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Abstract

Although reachability heuristics have been shown to be use-
ful in conformant an contingent planning, the cost of heuristic
computation is still an issue. We present several improve-
ments of our previous work on planning graph heuristics for
planning in belief space. One, we generalize our approach,
based on using multiple planning graphs, to symbolically rep-
resent many planning graphs in a structure we call a “labelled
uncertainty graph” (LUG). TheLUG allows us to compactly
represent a set of planning graphs, needed to extract a confor-
mant relaxed plan. Two, we further generalize theLUG to
represent a larger set of planning graphs, one for each state
in the reachable state space, in a structure called the ”global
labelled uncertainty graph” (GLUG). The GLUG repre-
sents every planning graph we will ever need for a search
episode and is only computed once. Three, we present a post-
processing routine to include sensory actions into conformant
relaxed plans, making them contingent relaxed plans. We
have implemented and evaluated theLUG and relaxed plans
in a planner calledPOND. We comparePOND to sev-
eral state of the art planners and show our approach is quite
competitive.

Introduction
Planning in non-deterministic and partially observable
worlds is typically posed as search in belief space, where
search nodes are sets of states (belief states). Given the ef-
fectiveness of reachability heuristics in controlling search in
classical planning, in our recent work [Bryce and Kambham-
pati, 2004] we examined the issues involved in extending
reachability heuristics to search in belief space. In partic-
ular, we developed a spectrum of planning graph heuris-
tics for finding increasingly accurate estimates of belief-
state distance. The most effective of these involves com-
puting relaxed plans simultaneously over multiple planning
graphs (corresponding to the individual states in a belief
state). While this approach has lead to promising results, its
scalability has been limited by the prohibitive cost of con-
structing multiple planning graphs. Another limitation was
that our heuristics do not account for the presence of sensing
actions, and are thus not as effective in guiding contingent
planners. In this paper, we describe three key innovations
that significantly reduce the cost of computing the reachabil-
ity heuristics and extend their coverage to include contingent
planning.

• To avoid building multiple planning graphs explicitly, we
present a novel idea called “labelled uncertainty graph”
(LUG), that symbolically represents the multiple plan-
ning graphs within a single planning graph. Loosely
speaking, this single graph unions the causal support in-
formation present in the multiple graphs and pushes the
disjunction, describing sets of possible worlds, into “la-
bels” (�). The graph is built efficiently by propagating la-
bels, for sets of worlds, through each layer. The structure
exhibits considerable space and time savings because the
graph elements, which were previously constructed and
represented (potentially many times) in multiple graphs,
are constructed and represented only once. Labels indi-
cate which of the explicit planning graphs aLUG ele-
ment symbolically represents. We extend the relaxed plan
extraction procedure so it operates directly on theLUG.

• We develop a further (natural) extension ofLUG called
“GlobalLUG” (or, more euphonically,GLUG), which in
effect starts from a belief state corresponding to all states
of the world. TheLUG for any given belief stateBS
can be computed easily as a symbolic restriction of the
GLUG (as we shall show). This extension turns out to be
particularly useful for progression search in belief space,
where, withoutGLUG, we will have to compute aLUG
for each belief state encountered during search. With the
GLUG we can attain significant time savings because we
avoid repeated construction of graph components that are
common toLUGs built for different search nodes.

• To provide more accurate estimates in the presence of
sensing actions, we develop the notion of “contingent
relaxed plans” which are extracted from the conformant
ones that we build from theLUG. Our extension is mo-
tivated by an attempt to capture two aspects of contin-
gent plans that are not measured by conformant relaxed
plans. The first is that we do not have to execute all ac-
tions in a conformant relaxed plan if we can sense and
decide which actions are irrelevant, and the second is that
sensing may itself require costly set-up actions. The first
concern is that we are overestimating the heuristic for a
search node with a conformant relaxed plan because we
may be able to use a sensory action later in the search
and the actual plan suffix has a lower expected cost. The
second concern is that a conformant relaxed plan under-
estimates cost when sensing is not free because ignoring



sensors also means ignoring the cost of the sensor’s causal
support. We present initial work on a conformant relaxed
plan post-processing procedure to capture these notions in
a contingent relaxed plan.

We have implemented all these heuristics and have tested
them on a progression planner that we callPOND–which
can generate both conformant and contingent plans. Our ex-
periments withPOND show that heuristics based on the
LUG andGLUG lead to significant scale-ups over those
based on multiple planning graphs ones, and that contin-
gent relaxed plans can help improve plan quality as well as
scalability in problems with difficult to support sensory ac-
tions.1 We also report on comparison studies with several
state of the art conformant and contingent planners. These
results show thatPOND with our heuristics is competi-
tive with the best conformant planners, and is able to pro-
duce significantly higher quality contingent plans. Our re-
sults are particularly encouraging considering that our cur-
rent implementation ofPOND does not take advantage of
the most efficient (BDD-based) child generation techniques,
as in [Bertoliet al., 2001a].

We proceed by describing the representation we use in
POND and the search algorithm. The main contribution of
the paper, regarding theLUG construction, conformant re-
laxed plan extraction, and sensory action insertion follows.
We then evaluatePOND with respect to several planners,
on several existing planning domains, as well as new do-
mains, to show that our approach is scalable while retaining
plan quality. We conclude with discussion of related work
and directions for further research.

Representation
Our planning formulation inPOND uses progression
search to find strong conformant and contingent plans,
with the assumption of partial observability. A strong
plan guarantees that after a finite number of possibly non-
deterministic actions executed from any of the many pos-
sible initial states, all resulting states will satisfy the goals.
Conformant plans are a special case where the plan is equiv-
alent to a simple sequence, as in classical planning. Contin-
gent plans are a more general case where the plan is struc-
tured as a graph. Contingent plans have graph structure be-
cause they include sensory actions. In this presentation, we
restrict contingent plans to DAGs, but there is no conceptual
reason why they cannot be general graphs.

We formulatePOND’s search in the space of belief
states, a technique first described by Bonet and Geffner
[2000]. The planning problemP is defined as the tuple
〈D,BSI , BSG〉, whereD is a domain description,BSI is
the initial belief state, andBSG is the goal belief state. The
domainD is a tuple〈F,A〉, whereF is a set of all fluents and
A is a set of actions. A solution plan’s quality is measured
by its expected execution length, assuming each branch is
equally likely.

Logical Formula Representation: We make use of logical
formulas overF extensively in our approach to represent

1We have also experimented with these heuristics in the CAltAlt
regression planner where we also got interesting results.

belief states, actions, andLUG labels, so we first explain a
few conventions. We refer to the set of models of a formula
f asM(f). We also consider two normal forms of a logical
formula f , the first isκ(f) which is the CNF, and the sec-
ond isξ̂(f) which is the a DNF. The CNF form is seen as a
conjunction of “clauses”C each of which are a disjunction
of literals, while the DNF form is seen as a disjunction of
“constituents”Ŝ each of which is a conjunction of literals.2

We find it useful to think of CNF and DNF represented as
sets – CNF is a conjunctive set of clauses while DNF is a
disjunctive set of constituents.

A very important point to understand is that we use canon-
ical forms of CNF and DNF when referring toκ(.) andξ̂(.).
We use a BDD package [Braceet al., 1990] to obtain these
canonical forms. The package allows us represent a gen-
eral propositional formula as a ROBDD, from which we can
obtain the canonical forms as a set of minterms (DNF) and
maxterms (CNF)[Meinel and Theobald, 1998].

Belief State Representation: A world state,S, is repre-
sented as a complete interpretation over fluents. We also
refer to states as possible worlds. A belief stateBS is a set
of states and is symbolically represented as a propositional
formula over fluent literals, and is also referred to as a set of
possible worlds. A stateS is in the set of states represented
by a belief stateBS if S is a model ofBS.

We use the bomb and toilet with clogging and sensing
problem,BTCS, as a running example for this paper.3

BTCS is a problem that includes two packages, one of
which contains a bomb, and there is also a toilet in which we
can dunk packages to defuse potential bombs. The goal is
to disarm the bomb and the only allowable actions are dunk-
ing a package in the toilet (DunkP1,DunkP2), flushing
the toilet after it becomes clogged from dunking (Flush),
and using a metal-detector to sense if a package contains the
bomb (DetectMetal). The fluents encoding the problem
denote that the bomb is armed (arm) or not, the bomb is in
a package (inP1, inP2) or not, and that the toilet is clogged
(clog) or not.

The belief state representation ofBTCS’s initial condi-
tion, in clausal representation, is:κ(BSI) = arm∧¬clog∧
(inP1 ∨ inP2) ∧ (¬inP1 ∨ ¬inP2), or in constituent rep-
resentation:̂ξ(BSI) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2) ∨
(arm ∧ ¬clog ∧ ¬inP1 ∧ inP2). BTCS’s goal has the
clausal representation:κ(BSG) = ¬arm, and the con-
stituent representation:̂ξ(BSG) = ¬arm.

Action Representation: We represent actions as having
strictly causative or observational effects, the former termed
as causative actions, the latter termed as sensory actions. All

2It is easy to see thatM(f) and ξ̂(f) are readily related.
Specifically each constituent containsk of the |F | literals, corre-
sponding to2|F |−k models.

3We are aware of the negative publicity associated with the
B&T problems and we do in fact handle more interesting prob-
lems with difficult reachability and uncertainty (e.g.Logistics
andRovers), but to simplify our discussion we choose this small
problem.



actionsa are described in terms of an executability precon-
dition ρe and a set of effects,Φa. The executability precon-
dition, ρe, is a propositional formula that must hold for the
action to be executable.

Our causative action representation is similar to the action
formalism described by Rintanen [2003], using the condi-
tionality normal form. Causative actions have a set of condi-
tional effects where each conditional effectϕi is of the form
ρi =⇒ (εi,0|...|εi,j), where the antecedentρi is a general
formula and a consequent outcomeεi,j is a conjunction of
literals. Whenj > 0 the effect is non-deterministic. By con-
vention the unconditional effects are described asρ0 = �
and a given(ε0,0|...|ε0,j).4

Sensory actions have a setΦa = {o0, ..., oi} of observa-
tional effect formulas. Each observational effect formula,oi,
defines the properties of an outcome of the sensor.

The causative and sensory actions for the exampleBTCS
problem are:
DunkP1 : 〈ρe = ¬clog,ΦDunkP1{clog, inP1 =⇒ ¬arm}〉
DunkP2 : 〈ρe = ¬clog, ΦDunkP2 = {clog, inP2 =⇒ ¬arm}〉
Flush : 〈ρe = �, ΦF lush = {¬clog}〉
DetectMetal : 〈ρe : �,ΦDetectMetal = {inP1,¬inP1}〉

Progression: We progress actions over belief states to gen-
erate a set of successor belief states. An actiona progressed
over a belief stateBS generates a set of successor belief
statesB. There are three distinct cases in progression, the set
of resulting belief states is 1) empty when the action is not
applicable toBS, BS 
|= ρe, 2) a single belief state ifa is a
causative action (even when the action is non-deterministic),
or 3) several belief states ifa is a sensory action.

Progression of a belief stateBS over a causative actiona
is best understood as the union of the result of applyinga to
each stateS ∈ M(BS). If an action has non-deterministic
effects, we generate a result state for every non-deterministic
outcome. The case when an action is sensory is efficient for
progression because we obtain a set of successors by indi-
vidually taking the conjunction of each observational effect
oi with BS.

To illustrate progression, consider the successor sets
B1 = {BS11} for Progress(BSI ,DunkP1) andB2 =
{BS21, BS22} for Progress(BSI ,DetectMetal). We
first progressDunkP1, which is applicable toBSI because
BSI |= ¬clog. The first state ofBSI is progressed by
DunkP1 to get the result:(clog∧¬arm∧ inP1∧¬inP2).
The second state ofBSI , is progressed byDunkP1 to get
a result: (clog ∧ arm ∧ ¬inP1 ∧ inP2). The two re-
sults are taken together to get:BS11 = (clog ∧ ¬arm ∧
inP1 ∧ ¬inP2) ∨ (clog ∧ arm ∧ ¬inP1 ∧ inP2). We
next progressDetectMetal by taking the conjunction of
its observation formula withBSI . For o0 : inP1 we get
BS21 = arm∧¬clog∧ inP1∧¬inP2 and foro1 : ¬inP1
we getBS22 = arm ∧ ¬clog ∧ ¬inP1 ∧ inP2.

For efficiency reasons however, we would like to imple-
ment progression directly in terms of the logical formula
corresponding toBS. In POND, we currently do this in

4For lack of space we do not discuss or evaluate our heuristics
for non-deterministic actions. Please refer to an extended version
of this paper at: http://rakaposhi.eas.asu.edu/belief-search/.
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Figure 1: The AO* search graph forBTCS. The plan in-
cludes the bolded components.

terms of the first-principles progression over every state in
a belief state. We should note however that it is often even
more efficient to do the progression in terms of the BDD
representation of the belief state (as done in MBP [Cimatti
and Roveri, 2000]). We are currently working on making
POND do progression on BDDs and once this is done the
relative performance ofPOND with respect to other plan-
ners will improve even more.

POND Search
We use progression-based AO* search [Nilsson, 1980], in
thePOND planner to generate conformant and contingent
plans. In the search graph, the nodes are belief states and
the AND-connectors (also commonly referred to as hyper-
edges or k-connectors) are actions. We need AO* because
the application of a sensing action to a belief state in essence
partitions the belief state. We use AND-connectors for ac-
tions because sensory actions have several outcomes, all if
any of which must be included in a solution.

The AO* algorithm starts with the initial belief state as
the only node in the search graph. The algorithm consists of
a main outer loop that expands a node in the search graph,
then updates the marked “best” edges and solved nodes of
the graph. The algorithm terminates when the updating pro-
cedure marks the initial belief state as solved. A node is
solved when all of its marked conjunctive descendants are
solved, or it is a goal node. The final set of marked edges
corresponds to our plan.

The main differences between our formulation of AO*
and that of Nilsson [1980] are that we do not allow cycles
in the search graph, we update the costs of nodes with an ex-
pectation rather than a sum, and use a weighted f-value. The
first difference is to ensure that plans are strong, the second
is to guide search toward plans with lower expected execu-
tion length, rather than a best worst-case execution length,
and the third is to bias our search to trust the heuristic func-
tion. Our motivation for finding plans with lower expected
length is that we are likely to expand a shallower search
graph, and it doesn’t change our semantics to assume a uni-
form probability distribution over sensory outcomes when
there is no distribution provided.

As an example of search inPOND, consider theBTCS
example whose search graph is shown in Figure 1. The



search graph initially contains onlyBSI to which we assign
a cost,f(BSI) = 2, via a heuristic function,h, which we
will describe in the next section. The successor sets ofBSI
are{B1, B2, B3}, for actionsDunkP1,DetectMetal, and
DunkP2, respectively –B3 contains a belief stateBS31.
We find a cost for each new node with our heuristic func-
tion, giving: f(BS11) = 2, f(BS21) = 1, f(BS22) =
1, f(BS31) = 2. We then update the cost forBSI to be
1 + min(2, (1 + 1)/2, 2). SinceB2 contributed to mini-
mizing the cost ofBSI ,DetectMetal is marked as the best
action. Next, we determine the next node to expand, which
is BS21. The successor sets ofBS21 are{B4, B5}, each
with a single element for actionsDunkP1, andDunkP2,
respectively. We find a cost for each, giving:f(BS41) =
0, f(BS51) = 2. We also find thatBS41 is labelled solved
becauseBS41 |= BSG. We then update the cost ofBS21 to
be the1 + min(0, 2). SinceB4 contributed to minimizing
the cost ofBS21, theDunkP1 action is marked. We backup
costs and solved labels toBSI , but BSI is not marked
solved because its best action’s other successorBS22 is not
marked solved. We find the last unexpanded node,BS22 and
expand it to get{B6, B7}, each with a single element, for ac-
tionsDunkP1, andDunkP2, respectively. We find a cost
for each new node, giving:f(BS61) = 2, f(BS71) = 0.
We find thatBS71 is labelled solved becauseBS71 |= BSG.
We backup costs and solved labels toBSI , andBSI is now
marked solved becauseBS21 andBS22 are both marked
solved.

Our plan is: DetectMetal,if(inP1){DunkP1}, else
if(¬inP1){DunkP2}.

Labelled Uncertainty Graph (LUG)
The POND search algorithm uses a heuristic function to
assign initial costs to search nodes. Naturally, the heuristic
function is a very important consideration for search and it
needs to reflect the reachability measures for features of our
search space. Since we are performing progression search
over sets of states, to reach a set of goal states, the heuris-
tic should reason about the distance between a source set of
states and a destination set of states, a so called belief state
to belief state distance [Bryce and Kambhampati, 2004].

Previously [Bryce and Kambhampati, 2004], we built a
planning graph for each constituent that was part of our
source belief state’s constituent representation. We built
each graph until it reached a state in the destination belief
state, then we extracted a relaxed plan. We finished by ag-
gregating the relaxed plans to get a distance measure. We
now generalize this approach to symbolically represent the
multiple graphs in one labelled graph and extract a relaxed
plan that has the same properties as our aggregated relaxed
plan.

Before discussing the labelled graph we present some
notation to aid a generalization we make later. Since we
present two ways of using theLUG, one where theLUG is
built for each search node, and another where theLUG is
built once for entire search, we define construction in terms
of a general belief stateBSP , denoting the set of states from
which we project. We also refer to a belief stateBSi, de-
noting the belief state for which we are obtaining a heuris-
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Figure 2: A portion of theLUG for BTCS without labels.
The first level is not shown because it is similar to the zeroth.
The labels of individual elements are described below. A
relaxed plan to support¬arm fromBSI includes the bolded
components

tic measure. When building theLUG for each search node,
BSi = BSP , but when building theGLUGwe only require
BSi |= BSP . Finally, the label of a graph element in level
k is denoted�k(.).

TheLUG andGLUG have an initial layer consisting of
every literal for every fluent inF . In the initial layer the label
�0(l) of each literall is identical tol∧BSP , which represents
the states ofBSP in which l holds. The labels for the initial
layer literals are propagated through actions and effects to
label the next literal layer, as we will describe shortly. We
continue propagation of labels though layers until no label
of any literal changes between layers, a condition referred to
as level off.

An important notion for our discussion of labels is when
a literal or formula isreachable.5 We can say a literall is
reachable from a set of states, described byBSi, after k
steps, ifBSi |= BSP andBSi |= �k(l). Moreover, we
can say that any propositional formulaf is reachable from
someBSi afterk steps ifBSi |= BSP andBSi |= �k(f).
Since we propagate labels for literals, we examine the la-
bels of literals essential to the formula to get the label of the
formula. The label of a propositional formulaf at levelk,
�k(f), is defined recursively as:

�k(f ∧ f ′) = �k(f) ∧ �k(f ′)
�k(f ∨ f ′) = �k(f) ∨ �k(f ′)
�k(¬(f ∧ f ′)) = �k(¬f ∨ ¬f ′)
�k(¬(f ∨ f ′)) = �k(¬f ∧ ¬f ′)

�k(�) = BSP
�k(⊥) =⊥

The LUG is based onIPP ’s [Koehler, 1999] planning
graph, where there are three parts of a planning graph level:
the action layer, effect layer, and literal layer. The exten-
sions are to add label annotations to label the elements of
the actionA, effect relationE , and literalL layers. In the
following discussion we formally define how to construct

5We refer to reachability in terms of optimistic reachability. As
is the case with normal planning graphs, a set of literals that appears
reachable in the planning graph may not be reachable in the state
space because of undiscovered mutexes.



the LUG, extract a conformant relaxed plan to support a
formula from all states of a belief state,BSi, and how to
post-process the conformant relaxed plan to form a contin-
gent relaxed plan.

Label Propagation: Recall that a label is a formula describ-
ing a set of states (which is a subset ofBSP ) from which a
graph element is reachable. For example, if we build the
LUG for BTCS, usingBSP = BSI , we could say that
¬arm is reachable fromBSI after one step ifL1 contains
¬arm labelled as�1(¬arm) = BSI . The propagation of
labels is based on the intuition that (i) actions and effects are
applicable in the possible worlds for which their conditions
are reachable and (ii) a literal is reachable in all possible
worlds where it is given as an effect. We now describe label
propagation by showing how a graph level{Ak, Ek,Lk+1}
is built, with respect to a belief stateBSP .

TheLUG for BTCS, shown in Figure 2,usingBSP =
BSI has the following initial layer:

L0 = {�0(¬inP2) = �0(inP1) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),

�0(¬inP1) = �0(inP2) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2),

�0(clog) = �0(¬arm) =⊥,
�0(¬clog) = �0(arm) = BSP }

Once the previous literal layerLk is computed, we com-
pute the labelled action layerAk. Ak contains all applicable
causative actions from the action setA, plus all literal persis-
tence,lp.6 An action’s executability precondition,ρe, must
be reachable for some possible world ofBSP at levelk for
the action to be applicable (i.e.�k(ρe) 
|=⊥). If applicable,
the action’s label at levelk, is:

�k(a) = �k(ρe)

The zeroth action layer forBTCS, is:

A0 = {�0(DunkP1) = �0(DunkP2) = �0(Flush) = BSP ,

�0(¬inP2p) = �0(inP1p) = �0(inP1),

�0(¬inP1p) = �0(inP2p) = �0(inP2),

�0(clogp) = �0(¬armp) =⊥,
�0(¬clogp) = �0(armp) = BSP }

The effect relations,Ek, depend both on the literal layer,
Lk, and action layer,Ak. An effect relationϕi is applicable
when the associated action is applicable and the antecedent
of the effect,ρi is reachable for some possible world ofBSP
(i.e. �k(ρi) 
|=⊥). The label atk is the conjunction of the
label of the associated action with the label of the formula
of the effect’s antecedent:

�k(ϕi) = �k(a) ∧ �k(ρi)
The zeroth effect layer forBTCS, is:

E0 =

{�0(DunkP1 : ϕ0) = �0(DunkP2 : ϕ0) = �0(Flush : ϕ0) = BSP

�0(DunkP1 : ϕ1) = �0(¬inP2p : ϕ0) = �0(inP1p : ϕ0) = �0(inP1),

�0(DunkP2 : ϕ1) = �0(¬inP1p : ϕ0) = �0(inP2p : ϕ0) = �0(inP2),

�0(clogp : ϕ0) = �0(¬armp : ϕ0) =⊥,
�0(¬clogp : ϕ0) = �0(armp : ϕ0) = BSP ,

}

6Persistence for a literall, denoted bylp, is represented as an
action whereρe = ε0,0 = l.

The literal layer,Lk, contains all literals. The label of a
literal, �k(l), depends onEk−1 and is constructed as the dis-
junction of the labels of each effect that gives the literal. We
say an effectϕi gives a literall when there exists a conse-
quent outcomeεi,j of the effect that entailsl:

�k(l) =
∨

∃jεi,j |=l,
ϕi∈Ek−1

�k−1(ϕi)

The first literal layer forBTCS is:

L1 = {�1(inP1) = �1(¬inP2) = �0(¬inP2),

�1(¬inP1) = �1(inP2) = �0(inP2),

�1(clog) = �1(¬clog) = �1(¬arm) = �1(arm) = BSP }

In ourBTCS example, level off occurs at level two, be-
cause the labels do not change between literal levels one and
two.

When level off occurs, we can say that for anyBSi, where
BSi |= BSP , that a formulaf is reachable if∃kBSi |=
�k(f). If no such levelk exists, thenf is not reachable from
BSi. If there is some levelk, wheref is reachable from
BSi, then the first suchk is a lower bound on the number
of parallel plan steps needed to reachf from BSi. This
lower bound is similar to the classical planning max heuris-
tic [Nguyenet al., 2002]. We can provide a more informed
heuristic by extracting a relaxed plan, back-chaining from
k, to supportf with respect toBSi, described in the next
section.

We can say that the goal in our example is reachable after
two steps becauseBSP = BSI |= �1(¬arm) = BSP .

Global Planning Graphs: We previously alluded to using
different choices for our belief state,BSP , from which we
construct theLUG. Following previous work in progression
search, an obvious choice forBSP is theBSi of a node for
which we want to obtain a heuristic, an approach that builds
aLUG for each search node. However, we note that we can
defineBSP as a larger set of states than justBSi, namely
a set containing every reachable state in the problem. We
find the reachable states by looking at the last level of a non-
labelled planning graph built from all literals in the initial
belief state. The advantage of definingBSP this way is that
we only have to build theLUG once for the entire search
episode. Our conformant relaxed plan procedure does not
rely onBSP , aside from havingBSi |= BSP (which is as-
sured for all reachableBSi if BSP represents all reachable
states). We call this approach a GlobalLUG because we
use aLUG to symbolically represent every possible plan-
ning graph that progression search may need.

Conformant Relaxed Plans
The relaxed plan heuristic we extract from theLUG is sim-
ilar to the multiple graph relaxed plan heuristic,hMG

RPU , de-
scribed in [Bryce and Kambhampati, 2004]. ThehMG

RPU
heuristic uses several planning graphs, one for every pos-
sible world of our source belief stateBSi, and extracts a
relaxed plan from each to achieve a state ofBSG. It then
unions the set of actions chosen at each step in each of the



relaxed plans to account for the overlap (positive interaction)
of achieving subgoals the same way in multiple worlds.

The LUG conformant relaxed plan heuristic,hLUGCRP , is
similar in that it counts actions that are applicable in multi-
ple worlds only once and accounts for actions that are used
in different subsets of the possible worlds. The advantage of
hLUGCRP is that we find these actions by looking at only one
planning graph, and extracting a single, albeit more compli-
cated, relaxed plan. In the relaxed plan we want to support
the goal with every state inBSi, but in doing so we need to
track which states inBSi use which lines of causal support.
In a classical planning relaxed plan, a line of causal support
for a subgoal only refers to one world. But here multiple
worlds may share the same line of support. Furthermore, a
subgoal may not have a single line of support from all worlds
inBSi so multiple lines of support may be needed, each con-
tributing support from a different set of worlds. The compli-
cations, and notation, arise from tracking what worlds use
which lines of causal support to support subgoals.

Our conformant relaxed plans,CRPBSP
(BSi, BSG) are

labelled subgraphs of aLUG, represented as a set of layers:
{ACRP0 , ECRP0 ,LCRP1 , ..., ACRPk−1 , ECRPk−1 , LCRPk }, where
ACRPr is a set of labelled actions,ECRPr is a set of labelled
effects, andLRPr+1 is a set of labelled clauses. We build the
LUG in terms of literals, but extract a relaxed plan in terms
of clauses because our goal may be expressed in terms of a
formula. The actions, effects, and clauses that make up the
relaxed plan are labelled to indicate the worlds where they
are chosen for support.

For instance the relaxed plan, shown in bold in Figure 2,
for BSI to reachBSG in BTCS is:

CRPBSI
(BSI , BSG) =

{ACRP
0 = {�CRP

0 (DunkP1) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),

�CRP
0 (DunkP2) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2)},

ECRP
0 = {�CRP

0 (DunkP1 : ϕ1) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),

�CRP
0 (DunkP2 : ϕ1) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2)},

LCRP
1 = {�CRP

1 (¬arm) = BSI}}

We already found thatBSG is reachable at level one, so we
form LCRP1 with the clauses ofκ(BSG). The relevant ef-
fects fromE0 are theϕ1 of DunkP1 andDunkP2, be-
cause they contribute support for¬arm in the worlds we
care about. We need both effects to cover¬arm because
�0(DunkP2 : ϕ1) ∨ �0(DunkP2 : ϕ1) |= �CRP1 (¬arm),
so we have two lines of causal support, each contributing
support in a world. We then insert the associated actions
into the action layer. We can stop here, because we’ve cov-
ered the clauses inLCRP1 . Our action layer contains two
actions, so the relaxed plan gives a heuristic value of two to
support¬arm fromBSI .

For the general case, extraction starts at the levelk where
BSG is first reachable fromBSi. The first relaxed plan
layers we construct areACRPk−1 , ECRPk−1 ,LCRPk , whereLCRPk

contains all clausesC, whereC ∈ κ(BSG), labelled as
�CRPk (C) = BSi. Formally, we define thekth clause layer
as:

LCRPk = {�CRPk (C) = BSi|C ∈ κ(BSG)}
For each levelr, 1 ≤ r ≤ k, we support each clause
in LCRPr by choosing relevant effects fromEr−1 to form

ECRPr−1 . An effect ϕi is relevant if it covers some of the
worlds where we need to coverC, namely �r−1(ϕi) ∧
�CRPr (C) 
|=⊥ and it has a consequent outcomej that en-
tails a literal inC, ∃j,l∈Cεi,j |= l.

We think of supporting a clause in a set of worlds as a set
cover problem where effects cover subsets of worlds. Our
algorithm to cover the worlds of a clause with worlds of ef-
fects is a variant of the well known greedy algorithm for
set cover [Cormenet al., 1990]. We first choose as many
relevant persistence effects that can cover new worlds, then
choose action effects that cover the most new worlds at each
step. Each effect we choose for support is added toECRPr−1
and labelled with the new worlds it covered forC, denoted
by fϕi

in the equation below. The label of an effect denotes
for each clauseC the worlds in which it was used to cover
the clause, denoted byfCϕi

, and not the worlds in which other
effects coveredC, denoted byfCϕi

. The effect layerECRPr−1 is
defined as:

ECRPr−1 =
{
�(ϕi) = fϕi

|∃C∈LCRP
r ,j,l∈Cεi,j |= l, fϕi


|=⊥}
fϕi

=
∨

C∈LCRP
r ,

∃j,l∈Cεi,j |=l
fCϕi

∧ ¬fCϕj
∧BSi

fCϕi
= �CRPr (C) ∧ �r−1(ϕi)

fCϕj
=

∨
ϕ′

i∈ECRP
r−1 ,

ϕi �=ϕ′
i,

∃j,l∈Cεi,j |=l,
∃j′,l′∈Cε

′
i,j′ |=l′

�CRPr−1 (ϕ′i)

An additional requirement onECRPr−1 is that it in fact covers
all worlds of each clause inLCRPr :

∀C∈LCRP
r
�CRPk (C) |=

∨
ϕi∈ECRP

r−1 ,

∃j,l∈Cεi,j |=l

�CRPr (ϕi)

Once all clauses inLCRPr are covered, we form the action
layerACRPr−1 as all actions that have an effect inECRPr−1 . The
actions inACRPr−1 are labelled to indicate all worlds where
any of their effects were labelled inECRPr−1 :

ACRPr−1 =
{
�CRPr−1 (a) = fa

∣∣∃ϕi∈Φaϕi ∈ ECRPr−1

}
fa =

∨
ϕi∈Φa,

ϕi∈ECRP
r−1

�CRPr−1 (ϕi)

We obtain the next subgoal layer,LCRPr−1 , by adding clauses
from the executability preconditions of actions inACRPr−1 and
antecedents of effects inECRPr−1 . Each clauseC in LCRPr−1
is labelled to indicate all worlds with which any action or
effect, that requiredC, were labelled:

LCRPr−1 =


�CRPr−1 (C) = fC

∣∣∣∣∣∣
1 < r < k and,
(∃a∈ACRP

r−1
C ∈ κ(ρe) or,

∃ϕi∈ECRP
r−1
C ∈ κ(ρj))




fC =
∨
a∈ACRP

r−1 ,

C∈κ(ρe)

�CRPr−1 (a) ∨ ∨
ϕi∈ECRP

r−1 ,

C∈κ(ρj)

�CRPr−1 (ϕi)

We support the clauses inLCRPr−1 in the same fashion as
LCRPr . We continue to support clauses with effects, insert
actions, and insert actions’ and effects’ preconditions until
we have supported all clauses inLCRP1 .



Once we get a conformant relaxed plan,
CRPBSP

(BSi, BSG), that supportsBSG in all worlds of
BSi, we compute the conformant relaxed plan heuristic for
POND as:

h
(G)LUG
CRP (BSi) =

k−1∑
r=0

| ACRPr |

This conformant relaxed plan is estimating a strong plan be-
cause at each level we ensure that the chosen actions will
support the subgoals from all possible worlds where they
are needed to support subgoals at the next level. In many
cases the relaxed plan can use one action to support sub-
goals in several possible worlds. This is useful in guiding
the search towards plans with lower overall plan length and
higher positive interaction in achieving the goal from all pos-
sible worlds.

Contingent Relaxed Plans
Up until now we have not explicitly considered sensory ac-
tions in our heuristics. A straightforward generalization of
our approach may consider extending the ideas in SGP[Weld
et al., 1998]. SGP tracks reachable partitions of worlds,
i.e. worlds that can be disambiguated from others via sens-
ing. Building a labelled version of the SGP planning graphs
would be costly because it is hard to compactly represent
these partitions in theLUG. Instead of propagating all pos-
sible partitions of possible worlds, we use a phased relax-
ation approach. We build aLUG and extract a conformant
relaxed plan, then insert sensors into the conformant relaxed
plan. Inserting a sensor means that we create new contexts
(branches) out of the context in which it is applied. We can
determine how a sensor will partition a context by looking
at the literals in theLUG – effectively computing partitions
on-demand. Having contexts in our relaxed plan allows us
to reason about which worlds must execute which lines of
causal support. Our intention is to capture how sensory ac-
tions i) reduce the overall expected cost of a plan, and ii)
increase immediate cost by requiring set-up.

We extend our representation of conformant relaxed plans
to contingent relaxed plansSRPBSP

(BSi, BSG) by adding
partitions, PSRPr , to each level, so a contingent relaxed
plan has the structure{ASRP0 ,PSRP0 , ESRP0 ,LSRP1 , ...,
ASRPk−1 ,PSRPk−1 , ESRPk−1 ,LSRPk }. A partition, Pr, for a level
r contains several context formulasp. The context formulas
denote the worlds of our belief stateBSi that we can iso-
late with sensory actions and observations. Each contextp
is seen as the subset of the states inBSi that will enter a par-
ticular branch of the relaxed plan. A branch of the relaxed
plan is defined on a per level basis by a contextp and the
actions inASRPr wherep ∧ �SRPr (a) 
|=⊥. The value of our
sensory relaxed plan is the sum of the expected context costs
of each level. The expected context cost of a level is simply
the sum of the number of actions in each context divided by
the number of contexts.

We construct our sensory relaxed plan by extracting a con-
formant relaxed plan, as previously described, and then pro-
cess it to include sensory actions. As outlined in Figure 1,
we go through each level of the conformant relaxed plan,

Process(BSi, CRP ,A):
1: SRP = CRP
2: r = 0
3: while r < maxj(ARPj ), do
4: if r = 0, then
5: PSRPr = {BSi}
6: else
7: PSRPr = PSRPr−1
8: endif
9: for each sensorya in A , do
10: for each partitionp ∈ PSRPr s.t.p |= �r(ρe), do
11: P ′ =Split(p, a, r)
12: if |P ′| > 1, then
13: for each〈p′, oj〉 ∈ P ′, do
14: CRP ′ = CRPBSP

(p′, oj)
15: SRP = SRP ∪ CRP ′
16: endfor
17: CRP ′ = CRPBSP

(p, ρe)
18: SRP = SRP ∪ CRP ′
19: PSRPr = (Pr ∪〈p′,oj〉∈P′ p′) \ p
20: endif
21: endfor
22: endfor
23: r++
24: endwhile
25: return SRP

Figure 3: Sensory Relaxed Plan algorithm pseudo-code.

Split(p, a, r):
1: I =

∨
oi,oj ,i �=j (�r(oi) ∧ �r(oj) ∧ p)

2: P ′ = {〈p′, oj〉|p′ = �r(oj) ∧ ¬I ∧ p and p′ 
|=⊥}
3: for everyŜ in ξ̂(p ∧ ¬I), do
4: pick 〈p, oj〉 ∈ P ′ s.t.mink(Ŝ |= �k(oj))
5: set〈p, oj〉 = 〈p ∨ Ŝ, oj〉
6: endfor
7: return P ′

Figure 4: Split algorithm pseudo-code.

adding sensors and computing partitions. Our initial parti-
tion,PSRP0 , contains one context,BSi. We then try to split
theBSi context with every sensory action whose executabil-
ity preconditions are reachable (line 11). The splitting of a
context with a sensory actiona may give a setP ′ of new
contexts matched with each observation ofΦa, denoted as
〈p′, oj〉. We make sure that at least two new contexts are
made, otherwise the sensory action is of no use. A sensory
action may fail to create new contexts if for example only
one of its observations is reachable. We then find a con-
formant relaxed plan to support each observationoj in the
worlds denoted byp′ because we need to make sure the ob-
servation can be made. The conformant relaxed plan is then
unioned with our sensory relaxed plan to have the contin-
gent relaxed plan reflect causal support for an observation.
We also find conformant relaxed plans for the executabil-
ity preconditions of the sensory action and union it with the
contingent relaxed plan. Finally, we remove the old context,
p, from PSRPr and add the new contexts toPSRPr . Since
we may split everyp in PSRPr and add new contexts, the for
loop (lines 9-22) is a fix-point computation. Reaching the
fix-point makes us move to the next level, copying over the
contexts we just made and trying to make more.

Splitting a contextp (Figure 4) with a sensory actiona at
levelr involves finding the worlds ofp where each outcome
oj of the sensory action is reachable. The set of worlds de-
scribed by the intersection,I, of worlds where everyoj is



Problem POND POND POND MBP KACMBP HSCP GPT CGP SGP CFF
hMG
RPU hLUGCRP hGLUGCRP

Rovers1 370/5 360/5 260/5 66/5 9293/5 OoM 3139/5 70/5 70/5 6/5
2 1440/9 750/8 320/8 141/8 9289/15 - 4365/8 180/8 30/8 6/8
3 7260/11 1250/10 400/10 484/10 9293/16 - 5842/10 460/10 1750/10 10/10
4 OoM 1790/13 510/13 570/15 9371/18 - 7393/13 1860/13 TO 10/13
5 - 9750/24 2250/24 OoM 39773/40 399525/20 TO - 18/22
6 - 58800/23 13750/23 727/32 TO - TO - - 21/23

Logistics1 520/9 450/9 210/9 37/9 127/12 352/9 916/9 60/6 70/6 10/9
2 6100/19 2200/15 470/15 486/24 451/19 OoM 1297/15 290/6 510/6 12/15
3 13260/14 4320/14 810/14 408/14 1578/18 - 1711/11 400/8 4620/8 14/12
4 OoM 10580/18 2390/18 2881/27 8865/22 - 9828/18 1170/8 447470/8 12/18
5 - 30930/28 8150/28 OoM 226986/42 - 543865/28 TO TO 25/28

BTC10 1080/19 250/19 200/19 504/19 45/19 25/19 715/19 39370/19 TO 57/19
30 OoM 12120/59 6540/59 268/59 635/59 293/59 - - - 23629/59
50 - 104440/99 75190/99 1287/99 10821/99 1352/99 - - - 334879/99
70 - 588630/139 457890/139 3625/139 9334/139 OoM - - - -

Cube 5 OoM 630/12 290/15 25/24 16/12 29/12 82/12 TO TO 21/12
11 - 33110/31 12440/30 215/60 31/30 566/30 308875/30 - - 264/30
17 - 329010/48 219850/48 1154/96 70/48 3598/48 TO 2957/48

CubeC 5 OoM 3210/20 730/18 16/18 18/18 418/18 362/18 TO TO 36305/45
7 - 9570/31 6310/29 35/27 29/27 4557/27 4781/27 - - TO
9 - 177890/40 11080/40 64/36 70/36 18896/36 42257/36 - - -

Ring 3 1350/10 360/10 290/10 8/8 8/8 12/8 568/8 TO TO TO
4 22720/14 3890/15 1870/15 21/11 18/11 20/11 605/11 - - -
5 OoM 85490/17 43800/17 33/14 33/14 37/14 1186/14 - - -
6 - 596430/23 268800/23 74/17 66/17 96/17 51469/17 - - -

Figure 5: Results forPOND usinghMG
RPU , hLUGCRP , andhGLUGCRP , MBP, KACMBP, HSCP, GPT, CGP, SGP, and CFF for confor-

mantRovers, Logistics, BTC, Cube, CubeC, andRing. The data is Total Time (ms) / # plan steps (in bold), “-” indicates
no attempt, OoM represents out of memory, and TO represents a time out.

reachable must be divided among theoj in a splitting. The
worlds¬I ∧ �r(oj) ∧ p can be safely assigned to each such
oj without overlapping with anotheroi. Each world in the
intersection is assigned to anoj such thatoj is the first ob-
servation reachable in that world.

Once sensors are added to the relaxed plan, we can com-
pute the cost of the contingent relaxed plan as the sum of
the cost of the action levels. The cost of an action level is
the sum of the cost of the contexts divided by the number of
contexts. The cost of a context is the number of actions that
can be executed in the context. An action can be executed in
a context when the label of the action not inconsistent with
the formula describing the context.

h
(G)LUG
SRP =

k−1∑
r=0


 ∑

p∈Pr

∣∣∣∣
{
a

∣∣∣∣ a ∈ A
SRP
r ,

�RPr (a) ∧ p 
|=⊥
}∣∣∣∣

|Pr|




From ourBTCS example, we start withP0 = {BSI}. We
find that the executability preconditions ofDetectMetal
are reachable at level zero, and we can use it to splitBSI .
Splitting BSI , we getP ′ = {〈(arm ∧ ¬clog ∧ inP1 ∧
¬inP2), o0〉, 〈(arm ∧ ¬clog ∧ ¬inP1 ∧ inP2), o1〉}. The
conformant relaxed plans to supportρe, o0, and o1 of
DetectMetal are empty because they hold at level zero, so
our relaxed plan becomes:

SRPBSP
(BSi, BSG) =

{ASRP
0 = ACRP

0 ∪ {�SRP
0 (DetectMetal) = BSI},

PSRP
0 = {(arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),

(arm ∧ ¬clog ∧ ¬inP1 ∧ inP2)},
ESRP
0 = ECRP

0 ∪
{�RP

0 (DetectMetal : o0) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),

�RP
0 (DetectMetal : o1) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2)},

LSRP
1 = LCRP

1 }

Our heuristic value is two because each context has two
actions – the appropriate dunk action and the sensory action
– and there are two contexts, so ((1+2)/2)+((1+1)/2) = 2.5.
This estimate is the same as our conformant relaxed plan,
but in other domains the estimates can be very different.

Empirical Comparisons
We experimented with several existing domains and also de-
veloped two new domains to test our heuristic techniques.
The existing domains includeBTC (bomb in the toilet with
clogging),BTCS (bomb in the toilet with clogging and
sensing),CubeCorner (Cube), CubeCenter (CubeC),
Ring, andMedical [Petrick and Bacchus, 2002]. We also
developed conformant and contingent versions of the classi-
calLogistics andRovers domains. We also augment our
contingentRovers domain to create three test sets with only
contingent solutions and different numbers of preconditions
for the available sensors.

We compare POND to several conformant and
contingent planners: MBP[Bertoliet al., 2001a],
KACMBP[Bertoli and Cimatti, 2002], HSCP[Bertoli
et al., 2001b], CGP[Smith and Weld, 1998], SGP[Weld
et al., 1998], GPT[Bonet and Geffner, 2000], and
CFF[Brafman and Hoffmann, 2004]. We provide our
planner binary, as well as the domain descriptions used for
each planner at: http://rakaposhi.eas.asu.edu/belief-search.
We tried our best to make the domain encodings standard
across the planners by using binary fluents; there were
a couple of instances with GPT where we had to use
multi-valued fluents. The tests had a time out of 20 minutes
and a memory limit of 1GB on a 2.8GHz P4 Linux machine.
We also used a heuristic weight ofw = 5 in POND.
We note that our implementation makes extensive use of
propositional entailment (|=) as well as the other common



Problem POND POND POND POND MBP GPT SGP
hMG
RPU hLUGCRP hGLUGCRP hGLUGSRP

Rovers1 360/5 360/5 260/5 260/5 3312/11 3148/5 70/5
2 790/9 820/7 320/7 390/8 4713/75 5334/7 760/7
3 970/10 1370/8 380/8 490/9 5500/119 7434/8 TO
4 1490/14 1910/10 490/10 630/12 5674/146 11430/10 -
5 OoM 29600/19 4040/19 7180/21 16301/76 TO -
6 - 65100/19 9080/21 12290/20 OoM - -

Logistics1 400/8 400/7 200/7 230/7 41/16 1023/7 5490/6
2 2150/13 3150/12 560/12 870/12 22660/177 5348/12 TO
3 2560/10 3760/9 700/9 970/9 2120/45 2010/8 -
4 31350/17 17870/15 2770/15 4840/15 OoM TO -
5 OoM 88810/23 14480/23 28170/21 OoM - -

BTCS 20 20150/20 3820/20 1690/20 2930/20 OoM TO TO
40 OoM 52740/40 39770/40 62390/40 - - -
60 - 373460/60 344650/60 555600/60 - - -

Medical 20 2360/3 2070/3 360/3 430/3 TO 92/3 TO
40 20500/3 47140/3 1930/3 2950/3 - 1079/3 -
60 OoM 287390/3 21660/3 29070/3 - 2524/3 -
80 - TO 203210/3 208420/3 - 7869/3 -
100 - - 496670/3 507990/3 - 15762/3 -

POND POND MBP
hGLUGCRP hGLUGSRP

0ep-Rovers1 420/5.00 510/5.00 3320/11.00
2 590/6.50 1110/6.50 4762/65.00
3 680/5.75 1310/5.75 5500/87.00
4 1000/6.12 1670/6.00 5674/52.75
5 12650/15.53 21780/15.59 16301/56.44
6 34460/18.62 63070/17.37 TO

5ep-Rovers5 420/5.00 520/5.00 3568/22.00
2 3470/12.00 1990/11.50 13754/200.50
3 5080/17.00 1260/13.25 26592/225.66
4 6580/19.87 2220/14.75 27750/157.00
5 31060/31.81 38020/28.68 40566/214.75
6 84730/29.50 216030/26.25 TO

10ep-Rovers1 770/5.00 1020/5.00 4416/40.00
2 TO 54740/16.50 296346/341.50
3 - 3240/21.25 TO
4 - 6800/24.25 -
5 - TO -
6 - - -

Figure 6: The first table shows results forPOND usinghMG
RPU , hLUGCRP , hGLUGCRP , andhGLUGSRP , MBP, GPT, and SGP for contingent

Rovers,Logistics,BTCS, andMedical. The second table shows results for extra preconditionsRovers (Xep-Rovers) using
thehGLUGCRP andhGLUGSRP heuristics inPOND and MBP. The data is Total Time (ms) / # plan steps in maximum length branch
(in bold), “-” indicates no attempt, OoM represents out of memory , and TO represents a time out.

propositional logic operations and using BDDs affords
reasonable run-time performance.

We proceed by discussing howPOND performs in both
conformant and contingent planning. WithinPOND we
compare the effectiveness of building theLUG for ev-
ery search node (hLUGCRP ) to building theLUG globally,
(hGLUGCRP ), as well as our improvements over building mul-
tiple planning graphs (hMG

RPU ) for each search node. We
also evaluate the effectiveness of the contingent relaxed plan
heuristic (hLUGSRP ). Then, we discuss the relative advantages
of POND with respect to competing approaches.

Conformant Planning: Figure 5 shows results for the con-
formant domains. The first observation aboutPOND is
that for all problems building theLUG globally, GLUG,
has dramatic speed improvements over building theLUG at
each search node, and both of these are significant improve-
ments of theMG approach. We do not show results for the
SRP heuristic because it reduces to theCRP heuristic in
conformant planning.

In comparison to other planners,POND performs rea-
sonably well in many of the existing conformant planning
domains, but is not the strongest planner in any domain.
POND is able to outperform MBP, KACMBP, and HSCP
in the Rovers and Logistics domains by solving more
problems, generally faster, and with typically higher quality
solutions.POND does typically better in terms of search
time with respect to GPT in most of the domains.POND
out-scales CGP and SGP in all of the domains. CFF does
much better in theLogistics andRovers problems, but has
more trouble in theBTC, CubeC, andRing domains.7

We note thatPOND does as well as it does because of
its effective heuristics despite its admittedly inefficient pro-
gression implementation. The reasonPOND is able to do
better than MBP in some problems is because our heuristics

7Our encoding ofRing is especially difficult for CFF, and may
be different from their encoding. We think it may have to do with
extra literals in conditional effect antecedents.

prove to be more important than efficient child generation.

Contingent Planning: The first table in figure 6 shows
results for the contingent domainsRovers, Logistics,
BTCS, andMedical. Again, POND does better in all
problems by using theGLUG over theLUG, and both of
these are improvements over theMG approach.

In comparison to the other planners, there are two ob-
servations: i)POND exhibits scalability, and ii)POND
returns high quality plans. GPT only scales well on the
Medical, and fails to find plans for large instances in other
domains. SGP does not scale very well on any of the
problems. MBP is able to solve many of theRovers and
Logistics instances, but at a cost of generating highly in-
optimal plans,an order of magnitude longer in some cases,
compared toPOND, GPT and SGP.8

Costly Sensor Preconditions:The results shown in the sec-
ond table in Figure 6 are for theRovers domain with
extra sensory preconditions, using the conformant relaxed
plan heuristichGLUGCRP and the sensory relaxed plan heuristic
hGLUGSRP in POND, and MBP. In this domain, each sensor
has the original precondition of being at a particular way-
point to do the sensing, plus some number of additional pre-
conditions (e.g. the camera being on, clean, focused, arm
placed, etc.). Each additional precondition requires an ac-
tion to re-establish it at each waypoint the rover navigates to.
Each set of rows in the second table in Figure 6 is a sensor
formulation with a different number of preconditions (0, 5,
and 10). Each cell shows the total time to find a plan, and the
solution plan’s expected execution length. Here we change
our measure of plan quality to expected length because it
was much easier to cull from the compared planners’ output.
What we noticed is that: contingent relaxed plans (SRP ) are
useful in scaling the planner on problems with costly sen-
sors, and tend to improve solution quality. We also noticed

8We compare maximal branch length rather than expected
branch length because many of the planners do not provide the ex-
pected branch length.



that MBP has trouble scaling as sensors have additional pre-
conditions and that MBP finds fairly bad plans, in terms of
expected execution length.

Related Work
Although POND utilizes planning graphs similar to
CGP[Smith and Weld, 1998] and Frag-plan[Kurienet al.,
2002], in contrast to them, it only uses them to compute
reachability estimates. The search itself is conducted in the
space of belief states.POND is also related to, and an
adaptation of the work on, reachability heuristics for clas-
sical planning, includingAltAlt [Nguyenet al., 2002], FF
[Hoffmann and Nebel, 2001] and HSP-r [Bonet and Geffner,
1999]. POND is similar to FF in that it uses progression
search based on planning graph heuristics.

Another related line of work is in the MBP-family of
planners—MBP [Bertoliet al., 2001a], CMBP [Cimatti and
Roveri, 2000], HSCP [Bertoliet al., 2001b] and KACMBP
[Bertoli and Cimatti, 2002]. LikePOND, the MBP-family
of planners all represent belief states in terms of binary de-
cision diagrams, but vary with respect to the heuristics they
implement and their search strategy.

More recently, there has been closely related work on
heuristics for constructing conformant plans within the plan-
ner CFF [Brafman and Hoffmann, 2004]. The approach
taken in CFF is to construct a SAT encoding to compute a
relaxed plan heuristic. The SAT encoding obtains distance
measures for size-2 disjunctions over literals in a belief state
rather than all states in a belief state, as we do.

In contrast to these approaches, PKSPlan [Petrick and
Bacchus, 2002] is a forward-chainingknowledge-based
planner that requires a richer domain encoding. The plan-
ner makes use of several knowledge bases that are updated
by actions, opposed to a single knowledge base taking the
form of a belief state. The knowledge bases separate binary
and multi-valued variables and planning and execution time
knowledge.

Conclusion
We described three important extensions to reachability
heuristics for belief space–the labelled uncertainty graphs
(LUG), the global labelled uncertainty graphs (GLUG) and
contingent relaxed plans. We have implemented these on
top of a progression planner for belief space planning called
POND, and have shown that heuristics based on theLUG
andGLUG lead to significant scale-ups over those based on
multiple planning graphs ones, and that contingent relaxed
plans can help improve plan quality as well as scalability
in problems with difficult to support sensory actions. We
also reported on comparison studies with several state of the
art conformant and contingent planners. These results show
thatPOND with our heuristics is competitive with the best
conformant planners, and is able to produce significantly
higher quality contingent plans. These results are particu-
larly encouraging considering that our current implementa-
tion ofPOND does not take advantage of the most efficient
(BDD-based) child generation techniques, as in [Bertoliet
al., 2001a]. We are working on incorporating these improve-
ments in the base planner, and expect that the experiments

with the resulting planner will further improve our compar-
ative performance.
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