
ARTIFICIAL INTELLIGENCE 333

Planning for Conjunctive Goals*

David Chapman
Artificial Intelligence Laboratory, MIT, Cambridge,
MA 02139, U.S.A.

Recommended by Robert Wilensky

ABSTRACT

The problem of achieving COnlUnCtlve goals has been central to domain-independent planning
research, the nonhnear constraint-posting approach has been most successful Previous planners of
this type have been comphcated, heurtstw, and ill-defined 1 have combmed and dtstdled the state of
the art into a simple, precise, Implemented algorithm (TWEAK) which I have proved correct and
complete 1 analyze previous work on domam-mdependent conlunctwe plannmg; tn retrospect tt
becomes clear that all conluncttve planners, hnear and nonhnear, work the same way The efficiency
and correctness of these planners depends on the traditional add/ delete-hst representation for actions,
which drastically limits their usefulness I present theorems that suggest that efficient general purpose
planning with more expressive action representations ts impossible, and suggest ways to avoid this
problem

I. Introduction

If you intend to use a domain-independent planner as a workhorse black-box
part of something else, you care whether it works. Planners of the most
promising ("nonlinear") sort have been complicated, heuristic, ill-defined AI
programs, without clear conditions under which they work. This paper de-
scribes a nonlinear planner, TWEAK, that has few novel features, but is a
simple, precise algorithm I have proved correct and complete.

*Revised version of a thesis submitted to the Department of Electrical Engineering and
Computer Science on January 25, 1985 in partial fulfillment of the reqmrements for the degree of
Master of Soence

This report describes research done m part at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology Support for the laboratory's artificial intelligence research
has been provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-80-C-0505, in part by National Soence
Foundation grants MCS-7912179 and MCS-8117633, and In part by the IBM Corporation

The views and conclusions contained in this document are those of the author, and should not be
interpreted as representing the policies, either expresessed or implied, of the Department of
Defense, of the National Science Foundation, or of the IBM Corporation

Artificial Intelligence 32 (1987) 333-377
0004-3702/87/$3 50 (~) 1987, Elsevier Science Publishers B V (North-Holland)

334 D CHAPMAN

I started work on planning because ! wanted a planner to coroutme with a
learner to make an integrated problem solver [5]. I 'd heard that Earl Sacer-
doti 's NOAH was the state of the art in planning, and decided to copy it exactly,
since I had no interest in the matter. Four readings of [50] and three
misconceived implementat ions later, I had a planner that worked, but no idea
why. To determine whether it would work as a reliable subroutine, I had to
simplify the algorithm and representations and apply some mathematical rigor
To quote Sacerdotr

[The basic operations of NOAH] were developed in an ad hoc
fashion No at tempt has been made to justify the transformations
that they perform, or to enable them to generate all t ransforma-
tions. However , It should be possible to define an algebra of plan
transformations . . a body of formal theory about the ways m which
interacting subgoals can be dealt with. [50]

That is what I 've done in this paper.
Rigor of formulation not only gives confidence in a program, it may be

needed as a stable base for further research. AI comes In "nea t " and "scruffy"
styles. Nonlinear planning research to date has been scruffy: heuristic, ill-
understood, unclear. As I discovered, scruffy research is hard to duplicate.
That is not Sacerdoti 's fault, or mine: most AI research is necessarily like that.
When working at the frontiers of knowledge, you will make no progress if you
wait to proceed until you understand clearly what you are doing. But it is also
hard to know when progress has been made and where to go next before the
scruffy work is neatened up. Neat and scruffy research on a particular domain
should follow each other in cycles. Late in this neat paper, I will make some
scruffy suggestions about how to go beyond the crucial limitation of the
domain- independent planners that have been implemented to date.

1.1. Nonlinear conjunctive planning

The conjunctive planning problem has been a main focus of planning research
for more than ten years. The problem is to achieve several goals simultaneous-
ly: to find a plan that makes a conjunctive formula true after it has been
executed. To make a planner generally useful, it should be domain-indepen-
dent. The difficulty in domain- independent conjunctive planning is in interac-
tions between the means of achieving the individual goals. The following classic
problem, known as the "Sussman anomaly ," illustrates the difficulty. Suppose
we have three blocks, a, b, and c; initially c is on a and a and b are on the table
(situation (1) in Fig. 1). We want to have a stacked on b on e, or to achieve the
conjunctive goal (and (on a b) (on b e)) (situation (ii)). Let 's say you ' re only
allowed to move one block at a time, so that the top of a block must be clear
before it can be moved. If you try to put b on ¢ first, when you go to put a on b

PLANNING FOR CONJUNCTIVE GOALS

FIG 1 The Sussman anomaly, with parnal outcomes

335

you fail, because c is on a and so prevents it from moving (situation (iii)). On
the other hand, ff you try first to put a on b (removing e to make a accessible),
putting b on e is made impossible by a, which is in the way (situation (iv)).

I'll return to this problem later in the paper and show how nonlinear
planning can solve it. The important idea, due to Sacerdoti, is that a plan (at
least while it is being constructed) does not have to specify fully the order of
execution of its steps. In other words, a plan is only a partial order on steps;
this is what is meant by nonhnear plannmg.

1.2. Guide to this paper

The next section explains how and why TWEAK works. The section is divided
into three subsections: the first explains what a plan is; the second shows how
to improve incomplete plans; and the third describes the overall control
structure of the planner.

Section 3 covers related and future work. I analyze previous planning
research using the analyncal tools developed m Section 2, showing that all
domain-independent conjunctive planners work the same way. I suggest that
the restrictions on representations of actions that these planners depend upon
are their crucial limitation, and show that there are complexity-theoretic
barriers to lifting these restrictions.

The last section presents brief conclusions.

2. TWEAK

TWEAK is a rigorous mathematical reconstruction of previous nonlinear plan-
ners. TWEAK 1s also an implemented, running program. This section describes
the algorithm and proves it correct. TWEAK comes in three layers: a plan
representation, a way to make a plan achieve a goal, and a top-level control
structure. Each layer is described in more detail in one of the next three
subsections of this section. The fourth subsection gives a detailed scenario of
TWEAK solving the Sussman anomaly problem described in the last section.

The plan representation is the most complex layer. The basic operanon
provided by this representation determines whether a proposition will be true
of the world after part of a plan has been executed. An efficient algorithm for
this operation depends on a subtle theorem about incompletely defined plans,

336 D CHAPMAN

gwen in Section 2 1. Section 2.2 describes a nondeterminlstlc procedure that
transforms a plan so that ~t achieves a goal that It previously did not The
top-level control structure, described in Section 2.3, controls this nondetermm-
lsm Because choosing how to make a plan achieve a goal is difficult,
backtracking search is used to recover from wrong choices. Here I prove that
TWEAK is complete, if a solution to a problem exists, TWEAK wall find ~t

2.1. The plan representation

In this section I define plans, problems, and what it means for a plan to solve a
problem. I present a criterion which allows TWEAK to reason about what will
be true in the world as a plan is executed. Inevitably most of this section is
composed of dry and obvious definitions Proofs are deferred to Appendix A.

TWEAK is a constraint-posting planner. Constraint posting is the process of
defining an object, a plan m this case, by incrementally specifying partial
descriptions (constraints) it must fit. Alternatively, constraint posting can be
viewed as a search strategy in which, rather than generating and testing specific
alternatives, chunks of the search space are progressively removed from
consideration by constraints that rule them out, until finally every remaining
alternative is satisfactory. The advantage of the constraint-posting approach is
that properties of the object being searched for do not have to be chosen until
a reasoned decision can be made. This reduction of arbitrary choice often
reduces backtracking.

As TWEAK works on a problem, it has at all times an mcomplete plan, which
is a partial specification of a plan that may solve the problem. This incomplete
plan could be completed in many different ways, depending on what con-
straints are added to it; thus ~t represents a class of complete plans. The
incomplete plan supplies partial knowledge of the complete plan that will
eventually be chosen; planning is finished when all the completions of the
incomplete plan solve the given problem. I will say "necessarily p" if p is true
of all completions of an incomplete plan, and "posstbly p " if p is true of some
completion. Adding a constraint to a plan can often rule out all the comple-
tions; the set of constraints is then mconststent, and no longer defines a valid
incomplete plan. At this point backtracking must be invoked. The number of
completions of a plan is exponential in its size, so computing whether some-
thing is possible or necessary by searching completions would be very expen-
swe. The heart of th~s section ~s a polynomml-t~me algorithm that computes
possible and necessary properties of an mcomplete plan.

TWEAK's plan representation is very simple. It is so restrictive that it cannot
represent most domains; I will explain why in Section 3.2.1. A complete plan Is
a total order on a fimte set of steps. The order represents time; the steps,
actions. The plan IS executed by performing the actions corresponding to the
steps m the order gwen A step has a finite set of precondmons, which are
things that must be true about the world before the corresponding action can

PLANNING FOR CONJUNCTIVE GOALS 337

be performed. A step also has finitely many postcondittons, which are things
that the action guarantees will be true about the world after it has been
performed. Pre- and postconditions are both expressed as propositions. Propo-
sitions have a content, which is a tuple of elements, and can be negated or not.
Elements can be variables or constants; there are infinitely many of each.
Functions, propositional operators and quantification are not allowed: all
propositions are function-free atomic. (See Section 3 2.3 to understand why
there must be infinitely many variables and constants and Section 3.2.1 for why
propositions must be so simple.) Two propositions are negations of each other
if one is negated and the other is not and they have the same content (strictly,
necessardy codesignatmg content, a notion that I haven't introduced yet). I'll
write propositions like this: (on a x) and this: - (on a x). These two propositions
have the same content tuple, the three elements on, a, and x; the second is
negated and the first ~s not

Plans in TWEAK can be incomplete in two ways: the time order may be
incompletely specified, using temporal constraints, and steps may be incom-
pletely specified, using codesignation constramts. A temporal constraint is a
requirement that one step be before another; thus a set of temporal constraints
~s simply a partml order on steps. A completion of a set of temporal constraints
C is any total order O on the same set of steps such that sCt ~mplies sOt.
(Every ordering in the incomplete plan must also hold in the complete one.)

Codesignation is an equivalence relation on variables and constants. In a
complete plan, each variable that appears in a pre- or postcondltion must be
constrained to codesignate with (effectively, be bound to) a specific constant.
In execution, that constant will be substituted for the variable when the action
is performed. Codes~gnation constraints enforce codeslgnation or noncodesig-
nation of elements. Distinct constants may not codesignate. Two propositions
codesignate if both are negated or both are not and if their contents are of the
same length and if corresponding elements in the contents codesignate. For
example, the propositions (on a x) and (on a y) codesignate lff x and y
codeslgnate.

Recall the general definitions of necessary and possible; thereby, two
propositions in an incomplete plan necessarily codesignate if they codesignate
m all completions; in other words no matter what constraints are added. You
can constrain two possibly codesignating propositions to necessarily codesig-
nate by constraining all the corresponding elements of their contents to
codes~gnate. Th~s amounts to unification of the two propositions. You can
constrain two possibly noncodesignating propositions to necessarily not
codesignate by choosing some tuple index and constraining noncodesignation
of the two elements at that index in the content tuples of the two propositions.
For example, (on a x) and (on a y) can be made to necessarily codesignate by
making x and y necessarily codesignate, and to necessarily not codesignate by
making x and y necessarily not codesignate.

As steps are executed the state of the world changes. TWEAK represents

338 D CHAPMAN

states of the world with sttuaUons, which are sets of proposmons. A plan has an
inmal situation, which is a set of propositions describing the world at the rime
that the plan is to be executed, and a final situation, which describes the state
of the world after the whole plan has been executed. Associated w~th each step
in a plan ~s its mput situation, which is the set of propositions that are true In
the world lust before it ~s executed, and its output situation, whmh is the set of
propositions that are true in the world just after it is executed. In a complete
plan, the Input situanon of each step is the same as the output situation ot the
previous step. The final s~tuation of a complete plan has the same set of
propositions in it as the output situation of the last step. The time order
extends to situations, the inmal and final SltUaUons are before and after every
other situation respectively. The input s~tuatlon of a step is before the step and
after every other situation that is before the step; the output situation of a step
is after the step and before any other situation that is after the step

A proposition is true tn a situation if It codeslgnates with a proposition that is
a member of the situanon. A step asserts a proposition in its output situation if
the proposition codeslgnates with a postcondltion of the step. A proposition is
asserted in the mltial situation if it true in that snuanon A proposition is
dented m a situation if its negation is asserted there. It 's illegal for a
proposmon to be both asserted and denied in a s,tuatlon

A step can be executed only if all ~ts preconditions are true in its input
situation In th~s case, the output situation is just the input situation minus any
propositions denied by the step, plus any propositions asserted by the step.
(The order matters. Also, this is not the same thing as the Input sltuanon plus
the propositions asserted by the step: if p were true m the input SltUanon and
the step asserts - p , then the output situation must not contain both p and - p ;
mput and output situations must be consistent sets of propositions, since they
describe states o! the world.) This model of execunon does not allow for
indirect or lmphed effects of actions or for uncertainty of execution; any
changes in the world must be explicitly mentioned as postcondltlOnS I will
have more to say about th~s restriction in Section 3 2 1

I use graphs, as m Figs. 2-4, to dlustrate plans Steps are boxes, the
preconditions are put before or above the box and postconditlons after or

(there x) (get x)

(there milk) [(get milk)

Fm 2 An incomplete plan

(here x),,,

(there x) ~ ' ~

(here m,lk) , , ,~ ~ t ,,

[4 (there milk)

(pour mdk x)] -(h~re ×)
/here breakfast)

(here milk)

PLANNING FOR CONJUNCTIVE GOALS 339

(there mdk)[(get mdk)

(there cheerios)
Ik)](here ch) (cer!ahlerc~eCehr~ersl °s)] [~(herech) i(h .I ~h) 1 H (~ ,, I(he.e~re.".~tl (set .q

I~l,h lk) /]~(th,re eh) (h lk) l ch)l_lh ;k)

FIG 3 One completion of the example plan

lmt~at After (get rmlk) After (get cheerms) Final

FIG 4 The sequence of s~tuatlons resulting from executing the compleUon

below. The steps may have labels inside, but these are only mnemonic. Arcs
represent the partial time order. Ovals are situations.

Durmg planning, incompleteness introduces uncertainty into the meaning of
a plan. To use a blocks world example, if v is a variable, after asserting (on
block v), there's no way to tell whether (on block c) is true or false, unless v
necessarily codesignates with a particular constant. I will now sketch the
derivation of a criterion that tells you when a proposition is necessarily true in
a situation. Of course a proposition is necessarily true in a situation if it ~s
necessarily asserted in it. Once a proposition has been asserted, it remains true
until denied. Thus a proposition p is necessarily true in a situation if there is
some previous situation in which it is necessarily true, and no possibly
intervening step possibly denies it: for if there is a step that is even possibly
in-between that even possibly denies p, there is a completion in which the step
actually is in-between and actually denies p. (A step possibly denies p by
denying a proposition q which possibly codesignates with p). Oddly, the
converse of this criterion is not true; the incomplete plan in Fig. 5 illustrates an
exception. If p and q are possibly codesignating, this plan has two classes of
completions: ones in which p and q actually codesignate, so that p is asserted
by step 3; and ones in which p and q do not codesignate, so that p is asserted
by step 1, and is never denied In either case, p ~s true in the final situation,
even though no one step necessarily asserts p without an intervening step
possibly denying it. The complete criterion, extended to cover such cases, is
the following.

FIG 5 An odd plan

r T
L _ _ . l ~ q " ~ r

FIG. 6 The necessary truth criterion

340 D CHAPMAN

Modal Truth Criterion. A proposttton p ts necessardy true m a sttuanon s tff two
conditions hold: there ts a sltuatton t equal or necessardy prevtous to s t n whtch
p ts necessartly asserted, and for every step C posstbly before s and every
proposttton q possibly codeslgnatmg wtth p whtch C denies, there ts a step W
necessartly between C and s whtch asserts r, a proposition such that r and p
codesignate whenever p and q codesignate. The crttenon for posstble truth ts
exactly analogous, wtth all the modalittes swttched (read "necessary" for
"posstble" and vtce versa)

The necessary truth criterion 1s diagrammed in Fig. 6. Solid lines indicate
necessarily time-relatedness and dashed lines possible time-relatedness; the
dashed box, a disallowed step; the dotted box a step that would make the
dashed step legal. I call situations t necessarily before s that necessarily assert p
estabhshers; steps C defined as in the statement of the theorem clobberers; and
steps W that foil steps that would otherwise become clobberers, whtte kmghts.
If a step C is before t, certainly it does not clobber p; but in such a case, the
step of which t is the output situation acts itself as a white knight

The part of the criterion about white knights is counter-intuitive, but it is
needed, as illustrated by the previously illustrated odd plan. More complex
codesignation implications can also occur, for example, the propositions (xy)
and (y z) must codesignate if (x y) and (z x) do

The truth criterion can usefully be thought of as a completeness/soundness
theorem for a version of the situation calculus.

The criterion can be interpreted procedurally in the obvious way. It runs in
time polynomial in the number of steps: the body of the criterion can be
verified for each of the n 3 triples (t, C, W) with a fixed set of calls on the
polynomial-time constraint-maintenance module. (The exponent in this poly-
nomial can be reduced with dynamic programming; this is essentially what
Tate 's GOST does [68].) However , the modal truth criterion does exponentially
much "work" by describing properties of the exponentially large set of
completions of an incomplete plan. (Strictly, there may be infinitely many
completions, since there are infinitely many constants the variables could
codeslgnate with; but since all but finitely many constants are unconstrained
and so equivalent, there are only exponentially many that are not isomorphic.)
The remainder of TWEAK depends heavily on the criterion.

Now I will define problems and their solutions. A problem is an initial
sttuation and a final sttuation, which are two sets of propositions. A plan for a
problem is one such that every proposition in its initial situation is true in the
initial situation of the problem. A goal is a proposition which must be achieved
(true) in a certain situation. The goals of a plan for a problem are defined to be
the propositions in the final situation of the problem, which must be true in the
final situation of the plan, and the preconditions of steps in the plan, which
must be true in the corresponding input situations. A complete plan for a
problem solves the problem if all its goals are achieved. Thus, a complete plan

PLANNING FOR CONJUNCTIVE GOALS 341

solves a problem if it can be executed in the initial situation of the problem and
if the final situation of the problem is a correct partial description of the world
after execution. The aim of T W E A K is tO produce a plan that necessarily solves
the problem it is given. This plan may be incomplete, in which case any of its
completions can be chosen for execution.

2.2. Making a plan achieve a goal

TWEAK's contract is to produce a plan for a specific problem it is given. TWEAK
has at all times an incomplete plan, initially null, which is an approximation to
a plan that solves the problem. The top-level loop of the planner repeatedly
chooses a goal and to tries to make the plan achieve it. This section describes
TWEAK's procedure for making the plan achieve the goal.

The goal-achtevement procedure is derived by interpreting the necessary
truth criterion as a nondeterministic procedure. The criterion tells us all the
ways a proposition could be necessarily true; the procedure chooses one of
them and modifies the plan accordingly. To make a situation be before another
or to make two propositions codesignate or not codesignate, the procedure just
adds constraints. These constraints may be incompatible with existing con-
straints: for example, you can't constrain s before t if you have already
constrained t before s. The constraint-maintenance mechanism signals failure in
these cases, and the top-level control structure backtracks. Since the set of
things possibly asserted in a situation cannot be changed, to make a proposi-
tion necessarily asserted there, the procedure constrains codesignation of the
given proposition with one of those asserted. There are two ways to instantiate
an existentially quantified situation nondeterministlcally: by choosing an exist-
ing situation in the plan or by adding a new step to the plan and taking its
output situation as the value of the existentially quantified variable. One of
these two ways must be chosen nondeterministically. Logical operators in the
statement of the criterion can also be interpreted procedurally: universal
quantification over a set becomes iteration over that set; existential quantifica-
tion a nondeterminlstic choice from a set; disjunction a simple nondeterministic
choice; and conjunction, several things that must all be done.

Let ~- and ~ stand for codesignation and noncodesignation respectively; let []
and ~ stand for "necessarily" and "possibly"; let < represent the time order,
and ~< represent temporal precedence or equality. Then the necessary truth
criterion m logical notation reads thusly:

=It 7qt ~< s/x [] asserted-in(p, t) ^
VCC]s<~ C v

Vq [] - denies(C, q) v
E] q ~ p v
3WE3C < W ^

• W < s ^
::1 r asserts(W, r) ^ p = q :ff p ~ r

342 D CHAPMAN

Figure 7 illustrates the structure of the nondetermlnlstic procedure This
figure is a parse tree of the necessary truth crl tenon, modified according to the
paragraph above on procedural interpretation. In the diagram, v means to
choose one of the alternate paths, A tells you to do all the paths; 3 means
"choose a"; 'q tells you to apply the following path to every one. The leat
nodes are constraints that should be added to the plan. u ranges over the
propositions necessarily true in t, q ranges over postcondaions of C; r over
pos tcondmons of W. Choosing t and W may or may not require the introduc-
tion of a new step, as explained earlier

A number of further comments are needed to fully specify the details of the
procedure Step addiuon revolves choosing what step to add. Every step in a
plan must represent an action that is possible to execute m the domain m which
the problem is specified. To even possibly achieve a goal p by addition, the
added step must assert a p roposmon possibly codesignatlng with p. The choice
of steps, then, is among those that are allowed in the domain and that possibly
assert the desired goal. The user must supply TWEAK with a set of template
steps that TWEAK can use. These are formally idenncal to plan steps; they have
preconditions and postcondltions, which typically involve variables which may
have codesignat~on constraints between them. Step templates are mstanttated
by copying the step, proposition, variable and codesignanon constraint data-
structures. Constants are not copied; if a step template refers to a specific
object in the world, all instances should refer to the same one

Making p ~ q imply p = r is tricky; this can not be expressed as a single
codesignation constraint or even as a set of constraints. It is sometimes possible
to constrain p = q ~ p ~ r w~th a simpler constraint than either p • q or p ~ r.
(w x y) and (u y z) can be made to codeslgnate m case (w x y) and (w z x) do by
constraining w ~- u. In general, there may be several ways to ensure a codesig-
nation implication using constraints between elements, and one of these must
be chosen nondeterminlstically.

Alternative paths through the procedure are called plan modtficanon opera-
ttons, and are labeled in italics in the dmgram I'll refer to these individual
operations later in the paper. The path that leads to constraining s < C I call

s~mple estabhshrnent

3 new t A - - ~ u - - p ~ U establ~shmen~ V step add~twn

A wMte knzght / C "~ l{ ~

Vq--V---3EV ~ 3 old W---7"/~--/W ~ 8

separatzon

FIG 7 The nondetermm~stlc achievement procedure

PLANNING FOR CONJUNCTIVE GOALS 343

promotion. Demotion is a particular subcase of declobbering by white knight
that is symmetric with promotion. Demotion is the case in which t is chosen to
be the output situation of W, so that the clobberer is nullified by moving it
before the estabhsher.

One additional way to achieve a goal is imaginable: to remove a clobbering
step C. This would not help: every step is introduced to assert some goal
proposition, and removing one makes negative progress. Moreover, the search
control structure guarantees that the same plan without the clobbering step will
be found eventually anyway, and it is never the case that the only way to
achieve a goal is to remove a step. Apart from this, the achievement procedure
encompasses a/ / the ways to make an incomplete plan achieve a goal, because
the modal truth criterion is sufficient as well as necessary. So in this respect
TWEAK can not be improved upon.

The goal-achievement procedure has the useful property that so long as step
addition is avoided, the new plan wdl continue to necessarily achieve any goals
that it previously did. That's because the rest of the procedure operates only by
adding constramts. When constraints are added, things that were previously
possibly true become either necessarily true or necessarily false, but nothing
that is necessarily true can change its truth value.

Step addition adds new preconditions to the plan that need to be achieved,
and the added step may also deny, and so undo, previously achieved goals.
This in unavoidable, and it can lead to infinite looping. Therefore, TWEAK

prefers constraint posting to step addition.

2.3. The top-level control structure

TWEAK begins work on a problem with a first incomplete plan whose imtial
situation is the initial situation of the problem and which has no steps or
constraints. It then enters a loop in which some goal not yet achieved is chosen
and the procedure of the last section is applied, yielding a new plan. When all
the plan's goals are achieved, the plan necessarily solves the problem. Choos-
ing which goal to achieve and which choices to make in the achievement
procedure is very difficult; certainly it is not always possible to choose right the
first time. Therefore the top-level control structure of TWEAK is a search
through the space of alternate paths through the goal-achievement procedure.

People have thought a lot about what sort of search to use; this work is
reviewed in Section 3.4. Since none of the search strategies developed so far
seem very good, I simply use dependency-directed breadth-first search in
TWEAK. I shan't argue for breadth-first search; it's certainly too expensive for
general use. However, the use of dependency-directed search deserves some
justification.

Dependency-directed backtracking [15] is more efficient than chronological
backtracking only if the search space is nearly decomposable into independent

344 D CHAPMAN

subparts, so that after a failure in one part , only the work done oll that part
needs to be undone; work on other parts can be saved. TWEAK does have this
property when running in many domains For example, m the blocks world, if
the goal is to build two disjoint structures, the search space can be divided into
the part concerned with building the one and the part concerned with building
the other. Fadure m building the one structure will not affect partml successes
achieved thus far in building the other.

Because step addition can make the plan grow arbitrarily large, the search
may never converge on a plan that necessarily solves the problem. In fact,
there are three possible outcomes: success, m which a plan is found, failure,
when the planner has exhaustively searched the space of sequences of plan
modification operations, and every branch fails; and nonterminatlon, when the
plan grows larger and larger and more and more operations are applied to it,
but it never converges to solve the problem

Outcomes Lemma. Each of the three outcomes ts posstble for some chotce of
domain and problem

This is a central theorem of this paper:

Correctness/Completeness Theorem. I f T W E A K , given a problem, termmates
claiming a solutton, the plan tt produces does m fact solve the problem. I f
T W E A K returns stgnalling fadure or does not halt, no solution extsts.

This theorem leaves httle room for improvement . Perhaps loop-detection
heuristics or techniques for prowng no solution exists could make TWEAK fall
into mfinite loops less often. An obvious question is whether planning is in fact
decidable: whether it is possible to make a complete planner that always halts.

First Undecidability Theorem. Any Turmg machine with its mput can be
encoded as a plannmg problem in the T W E A K representation. Therefore, plan-
ning ts undecidable, and no upper bound can be put on the amount of ttme
requtred to solve a problem.

This theorem is weaker than it may appear , for two reasons. F~rst, the proof
uses an infinite (though recursive) initial state to model the connectivity of the
Turing machine 's tape. It may be that if problems are restricted to have finite
initial states, planning is decidable. (This is not obviously true, though. A finite
initial state does not imply a finite search space. There are infinitely many
constants, and an action can m effect "gensym" one by referring to a variable
in ~ts postconditions that is not ment ioned in its preconditions.) Section 3.2.1
shows in passing that planning is undecidable with even finite initial states if
TWEAK'S representat ion is extended a little. Second, what the proof shows is

PLANNING FOR CONJUNCTIVE GOALS 345

that the size of the shortest plan to solve a problem may be arbitrarily large,
rather than that the process of planning itself is complex. In fact, no back-
tracking is required to solve the Turing machine-encoding problems.

2.4. Example

To give a feel for TWEAK doing its thing, I'll show how it solves the Sussman
anomaly problem introduced in Section 1.1. Refer to Fig. 1 for the definition of
the problem. Logically, only one action is available in this domain, puton puton
has three preconditions, (on x z), (clear x), and (clear y); and four postconditions,
(on x y), - (on x z), -- (clear y), and (clear z). z represents the block on which x lies
before the puton takes place. There also must be noncodesignation constraints
to the effect that x, y, and z are all distinct, and that x is not the table, which
can't be moved. This isn't quite good enough: the table is always clear (always
can have more put on it), and putting something on the table doesn't change
that. We must constrain y not to codesignate with the table and use a different
action, newtower, to put a block onto the table (and so start a new tower).
newtower has preconditions (on x z) and (clear x) and postconditions (on x
table), -- (on x z), and (clear z). Codesignation constraints ensure that x, z, and
table are all distinct. See Fig. 8 for illustrations of the blocks world step
templates.

I'll assume that the nondeterministlc control structure always guesses right
the first time. TWEAK begins with the two top-level goals (on a b) and (on b c).
Each is achieved by adding a puton step; see Fig. 9. The variables lnstantiating
x and y are constrained to codesignate with the goals. I have been somewhat
sloppy and textually substituted constants for the variables that are bound to
them. z 1 and z 2 are the instantiations of z.

Unachieved preconditions are starred. The on preconditions are achieved by
being constrained to codesignate with propositions in the initial situation; see
Fig. 10. The precondition (clear b) of the second step is unachieved because the
first step is possibly before the second and denies the precondition. TWEAK

Oil X Z)

(clear x)
(clear y)

(putonx y)

(on x y)
-(on x z)
~(clear y)

(clear z)

FIG 8 The blocks world step templates.

on x z)
(clear x)

I (.ewtower ×)1

(on x table)
~(on × z)

(clear z)

346 D CHAPMAN

*((]e,u ,i)
((le,u b)

I (1)uton a I))

(,)n a b)

--{(l('al b)
((h'al /1/

FIG 9 A first incomplete plan for the

* (on b z2)
*((lear b)

(~ lear ~)

(pulon l> ()

(OI1 b ()

--(oi1 b z2)
~-(¢ lear ~)

((lear Z 2)

Sussman anomaly

((m a table) (on b table)
*(dear a) *(clear b)

(clear b) (clear c)

(o,, a b) (on b ~)
(()II d tab le) --(oi | b table)
--(clear b) ~(clear c)
((leal tal,le) ((leal la})le)

FIG 10 A second incomplete plan for the Sussman anomaly

achieves (clear b) by promotion of (puton a b) (Fig 11) Then the precondition
(clear a) of (puton a b) is achmved by addition of a newtower step. This has a
precondition (on x a) which is satisfied by being constrained to codesignate with
(on ca), which is true m the mitml situation. See Fag. 12. Finally TWEAK

achieves (clear c) by promotion of (puton b c); see Fig 13

(on b table) (on a tat)le)
(clear b) *(clear a)
(clear e) (clear b)

l [(puton b c) /]

(on b c) (on a b)
---(on b table) ~(on a table)

-(clear c) ~(clear b)
(, lear table) ((lear tabh')

FIG 11 A third incomplete plan for the Sussman anomaly

PLANNING FOR CONJUNCTIVE GOALS 347

(on b table) (on a table)
(clear b) (clear a) (on c a)
(clear c) (clear b) *(clear c)

/P°t°" b c) II ld (puton a b) [~ b II/newt°'er c)l
(on b c) (on a b) (on c table)

~(on b table) ~(on a table) ~(on c a)
~(clear c) ~(clear b) (clear a)
(clear table) (clear table)

FIG 12 A fourth incomplete plan for the Sussman anomaly

Fm 13

(on b table) (on a table)
(on c a) (clear b) (clear a)
(clear c) (clear c) (clear b}

(on c table) (on b c) (on a b)
~(on c a) ~(on b table) ~(on a table)
(clear a) ~(clear c) ~(clear b)

(clear table) (clear table)

A plan that solves the Sussman anomaly

3. Past and Future Planning Research

The three main points of this section are that in retrospect all domain-
independent conjunctive planners work the same way; that the action repre-
sentation which they depend on is inadequate for the real-world planning; and
that desirable extensions to this action representation make planning exponen-
tially harder. It is much longer than such sections are in typical AI papers
because domain-independent conjunctive planning is unusual as a subfield of
AI in showing a clear line of researchers duplicating and building on each
other 's work. Science is supposed to be like that, but for the most part AI
hasn't been.

I restrict attention to domain-independent conjunctive planning, ignoring
planners and parts thereof that are domain-dependent or nonconjunctive. This
may seem unfair at times. There are two previous survey articles on this topic,
[51, 66]. The facts I consider are much the same as those covered by the other
papers; my analyses of many points are different.

The first subsection in this section is a historical overview of domain-
independent conjunctive planning, showing how different planners build on

348 D CHAPMAN

one another, with particular emphasis on the history of the ideas embodied in
TWEAK. The other three subsections are devoted to the history and future of
the three levels of a conjunctive planner: representation, plan modification
operations, and top-level search strategies. The most interesting suggestions for
future research are in Section 3.2.1 on action representation; the most interest-
mg analysis of past work is in Section 3.3 on plan modification operattons.

3.1. Chronology

Two important "prehistorical" nonconjunctive planners introduced techniques
that underlie all the conjunctive planning work. oPS [40], due to Allen Newell,
J.C. Shaw, and Herbert Simon, introduced means-ends analysts, which is to
say step addition or subgoaling: solving problems by applying an operator that
would achieve some goal of the problem, and taking the preconditions of the
operator as new goals. STRIPS [18], due to Richard Fikes and Nils Nilsson,
contributed the action model--in which steps have postconditions that are the
only things that get changed by the step--that is used by all domain-indepen-
dent conjunctive planners

1959 GPS

1971 STRIPS

1972

1973

1974

1975

1976

1977

1981

1982

1983

1984

HACKER

VvARPLANN. ~ ~/TERPLAN

NONLIN ~

MOLGEN

DEVISER /

SIPE
I

TWEAK

FIG 14 Conjunctive planning a family tree

PLANNING FOR CONJUNCTIVE GOALS 349

Domain-independent conjunctive planning begins in 1973 with Gerald Jay
Sussman's HACKER [60]. Sussman ended his thesis with the problem described
in Section 1.1, due to Allen Brown but widely known as "the Sussman
anomaly," which HACKER could not solve without resort to what Sussman
called a "hack."

The urge to find a clean solution to the Sussman anomaly drove a series of
rapid developments over the next four years. David Warren's WARPLAN [73]
and Austin Tate's INTERPLAN [61-63], both of 1974, cleaned up Sussman's
ad-hoc "hack": promotion, in fact. Richard Waldringer [72] further generalized
promotion.

In 1975 came Earl Sacerdoti's NOAH [49, 50], the first nonlinear planner.
Besides his improvement in the representation of plans, Sacerdotl substantially
expanded the set of plan modification operations. Tate (the same author of
INTERPLAN) improved on NOAH in 1976. NONLIN [64, 65] had a backtracking
top-level control structure, so that it could find plans after NOAH would get
stuck, and added to NOAH'S set of plan modification operations.

After 1976, there was a great drought for many years. During this period,
there was one important piece of work on nonconjunctive planning: Mark
Stefik's MOLGEN [54] made constraints a central technique in planning for the
first time. Conjunctive planning was not advanced until a new spurt of work
beginning in 1982.

All the new conjunctive planners were NOAH-based. Several researchers
[3, 36, 37, 70] extended NOAH by improving the representation of time, in quite
different ways. (These improvements have not been incorporated in TWEAK.)
David Wilkins' SIPE [77, 78] used MOLGEN-like constraints and incorporated a
new technique for detecting clobbering.

3.2. Representation

A planner must represent events in time, actions the agent can take, and the
world and the objects in it. Domain-independent planners all base their
representations on those of STRIPS, and with the exception of the introduction
of constraints, have not progressed much beyond that framework. Therefore,
this section is more concerned with future than with past work.

The rest of this section is divided into four decreasingly interesting subsec-
tions. The first discusses action representation; the second, time; the third,
codesignation constraints; and the fourth, miscellany.

3.2.1. Acttons

TWEAK has an impoverished representation for actions; for example, it does
not allow for indirect side-effects. Without these restrictions, the modal truth
criterion would fail, and TWEAK would be no longer complete and perhaps not
correct. These problems are largely a reflection of the state of the art and are

350 D CHAPMAN

not specific to TWEAK. Linear planners can use more powerful acUon represen-
tations, but probably mcur exponentially increased search. Previous nonlinear
planners either have the same restricted action representat ion or are incorrect
or incomplete or both.

The restrictions on action representat ion make TWEAK almost useless as a
real-world planner. It is barely possible to formalize the cubmal blocks world in
this representation; HACKER'S blocks world, with different-sized blocks, can
not be represented. In the remainder of this section, I will explam the two
major restrictions, the reason the truth criterion fails in each case, and some
approaches to planning with richer action representations.

The action representat ion does not allow the effects of actions to depend on
the situation m which they are applied. Consider a blocks world in which zero,
one, or two blocks can be on any given block. (This example and its analysis
are due to David McAllester, personal communication.) Every block still must
be on zero or one other block. We need a function space that takes a block as
an argument and returns an integer between zero and two inclusive that tells
how much room is left on top of the block. A precondition of (puton a b) is that
(space b) be greater than zero, and the corresponding postcondition ts that
(space b) be one less than before. TWEAK can not represent this puton; a
representat ion with conditional postcondiuons or postcondiuons that are func-
tionally dependent on the input situation could.

If TWEAK were extended to express this action, the modal truth criterion
would fatl. An example is provided by a plan with three unordered steps,
(puton a d), (puton b d), and (puton c d), and with (space d) being two m the
initial situation; see Ftg 15. A precondition of each step is that (space d) be at
least one. Let us ask whether this precondition p is achieved in the input
situation t of (puton a d). According to the modal truth criterion, it is achieved
so long as there is a situation t (the initial situation will do) necessarily before

7

{ puton d d)

(put,m I,d)

II,uton , d)

FIG 15 A plan that displays synergy

PLANNING FOR CONJUNCTIVE GOALS 351

in which p is necessarily asserted (all true) and that there is not even possibly a
step between t and i that denies p. Candidate clobbering steps are (puton b d)
and (puton cd); they are possibly between t and t. Does one deny p? No,
because in the initial situation there is space for two, and each step only
decrements space by one. Yet the two steps act synergistically to clobber p.
This possibility is not accounted for in the modal truth criterion.

Another restriction is that all changes made by an action must be explicitly
represented as postconditions; many actions can not be formalized in this
representation. For example, if block b is on block a and we move a from
room 1 to room 2, b will also move. This effect could be captured in an action
representation in which deduction was allowed within situations, so that
propositions logically following from postconditions would be considered true
in the output situation of a step. Call the set of all propositions that follow
from another set the deductive closure of the second set. The semantics of
executing a step in a situation is to negate all the propositions in the deductive
closure of the postconditions and remove that set from the input situation, add
the postconditions to this result, and take the deductive closure of all that. It is
again possible for two steps to act synergistically to assert or deny a proposi-
tion: if q A r ~ p and one step asserts q and the other r, together they assert p
(equivalently deny - p) . This is the reason that TWEAK requires all propositions
to be atomic. Nonatomic propositions could be used, but would be simply
treated as hterals; the logical operators can't get their usual semantics without
deduction.

There are two obvious ways of modifying the modal truth criterion to handle
these problems of synergy. One is to consider all the completions of a plan. In
a linear plan, the state of the world is completely known at all times, and no
synergy is possible. Unfortunately, there are exponenUally many linearizations
of an incomplete plan, and so this approach, which amounts to reverting to
linear planning, is not efficient. Another alternative is to consider sets of steps
in trying to find establishers and clobberers. But again there are exponentially
many subsets of a set of steps.

Among nonlinear planners, only SIPE allows derived effects or dependency
of effects on the input situation of a step. SIPE's t reatment of these features is
incomplete and not generally correct. This is reasonable, as SIPE represents the
state of the art in engineering, rather than a formal theory of planning.

Waldinger's planner allows for derived effects and for effects that depend on
the input situation of a step. Because his planner is linear, the problems of
synergy do not arise. To determine whether p holds in the output situation of a
step S, he asks whether it or its negation is asserted there. If not, p is regressed
over S. A regression, q, is computed from p and S such that q being true in the
input situation of S guarantees that p is true in the output situation. Now the
rule can be applied recursively to q and the output situation of the step
preceding S.

352 D CHAPMAN

There are two difficulties with Waldlnger's approach. First, it depends on
linearity; in a nonlinear plan there isn't a unique step preceding S to recurse to.
(Pednault [41] is able to extend Waldinger's technique to a certain restricted
form of nonlinearity.) In Section 3.2.2 I will suggest that linear planning is
exponentially less efficient than nonlinear planning.

The second problem IS that It is not obvious how to compute the regression
of p given a step to pass it back over. Waldinger does not address this problem;
his planner apparently was given specific techniques which worked only for
particular action types. Rosenschein's planner [47] has a general procedure for
computing regressions, which was further extended by Kautz [28, 29] Because
these systems incorporated complete deduction engines, they proved to be
unworkably inefficient.

The regression formulation makes clearer how TWEAK depends on the
simplicity of its action representation: the essential factor is that propositions
are unchanged by regression. Extensions to the action representation that
preserve this property would be safe. I haven't been able to find any such
extensions, however.

The essential difficulty with extended action representation is the frame
problem [27,35, 42]. The frame problem is traditionally stated as that of
discovering what propositions are left unchanged by an action; this is useful in
practice in order to discover whether a proposition holds in a situation. Thus
the frame problem can be viewed as that of finding an efficiently implement-
able truth criterion The following theorem suggests that this may be impos-
sible in general:

Intractability Theorem. The problem of determmmg whether a proposttion ts
necessardy true in a nonlinear plan whose actton representation ts sufficwntly
strong to represent conditional acttons, dependency of effects on input situattons,
or dertved szde-effects is NP-hard.

A somewhat related theorem IS the following:

Second Undecidability Theorem. Planmng is undecldable even with a fimte
initial situation if the actton representation ts extended to represent actions whose
effects are a function of their situation.

What are we to make of these theorems? Naively, they suggest that writing
planners for extended action representation is a quixotic enterprise. In the
conclusion to this paper, I will make a radical suggestion in this regard. There
are loosely three ways out, however. We might hope for the best, relax the
correctness requirement on a planner, or relax the generality requirement.
Hoping for the the best amounts to arguing that for the particular cases that

PLANNING FOR CONJUNCTIVE GOALS 353

come up in practice, extensions to current planning techniques will happen to
be efficient. My intuition is that this is not the case, but the issue is an
empirical one. Relaxing the correctness requirement would produce heuristic
planners that sometimes produce plans that don' t quite work. A number of
current plannmg systems fit this category. In the remainder of this section, I'll
discuss the third possibility, relaxing the generality requirement.

I have examined a number of specific domains, and found that for each of
them it was easy to find an efficient truth criterion, but that these criteria were
quite different. Perhaps then we should give up on domain-independent
planning: the user of a planner must specify, together with the set of available
actions, truth criterm to be used.

At the expense of some scruffiness, we can do better. In other work [7], I
have been developing a theory of intermediate techniques, which are neither
completely general, nor completely domain-specific. Cognittve cliches, formal
structures occurring in many domains, have attached to them intermediate
competence that ~s specific not to a domain, but to a cliche. Intermediate
competence is applied by identifying instances of the associated cliche in the
world. A cliche-based system has to know something about the domain it is
running in, but ~s still domain-independent, since any cliche may show up in
any domain. I envision a cliche-based constraint-posting planner for extended
action representations which would have truth criteria specific to cliches that
operators in the world might instantiate. A planner with truth criteria for a few
dozen cliches might well cover most interesting domains.

For an example of planning with cliches, consider resources. An instance of
the resource cliche consists of a state variable in the world which holds a
quantity in some total order, together with at least one consumer operator,
which decreases, relative to the order, the value of the state variable, and at
least one dependent operator, which has as a precondition that the state
variable have a value greater than some threshold. There may also be producer
operators that increase the value of the state variable. (I 'm using the term
"resource" differently than Wilkms does.) Resources are found m many
domains; puton in HACKER'S blocks world is both a consumer and a dependent
operator of space on any gwen block.

Associated with the resource cliche is a truth criterion. The value of the state
variable in a situation s is no less than its value in situation t necessarily before
s, minus the sum of the amounts of decrements due to consumers possibly
between t and s, plus the sum of the amounts of mcrements due to producers
necessarily between t and s. In fact, it is often possible to prove a higher lower
bound than this; [43] describes a clever polynomial algorithm using network
flow techniques that computes the exact least value the state variable could
take on.

From this truth criterion we can derive three plan modification operations:

354 D CHAPMAN

the precondition of a dependent operator can be achieved, if it is not already,
by adding producers between t and s, by constraining consumers possibly
between t and s to be before t or after s, or by constraining the amounts of
consumption or production to be respectively small or large. In the HACKER
blocks world, adding producers of space amounts to the "punting" strategy
(see the discussion of "Strategy Conflict Brothers" in Section 3.3), and
increasing the amount they increase space by suggests the "compacting"
strategy.

Unfortunately, it turns out that planning with resources is NP-complete; it
appears as "sequencing to minimize maximum cumulative cost" in [21].
However , the polynomial criterion and the achievement procedure will be
extremely useful if addmonal domain constraints can be exploited to limit
search.

3 .22. ~ m e

The representation of time is crucial to planning: a plan is really a representa-
tion of part of the future. The biggest advance in domain-independent conJunc-
tive planning was probably the recognition that the time order can be partial,
at least until execution. This observation first appears in print in [73, p 16], but
the first implementation was in NOAH.

I believe that nonlinear planning is potentially exponentially more efficient
than hnear planning. In an extended action representation, linear planning
avoids the potentially exponential amount of work reqmred to compute the
truth criterion; but the same exponential shows up in a different guise as the
potentially exponentially greater amount of backtracking required to find the
correct plan. That more search is required for linear planners is supported by
intuition and empirical evidence, but has never been formally proved. It
appears to be tricky, because it requires dlagonahzlng over the search strategy
of the linear planner. Thinking about metalevel planning in attempting the
proof might be good for this reason.

I have simplified the representation of plans from those used in N O A H and
NONLIN. Those planners represent plans as directed acyclic graphs in which
there are many different types of nodes, only a few of which represent anything
much. My plans are simply partial orders on steps.

Much of the post-drought planning research in the last few years has focused
on overlapping actions All the old planners assume that actions are instanta-
neous and atomic; in the real world most actions take time, and several can
happen at once. Steven Vere's DEVISER [70] treats actions as temporal intervals
with numerical endpomts. James Allen and Johannes Koomen's planner [3]
also treats actions as intervals, but ~s based on Allen's nonnumerical time logic.
Drew McDermott [36] suggests using a t~me logic based on branching futures
as a basis for planning. These approaches are combined in Miller et al.'s

PLANNING FOR CONJUNCTIVE GOALS 355

FORBIN [37]. In all these formulations, several actions can be executed in
parallel. It would be interesting to analyze these planners in the same way I
have analyzed TWEAK: particularly, to find a provable truth criterion that
accounts for overlapping actions and to see what plan modification operations
it engenders. This has been done for Allen's planner by Bruce Donald [14]

Allen's time logic can represent the constraint that two actions be disjoint in
time without committing to which order they are to be performed in. This
makes it possible to defer the choice of declobbering operation further than
can be done in TWEAK. Promotion and demotion can be combined into a single
constraint, which does not commit to which is to be used. This decrease m
commitment may result in less search. Most generally, one could represent
time propositionally, allowmg general disjunctions between several possible
constraints to be expressed. This would trade off commitment against the cost
of deducing facts about a particular incomplete plan.

Plans are like programs in many ways; but programs have conditionals,
iterations, and dataflows, which domain-independent planners have not for the
most part been able to generate. A version of WARPLAN generated conditional
plans [74], as did Rosenschein's planner [47]; see the discussion in Section 3.3.
Jeffrey Van Baalen [69] describes a planner that uses numerical cost informa-
tion to generate conditional plans. NOAH had a feature for representing simple
iterations; however, this representation does not allow declobbering between
steps inside the loop and steps outside, and so can not be called conjunctive.
The Programmer's Apprentice [44, 45] uses a "plan calculus" historically
derived in part from NOAH, which can represent conditionals, loops, and
dataflow. Amy Lansky [31, 32] describes GEM, a plan representation derived
from studies of concurrent programming systems, which can express a con-
straint such as "customers are served in the order in which they make
requests" which is difficult in other representations. No program synthesizer
has yet been written using the Programmer's Apprentice representation; a
planner for GEM is now under construction.

3.2.3. Codesignation constraints

MOLGEN was the first planner to highlight the use of constraints; its author,
Stefik, introduced the term "constraint posting." Constraints in MOLGEN are
arbitrary predicates possibly on several variables. MOLGEN performs three
operations on constraints: formulation, propagation, and establishment. For-
mulation is making new constraints, propagation creates new from old con-
straints, and establishment is binding variables to values. MOLGEN was the first
planner to do propagation; unfortunately its propagation techniques are do-
main-dependent and not even described Stefik describes a "build or buy
decision" in achieving a goal involving a variable: either one can bind it to a
constant already appearing in the plan ("buy") , or to a new constant

356 D CHAPMAN

("build"). In this case it is often necessary to introduce new steps whose
postconditions involve the constant, so as to guarantee properties of it
MOLGEN was first to introduce new steps to satisfy a constraint.

It is httle recognized that HACKER used codeslgnation constraints They were
implemented as specml type preconditions on varmbles. HACKER'S clever
techmques for achieving goals with variables make use of the CONNIVER [59]
context mechamsm and have not been duplicated since. However, only the
"buy" opuon was considered, and it is not clear how general the ~mplementa-
tion was.

SIPE'S constraints are modeled on MOLGEN'S. SIPE'S truth criterion takes into
account possible truths resulting from possibly codeslgnatmg propositions. Like
TWEAK, SIPE propagates constraints only wa a codes~gnaUon relation.

TWEAK uses only codesignaUon constraints, because preconditions already
can represent predicates on variables, so that there is httle loss m expresswe
power. If one looks at the way constraints are used m planning, almost all
constraints correspond very naturally to precondmons of steps There are some
excepUons to this m MOLGEN, all of them constraints that have been created
wa propagation. Stefik's build or buy decision translates in the TWEAK
framework into step addition versus simple achievement. Since preconditions
are associated with times, predicates on variables are also; this solves problems
MOLGEN had with time representaUon.

The difference m expresswe power between MOLGEN or SIPE and TWEAK is
that TWEAK cannot restrict the range of a varmble to a finite set There are two
reasons I haven't put range restncUons into TWEAK: because constraint
computaUons then become NP-complete (proof by reduction from graph
coloring), and more seriously because the truth criterion fails ff I allow them.
The "pathological" plan m Fig. 16 illustrates the problem. Here the codesigna-
tion constraint and the range constraints together reqmre that either x codes~g-
nate with a and y with b, or wce versa; either way (p a b) holds in the final
situation. Yet (p a b) ~s not necessarily asserted by any parUcular step.

Variables are needed m the blocks world in which they originated for a
"deep" reason. In [5] I describe a problem solver that uses a TWEAK-like
planner as a subroutine. This problem solver views puton as both a POp and a
PUSH. Towers can be seen as stacks, moving a block from one tower to another
PoPs the first and PUSHes the second. It is the PUSH aspect that is exploited m
achieving on goals, and the POP aspect that ~s exploited in achieving clear goals
When puton is viewed as a POP, there is no explanation of what the second
argument (the place to put the block moved) is for. So the problem solver uses

X~', '

Ft6 16 A pathological plan

PLANNING FOR CONJUNCTIVE GOALS 357

a variable to leave the second argument unspecified. Whatever value the
second argument takes on, the puton acts as a POP.

3.2.4. Other problems for future research

A 1972 paper by Fikes, Hart, and Nilsson [19] lists a number of open research
areas in planning. Most are still virtually untouched.

Representations of the world using nonassertional datastructures are sim-
pler, more efficient, and better reflect its structure than the assertional
databases used in current domain-independent planners. Many domain-specific
planners use such representations effectively, and I see no inherent difficulty in
using such simulation structures in linear domain-independent planning. In
constraint-posting planning the state of the world is not completely defined at
all times; this is easy to implement using asseruonal databases, m which ~t ~s
easy to represent unknown truth values. It is much harder to represent partial
knowledge with nonasseruonal datastructures. One approach to this problem is
outlined in [48]. This or perhaps a hybrid techmque, using both assertions and
more direct representations, may lead to s~mpler, more powerful and efficient
planners.

In most real-world domains actions can have any of several outcomes,
depending on factors that the agent does not or cannot know, or even on
genuinely random factors. Effectively, they are nondeterministic. There has
been almost no work on planning in such domains. A related open problem is
coping with events that are not planned for. These might be the actions of
other agents or spontaneous physical happenings. DEVISER and Allen's planner
can plan around "scheduled" unplanned events: these are specific events that
will occur at known times. Many problem solvers have plan executives that,
when unexpected events occur, call the planner to derive a new plan from the
altered state of the world; [79], for example. In the real world, which has tigers
in it, that isn't good enough; you have to prepare for contingencies during
planning. Such plans need conditionals. Another area of current research is in
planning for multiple agents or multiple effectors that have to be synchronized
[19, 20, 46].

3.3. Making a plan achieve a goal

In this section, I treat first linear planners and then nonlinear planners. That
isn't quite the chronological order, as some linear planners postdate NOAH.
There are two interesting points to the section: one is the way the individual
plan modification operations were developed by generalization, splitting, and
merging. The other is to see that all conjunctive domain-independent planners
work in substantially the same way, though they look very different, using
apparently unrelated datastructures and algorithms. As time went by, features
were added and alternative implementations were tried, but the fundamentals

3 5 8 I) C H A P M A N

are unchanged from HACKER down to TWEAK This has not been generally
realized, even by the people who wrote the planners. Forcing all the algorithms
into the vocabulary of TWEAK modification operations makes them easy to
compare However, many of the early planning papers are very difficult to
read, and some of what follows may be inaccurate in detail. Figure 17
summarizes the section, illustrating which parts of the achievement procedure
were invented when

The most important thing to understand about linear planners is that they
work just the same way as nonlinear ones, except that the representation is
awkward. The basic operation of all the linear planners is analogous to
promotion. In a nonlinear planner this lUSt adds temporal constraints, in a
linear planner, a step must be picked up and moved to a different position in
the plan.

There are two different versions of promotion that appear in linear planners.
The first, mdtvtdual promotion, moves the clobberer forward over the clob-
beree (Alternatively, the clobberee could be moved backward before the
clobberer; this is an uninterestingly different operation.) In a nonlinear plan-
ner, promotion automatically also puts everything before the clobberee before
the clobberer and vice versa, individual promotion doesn't generally do so,
with the result that a step can be separated from the steps that were to achieve
its preconditions, so that they must be reachieved. Block promotton moves the
clobberer, together with the steps that achieve its preconditions, and the steps
that achieve their preconditions, transitively, as a block This implies a strong
lineartty assumptton: not only that the plan can be totally ordered, but also that
if you have goals g and h and S achieves g and T achieves h and S is before T,
then all the steps that achieve preconditions of S are before all the steps that
achieve preconditions of T. In other words, the time order must respect the
subgoahng hierarchy. Using only block promotion, it is impossible to solve
optimally the Sussman anomaly problem. The optimal solution involves three
steps: (puton c table), (puton b c), (puton a b). This plan violates the strong
hnearlty assumption: the first step achieves the precondition (clear a) for the last

(NONLIN 77)
s~mplt estabhshment

~su'at'a'~ent~/V-- ~ n e w t x A - - Su - - p ~ u (HACKER 73)

/~ step add2tton (GPS 59) ~ " '" 'N N 77 ~ A ~] whtte kntght / ~" ~ W (. t~.'~Ll~]

d¢¢tobS~, ,=/ 'VC--v-- V q - - V - - Y ' - V ~ - 3 o ld W - 7 " A : - ' - W ~: s (NONLIN 77)

~ 2 o f o , ~ p ~ n e w W / / " 3 r - - p ~ , q : = ~ p ~ r (T W E A K 8 5)

(HACKER 73) separatmn
(7 "~OAH 75)

Fm 17. A history of the plan mod~ficatlon operaUons

PLANNING FOR CONJUNCTIVE GOALS 359

step, but the middle step is not achieving a precondition of the last, but rather
one of the top-level goals.

HACKER has, in effect, four plan modification operations. Step addition is
used initially on each of the conjunct goals, and the resulting steps are
arbitrarily linearly ordered. HACKER recognizes four bug types, each of which
has a corresponding plan modification operation. "Prerequisite Missing" is a
precondition that is not true anywhere before it is needed, and is patched with
step addition. "Prereqmsite Clobbers Brother Goal" is just clobbering, and
block promotion is apphed. "Prerequisite Conflict Brothers" is a "double
cross": a pair of steps each of which clobbers the other. HACKER has a plan
modification operation for this which does not appear m any other planner: a
RESOLVE expert is called, which replaces the two steps with a single step that
achieves all the goals the two steps together were intended to achieve. In
practice, it seems that the only cases the RESOLVE expert could handle were
pairs of steps that achieved the goals (spacefor a c) and (spacefor b c) (Sussman's
blocks world allows more than one block on a given block). The expert would
replace the two steps with a subplan that achieved (spacefor (both a b)e).

HACKER had many other nifty planning techniques that somehow got lost in
the sands of time. For example, HACKER's addition operation is different from
those of all subsequent planners. Addition in later planners uses one of the
possibly several steps that could achieve a goal, perhaps saving the others as
backtrack alternatives. HACKER doesn't backtrack, but it does add the alter-
nate steps in later when one doesn't work. This leads to the fourth bug type,
"Strategy Conflict Brothers," in which a step in one strategy (alternative
achieving step) clobbers a precondition of another, later strategy. In this case,
HACKER applies promotion. This "multiple addition" operation has many
interesting properties. The principal use of it is m achieving (spacefor a b); the
two strategies are "compacting" the blocks on top of b and "punting" blocks
off of b that don't need to be there. Although either of these strategies may
achieve an unachleved spacefor goal, neither is guaranteed to. Yet, if executed
in the right order (punt then compact), they make spaee if it is possible to do
so. This sort of synergy and partial goal fulfillment has never been duplicated.

Sussman called Allen Brown's problem "anomalous" because it could not be
solved using block promotion. He presents a solution using individual promo-
tion, but regards this as a "hack." Why? Sussman viewed HACKER as an
automatic programming system, constructing programs, not plans. A conjunc-
tion (of the original goals or of the preconditions to a step) is achieved via a
single subroutine. Promotion in HACKER was confined to permuting the order
of lines of a subroutine; this amounts to block promotion, since subroutines
encapsulate the subgoal hierarchy. In order to solve the Sussman anomaly, one
must move program steps across subroutine boundaries, which HACKER
wouldn't do.

It's a pity, though, that the view of planning as automatic programming got

360 D CHAPMAN

lost in the shuffle HACKER's performance In any given domain would improve
as time went by, because the programs it wrote could be reused on new
problems Sussman describes techniques for generalization and subroutinlza-
tlon of programs so that less planning would need to be done later Compila-
tion can be viewed as constant-folding the source code into the interpreter;
HACKER in effect constant-folded classes of problems into the planner. It
would be interesting to build a problem solver that constant-folded into
TWEAK, and incorporated what has been learned in the past ten years about
generahzatlon.

WARPLAN has two plan modification operations, step addition and an
operation that combines addition with individual promotion. The latter opera-
tlon ("regression") is to find a step that achieves the goal, then to search
backward from the end for a place in the plan where the step can be put
without being clobbered. WARPLAN was able to solve the anomalous problem
because it doesn't make the strong linearity assumption; it represents plans as
flat orders, without hierarchy.

Waldrlnger [72] generalizes Warren's technique by allowing the regression of
a goal to be computed from the step it is being moved back over (as described
In Section 3 2.1).

INTERPLAN has three plan modification operations: step addition and both
versions of promotion (not combined with addition).

Rosenschein [47] describes a linear planner that uses both promotion and
demotion. He also has an operation for introducing conditionals (if-then-else
branches) into plans: it chooses an arbitrary proposition not provable or
disprovable from the initial situation, and puts a branch on this proposition at
the beginning of the plan In unpublished work he has improved this technique
so that the condition to branch on can be found deterministically

With NOAH comes the great explosion in the set of plan modification
operations NOAH classifies clobberings into three classes: in the first, two steps
each clobber the other (a "double cross"); m the second, the clobberer and the
clobberee are unordered; and m the third, the clobberer is before the
clobberee. The case (an "'n-cross") m which a set of more than two steps
clobber each other, arranged m a cycle, is neglected. I don' t understand
Sacerdoti 's explanation of the plan modification operation to patch double
crosses; ~t seems to be a version of step addition, possibly combined with
separation The other two cases are handled by promotion and demotion with
the addition of a white knight step, respectively.

"Eliminate Redundant Preconditions" is a step removal operation. Step
removal is useful because NOAH does not have a simple establishment opera-
tion Thus, if two steps have the same precondition, they may both be achieved
by addition, and then one of the two steps removed. "Use Existing Objects"
binds variables to constants. Sacerdotl is very unclear on when ~t is applied and
how the binding is chosen NOAH has a simple but entirely adequate technique

PLANNING FOR CONJUNCTIVE GOALS 361

for achieving a disjunctive goal. Each of the disjuncts is planned for, until it is
clear that one can be achieved; then an operation is applied that removes the
plan fragments for the other disjuncts.

Sacerdoti presents two "task-specific" plan modification operations. "Tool
Gathering" optimizes plans relative to a notion of the cost of performing
correct plans: a correct plan may be made into a better, still correct one by
some reorderings. "Limitations of an Apprent ice" compensates for the inex-
pressibility in his action representation of many kinds of actions. The example
he gwes is very similar (a resource conflict, requiring a global view to do
declobbermg) to the blocks world example I analyze in Section 3.2.1. Unfortu-
nately, the details of the operation are not given.

NONLIN was the first planner to use simple estabhshment. NONLIN also uses
addition, promotion, and demotion.

SIPE introduced no new modification operations, but it does have a new
technique for detecting clobbering. A particularly common sort of precondition
is what Wilkins terms a r e s o u r c e : a binary variable that must be set to one
value ("available") for an operation to be applicable, and which is set to a
different value during the operation, then "released" or reset at the end. Two
unordered steps that try to use the same resource clobber each other; SIPE then
applies promotion. The techniques SIPE uses for resource clobbering detection
are only heuristic; more work is needed to understand this maneuver.

Separation as a plan modification operation may appear first in TWEAK. I
suspect that NOAH's double cross removal operation, which I don' t understand,
may combine step addition with separation; apart from this, there seems to be
no precedent.

TWEAK is the first planner to use declobbering by white knight in the general
case in which the white knight is distinct from the establishing situation t. This
maneuver is actually pretty useless, because either the white knight will turn
out to assert the goal, in which case we'd have done as well to use its output
situation as an establisher, or else it won't , in which case we might as well have
used separation to defeat the clobberer. The only possible advantage is slightly
less commitment, and so possibly a little less backtracking. This plan modifica-
tion, like all the others, falls out of interpreting the modal truth criterion as a
nondeterministic procedure, and corresponds to the necessarily but odd clause
about white knights. My implementation never actually uses it.

Because the modal truth criterion is sufficient as well as necessary, there are
no more plan modification operations possible without extending the range of
represented actions. Once that is done, new operations will be possible; again
they can be derived from the truth criteria for the new representations. For
example, the pathological plan illustrated in Section 3 2.3 suggests an opera-
tion of "establishment by separation": if the plan did not have the constraint
x # y, adding this constraint would achieve p in the final situation. If the
representation of time is extended to allow overlapping actions, a new opera-

362 D CHAPMAN

tlon ("simultaneous establishment") is possible. In this case, two actions must
be performed simultaneously to achieve a result.

Kristian Hammond [22] describes WOK, a planner which although domain-
specific and nonconjunctlve has interesting things to say about goal interactions
(the class of effects that includes clobbering). WOK achieves goals by introduc-
ing interactions of known sorts. This is the antithesis of the linear strategy:
rather than assuming as a first approximation that goals don't interact, syner-
gistic interactions are used as a basic tool for achieving goals. It is unclear how
this approach can be applied to conjunctive planning, but it may be a useful
line of future research. [76] also describes constructive use of goal interactions

3.4. The top-level control structure

The top-level control structure of almost every domain-independent conjunc-
tive planner is search Search control is the aspect of domain-independent
conjunctive planning that is understood least. Most of the domains to which
domain-independent conjunctive planning has been applied have been forgiv-
ing: if more than one plan modification operation is applicable to a clobbering
or unestablished goal, any of the possibilities will probably do Thus, it hasn't
been necessary to devote a lot of thought to which to choose However, m real
domains the choices probably are critical, and a lot of schemes have been
proposed for making them. Since none of these has been adequately tested,
little is known about which is best.

Almost every planner has a distinct control structure I've loosely grouped
them in eight classes, ordered roughly by the complexity of the backtracking
algorithm The classes are no backtracking, explicitly represented alternatives,
dependency-directed modification, chronological backtracking, dependency-
directed backtracking, heuristic search, metaplanning, and protection. Many of
the planners I discuss actually fit into several of these classes.

The simplest control structure avoids backtracking altogether Plan modifica-
tion operations are applied m a fixed order according to fixed criteria until a
correct plan is found or it is no longer possible to apply operations This is not
as bad as it sounds, because you can usually make a good guess as to which
modification operation to apply: usually, one should prefer simple achievement
to step addition, for example. HACKER uses this approach. NOAH comes very
close; it backs up only from alternative choices of variable bindings. That
NOAH solved several difficult problems shows that search strategy is unimpor-
tant m some domains

A very simple solution to the problem of which modification operation to
apply is to choose all applicable ones, splitting the plan into several explicitly
represented copies. No planner fits altogether in this class as it is very
inefficient in general If some additional principle decides whether for a given
choice to use this technique or to use search, the splitting technique may be

PLANNING FOR CONJUNCTIVE GOALS 363

useful. SIPE and a planning framework described by Barbara Hayes-Roth et al.
[24] take this approach.

The simplest backtracking scheme is chronological: when a choice has to be
made, one is chosen by some means and the others are saved away. If the plan
cannot be extended to a solution by further modification, failure is signalled.
The most recent choice point is backed up to, and an alternative for the choice
is used When no choices remain, the next most recent choice point is backed
up to, and so on. WARPLAN, INTERPLAN, and SIPE use chronological back-
tracking.

Chronological backtracking can result m the exploration of more blind alleys
than necessary. Dependency-directed backtracking backs up at failure not to
the most recent choice point, but to one responsible for the failure. For a
discussion of dependency-directed backtracking in general, see [15, 53]. The
first planner to use dependency-direction was Hayes' 1975 route planner [23],
which was not conjunctive. Hayes used backtracking to recover only from
execution error, rather than from planning error (dead ends) as does TWEAK,
although he explicitly considered the latter possibility. Thus his implemented
control structure can be termed "dependency-directed modification" rather
than backtracking. Hayes' conception of dependency-directed backtracking
predates and seems to be independent of its discovery by Stallman and
Sussman [53], to whom it is usually credited.

Daniel [11] added dependency-directed backtracking to NONLIN. The same
year de Kleer et al. [12] described a dependency-directed linear planner.
London's planner [33] represents plans and world states using a TMS, the utility
underlying dependency-directed backtracking, but apparently does not use the
TMS for backtracking.

Heuristic search uses some numerical estimate of "goodness" to decide
which order to try choices in. INTERPLAN and NONLIN use heuristics to control
their chronological search. Since making a wrong choice can result in searching
a large dead-end subtree, it would be nice to eliminate wrong choices without
having to explore their consequences. Kibler and Morris [30] present a control
scheme based on negative search heuristics that prune obviously bad choices.
However, these heuristics are domain-specific for the blocks world. Siklossy
and Roach [52] use a similar strategy. Corkill [9] describes a NOAH-like
planner in which control is distributed among several message-passing pro-
cessors.

All the control structures discussed so far (with the possible exception of
heuristic search) are "syntactic": they don't depend on the specifics of the plan
being constructed, but blindly apply some simple algorithm for choosing among
alternatives without considering what those alternatives are. Since control of
planning is very hard, such methods may be inherently weak; perhaps we
should apply the full power of a problem solver to choosing what to do next.
This is the metaplanning approach. There is an increasing literature on this

364 D CHAPMAN

[4, 10, 16, 55, 75, 76] most of which is very vague. I'll discuss just two meta-
planning systems. Doyle 's unimplemented SEAN uses (another copy of) the
same planner to do metaplannmg as to do planning about the domain. The
metaplanner in turn is controlled by an identical metametaplanner and so on;
Doyle discusses ways to implement this apparently infinite regress

MOLGEN has only one level of metaplannlng, and the metaplanner is quite
unlike the domain-level planner. The domain-level planner creates plans for
MOLGEN'S domain, genetics expemment planning. It has operations that are
analogous to the plan modification operations of TWEAK These operations are
selected by a metaplanner which chooses among plan modification operations.
The metaplanner is very simple; it's perhaps exaggerated to call it a planner at
all

The idea of using a copy of TWEAK as a metaplanner ~s attractive, the plan
modification operations can be thought of as having well-defined preconditions
(that the constraints they impose not conflict with the existing ones, or that a
suitable step exists to achieve a goal in the case of addition) and postcondltlOnS
(the insertion of the new constraint or step). Unfortunately, TWEAK's action
representation is too weak to represent the plan modification operations

Protectton is a techmque introduced in HACKER; it guarantees that once a
goal has been achieved, it stays achieved Protection has not generally been
seen as a search strategy, but is perhaps best viewed that way. Each time the
goal achievement procedure is applied successfully, the achieved goal is stored
in a protection list This list consulted in future applications of the procedure; if
the procedure would unachieve a protected goal as a side-effect of achieving a
new goal, backtracking is invoked. Protection significantly decreases the size of
the search space, but it is often overly strict and can result in excessive
backtracking. Vere [71] describes "splicing," a technique which relaxes protec-
tion when it has caused a deadlock.

Planners can be classified along a dimension orthogonal to search strategy,
that of techmque used to recover from execution failures. This isn't part of
planning proper, but many systems interleave planning with (simulated or
actual) execution so that effectively a nonbacktracklng planner performs
search, failing during execution rather than planning, and then returning to the
planner to obtain a new plan to recover. HACKER USeS this approach. NOAH
proper doesn't , but its planner ~s connected to an execution system that
reinvokes the planner after execution failure, so that the system as a whole can
be put in th~s class. HACKER makes use of CONNIVER techniques s~milar to
dependency-direction in order to figure out which planning decision was
responsible for the failure and to try another alternative in the choice.

Planning and AI language design have strongly influenced each other. Many
of the planners that do search inherit their search discipline from the language
they were wmtten in, and many AI languages were designed to make writing
the top-level control of planners easier. PLANNER [25, 26] was intended as a

PLANNING FOR CONJUNCTIVE GOALS 365

language for writing planners in; it was the first to supply backtracking
automatically. HACKER and BUILD, a clever domain-specific blocks world
planner [17], were written in and depend heavily on the abilities of CONNIVER
[59]. CONNIVER was written in reaction to the difficulties with chronological
backtracking in PLANNER. WARPLAN inherits its search from PROLOG. The
planner of de Kleer et al. was the first program written in AMORD, and inherits
its dependency-directed backtracking from AMORD's TMS [13]. TWEAK, too,
inherits its dependency-directed backtrackmg from Dependency-Directed LISP,
a language specifically designed for TWEAK. DDL looks like ordinary LISP but
has an implicit dependency-directed backtracking control structure. It will be
described in a forthcoming paper.

4. Conclusions

Perhaps the most important contribution of this paper is the introduction of the
notion of a provably correct modal truth criterion and its use in the correct-
ness/completeness proof. The first such correctness argument is given on [60,
p. 100]; although it is very loose, my proof clearly descends from it. A series of
five papers, [73, 72, 47, 29, 41], building on each other, rigorously prove
correctness of linear planners. Those papers were motivated by many of the
same considerations as this one: rigor requires simplicity, guarantees agree-
ment about details, can unveil problems and suggest solutions. Thus these
papers form the neat part of the scruffy-neat research cycle for linear planning.
The neat part of the cycle for nonlinear planning begins with this paper.

Yet I wonder about the psychological reality of this sort of planning. It may
be that the only solutions to the frame problem we can devise are heuristic.
Anecdotal evidence suggests that humans solve problems by improvisation,
doing something easy and debugging the result when it fails [58]. Sussman's
HACKER worked that way; unfortunately the set of bugs that it could patch are
ones that TWEAK never introduces, and so his specific debugging techniques
are of no use. [1] describes the beginning of research on improvisation. [8]
gives a theory of planning as a derivative activity, taking situated activity as the
primary phenomenon. [2] (in preparation) describes in detail a theory of
situated activity that does not involve planning.

Appendix A. Proofs

A.I. The modal truth criterion

I prove the criterion in three steps. First, I prove the t ime 's arrow l emma ,
which says that only the steps executed before a situation are relevant to what
is true in that situation. Time does not flow backward. I use the time's arrow
lemma to prove a truth criterion for complete plans that is analogous to the

366 D CHAPMAN

modal truth criterion. I use that and a series of lemmas about consistent sets oI
constraints to prove the modal truth criterion. All these proofs except the last
are by numerical Induction. The proof of the modal truth criterion is more
interesting; in it I construct specific completions of plans that satisfy various
conditions

Time 's Arrow Lemma. Let ~ and ~ be comple te p lans whose tmtial situation
and f irs t n steps are identical. A propos i t ion p Is true in the Initial s t tuanon or the

m p u t or output st tuatton o f one of' the f i rs t n steps o f ~ l f f it ts true tn the
corresponding s t tuanon m °'9

Proof. By induction on n. If ~ and ~ have no steps, they have only one
situation, which is both initial and final, and the same in both. Certainly p is
true in this situation in ~ if it ~s true in the corresponding situation in ~.
Suppose now that the l emma is true for plans whose initial situation and first
n - 1 steps are identical; I will show that it holds for plans whose initial
situation and first n steps are identical. Let ~ and ~ be such plans; they have
the first n - 1 steps identical, and by the induction hypotheses p is true in the
initial situation and the input and output situations of the first n - 1 situations
of ?? lff p is true in the corresponding situation of ~. The only remaining
situation we need check is the output situation s of the nth step S. By
definition, s is the input situation of S minus any propositions denied by S, plus
any propositions asserted by S. If p is neither asserted nor denied by S, then it
is true in s just in case it is true in the input situation of the analogous step of
~. If p is asserted or denied by S, it is also asserted or denied by the analogous
step in ~ and so again is true in s iff it is true in the output situation of the nth
step of 5L By induction, then, the lemma holds for any n. []

Truth Criterion for Complete Plans. In a comple te p lan , a propos t t ion p ts true
in a s i t u a t t o n s t f f there extsts a sttuatton t prev ious or equal to s m which p ts
asserted and such that there ts no step between t and s whtch denies p.

Proof. It should be obvious that this criterion is correct. Informally, we start
with the initial situation and at each step delete from the set of propositions
representing the world what is denied by the step and add what is asserted by
~t. Everything else is preserved untouched.

A rigorous proof again uses induction on the length of plans. A plan with no
steps has only an initial and a final situation, and the two contain the same set
of propositions. A proposit ion is true in the initial situation iff it codesignates
with something in the initial situation, in which case it is asserted there. A
p roposmon is true in the final situation iff it is true in the initial situation. In
both cases, there is no possibility of an intervening denying step

Suppose now that the criterion is correct for complete plans of length n - 1; I

PLANNING FOR CONJUNCTIVE GOALS 367

will show that it is correct for complete plans of length n. Let ~ be a plan of
length n, f t h e final situation of ~ , S the last step in ~ , t be the input situation
of S, and ~ the plan of length n - 1 derived by removing S from ~ ; see Fig.
A.1. p is true in a situation in 3 ~ other than f just in case p is true in the
corresponding situation of 5~, by the time's arrow lemma. Then by the
mductlon hypothesis, the criterion holds for every proposition and every
situation in ~ except perhaps f (which contains the same propositions as the
output situation of S). f is by definition i minus things denied by S plus
whatever is asserted by S. Thus p is true in f iff it is asserted by S or true in i
and not denied by S. In the former case, p is asserted in f and no step can
intervene, so the criterion holds. In the latter, by induction there is a situation t
in which p is asserted and no step between t and i which denies p, and since S
does not deny p, there is also no step between t and f that demes p. This same t
is before f, so the criterion is satisfied. The converse is trivial: if the criterion
holds, either p is asserted in f or it is true in t and not denied by S. []

I will next state and give only proof sketches for three technical lemmas
needed in the proof of the modal truth criterion.

Temporal Consistency Lemma. I f s ts a situation and {t,} is a finite set of
sttuattons such that for each i, s is possibly before t,, then possibly s is before all
the t , .

Proof. By induction on the size of {t,}. The main step is to see that
constraining s < tj for some j leaves all the other s < t, possible. For s < tj to
make s < t, impossible, it would have to make t, < s necessary. But, from the
definition of the time order, from s < tj together with the previous constraints,
there follow only constraints of the form a < b, where a ~< s and tj ~< b. []

Codesignation Consistency Lemma. f f {v,} is a fimte set of vartables none o f
which is constrained to codesignate with any constant, you can assign to each
equtvalence class (under the codesignation relation) a distinct "gensymmed"
constant not previously appearing in the plan, and constrain codesignation o f
these constants with the variables in their respective classes.

n - 1 steps
,A

H m H Fg:-]'
H I---'1 H I

FIG. A.1. Constructions used in the proof of the crltenon for complete plans

368 D CHAPMAN

Proof. There are enough constants because only finitely many of the mfimte set
can be mentioned in a plan. Since the gensymmed constants are not mentioned
in the plan, they cannot have been constrained to not codesignate with any of
the variables. Since the { v,} do not codesignate with any constants, there is no
problem of distinct constants being constrained to codeslgnate. []

Noncodesignation Consistency Lemma. If p is a propositton and { q, } is a fintte
set of propositions such that for all l posstbly q, 4~ p, then posstbly for all t

q , + P .

Proof. Again by induction, on the size of {q,}. p and q, are constrained to not
codesignate by constraining some pair of elements to not codesignate. I must
show that doing so does not make p and some q, necessarily codeslgnate. This
is because the definition of the codesignation relation is such that a codesigna-
tlon of elements cannot be made to follow by adding a noncodeslgnation []

Modal Truth Criterion. A proposmon p is necessartly true m a sttuattons tff two
conditions hold: there ts a sttuation t equal or necessarily previous to s in which
p ts necessarily asserted, and for every step C possibly before s and every
propositton q possibly codeslgnating with p whtch C dentes, there ts a step W
necessartly between C and s which asserts r, a proposttion such that r and p
codesignate whenever p and q codesignate. The criterton for possible truth is
exactly analogous, with all the modalittes switched (read "necessary" for
"posstble" and vtce versa)

Proof. David McAllester helped debug and simplify this proof. I'll give the
proof for necessary truth; possible truth follows by modal duality Refer to Fig.
6 for a diagram of the necessary truth criterion.

The proof comes in three parts. The first two parts show the necessary truth
of the proposition p implies the existence of an establisher and the absence of a
clobberer. I do this by proving the contrapositive, that the absence of
establisher or the presence of a clobberer ensures that p is not necessarily true.
First I show that if there is no establisher, then p is not necessarily true. Then I
show that if there is a clobberer, p is again not necessarily true. The third part
of the proof shows the implication in the other direction: if there is an
estabhsher and no clobberer, p is necessarily true. The basic proof technique is
constructive for each of these cases, I show how to construct a specific
completion of the given incomplete plan in which the truth criterion for
complete plans can be used to show that p is (or is not) true in s

In the case where there is no establisher, to construct the completion
falsifying p m s, first add constraints that put after s every step possibly after s.
This can be done, by the temporal consistency lemma. The next step is to apply
the codeslgnaUon consistency lemma and constrain every equivalence class of
variables that is not already constrained to codesignate with some specific
constant to codesignate with a distinct "gensymmed" constant. A completion

P L A N N I N G F O R C O N J U N C T I V E G O A L S 369

in which p is not true in s is made by taking any completion of this modified
plan. In the original incomplete plan there was no step that necessarily asserts
p and that is necessarily before s; and any step that only possibly asserted p has
been made not to assert it (but rather some other proposition involving
gensymmed constants); and any step that necessarily asserts p but is only
possibly before s has been put after s. So no situation before or equal to s
asserts p, and by the truth criterion for complete plans p is not true in s in this
completion.

The next case is that in which there is a clobberer C. To construct the
falsifying completion first constrain C before s, which is possible because C is a
clobberer. Then constrain every step still possibly after s to be actually after s,
every step still possibly before C to be actually before C. This can be done, by
application of the temporal consistency lemma, twice. Now constrain codesig-
nation of q (the proposition possibly codesignating with p which C denies) and
p, which can be done because C is a clobberer, and constrain noncodesignation
with p of every postcondition of every step between C and s, which can be
done by the noncodesignation consistency lemma and the observation that any
such step, if it now necessarily asserted p, would be a white knight. Finally
arbitrarily complete the result; see Fig. A.2 By the truth criterion for complete
plans, in this completion p is false in s C is a step that denies p, it is before s,
and no step in-between asserts p.

The last case is that in which there is an establisher and no clobberer. In this
case, I will show, p is necessarily true in s. Choose any completion; Fig. A.3 is
illustrative. Since there is an establisher t, p is true in t. Consider the set of
steps { C,} that possibly denied p in the incomplete plan. Each of these either
does or does not actually deny p. The latter sort we can ignore; they do not
endanger p 's truth in s. Since remaining C, are not clobberers, there is for each
a corresponding white knight W, asserting p (since the white knight asserts p
whenever C, denies it). There may in turn be a step after the white knight

[

I
s teps poss ib ly make these s teps poss ib ly

before C no t asser t p af ter s

FIG A 2 Falsifying p m a plan with a clobberer

p q

Cl W 1 C2 W2 e

Fm A 3 A complet ion of a plan satisfying the criterion

370 D CHAPMAN

denying p; but it must also have its own white knight Since there are only
finitely many steps in the plan, eventually p will be asserted by a white knight
and not denied before s Then by the truth criterion for complete plans, p ~s
true in s []

A.2. The outcomes lemma

Outcomes Lemma. Each of the three possible outcomes of TWEAK's algorithm
(success, fadure, and looping) is posstble for some chotce of domain and
problem.

Proof. A trivial example of success is a problem with a single goal which is true
in the initial situation A trivial example of failure is provided by a problem
that has at least one goal that is not true in the initial situation and which is not
possibly asserted by any available step template. An example of nontermma-
tion is given by the problem whose initial state is - g and - h and whose goals
are g and h in a domain in which there are two step templates, one with
precondition - h and postconditions g and - h and the other with precondition
- g and postcondihons h and - g . TWEAK loops on this problem, building plans
that are longer and longer chains of steps that alternately assert g and h. []

A.3. The correctness/completeness theorem

Correctness/Completeness Theorem. If TWEAK, given a problem, terminates
clatming a solution, the plan tt produces does m fact solve the problem. If
TWEAK returns stgnalhng fatlure or does not halt, no solution extsts

Proof. This follows directly from the use of the necessary truth criterion m
computing whether a plan solves the problem given and in constructing the
goal achievement procedure. TWEAK's incomplete plan always has the same
initial situation as the problem given, and the top-level loop continues until all
the goals are achieved, at which point the plan must solve the problem If a
solution exists it must be a plan that in some way achieves the problem's goals
Since TWEAK'S search is breadth-first, and since the nondetermmistlc plan
modification procedure generates only finitely many ways to produce a new
plan from an old one, TWEAK eventually examines every way to satisfy a
problem's goals. The plan must also have all preconditions achieved; but
TWEAK also tries all ways to achieve preconditions Thus, if a solution exists,
TWEAK will find it []

A.4. First undecidability theorem

First Undecidability Theorem. Any Turing machme with its input can be
encoded as a planning problem m the T W E A K representatton Therefore, plan-

PLANNING FOR CONJUNCTIVE GOALS 371

nmg is undecidable, and no upper bound can be put on the amount of time
required to solve a problem.

Proof. The encoding is direct and straightforward. An mfinite set of constants t,
are used to represent the tape squares. The binary relation successor represents
the connectivity of the tape. The functional binary relation contents represents
the contents of the tape, and the set of constants a, represent the alphabet
written on the tape. A predicate head holds of exactly one tape square, that
under the head. A set of constants s, represent the finitely many states of the
controller, and the predicate state holds of the current state only. For each arc
from state s, to state sj in the controller's state graph there is an operator type.
The operator has four preconditions: (state s,), (head t) where t is a variable
representing the unknown square under the head, (contents t a), where a is the
symbol the arc specifies to read, and (successor t u) if the arc says to move right,
or (successor u t) if the arc says to move left. The operator has four postcondi-
tions: (state sj), - (state 0, (head u), (contents t b), where b is the written symbol,
and --(contents t a).

The initial situation of the problem has (state i), where i is the initial state of
the Turing machine controller, and (head t), where t is the initial tape square.
The input to the machine is specified via the contents relation. There must be
countably many successor propositions to encode the topology of the tape (and
also countably many contents propositions to make all but finitely many squares
blank). The final situation of the problem is just (state f), where f represents the
halt state for the Turing machine.

It is easy to see that a valid plan for this problem amounts to a trace of the
encoded Turing machine computation. Such a plan exists iff the Turing
machine halts. Thus it is undecidable whether or not there exists a plan. []

A.5. The intractibility theorem

Intractibility Theorem. The problem of determimng whether a proposition is
necessarily true in a nonlinear plan whose action representatton is sufficiently
strong to represent conditional actions, dependency of effects on mput situations,
or derived side-effects is NP-hard.

Proof. This proof is based on an idea of Stan Rosenschein's. It is by direct
reduction from PSAT, or rather from the equivalent problem of determining
whether a Boolean formula is valid (true under every truth assignment).

Augment TWEAK's action representation by adding a new type of step, the
conditional step. A conditional step is always applicable, but has two sets of
postconditions, the if-true and the if-false postconditions. The if-true postcon-
ditions hold in the output situation if all the preconditions were satisfied in the
input situation; otherwise the if-false postconditions hold.

372 D CHAPMAN

Given a propositional formula p on atoms p,, I construct a plan m th~s
representation and a proposition such that the proposition is necessarily true in
the final situation lff p is valid. The p, are recycled as propositions m the plan,
and all are made false in the initial situation A set of steps S z make the p, true,
so that a truth assignment on the Pz corresponds to a subset of {S,}

A set of conditional steps, {Cj}, check that p holds m every truth assign-
ment. Let p be expressed as the disjuncuon of conlunctwe clauses. There is a
Cj for each clause, C I has as its preconditions the conjunct p, in the correspond-
ing clause. The if-true postconditions assert a proposition called sattsfied; the
if-false postconditions are null. satisfied is false m the initial SltUaUon.

What remains is to guarantee that all the Cj evaluate their clauses relative to
the same truth assignment. This is done by introducing a new "flag" proposi-
tion called checking, initially false, which is made true by a single step K and
false by a single step U. K and U have no preconditions and the are ordered
respectively before and after all the Cj. The S l are made conditional, so that
they assert sattsfied if checking holds. Figure A.4 illustrates the plan I have
constructed.

When does sattsfied hold in the final situation? It holds whenever there are
any S, between K and U, by the mechanism of the last paragraph. If there are
no S, between K and U, the C~ evaluate their clauses in the truth assignment
corresponding to the set of S, before K. (The remaining S, are after U and have
no effect on satisfied.) Since every truth assignment is generated by some

K

I

,ro,h omoy 4

I I.. I ,71 . I
FIG A 4 Construction used m the proof of the mtractlbllity theorem

PLANNING FOR CONJUNCTIVE GOALS 373

completion of the plan, satisfied is necessarily true in the final situation just in
case p is in fact valid.

This establishes the result for conditional actions. For the rest, it is easy to
see that these conditionals can be simulated with dependency of effects on
input situations or derived side effects. []

A.6. Second undecidability theorem

Second Undecidability Theorem. Planning is undecidable even with a finite
initial situation if the action representation is extended to represent actions whose
effects are a function o f their input situatton.

Proof. Papert and McNaughton [39] showed that any recursive function can be
computed by a two-counter machine, i.e. a machine consisting of two positive-
integer-valued registers and a finite state control which can test either register
for equality to zero and can increment or decrement either register. I encode
such a machine, with inputs, as a planning problem, the goal of which is to get
the machine into the halt state. I use three unary predicates to represent the
state of the machine, counter,, counter 2, and state. States and integers are
represented by constants, counter 1 and counter 2 hold of exactly one integer and
represent the contents of the two counters; state holds of exactly one state of
the finite state controller and represents the state the controller is in.

The initial situation of the problem has (state s) where s is the start state and
(counter1 cl) and (counter 2 c2) where c1 and c 2 are the values the two-counter
machine is started with. There is an operator for each arc in the finite state
controller The operator associated with the arc (sl, s2) has as a precondition
(states1) and as postconditions (states2) and -(states1). The operators as-
sociated with increment and decrement arcs also have increment and decre-
ments of counteL and counter 2 as appropriate. The branches are implemented
in the finite state machine with nodes that have two arcs coming out of them,
one labeled c, > 0 and one labeled c, = 0 (for l in (1, 2}). These correspond to
operators that have those same tests as preconditions and no postconditions
other than setting state.

Now any plan that solves this problem is a trace of the computation that
would be executed by the two-counter machine. The planner has to do at least
as much work as the simulated machine did. []

ACKNOWLEDGMENT

My intellectual debt to the great lineage of AI planning researchers 1s enormous and obvious
Part of the research described here was done during the summer of 1985 whde visiting the SRI

AI Center and supported by the Center of the Study of Language and Information. The
opportunity provided me by Mike Georgeff and Stan Rosenschein to work with the largest
concentration of planning researchers in the world was invaluable.

374 D CHAPMAN

This paper incorporates suggestions from many readers They made me reformulate TWEAK
over and over again Phil Agre, Steve Bagley, John Batah, Alan Bawden, Mike Brady, Randy
Davis, Tom Dean, Gary Drescher, Margaret Fleck, Walter Hamscher, Leslie Kaelbhng, Amy
Lansky, Scott Layson, Tomas Lozano-Perez, David McAllester, Kent Pitman, Charles Rich, Stan
Rosenschein, Dlrk Rmz, Mark Shirley, Yoav Shoham, Reid Simmons, Tom Trobaugh, Dan Weld,
David WiIklns, and several anonymous but erudite reviewers contributed much

Ken Forbus convinced me that my understanding of nonhnear planning would make a Master's
thesis Ed Glmger taught me biology and kept me sane trading stories about Idiotic lab politics My
office mate David McAllester was a source of much mathematical wizardry and put up with my
randomness Jim Vanesse and Naomi Leavitt got me through hard times

My supervisor Chuck R~ch supported me through six thesis topic changes and believed in me
when I didn't His ability to debug me when wedged was vital

REFERENCES

1 Agre, RE , Routines, MIT AI Memo 828, Cambridge, MA, 1985
2 Agre, P E and Chapman, D , AI and everyday life The concrete situated view of human

activity, in preparation
3 Allen, J F and Koomen, J A , Planning using a temporal world model, in Proceedings

HCA1-83, Karlsruhe, F R G (1983) 741-747
4 Batah, J , Computational introspection, MIT AI Memo 701, Cambridge, MA, 1983
5 Chapman, D , Naive problem solving and naive mathematics, MIT AI Working Paper 249,

Cambridge, MA, 1983
6 Chapman, D , Planning for conjunctive goals, MIT AI TR 802, Cambridge, MA, 1985
7 Chapman, D , Cognitive cliches, MIT AI Working Paper 286, Cambridge, MA, 1986
8 Chapman, D and Agre, P E , Abstract reasoning as emergent from concrete activity, in

Proceedmgs 1986 Workshop on Reasomng about Actions and Plans, Timberline, OR, 1987.
9 Corklll, D D , Hierarchical planning in a distributed environment, in Proceedmg~ 1JCAI-79,

Tokyo, Japan (1979) 168-175
10 Davis, R , Meta-rules Reasoning about control, Artificial Intelligence 15 (1980) 179-222
11 Daniel, L , Planning Modifying non-hnear plans, Edinburgh AI Working Paper 24.

Edinburgh University, 1977 (Cited in [67])
12 de Kleer, J , Doyle, J , Steele Jr , G L and Sussman, G J , Explicit control of reasoning,

ACM SIGPLAN Nottce~ 12 (8)/ACM SIGART Newslett 64 (combined special issue),
Proceedings of the Symposium on Artificial Intelligence and Programming Languages (1977)
116-125, also MIT AI Memo No 427, Cambridge, MA, 1977

13 de Kleer, J , Doyle, J , Rich, C , Steele Jr , G L and Sussman, G J , AMORD, a deductive
procedure system, MIT AI Memo 435, Cambridge, MA, 1978

14 Donald, B R , On planning What is to be done 9, Unpublished area exam, MIT, Cambridge,
MA, 1986

15 Doyle, J , Truth maintenance systems for problem solving, MIT AI TR 419, Cambridge, MA,
1978

16 Doyle, J , A model for dehberatlon, action, and introspection, MIT A1 TR 581, Cambridge,
MA, 1980

17 Fahlman, S E , A planning system for robot construction tasks, Arn~ctal Intelhgence 5 (1974)
1-49

18 Flkes, R E and Nllsson, N J , STRIPS A new approach to the application of theorem proving
to problem solving, Artificial lntelhgence 2 (1971) 198-208

19 Flkes, R E , Hart, P.E and Nflsson, N J , Some new directions in robot problem solving, in
B Meltzer and D Michle, (Eds) , Machine lntelhgence 7 (Edinburgh University Press,
Edinburgh, 1972) Ch 23

PLANNING FOR CONJUNCTIVE GOALS 375

20 Georgeff, M., A theory of action for multlagent planning, in: Proceedings AAAI-84, Austin,
TX, (1984) 121-125

21 Garey, M R and Johnson, D.S., Computers and Intractabthty. A Guide to the Theory of
NP-Completeness (Freeman, New York, 1979)

22. Hammond, K J , Planning and goal interaction' The use of past solutions m present situations,
m. Proceedmgs AAAI-83, Washington, DC (1983) 148-151

23 Hayes, PJ , A representation for robot plans, m: Proceedings IJCAI-75, Tbllisl, U S S R
(1975)

24 Hayes-Roth, B , Hayes-Roth, F., Rosenscheln, S. and Cammarata, S., Modeling planning as
an incremental, opportunistic process, in: Proceedmgs IJCA1-79, Tokyo, Japan (1979) 375-
383.

25 Hewltt, C., Procedural embedding of knowledge in PLANNER, m Proceedmgs IJCAI-71,
London, U K (1971) 167-182

26 Hewltt, C , Descnptlon and theoretical analysis (using schemata) of PLANNER A language
for proving theorems and manipulating models m a robot, MIT AI TR 258, Cambridge, MA,
1972

27. Janlert, L - E , Modeling change--the frame problem, in: Z Pylyshyn (Ed.), The Frame
Problem and Other Problems of Hohsm m Artificial Intelhgence (Ablex, Norwood, NJ, 1985)

28 Kautz, H , Planning within first-order dynamic logic, in Proceedmgs Fourth Btenmal Confer-
ence of the Canadian Society for Computational Studws of Intelhgence (CSCS1), Saskatoon,
Sask, 1982

29 Kautz, H , A first order dynamic logic for planning, Tech. Rept CSRG-144, Department of
Computer Science, Umvers~ty of Toronto, On t , 1982.

30 Klbler, D. and Morns, P , Don't be stupid, in Proceedtugs 1JCAI-81, Vancouver, BC (1981)
31. Lansky, A . L , Behavioral specification and planning for multlagent domains, Tech Note 360,

Artifioal Intelligence Center, SRI International, Menlo Park, CA, 1985
32 Lansky, A . L , A representation of parallel actw~ty based on events, structure, and causahty,

in" Proceedmgs 1986 Workshop on Reasonmg about Actions and Plans, Timberline, OR, 1987
33 London, P., A dependency-based modeling mechanism for problem solving, Computer Science

Tech. Rept 589, Umverslty of Maryland, College Park, MD, 1977
34 London, P , Dependency networks as a representation for modeling in general problem

solvers, Computer Science Tech Rept 698, University of Maryland, College Park, MD, 1978
35 McCarthy, J. and Hayes, P J , Some philosophical problems from the standpoint of artlficml

intelligence, in' B Meltzer and D Mlchle (Eds), Machme Intelligence 4 (Edinburgh Universi-
ty Press, Edinburgh, 1970) 463-502.

36. McDermott, D , Generahzmg problem reduction. A logical analysis, m. Proceedings IJCAI-
83, Karlsruhe, F R G. (9183)

37 Miller, D., Firby, R J and Dean, T , Deadhnes, travel time, and robot problem solving, m.
Proceedings IJCA1-85, Los Angeles, CA (1985).

38. Milne, A.A , Wmnte The Pooh (Dell Publishing Company, New York, 1984) First copyright,
1926

39. Mmsky, M L., Computation Finite and Infimte Machines (Prentice-Hall, Englewood Cliffs,
NJ, 1967)

40. Newell, A , Shaw, J C and Simon, H.A., Report on a general problem-solving program, in
Proceedings lnternanonal Conference on Information Processing (UNESCO, Paris, 1960)
256-264. Reprinted in: Computers and Automation (1959)

41 Pednault, E P.D., Preliminary report on a theory of plan synthesis, SRI AI Center Tech Note
358, Menlo Park, CA, 1985

42 Raphael, B., The frame problem in problem-solving systems, in: Proceedmgs Advanced Study
Institute on Artificial Intelhgence and Heuristic Programming, Menaggio, Italy, 1970

43 Rhys, J., A selectmn problem of shared fixed costs and network flows, Manage Scz 17
(1970)

376 D CHAPMAN

44 Rich, C , Inspection methods m programming, MIT AI TR 604, Cambridge MA , 1981
45 Rich, C , A formal representation for plans in the programmer s apprentice, in Proceedings

1JCAI-81, Vancouver, BC (1981) 1044-1052
46 Rosenschein, J S , Synchronization of multi-agent plans, in Proceedings AAAI-82, Pittsburgh,

PA (1982) 115-119
47 Rosenschein, S J , Plan synthesis A logical perspective, in Proceedings IJCA1-81, Vancouver,

BC (1981) 331-337
48 Rosenscheln, S J , Formal theories of knowledge In AI and robotics, SRI AI Center Tech.

Note 362, Menlo Park, CA, 1985
49 Sacerdotl, E D , The nonlinear nature of plans, in: Advance Papers 1JCAI-75. Tbihsl,

U S S R. (1975) 206-214
50 Sacerdotl, E D , A Structure for Plans and Behavior (American Elsevier, New York, 1977),

also SRI AI Tech Note 109, Menlo Park, CA, 1975
51 Sacerdotl, E D., Problem solving tactics, in Proceedings HCAI-79, Tokyo, Japan (1979)
52 SIklossy, L , and Roach, J , Collaborative problem-solving between optimistic and pessimistic

problem solvers, in J L Rosenfeld (Ed) , IFIP-74 (North-Holland, Amsterdam, 1974)
814-817

53 Stallman, R M and Sussman, G J , Forward reasoning and dependency-directed backtracking
in a system for computer-aided circuit analysis, MIT AI Memo 380, Cambridge, MA, 1979

54 Stefik, M J , Planning with constraints, Ph D Thesis, Stanford University, Stanford, CA,
1980, also Stanford Heuristic Programming Project Memo 80-2 and Stanford Computer
Science Department Memo 80-784

55 Stefik, M , Planning and metaplannzng (MOLGEN Part 2), Artificial Intelhgence 16 (1981)
141-169

56 Shrobe, H E , Dependency directed reasoning for complex program understanding, MIT AI
TR 503, Cambridge MA, 1979

57 Shrobe, H E , Dependency directed reasoning in the analysis of programs which modify
complex data structures, in Proceedings IJCA1-79, Tokyo, Japan (1979) 829-835

58 Suchman, L A , Plans and situated actions The problem of human-machine communication,
Xerox Palo Alto Research Center, Palo Alto, CA, 1985

59 Sussman, G J and McDermott, D V, From PLANNER to CONNIVER--A genetic ap-
proach, in Proceedings Fall Joint Computer Conference (1972) 1171-1179

60 Sussman, G J , A Computational Model of Skdl Acquisition (American Elsevier, New York,
1975), also MIT AI TR 297, Cambridge, MA, 1973

61 Tate, A , INTERPLAN A plan generation system which can deal with interactions between
goals, Machine Intelligence Research Unit Memorandum MIP-R-109, University of
Edmburgh, Edinburgh, 1974

62 Tate, A , Interacting goals and their use, in Advance Papers 1JCAI-75, Tblhsi, U S S R
(1975)

63 Tare, A , Using goal structure to direct search in a problem solver, Ph D Thesis, University of
Edinburgh, Edinburgh, 1975

64 Tare, A , Project planning using a hierarchic nonlinear planner, Department of Artificial
Intelligence Research Rep No 25, University of Edinburgh, Edinburgh, 1976

65 Tate, A , Generating project networks, in Proceedings HCA1-77, Cambndge, MA (1975)
66 Tate, A , Planning in expert systems, Invited Paper Alvey IKBS Expert Systems Theme--First

Workshop at Cosener's house, Abtngdon, Oxford, 1984, also D.A I Research Paper 221,
University of Edinburgh, Edinburgh, 1984

67 Tare, A , Planning and condiUon monitoring in a FMS, in Proceedings International Confer-
ence on Flexible Manufacturing Systems, London, 1984

68 Tate, A , Goal structure--Capturing the intent of plans, m T O'Shea, (Ed) , ECA1-84
Advances m Artificial lntelhgence (North-Holland, Amsterdam, 1984)

69 Van Baalen. J , Planning and exception handling, AI Laboratory, MIT, Cambridge, MA,
1985

PLANNING FOR CONJUNCTIVE GOALS 377

70. Vere, S .A , Planning m time' Windows and durations for activities and goals, IEEE Trans
Pattern Anal Mach Intell 5 (3) (1983) 246-267.

71 Vere, S A , Sphcing plans to achieve mlsordered goals, in' Proceedings IJCA1-85, Cambridge,
MA (1975) 1016-1021

72 Waldinger, R , Achieving several goals simultaneously, SRI Artificial Intelligence Center
Tech. Note 107, Menlo Park, CA, 1975

73 Warren, D H D, WARPLAN A system for generating plans, Department of Computational
Logic Memo No 76, University of Edinburgh, Edinburgh, 1974

74 Warren, D H D , Generating conditional plans and programs, In' Proceedings AISB Summer
Conference, University of Edinburgh, Edinburgh (1976) 344-354

75 Wdensky, R , Meta-plannmg: Representing and using knowledge about planning in problem
solving and natural language understanding, Cognitive ScI 5 (1981) 197-233

76 Wllensky, R., Planning and Understanding. A Computational Approach to Human Reasoning
(Addison-Wesley, Reading, MA, 1983)

77. Wllkins, D E , Representation in a domain-independent planner, in Proceedings 1JCAI-83,
Karlsruhe, F R G (1983)

78 Wllklns, D E , Domain-independent planning: Representation and plan generation, Artificial
Intelligence 22(3) (1984) 269-301; also SRI International Tech. Note No 266R, Menlo Park,
CA, 1983

79 Wllkins, D.E , Recovering from execution errors in SIPE, Comput Intell 1 (1985) 33-45.

Received N o v e m b e r 1985; revised version received October 1986

