Problem Description:

[image: image1]
Shorthanded notations: P: Package; T: Truck; O: Office; A: Airport; AP: Airplane
1.1. Plan P1 (with least number of actions)

Plan P2 (with smallest makespan value):

1.2. Init State: P: { At(P1,O1), At(P2,(A1), At(T1,O1), At(T2,A2),At(AP,A1))

M: {fuel(T1) = 10000; fuel(T2) = 10000; fuel(AP) = 10000}

(: {}

Q: {}

I only show changes that made at each time point. At each time-point, the order in which things happen:

1. Activate events.

2. Apply actions.

3. Apply “advance-time”

t = 0.0: Apply Load (P1,T1,O1):
P - = {At (P1, O1)}

(+ = {(At (T1, O1), 0.3)}

Q + = { (In (P1, T1), 0.3)}

Apply Advance-time to move to 0.3

t = 0.3:
Activate event:

P + = {(In (P1, T1),0.3)}; Q = { }

(= { }

Apply Drive (O1, A1, T1):
P - = {At (P1, O1)}

(+ = {(At (T1, A1), 1.3)}

M = {(fuel (T1) = 10,000 – 25 = 9,975)}

Apply Advance-time to move to 1.3

t = 1.3:
Activate event:

P + = {(At (T1, A1),1.3)}; Q = { }

Apply Load (P2, T2, A1):
P - = {At (P2, A1)}

(+ = {(At (T1, A1, 1.9)}

Q + = {(In (P2, T1), 1.9)}

Apply Advance-time to move to t = 1.6

t = 1.6:
Activate event:

P + = {(In (P2, T2), 1.6)}; Q = { }

Apply Drive (A2, O2, T1):
P - = {At (T1, A1)}

Q + = {(At (T1, O2), 24.6)}

M = {(fuel (T1} = 9,975 – 1150/2 = 9,400

Apply Advance-time to move to t = 24.6
t = 24.6: Activate event:

P + = {(In (T1, O2), 24.6)}; Q = { }

Apply Unload (P1, T1, O2):
P - = {In (P1, T1)}

(+ = {(At (T1, O2), 25.2)}

Q + = {(At (P1, O2), 25.2)}

Apply Unload (P2, T1, O2):
P - = {In (P2, T1)}

Q + = { (At (P2, O2), 25.5)}

Good satisfied (there are two event in (that satisfy the goals)
2.1 The RTPG. To keep it simple, I only draw the important actions at their respected time points.

[image: image2]

2.1.a: makespan = earliest time point goals appear in the RTPG = 3.7
2.1.c: summation of slack: (10000-3.7) + (10000-3.7) = 19992.6
2.1.b. It’s complicated to draw the cost functions of all facts and actions. Therefore, I only show how cost of different actions contributed to the final cost to achieve goals

Goal Cost = cost(G1,3.7) + cost(G2,3.7) = exec-cost(U(P1,T2,O2)) + cost(Precond(U(P1,T2,O2) + exec-cost(U(P2,T2,O2) + cost(Precond(U(P2,T2,O2))
= 6 + Cost(In(P1,T2)) + Cost(At(T2,O2)) + Cost(In(P2,T2)) + Cost(At(T2,O2)

= 6 + exec-cost(L(P1,T2,A2)) + exec-cost(L(P2,T2,A2)) + 2.exec-cost(D(T2,A2,O2))

+ Cost(At(P1,A2)) + Cost(At(P2,A2))

= 6 + 6 + 2x50 + exec-cost(U(P1,AP,A2)) + exec-cost(U(P2,AP,A2)) + Cost(In(P1,AP)) + Cost(In(P2,AP)) + 2.Cost(At(AP,A2))
= ….. = 1162 + 1193 = 2355
Note: The cost of actions Drive(T2,A2,O2) and Fly(AP,A1,A2) are double counted.

2.2. If we use infinite lookahead, it’s not hard to see that actions along the line of plan P1 in Question1.1 will lead to the smallest cost function value.

Using the similar calculation, we have: Cost(G1) + Cost(G2) = Cost(U(P2,T1,O2) + Cost(U(P1,T1,O2)) + Cost(L(P2,T1,A1)) + Cost(L(P1,T1,O1) + 2.Cost(At(T1,O2))

= 12 + 2x(50/2 + 1150/2) = 1212
The makespan and summation of slack measurements are still the same.

2.3. What you need to do is:

- Specify the set of goals, start at t = 10000.

- Pick a goal, choose the smallest cost action that achieve that goal.
- Add that action to the relaxed plan, add the preconditions to the goal set.

- Repeat until the goal set is subsumed by the initial state.

I won’t write the detailed procedure here, but anyone interested please see how Dan Bryce did in this question. He did it correctly.

Max-propagation:

Cost(At(P1,O2)) = Cost(U(P1,T1,O2)) + Max(Cost(At(T1,O2),Cost(In(P1,T1))

 = 3 + Cost(At(T1,O2) = 3 + Cost(Drive(T1,A1,O2)) + Cost(At(T1,A1))

= 3 + 575 + Cost(Drive(T1,O1,A1)) = 3 + 575 + 25 = 603
Cost(At(P2,O2)) = Cost(U(P2,T1,O2)) + Max(Cost(At(T1,O2),Cost(In(P2,T1))

= 3 + Cost(At(T1,O2)) = 603
2.4. Before the mutex are taken into account, the plan looks like:

[image: image3]
And thus the makespan value is still 3.7. When mutexes are taken into account, the actions’ orderings look like P2 in Question1.1 (if we order actions so that there is no causal-link violation). When actions are ordered like that, the makespan value becomes 7.9 and equals to the perfect heuristic.

3. Comparing LPG & ASPEN:

Similarity:

1. Both use local search technique over POP style (partial) plans.
2. LPG uses PDDL2.1 as planning language; ASPEN uses its own modeling language (much more complicated with 7 basic components surrounding activities).
3. ASPEN has 10 main types of conflicts and many different types of repairs for each conflict type. LPG basically has only open conditions and violated causal-link conflict. The repairs are also mainly add/removing actions.

4. LPG deal with grounded actions and their relations while ASPEN work with non-primitive activities which are more complicate (e.g. has set of associated parameter and parameter dependencies).

5. For temporal aspects, LPG cares more about the logical ordering. The earliest possible action start time and earliest predicate achieving times are calculated from the logical orders and the actions’ durations. In contrast, the temporal relations in ASPEN are managed in a real temporal network style.
6. Even though LPG can handle simpler type of resource consumption/production (which they do not discuss in the conference paper); ASPEN can handle depletable and non-depletable resources.

7. LPG based its search on the linear temporal planning graph while ASPEN search is more close to local search on partial-order plan.

8. Even though both search on a “flexible” structure (set of orderings), both rely on different types of commitment to simplify the search. LPG commits actions to the levels they appear in the planning graph to detect the threats to causal links (even though actions in later levels do not necessarily be executed later than the actions in the earlier level). In ASPEN, it commits to some parameter values (instead of keeping range) helps to simplify the search and resource consistency calculation.
9. LPG kinds of treating few repair strategies (add/remove actions) quite equally by using a uniform grading function to score each local move. In contrast, ASPEN use some domain-independent (they claimed that but I believe those strategies are spaces-craft domain dependent) heuristics to order different strategies to resolve a given conflict. Because LPG have the same (uniform) grading function based on relaxed plan to use for all local moves, it’s more effective in finding out which one is better.
10. LPG infuses some “probability” or noise to pick not the best move. In ASPEN, they did not mention this (which I doubt), but instead said that the repair is only randomly chosen if there is no applicable heuristic to specify which repair strategy should be used first.

11. LPG is fully automated planner while ASPEN allow user interferences and modify the plan through a GUI.

12. ASPEN can do replanning. Thus, it can be given a plan and fix while LPG always build a plan from a scratch (it’s different from finding an consistent plan and then trying to improve the quality of that plan, as an approach used by LPG’s quality setting).

13. Both can produce “any-time” solution.

Speed = 500

Speed = 50

Fly Airplane

Drive Truck

Dur = 0.6

Un-Loading

Dur = 0.3

Package2

Package 1

Truck 2

AirPlane

Package2

Truck 1

Package 1

Airport 2

Airport 1

Office2

Office1

Loading

1150

1500

100

1100

50

1350

Load(P1,T1,O1)

Drive(O1,A1,T1)

Load(P2,T1,A1)

Drive(A1,O2,T1)

UnLoad(P1,T1,O2)

UnLoad(P2,T1,O2)

T = 0.0

T = 0.3

T = 1.3

T =1.6

T = 24.6

T = 25.2

Load(P2,AP,A1)

T = 7.9

T =7.3

T = 5.3

T = 5.0

T = 4.4

T = 2.2

T =1.9

T = 1.3

T = 0.3

T = 0.0

UnLoad(P2,T2,O2)

UnLoad(P2,A2,AP)

UnLoad(P1,A2,AP)

Drive(A2,O2,T2)

Load(P1,T2,A2)

UnLoad(P1,T2,O2)

Load(P2,T2,A2)

L(P1,T1,O1)

Fly(A1,A2,AP)

Load(P1,AP,A1)

UnLoad(P1,T1,A1)

Drive(O1,A1,T1)

Load(P1,T1,O1)

T = 4.4

Drive(T1,O1,A1)

L(P2,AP,A1)

Fly(AP,A1,A2)

U(P1,T1,A1)

L(P1,AP,A1)

Drive(T2,A2,O2)

L(P2,T2,A2)

U(P2,AP,A2)

L(P1,T2,A2)

U(P1,AP,A2)

U(P1,T2,O2)

U(P2,T2,O2)

Drive(T1,A1,O2)

Drive(T1,O1,O2)

3.7

 2.2

3.1

1.0

0.3

T = 0.0

U(P1,T2,O2)

U(P2,T2,O2)

L(P1,T2,A2)

U(P1,AP,A2)

L(P2,T2,A2)

U(P2,AP,A2)

Drive(T2,A2,O2)

L(P1,AP,A1)

U(P1,T1,A1)

Fly(AP,A1,A2)

L(P2,AP,A1)

Drive(T1,O1,A1)

L(P1,T1,O1)

