L(f)
Le(~(fAS) = Le(=f vV~ f)
Le(=(fV f) = be(=f A f)
0.(T) = BSp
(L) =1

OlThe LUG is based on/PP’s [Koehler, 1999] planning

graph, where there are three parts of a planning graph level:
the action layer, effect layer, and literal layer. The exten-
sions are to add label annotations to label the elements of
the actionA, effect relationg, and literal layers. In the
following discussion we formally define how to construct

SWe refer to reachability in terms of optimistic reachability. As

of a general belief statB.Sp, denoting the set of states from s the case with normal planning graphs, a set of literals that appears
which we project. We also refer to a belief stdie;, de- reachable in the planning graph may not be reachable in the state
noting the belief state for which we are obtaining a heuris- space because of undiscovered mutexes.

the LUG, extract a conformant relaxed plan to support a
formula from all states of a belief stat®.S;, and how to
post-process the conformant relaxed plan to form a contin-
gent relaxed plan.

L abel Propagation: Recall that a label is a formula describ-
ing a set of states (which is a subseti®$p) from which a
graph element is reachable. For example, if we build the
LUG for BTCS, using BSp = BS;, we could say that
—arm is reachable fronBS; after one step i ; contains
—arm labelled ag; (—arm) = BS;. The propagation of
labels is based on the intuition that (i) actions and effects are
applicable in the possible worlds for which their conditions
are reachable and (ii) a literal is reachable in all possible
worlds where it is given as an effect. We now describe label
propagation by showing how a graph leel, &, Li11}
is built, with respect to a belief stafeSp.

The LUG for BT'C'S, shown in Figure 2,usin@Sp =
B has the following initial layer:

Lo = {lo(—inP2) = Ly(inP1l) = (arm A —clog A inP1 A ~inP2),
Lo(—inP1l) = £o(inP2) = (arm A —clog A ~inP1 A inP2),
lo(clog) = Lo(—arm) =1,

Lo(—clog) = Lo(arm) = BSp}

Once the previous literal layef; is computed, we com-
pute the labelled action layet;.. A, contains all applicable
causative actions from the action getplus all literal persis-
tence,l,.* An action’s executability preconditiom,, must
be reachable for some possible world®§ - at levelk for
the action to be applicable (i.€x(p.) ~L). If applicable,
the action’s label at leved, is:

Ly, (a) =l (pe)
The zeroth action layer faBT'CS, is:

Ao = {€o(DunkP1) = £o(DunkP2) = £y(Flush) = BSp,
eo(—"inPQP) = lo(i’nPlp) = Z()(’L‘TLPl),
Lo(—inPly,) = £o(inP2p) = £o(inP2),
Lo(clogp) = Lo(marmp) =1,
to(~clogy) = Lo(arm,) = BSp}

The effect relationsg,, depend both on the literal layer,
L, and action layerd. An effect relationp; is applicable

The literal layer,L, contains all literals. The label of a
literal, ¢, (1), depends od),_, and is constructed as the dis-
junction of the labels of each effect that gives the literal. We
say an effecty; gives a literall when there exists a conse-
guent outcome; ; of the effect that entails

(1) \V bei(e)

Jjeq, =L
©i€EL—1

The first literal layer forBT'CS is:

£1 = {Zl(znPl) = Zl(—\iTLPQ) = eo(—'inPQ),
fl(—‘inPl) = Zl(inPQ) = Zo(’inPQ),
L1 (clog) = 1 (—clog) = £1(—arm) = £1(arm) = BSp}

In our BT'C'S example, level off occurs at level two, be-
cause the labels do not change between literal levels one and
two.

When level off occurs, we can say that for aBi;, where
BS; = BSp, that a formulaf is reachable iB;BS; =
Li(f). If no such levek exists, thery is not reachable from
BS;. If there is some levek, where f is reachable from
BS;, then the first suclk is a lower bound on the number
of parallel plan steps needed to reathrom BS;. This
lower bound is similar to the classical planning max heuris-
tic [Nguyenet al., 2002]. We can provide a more informed
heuristic by extracting a relaxed plan, back-chaining from
k, to supportf with respect toBS;, described in the next
section.

We can say that the goal in our example is reachable after
two steps becausBSp = BS; = ¢1(—arm) = BSp.

Global Planning Graphs: We previously alluded to using
different choices for our belief stat&.Sp, from which we
construct thd.U G. Following previous work in progression
search, an obvious choice f&Sp is the B.S; of a node for
which we want to obtain a heuristic, an approach that builds
a LUG for each search node. However, we note that we can
define BSp as a larger set of states than jusf;, namely

a set containing every reachable state in the problem. We
find the reachable states by looking at the last level of a non-

when the associated action is applicable and the antecedentabelled planning graph built from all literals in the initial

of the effecty; is reachable for some possible world®f »

(i.e. Lx(p;) F£L). The label att is the conjunction of the
label of the associated action with the label of the formula
of the effect’s antecedent:

Ui (i) = Li(a) A i (pi)
The zeroth effect layer foBT'CS, is:

Eo =

{€o(DunkP1 : @g) = Lo(DunkP2 : o) = bo(Flush : pg) = BSp
Lo(DunkP1 : @1) = Lo(—inP2, : ¢o) = Lo(inP1ly, : o) = £o(inP1),
Lo(DunkP2 : ¢1) = Lo(—inPly, : @) = Lo(inP2y : po) = £o(inP2),
Lo(clogp : o) = Lo(—army = po) =1,

Lo(—clogp = wo) = Lo(army : o) = BSp,

}

Spersistence for a literd] denoted by, is represented as an
action wherepe = €0,0 = .

belief state. The advantage of definiBg » this way is that
we only have to build thd.UG once for the entire search
episode. Our conformant relaxed plan procedure does not
rely on BSp, aside from having3S; = BSp (which is as-
sured for all reachabl&.S; if BSp represents all reachable
states). We call this approach a Glodd/ G because we
use aLUG to symbolically represent every possible plan-
ning graph that progression search may need.

Conformant Relaxed Plans

The relaxed plan heuristic we extract from th& G is sim-

ilar to the multiple graph relaxed plan heurisﬂr%ﬁU, de-
scribed in [Bryce and Kambhampati, 2004]. The¢'S:;
heuristic uses several planning graphs, one for every pos-
sible world of our source belief statBS;, and extracts a
relaxed plan from each to achieve a stateB#f. It then
unions the set of actions chosen at each step in each of the

relaxed plans to account for the overlap (positive interaction) £“%F. An effect ¢, is relevant if it covers some of the
of achieving subgoals the same way in multiple worlds. worlds where we need to cover, namely?,._1(p;) A

The LUG conformant relaxed plan heuristib5Y%, is (CRP(C) L and it has a consequent outcoréhat en-
similar in that it counts actions that are applicable in multi- tails a literal inC, 3, 1cce; ; = L.
ple worlds only once and accounts for actions that are used We think of supporting a clause in a set of worlds as a set
in different subsets of the possible worlds. The advantage of cover problem where effects cover subsets of worlds. Our
h&GS is that we find these actions by looking at only one algorithm to cover the worlds of a clause with worlds of ef-
planning graph, and extracting a single, albeit more compli- fects is a variant of the well known greedy algorithm for
cated, relaxed plan. In the relaxed plan we want to support set cover [Cormeret al., 1990]. We first choose as many
the goal with every state iB.S;, but in doing so we need to relevant persistence effects that can cover new worlds, then
track which states iBS; use which lines of causal support. choose action effects that cover the most new worlds at each
In a classical planning relaxed plan, a line of causal support step. Each effect we choose for support is addefit§”
for a subgoal only refers to one world. But here multiple and labelled with the new worlds it covered Gt denoted
worlds may share the same line of support. Furthermore, a by f.,, in the equation below. The label of an effect denotes
subgoal may not have a single line of support from all worlds for each claus€' the worlds in which it was used to cover
in B.S; so multiple lines of support may be needed, each con- the clause, denoted tff and not the worlds in which other
tributing support from a different set of worlds. The compli- affects covered’. denoted byfC . The effect laye£CEP is
cations, and notation, arise from tracking what worlds use ’ @i r

0 defined as:
which lines of causal support to support subgoals.
Our conformant relaxed plan€,RPgs, (BS;, BS¢) are ECRP = {U(pi) = fo,|3ceconrr jucceiy E L fo, L}
labelled subgraphs of BUG, represented as a set of layers: f,, =\/ o crr fgi A ﬂfg, A BS;
{ASRP gORE pORP - ACEP gORP - LORPY - where aé_,,ec’gw.;z !
ACEF is a set of labelled action§C 77 is a set of labelled o =P (C) N i (i)
effects, andC’f) is a set of labelled clauses. We build the fgj =\ o cECRP, (CRP (o)
LUG in terms of literals, but extract a relaxed plan in terms it
of clauses because our goal may be expressed in terms of a Jjecei, i FL,
formula. The actions, effects, and clauses that make up the 30 vecsi, v F

relaxed plan are labelled to indicate the worlds where they An additional requirement ofiC%F is that it in fact covers
are chosen for support. St

For instance the relaxed plan, shown in bold in Figure 2, all worlds of each clause iy """
for BS; to reachBSg in BT'CS is: VCeﬁgRP‘egRP(C) - \/ (CRP ()

CRPBSI(BSI,BSG): LpiGEC,R]P,
{.A(?RP = {ESRP(DunkPl) = (arm A —clog A inP1 A —inP2), EIj,lEC;i,j =l
L§BP (DunkP2) = (arm A —clog A —inP1 A inP2)},
ESTT = {£§ T (DunkP1 : ¢1) = (arm A =clog A inP1 A =~inP2), Once all clauses i ?* are covered, we form the action
€5 P (DunkP2 : ¢1) = (arm A —~clog A ~inP1 A inP2)}, layer AEF as all actions that have an effectdi’i”. The

CRP _ yCRP(_ _ . . .
L7 = (BT (marm) = BSi}1) actions inASEP are labelled to indicate all worlds where

We already found thaB S is reachable at level one, so we any of their effects were labelled &f %7
form £{ B with the clauses of(BSg). The relevant ef-

fects from&, are theyp; of DunkP1 and DunkP2, be- ACHEP = {ffﬁp(gl)%; fa| Fpica,pi € ECRE
cause they contribute support ferrm in the worlds we fa=V gica,, 6 (0i)
care about. We need both effects to coverm because peECRF

. . CRP
bo(DunkP2 : 1) V bo(DunkP2 = o1) = €77 (marm), — \ya obtain the next subgoal layet$ &P, by adding clauses
so we have two lines of causal support, each contributing

support in a world. We then insert the associated actions TOM the executability preconditions of aCt'OnSA_'fﬁlp and
into the action layer. We can stop here, because we've cov- antecedents of effects ifi”{”. Each clause” in L5
ered the clauses iﬁlcRP_ Our action |ayer contains two is labelled to |ndlcate all worlds with which any action or
actions, so the relaxed plan gives a heuristic value of two to €ffect, that required’, were labelled:
support-arm from BSj. 1<r<kand,

For the general case, extraction starts at the lewehere
BSg is fir%t reachable fronBS;. The first relaxed plan LERP = SUERP(C) = fo | CaeagrpC € rlpe)or,

layers we construct atd{EP, ECRP LORP where£{ P crp HweE?inREPﬁ(Pj))
contains all clause§’, whereC € «(BSg), labelled as fe= \/aeAfﬁP,ET—l (a) v \/goiesfjﬁp,gr—l (i)
(CRP(C) = BS,. Formally, we define thé!" clause layer Cen(pe) cenlp;)

as:

CRP CRP We support the clauses i8¢%F in the same fashion as

L™ ={67"(C) = BSi|C € #(BSg)} LEEP We continue to support clauses with effects, insert
For each levelr, 1 < r < k, we support each clause actions, and insert actions’ and effects’ preconditions until
in LSEE by choosing relevant effects frod._; to form we have supported all clausesgf’ "

Once we get a conformant relaxed plan,

ProcessBS;, CRP, A):

i 1: SRP = CRP
CRPggs, (BS;, BSg), that support€3S¢ in all worlds of 20 r =0
BS;, we compute the conformant relaxed plan heuristic for 3: whiler < maz;(AF"), do
POND as: 4. ifr =0,then
' 5. PSEP = (BS;}
kol &: e|$'§‘RP SRP
(G)LUG _ CRP 7. PEP =pot
hépp (BSi) =) AR | 8 endif '
r=0 9: for each sensoryin A, do

This conformant relaxed plan is estimating a strong plan be- ﬁ

cause at each level we ensure that the chosen actions will 12:
support the subgoals from all possible worlds where they 13:
are needed to support subgoals at the next level. In many igf
cases the relaxed plan can use one action to support sub- ;g
goals in several possible worlds. This is useful in guiding 17:
the search towards plans with lower overall plan length and 18:
higher positive interaction in achieving the goal from all pos- 1%

. 20: endif
sible worlds. 21: endfor

22: endfor

23 r++

24: endwhile
25:return SRP

for each partitionp € PSEF s.t.p = ¢, (p.), do
P’ =Split(p, a,r)
if [P’ > 1, then
for each(p’, 0;) € P/, do
CRP' = CRPgs, (P, 05)
SRP = SRPUCRP’
endfor
CRP" = CRPgs,(p, pe)
SRP = SRPUCRP'
PERP = (P» Up’,0;0€P’ P)\p

Contingent Relaxed Plans

Up until now we have not explicitly considered sensory ac-
tions in our heuristics. A straightforward generalization of

our approach may consider extending the ideas in SGP[Weld Figure 3: Sensory Relaxed Plan algorithm pseudo-code.

et al., 1998]. SGP tracks reachable partitions of worlds,
i.e. worlds that can be disambiguated from others via sens-
ing. Building a labelled version of the SGP planning graphs
would be costly because it is hard to compactly represent
these patrtitions in theUG. Instead of propagating all pos-
sible partitions of possible worlds, we use a phased relax-
ation approach. We build ABUG and extract a conformant

Split(p, a, r):

LI=V, o iz (o) Alr(oj) Ap)

2: P ={{p,0))|p = l:(0;) N\ =T Apandp' =1}
3: for everyS in £(p A —I), do

4: pick(p,0;) € P’ s.t.ming(S |= Li(0;))
5. set(p,0;) = (pV S, 05)

6: endfor

7:return P’

relaxed plan, then insert sensors into the conformant relaxed
plan. Inserting a sensor means that we create new contexts
(branches) out of the context in which it is applied. We can
determine how a sensor will partition a context by looking adding sensors and computing partitions. Our initial parti-
at the literals in thd.U G — effectively computing partitions tion, Py ¥, contains one contexB.S;. We then try to split
on-demand. Having contexts in our relaxed plan allows us the B.S; context with every sensory action whose executabil-
to reason about which worlds must execute which lines of ity preconditions are reachable (line 11). The splitting of a
causal support. Our intention is to capture how sensory ac- context with a sensory actiom may give a sef?’ of new
tions i) reduce the overall expected cost of a plan, and ii) contexts matched with each observationdgf denoted as
increase immediate cost by requiring set-up. (p',05). We make sure that at least two new contexts are
We extend our representation of conformant relaxed plans made, otherwise the sensory action is of no use. A sensory
to contingent relaxed plarfsR Pp s, (BS;, BS¢) by adding action may fail to create new contexts if for example only
partitions, P27, to each level, so a contingent relaxed one of its observations is reachable. We then find a con-
plan has the structurg ASEP PFRP g5RE LIRP formant relaxed plan to support each observatipin the
AZRP pSRP eSRP pSEPY - A partition, P, for a level worlds denoted by’ because we need to make sure the ob-
r contains several context formulasThe context formulas ~ Servation can be made. The conformant relaxed plan is then
unioned with our sensory relaxed plan to have the contin-

denote the worlds of our belief stafeS; that we can iso- L
late with sensory actions and observations. Each coptext —gent relaxed plan reflect causal support for an observation.
We also find conformant relaxed plans for the executabil-

is seen as the subset of the stateB i) that will enter a par-
ticular branch of the relaxed plan. A branch of the relaxed ity preconditions of the sensory action and union it with the
plan is defined on a per level basis by a congesnd the contingent relaxed plan. Finally, we remove the old context,
actions inASEY wherep A (SEP(q) (1. The value of our . from PP and add the new contexts ®°7”. Since
sensory relaxed plan is the sum of the expected context costswe may split every in ¥ and add new contexts, the for
of each level. The expected context cost of a level is simply 100p (lines 9-22) is a fix-point computation. Reaching the
the sum of the number of actions in each context divided by fix-point makes us move to the next level, copying over the
the number of contexts. contexts we just made and trying to make more.

We construct our sensory relaxed plan by extractingacon- Splitting a contexp (Figure 4) with a sensory actianat
formant relaxed plan, as previously described, and then pro- levelr involves finding the worlds gf where each outcome
cess it to include sensory actions. As outlined in Figure 1, o; of the sensory action is reachable. The set of worlds de-
we go through each level of the conformant relaxed plan, scribed by the intersectiod, of worlds where every; is

Figure 4: Split algorithm pseudo-code.

Problem POND POND POND MBP KACMBP HSCP GPT CGP SGP CFF
Wiy hgg he e
Roversl 3706 3605 2605 665 92935 OoM 31396 705 705 6/5
2 14408 7508 3208 1418 928915 - 43658 1808 30/8 6/8
3 726011 1250410 40010 48410 929316 - 584210 460/10 175010 1010
4 OoM 179043 51013 57015 937148 - 739343 186043 TO 1013
5 - 975024 225024 OoM 3977340 39952520 TO - 18122
6 - 5880023 1375023 72782 TO - TO - - 2123
Logisticsl 520R8 4508 210A8 379 12702 3528 916RP 60/6 70/6 10/
2 610049 220045 47015 48624 45119 OoM 129745 2906 5106 1215
3 1326014 432014 81014 40814 157818 - 171111 4008 46208 1412
4 OoM 1058018 239048 288127 886522 - 982818 11708 | 4474708 1218
5 - 3093028 815028 OoM 22698642 - 54386528 TO TO 25128
BTC10 108049 250719 20019 504/19 45119 25/19 71519 3937019 TO 5719
30 OoM 1212069 654059 26859 63559 29359 - - - 2362959
50 - 10444099 7519089 128709 | 1082189 | 135289 - - - 33487999
70 - 588630139 | 457890139 || 3625039 | 9334139 OoM - - - -
Cube 5 OoM 63012 29015 25124 16/12 2912 82/12 TO TO 2112
11 - 3311081 1244080 21560 31/30 56630 30887580 - - 264130
17 - 32901048 | 21985048 115406 70/48 359848 TO 295748
CubeC5 OoM 321020 73048 1618 1818 41818 362718 TO TO 3630545
7 - 957081 631029 35127 29127 4557P7 478127 - - TO
9 - 17789040 1108040 64/36 70136 1889686 || 4225786 - - -
Ring 3 135010 360/10 29010 8/8 8/8 128 5688 TO TO TO
4 2272014 389045 187045 2111 1811 2011 60511 - - -
5 OoM 8549017 4380017 3314 3314 3714 118644 - - -
6 - 59643023 | 26880023 74017 66/17 96/17 5146917 - - -

Figure 5: Results foPON D usingh¥S;;, hE%S, andhGEYS, MBP, KACMBP, HSCP, GPT, CGP, SGP, and CFF for confor-
mant Rovers, Logistics, BT'C, Cube, CubeC, and Ring. The data is Total Time (ms) / # plan steps (in bold), “-” indicates
no attempt, OoM represents out of memory, and TO represents a time out.

reachable must be divided among thein a splitting. The Our heuristic value is two because each context has two

worlds—I A ¢,.(0;) A p can be safely assigned to each such actions — the appropriate dunk action and the sensory action

o; without overlapping with anothes;. Each world in the — and there are two contexts, so ((1+2)/2)+((1+1)/2) = 2.5.

intersection is assigned to ap such thab; is the first ob- This estimate is the same as our conformant relaxed plan,

servation reachable in that world. but in other domains the estimates can be very different.
Once sensors are added to the relaxed plan, we can com-

pute the cost of the contingent relaxed plan as the sum of Empirical Comparisons

the cost of the action levels. The cost of an action level is \ye experimented with several existing domains and also de-
the sum of the cost of the contexts divided by the number of \e|gped two new domains to test our heuristic techniques.

contexts. The cost of a context is the number of actions that Te existing domains includB7'C' (bomb in the toilet with

can be executed in the context. An action can be executed in ¢jogging), BTC'S (bomb in the toilet with clogging and
a context when the label of the action not inconsistent with Sensing),,CubeCm"ner (Cube), CubeCenter (CubeC),

the formula describing the context. Ring, and Medical [Petrick and Bacchus, 2002]. We also
b1 a € ASRP developed conformant and contingent versions of the classi-

pGLUG _ > pep, {a ¢RP " A ' 1 H cal Logistics and Rovers domains. We also augment our

SRP T Z r (@) Ap contingentRovers domain to create three test sets with only

r=0 | contingent solutions and different numbers of preconditions

, for the available sensors.
From ourBTC'S example, we start witf?, = {BS;}. We
find that the executability preconditions @fetect Metal We compare POND to several conformant and

are reachable at level zero, and we can use it to §#i. contingent planners: - MBP[Bertoliet al., 2001a],
Splitting BS;, we getP’ = {{(arm A —clog A mﬁlﬂjt\ KACMBP[Bertoli and Cimatti, 2002], HSCP[Bertoli
—inP2),00), {(arm A —clog A ~inP1 A inP2),01)}. The et al., 2001b], CGP[Smith and Weld, 1998], SGP[Weld
conformant relaxed plans to suppqst, oy, and o, of et al., 1998], GPT[Bonet and Geffner, 2000], and
DetectMetal are empty because they hold at level zero, so CFF[Brafman and Hoffmann, 2004]. We provide our
our relaxed plan becomes: planner binary, as well as the domain descriptions used for

each planner at: http://rakaposhi.eas.asu.edu/belief-search.
We tried our best to make the domain encodings standard
across the planners by using binary fluents; there were
a couple of instances with GPT where we had to use

SRPps, (BSi, BSg) =
{ASEP = ASRP (¢SEP (Detect Metal) = BS;},
PEY = {(arm A —clog A inP1 A —inP2),
(arm A —clog A ~inP1 A inP2)},

ESRP _ gCRP multi-valued fluents. The tests had a time out of 20 minutes
{¢BP (DetectMetal : o) = (arm A —clog A inP1 A ~inP2), and a memory limit of 1GB on a 2.8GHz P4 Linux machine.
e8P (DetectMetal : 01) = (arm A —clog A ~inP1 A inP2)}, We also used a heuristic Welght af = 5in POND.

LERP — pORPY We note that our implementation makes extensive use of

propositional entailment=€) as well as the other common

Problem POND POND POND POND MBP GPT SGP POND POND MBP
MG LUG GLUG GLUG GLUG GLUG
hgpy hépp hégp hskp hépp hepp
Roversl 36056 3606 26056 2605 3312411 31486 705 OepRoversl 4205.00 5105.00 332041.00
2 790P 82017 32007 3908 4713175 533477 76007 2 5906.50 11106.50 476265.00
3 97010 13708 3808 490P8 5500419 74348 TO 3 6805.75 13105.75 550087.00
4 149014 1910410 49010 63012 5674146 1143040 4 10006.12 16706.00 567452.75
2 OoM | 2950089 | aoaoms | foooiL | 1€30wre) TO - 5 126501553 | 217801559 | 1630166.44
Logistics1 || 4008 40017 20077 23077 41716 10237 || 54906 5ep Rg,[.er 5 3421268 ,él %_gz 635%70%185 ! 3 56;32 o)
2 215043 | 315042 560/12 870M2 || 22660477 || 534842 | TO 5 34701200 | 19901150 | 13754200.50
3 256010 | 37608 7000 970R 212045 20108 - 3 0800700 | 12601325 | 2659202566
4 3135017 | 1787045 | 277045 | 484045 OoM TO - : : :
5 OoM | 8881023 | 1448023 | 2817021 OoM A) 4 658019.87 | 222014.75 || 27750157.00
BTCS20 || 2015080 | 382000 | 169020 | 293020 OoM TO TO 5 31060B1.81 | 38020£8.68 || 40566214.75
40 OoM | 5274040 | 3977040 | 6239040 - - - 6 8473029.50 | 21603026.25 TO
60 R 37346060 | 34465060 | 55560060 - - - 10epRoversl 7705.00 10205.00 441640.00
Medical 20 | 23608 20708 3608 4308 TO 9283 TO 2 TO 5474016.50 || 296346841.50
40 205008 | 471408 19308 29508 - 10798 - 3 - 324021.25 TO
60 OoM | 2873908 | 216608 | 290708 25248 - 4 - 680024.25 -
80 - TO 2032108 | 2084208 - 78698 - 5 - TO -
100 - 4966708 | 5079908 - 157628 - 6 - - -

Figure 6: The first table shows results O N D usingh}/S;,, hEYG, hEEYC andh§EYE, MBP, GPT, and SGP for contingent
Rowvers, Logistics, BT'CS, andM edical. The second table shows results for extra preconditittngrs (Xep-Rovers) using

the hGEYY andhGEYC heuristics inPON D and MBP. The data is Total Time (ms) / # plan steps in maximum length branch
(in bold), “-” indicates no attempt, OoM represents out of memory , and TO represents a time out.

propositional logic operations and using BDDs affords prove to be more important than efficient child generation.
reasonable run-time performance.

We proceed by discussing had®O N D performs in both
conformant and contingent planning. WithirON D we
compare the effectiveness of building tié/G for ev-
ery search noderfY%) to building the LUG globally,

(_thL%IIJDG)' as well as our improvements over building mul- In comparison to the other planners, there are two ob-
tiple planning graphs/{y5;;) for each search node. We geryations: i)PON D exhibits scalability, and i)’ ON D

also evaluate the effectiveness of the contingent relaxed plan retyrns high quality plans. GPT only scales well on the
heuristic %%1@)- Then, we discuss the relative advantages)/cq;cql, and fails to find plans for large instances in other
of PON D with respect to competing approaches. domains. SGP does not scale very well on any of the
problems. MBP is able to solve many of th&vers and

Logistics instances, but at a cost of generating highly in-

Contingent Planning: The first table in figure 6 shows
results for the contingent domainBovers, Logistics,
BTCS, and Medical. Again, PON D does better in all
problems by using th&LUG over the LUG, and both of
these are improvements over theG approach.

Conformant Planning: Figure 5 shows results for the con-
formant domains. The first observation ab@®ON D is optimal plansan order of magnitude longer in some
that for all problems building thé UG globally, GLUG, cases,
has dramatic speed improvements over building/the at compared t?ON D, GPT and SGP.
each search node, and both of these are significant improve-Costly Sensor Preconditions: The results shown in the sec-
ments of theM G approach. We do not show results for the ond table in Figure 6 are for th&overs domain with
SRP heuristic because it reduces to theé? P heuristic in extra sensory preconditions, using the conformant relaxed
conformant planning. plan heuristich&L%¢ and the sensory relaxed plan heuristic
In comparison to other planner8ON D performs rea- ,GLUG in pON D, and MBP. In this domain, each sensor
sonably well in many of the existing conformant planning has the original precondition of being at a particular way-
domains, but is not the strongest planner in any domain. point to do the sensing, plus some number of additional pre-
POND is able to outperform MBP, KACMBP, and HSCP conditions (e.g. the camera being on, clean, focused, arm
in the Rovers and Logistics domains by solving more placed, etc.). Each additional precondition requires an ac-
problems, generally faster, and with typically higher quality - tion to re-establish it at each waypoint the rover navigates to.
solutions. PON D does typically better in terms of search Each set of rows in the second table in Figure 6 is a sensor
time with respect to GPT in most of the domaif8ON D formulation with a different number of preconditions (0, 5,
out-scales CGP and SGP in all of the domains. CFF does gnd 10). Each cell shows the total time to find a plan, and the
much better in thebogistics and Rovers problems, buthas solution plan’s expected execution length. Here we change
more trouble in theBT'C, CubeC, and Ring domains! our measure of plan quality to expected length because it
We note thatPON D does as well as it does because of was much easier to cull from the compared planners’ output.
its effective heuristics despite its admittedly inefficient pro- What we noticed is that: contingent relaxed plafi®) are
gression implementation. The reasBOND is ableto do useful in scaling the planner on problems with costly sen-
better than MBP in some problems is because our heuristics sors, and tend to improve solution quality. We also noticed

8We compare maximal branch length rather than expected
branch length because many of the planners do not provide the ex-
pected branch length.

"Our encoding ofRing is especially difficult for CFF, and may
be different from their encoding. We think it may have to do with
extra literals in conditional effect antecedents.

that MBP has trouble scaling as sensors have additional pre-

conditions and that MBP finds fairly bad plans, in terms of
expected execution length.

Related Wor k

Although POND utilizes planning graphs similar to
CGP[Smith and Weld, 1998] and Frag-plan[Kurienal.,
2002], in contrast to them, it only uses them to compute
reachability estimates. The search itself is conducted in the
space of belief statesPON D is also related to, and an
adaptation of the work on, reachability heuristics for clas-
sical planning, includingditAlt [Nguyenet al., 2002], FF
[Hoffmann and Nebel, 2001] and HSP-r [Bonet and Geffner,
1999]. POND is similar to FF in that it uses progression
search based on planning graph heuristics.

Another related line of work is in the MBP-family of
planners—MBP [Bertolet al., 2001a], CMBP [Cimatti and
Roveri, 2000], HSCP [Bertokt al., 2001b] and KACMBP
[Bertoli and Cimatti, 2002]. LikePON D, the MBP-family
of planners all represent belief states in terms of binary de-
cision diagrams, but vary with respect to the heuristics they
implement and their search strategy.

More recently, there has been closely related work on
heuristics for constructing conformant plans within the plan-
ner CFF [Brafman and Hoffmann, 2004]. The approach
taken in CFF is to construct a SAT encoding to compute a
relaxed plan heuristic. The SAT encoding obtains distance
measures for size-2 disjunctions over literals in a belief state
rather than all states in a belief state, as we do.

In contrast to these approaches, PKSPlan [Petrick and
Bacchus, 2002] is a forward-chaininknhow edge-based
planner that requires a richer domain encoding. The plan-

with the resulting planner will further improve our compar-
ative performance.

Acknowledgements: We would like to thank Will Cushing and Dan Weld for helpful
discussions and comments. This work was supported in part by the MCT/NASA 2004
summer internship program and NSF grants 11S-0308139.

References

Piergiogio Bertoli and Alessandro Cimatti. Improving heuristics for planning as search
in belief space. Irrtificial Intelligence Planning Systems, pages 143-152, 2002.

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Plan-
ning in nondeterministic domains under partial observability via symbolic model
checking. In Bernhard Nebel, editroceedings of the seventeenth I nternational
Conference on Artificial Intelligence (IJCAI-01), pages 473-486, San Francisco,
CA, August 4-10 2001. Morgan Kaufmann Publishers, Inc.

Piergorgio Bertoli, Alessandro Cimatti, and Marco Roveri. Heuristic search + sym-
bolic model checking = efficient conformant planning.Aroceedings of the Sev-
enteenth International Conference on Artificial Intelligence (1JCAI-01), 2001.

Blai Bonet and Hector Geffner. Planning as heuristic search: New resuRsodeed-
ings of the Euoropean Conference of Planning, pages 360-372, 1999.

Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic
search in belief space. Wrtificial Intelligence Planning Systems, pages 52-61,
2000.

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of
a bdd package. I8onference proceedings on 27th ACM/IEEE design automation
conference, pages 40-45. ACM Press, 1990.

Ronen Brafman and Joerg Hoffmann. Conformant planning via heuristic forward
search: A new approach. Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS 04), 2004.

Daniel Bryce and Subbarao Kambhampati. Heuristic guidance measures for confor-
mant planning. IfProceedings of the 14th Inter national Conference on Automated
Planning and Scheduling (ICAPS 04), June 2004.

Alessandro Cimatti and Marco Roveri. Conformant planning via symbolic model
checking.Journal of Artificial Intelligence Research, 13:305-338, 2000.

T.H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to Algorithms. McGraw-

ner makes use of several knowledge bases that are updated Hill, 1990.
by actions, opposed to a single knowledge base taking the srg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation

form of a belief state. The knowledge bases separate binary

and multi-valued variables and planning and execution time
knowledge.

Conclusion
We described three important extensions to reachability

heuristics for belief space—the labelled uncertainty graphs
(LUG), the global labelled uncertainty graplisU G) and

contingent relaxed plans. We have implemented these on

top of a progression planner for belief space planning called
PON D, and have shown that heuristics based on/the&
andG LU G lead to significant scale-ups over those based on
multiple planning graphs ones, and that contingent relaxed
plans can help improve plan quality as well as scalability
in problems with difficult to support sensory actions. We

also reported on comparison studies with several state of the

through heuristic searclournal of Artificial Intelligence Research, 14:253-302,
2001.

Jana Koehler. Handling of conditional effects and negative goals in IPP. Technical
Report report00128, IBM, 17, 1999.

James Kurien, P. Pandurang Nayak, and David E. Smith. Fragment-based conformant
planning. InArtificial Intelligence Planning Systems, pages 153-162, 2002.

Christoph Meinel and Thorsten Theobaldlgorithms and Data Srructures in VLS
Design: OBDD - Foundations and Applications. Springer-Verlag, 1998.

XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez Nigenda. Planning
graph as the basis for deriving heuristics for plan synthesis by state space and CSP
search Artificial Intelligence, 135(1-2):73-123, 2002.

Nils J. Nilsson.Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

Ronald P.A. Petrick and Fahiem Bacchus. A knowledge-based approach to planning
with incomplete information and sensing. Antificial Intelligence Planning Sys-
tems, pages 212-221, 2002.

Jussi Rintanen. Expressive equivalence of formalisms for planning with sensing. In
Proceedings of the 13th International Conference on Automated Planning and

art conformant and contingent planners. These results show scheduling (ICAPS 03), 2003.

that PON D with our heuristics is competitive with the best
conformant planners, and is able to produce significantly
higher quality contingent plans. These results are particu-
larly encouraging considering that our current implementa-
tion of PON D does not take advantage of the most efficient
(BDD-based) child generation techniques, as in [Besbli
al., 2001a]. We are working on incorporating these improve-

David E. Smith and Daniel S. Weld. Conformant graphplan(A&AI-98) and (1AAI-
98), pages 889—-896, Menlo Park, July 26-30 1998. AAAI Press.

Daniel S. Weld, Corin Anderson, and David E Smith. Extending graphplan to handle
uncertainty and sensing actions.Rroceedings of the Sxteenth National Confer-
ence on Artificial Intelligence (AAAI-98). AAAI Press, 1998.

ments in the base planner, and expect that the experiments

