
FF� The Fast�Forward Planning System

J�org Ho�mann
Institute for Computer Science

Albert Ludwigs University
Georges�K�ohler�Allee� Geb� ��

����	 Freiburg� Germany
ho
mann�informatik�uni�freiburg�de

Abstract

Fast�Forward� abbreviated FF� was the most suc�
cessful automatic planner in the AIPS����� plan�
ning systems competition� Like the well known
HSP system� FF relies on forward search in the
state space� guided by a heuristic that estimates
goal distances by ignoring delete lists� It di�ers
from HSP in a number of important details� This
article describes the algorithmic techniques used
in FF in comparison to HSP� and evaluates their
bene�ts in terms of runtime and solution length
behavior�

Introduction
Fast�Forward� abbreviated FF� was the most suc�
cessful automatic planner in the AIPS��			 plan�
ning systems competition� Though its perfor�
mance clearly distinguished it from the other
planners� the idea behind the approach is not new
to the planning community� In fact� the basic
principle is that of the HSP system� �rst intro�
duced by Bonet et al� Bonet� Loerincs� � Ge
ner
������ Planning problems are attacked by for�
ward search in state space� guided by a heuristic
function that is automatically extracted from the
domain description� To arrive at such a function�
both planning systems relax the planning prob�
lem by ignoring parts of its speci�cation� i�e�� the
delete lists of all actions�

FF can be seen as an advanced successor of the
HSP system� which di
ers from its predecessor in
a number of important details�

�� A more sophisticated method for heuristic eval�
uation� taking into account positive interac�
tions between facts�

�� A novel kind of local search strategy� employ�
ing systematic search for escaping plateaus and
local minima�

�� A method that identi�es those successors of a
search node that seem to be�and usually are�
most helpful in getting to the goal�

Copyright c� ����� American Association for Arti��
cial Intelligence �www�aaai�org	� All rights reserved�

We describe those methods in the subsequent
sections� Afterwards� we overview the results of
an empirical investigation determining which of
the techniques yields which bene�ts in terms of
runtime and solution length performance� We re�
�ect on an experiment we have made� and� start�
ing from this� outline the avenue of research we
are currently focussing on�

Heuristic

Trying to attack domain independent planning as
heuristic search� the main di�culty lies in the au�
tomatic derivation of the heuristic function� For
human algorithm designers� a common approach
to deriving a heuristic is to relax the problem P
at hand into a simpler problem P �� which can be
solved e�ciently� Facing a search state in P � one
can then use the solution length of the same state
in P � to estimate its di�culty�

Bonet et al� Bonet� Loerincs� � Ge
ner �����
have proposed a way of applying this idea to
domain independent planning� They relax the
high�level problem description by simply ignoring
delete lists� In the relaxed problem� all actions
only add new atoms to the state� but don�t remove
any� During the execution of a relaxed action se�
quence� states thus only grow� and the problem
is solved as soon as each goal has been added by
some action� Let us illustrate this� Say we have
an action that moves a robot from some point A
to another point B� The precondition contains a
fact stating that the robot needs to be at location
A for the action to be applicable� After applying
the action� the add list produces a fact stating
the robot stands at location B� and the delete list
removes the fact stating it stands at A� In the re�
laxation� the delete is ignored� so the precondition
fact is not removed�after executing the relaxed
action� the robot is located at A and B simul�
taneously� In a similar fashion� a relaxed planner
can solve the n�discs Tower�of�Hanoi problem in n
steps� and simultaneously assign the truth values
true and false to a variable in a Boolean satis��
ability problem� Nevertheless� the relaxation can

be used to derive heuristics that are quite infor�
mative on a lot of benchmark planning problems�

The length of an optimal relaxed solution
is an admissible�underestimating�heuristic�
which could� theoretically� be used to �nd opti�
mal solution plans by applying the A� algorithm�
However� computing the length of an optimal re�
laxed solution is NP�hard Bylander ������ Con�
sidering this� Bonet et al� Bonet� Loerincs� �
Ge
ner ����� introduced the following way of ap�
proximating relaxed solution length from a search
state S� based on computing weight values for all
facts� which estimate their distance to S� First�
initialize weightf� �� 	 for all facts f � S� and
weightf� �� � for all others� Then apply all ac�
tions� For each action with preconditions preo�
that adds a fact f � update the weight of f to

weightf� �� minweightf�� weightpreo�� � ��

To determine the weight of an action�s precondi�
tions� one needs to de�ne the weight of a set of
facts� Bonet et al� assume facts to be achieved
independently�

weightF � ��
X

f�F

weightf�

The updates are iterated until weight values don�t
change anymore� The di�culty of the state is
then estimated as

hHSP S� �� weightG� �
X

g�G

weightg�

Here� G denotes the goal state of the problem at
hand� The heuristic function obtained that way
can be computed reasonably fast� and is often
quite informative� Bonet and Ge
ner therefore
used it in their �rst version of HSP� as it entered
the AIPS����� planning competition�

The crucial observation leading to FF�s heuris�
tic method is this� While computing optimal re�
laxed solution length is NP�hard� deciding relaxed
solvability is in P Bylander ������ Therefore�
there exist polynomial�time decision algorithms�
If such an algorithm constructs a witness� one can
use that witness for heuristic evaluation� An al�
gorithmic method that accomplishes this is the
very well known Graphplan algorithm Blum �
Furst ������ Started on a solvable relaxed prob�
lem� Graphplan �nds a solution plan in polyno�
mial time Ho
mann � Nebel �		��� Facing a
search state S� we therefore run a relaxed version
of Graphplan starting out from S� and use the
generated output for heuristic evaluation�

Relaxed Graphplan can be described as follows�
First� build the planning graph until all goals are
reached� The graph consists of alternating fact�
and action�layers� The �rst fact layer is identi�
cal to S� The �rst action layer contains all ac�
tions that are applicable in S� The union of all

those action�s add e
ects with the facts that are
already there forms the second fact layer� To
this layer� again all actions are applied� and so
on� until a fact layer is reached that contains all
goals� This process corresponds quite closely to
the computation of the weight values in HSP� as
described above� Once the goals are reached� one
can extract a relaxed plan in the following man�
ner� Start at the top graph layerm� working on all
goals� At each layer i� if a goal is present in layer
i� �� then insert it into the goals to be achieved
at i� �� Else� select an action in layer i� � that
adds the goal� and insert the action�s precondi�
tions into the goals at i � �� Once all goals at i
are worked on� continue with the goals at i � ��
Stop when the �rst graph layer is reached� The
process results in a relaxed plan hO�� � � � � Om��i�
where each Oi is the set of actions selected at time
step i� We estimate solution length by counting
the actions in that plan�

hFF S� ��
X

i�������m��

jOij

The estimation values obtained this way are usu�
ally lower than HSP�s estimates� as extracting
a plan takes account of positive interactions be�
tween facts� Consider a planning problem where
the initial state is empty� the goals are fG�� G�g�
and there are the following three actions�

opG�� P � ADD G�

opG�� P � ADD G�

opP � � � ADD P

The meaning of the notation should be clear
intuitively� HSP�s heuristic estimate of the goal�s
distance to the initial state is four� Each single
goal has weight two� The actions opG� and opG�

share the precondition P � however� Relaxed plan
extraction recognizes this� and selects opP only
once� yielding a plan containing only three ac�
tions�

Search

While the heuristics presented in the preceding
section can be computed in polynomial time�
heuristic evaluation of states is still costly in the
HSP as well as in the FF system� It is there�
fore straightforward to choose hill�climbing as the
search method� in the hope to reach the goal by
evaluating as few states as possible� HSP� in its
AIPS����� version� used a common form of hill�
climbing� where a best successor to each state was
chosen randomly� and restarts took place when�
ever a path became too long� FF uses an enforced
form of hill�climbing instead�

Facing a search state S� FF evaluates all of its
direct successors� If none of those has a better

heuristic value than S� it goes one step further�
i�e�� search then looks at the successor�s succes�
sors� If none of those two�step successors looks
better than S� FF goes on to the three�step suc�
cessors� and so on� The process terminates when
a state S� with better evaluation than S is found�
The path to S� is then added to the current plan�
and search continues with S� as the new starting
state� In short� each search iteration performs
complete breadth �rst search for a state with
strictly better evaluation� If a planning problem
does not contain dead end situations� then this
strategy is guaranteed to �nd a solution Ho
�
mann � Nebel �		���

It has been recognized in the SAT community
that the behavior of a local search method de�
pends crucially on the structure of the problem
it is trying to solve Frank� Cheeseman� � Stutz
������ Important features here are the number
and distribution of solutions� as well as the size
of local minima and plateaus� Our observation is
that plateaus and local minima� when evaluating
states with FF�s or HSP�s heuristic� tend to be
small in many benchmark planning problems� It
is therefore an adequate approach trying to �nd
an exit state to such regions by complete breadth
�rst search� We come back to this later�

Helpful Actions

The relaxed plan that FF extracts for each search
state can not only be used to estimate goal dis�
tance� but also to identify the successors that
seem to be most useful� and to detect goal order�
ing information Ho
mann � Nebel �		��� Here�
we explain the identi�cation of a set of useful
successors� generated by what we call the help�
ful actions� Consider the following small exam�
ple� taken from the Gripper domain� as it was
used in the AIPS����� competition� There are
two rooms� A and B� and two balls� which shall
be moved from room A to room B� using a robot�
The robot changes rooms via the move opera�
tor� and controls two grippers which can pick or
drop balls� Say the robot is in room A� and has
picked up both balls� The relaxed solution that
our heuristic extracts is this�

� f move A B g�
f drop ball� B left�
drop ball� B right g �

This is a relaxed plan consisting of two action
sets� Looking at the �rst set yields our set of help�
ful actions� moving to room B is the only action
that makes sense in the situation at hand� The
two other applicable actions drop balls into room
A� which is useless� To the human solver� this
is obvious� It can automatically be detected by
restricting any state�s successors to those gener�
ated by the �rst action set in its relaxed solution�

However� this is too restrictive in some cases� To
a search state S� we therefore de�ne the set HS�
of helpful actions as follows�

HS� �� fo j preo� � S� addo� �G� �� �g

Here� G� denotes the set of goals that relaxed plan
extraction constructs one level ahead of the initial
graph layer� We thus consider as helpful those ap�
plicable actions that add at least one goal at the
lowest layer of the relaxed solution� These are the
actions that could be selected for the �rst set in
the relaxed solution� The successors of any state
S in breadth �rst search are then restricted to
HS�� While not completeness preserving� this
approach works well in most of the current plan�
ning benchmarks� If enforced hill�climbing using
that pruning technique fails to �nd a solution� we
simply switch to a complete weighted A� algo�
rithm�

Performance Evaluation
A question of particular interest is� if FF is so
closely related to HSP���	� then why does it per�
form so much better� We have conducted the
following experiments to give an answer�

The three major di
erences of FF in com�
parison to HSP are relaxed plan extraction vs�
weight values computation� enforced hill�climbing
vs� hill�climbing� and helpful actions pruning vs�
no such pruning technique� We have implemented
experimental code where each of these di
erences
is attached to a switch� which can be turned on or
o�� This yields eight planners� where �o��o��o��
is an imitation of HSP���	� and �on�on�on� corre�
sponds to FF� Each of these planners was run on a
large set of benchmark planning problems� taken
from �	 di
erent domains� The collected data
was then examined with the intention of assessing
the impact that each single switch has on perfor�
mance� For a detailed description� we refer the
reader to our longer article Ho
mann � Nebel
�		��� Here� we overview the results� Data is sub�
divided into three parts� where we vary on each
single switch in turn� keeping the others �xed�

FF Distance Estimates versus HSP
Distance Estimates

Have a look at Figure �� There are three ta�
bles� each one corresponding to a single switch�
The four columns in each table stand for the four
alignments of the respective other switches� In
each column� the alignment�s behavior with one
setting of the table�s switch is compared to the
behavior with the other setting� Entries in a
row show the number of planning domains in our
test suite� where the corresponding setting of the
switch leads to signi�cantly better performance
than the other setting� in terms of running time�
and in terms of solution length�

Hill�climbing Enforced Hill�climbing
Distance Estimate All Actions Helpful Actions All Actions Helpful Actions

time length time length time length time length
HSP distance � � � � � � � �
FF distance �� � ��
 �� � � ��

All Actions Helpful Actions
Search Strategy HSP distance FF distance HSP distance FF distance

time length time length time length time length
Hill�climbing
 � � � � � � �
Enforced Hill�climbing � �� �� � �� �

Hill�climbing Enforced Hill�climbing
Pruning Technique HSP distance FF distance HSP distance FF distance

time length time length time length time length
All Actions � � � � � � � �
Helpful Actions �� � �� �

 �
 �

Figure �� Comparison of related planners when varying on goal distance estimates� search strategies� or
pruning technique� from top to bottom� Performance is compared in terms of number of domains in our
�	�domain test suite where one alternative leads to signi�cantly better performance than the other one�

Let us focus on the topmost table� compar�
ing the behavior of HSP goal distance estimates
to that of FF estimates� when they are used by
four di
erent planners� obtained from aligning
the other switches� The time entries in the left�
most column� for example� tell us that in � of our
�	 planning domains hill�climbing without help�
ful actions had shorter running times when using
HSP estimates than it did when using FF esti�
mates� On the other hand� the alingment suc�
ceeded faster with FF estimates in �� of the cases�
In the remaining domains� both estimates lead to
roughly the same runtime performance� We ob�
serve�

�� FF�s estimates improve runtime performance in
around half of our domains across all switch
alignments�

�� With enforced hill�climbing in the background�
FF�s estimates have clear advantages in terms
of solution length�

We remark that� in many of the domains with
improved runtime performance� FF�s estimates
improve runtime across all our problem instancess
reliably� but only by a small amount Ho
mann
� Nebel �		��� In some domains� however� HSP�s
heuristic overestimates goal distances quite dras�
tically because it ignores positive interactions� In
those domains� FF�s estimates yield clear advan�
tages�

For the second observation� we have no good ex�
planation� It seems that the greedy way in which
enforced hill�climbing builds its plans is just bet�
ter suited when distance estimates are cautious�
i�e�� low�

Enforced Hill�climbing versus
hill�climbing

Consider the table in the middle of Figure ��
comparing all combinations of the estimates and
pruning technique switches� when used by hill�
climbing in contrast to usage by enforced hill�
climbing� We observe the following�

�� Without helpful actions in the background� en�
forced hill�climbing degrades performance al�
most as many times as it improves it� but with
helpful actions� enforced hill�climbing is faster
in �� of our �	 domains�

�� Enforced hill�climbing often �nds better solu�
tions�

Whether one or the other search strategy is ad�
equate depends on the domain� The advantage of
enforced hill�climbing when helpful actions are in
the background is due to the kind of interaction
that the pruning technique has with the di
erent
search strategies� In hill�climbing� helpful actions
saves running time proportional to the length of
the paths encountered� In the enforced method�
it cuts the branching factor during breadth �rst
search� yielding exponential savings�

When enforced hill�climbing enters a plateau in
the search space� it performs complete search for
an exit� and adds the shortest path to that exit to
its current plan pre�x� When hill�climbing enters
a plateau� on the other hand� it strolls around
more or less randomly� until it hits an exit state�
All the actions on its journey to that state are
kept in the �nal plan� The former search method
therefore often �nds shorter plans than the latter�

Helpful Actions versus All Actions

We �nally focus on the bottom table in Figure ��
It comprises one column for each variation of dis�
tance estimate and search strategy� comparing
the behavior with helpful actions pruning to that
without� Our observations are the following�

�� Helpful actions pruning improves runtime per�
formance signi�cantly in about three out of four
of our domains across all switch alignments�

�� Only in one single domain is there a signi�cant
increase in solution length when one turns on
helpful actions pruning�

On the �	 domains from our test suite� there is
quite some variation with respect to the degree of
restriction that helpful actions pruning exhibits�
At the lower side of the scale� �� of any state�s
successors are not considered helpful� while at the
upper side� that percentage rises to ���� i�e�� only
one out of a hundred successors is considered help�
ful there� In two domains from the middle of the
scale� the restriction is inadequate� i�e�� solutions
get cut out of the state space� A moderate de�
gree of restriction already leads to signi�cantly
improved runtime behavior� This is especially the
case for enforced hill�climbing�

Our second observation strongly indicates that
the actions that really lead towards the goal are
usually considered helpful� Looking at Figure ��
there are some domains where solution length
even decreases by not looking at all successors� es�
pecially when solving problems by hill�climbing�
When that search strategy enters a plateau� it can
only stroll around randomly in the search for an
exit� If the method is additionally focussed into
the direction of the goals� by helpful actions prun�
ing� �nding that exit might well take less steps�

Outlook

Put short� FF is a simple but e
ective algorithmic
method� at least for solving the current planning
benchmarks� An intuition is that those bench�
marks are often quite simple in structure� and
that it is this simplicity which makes them solv�
able so fast by such a simple algorithm as FF� To
corroborate this� we ran FF on a set of problems
with a more complicated search space structure�
We generated random SAT instances according
to the �xed clause�length model with ��� times
as many clauses as variables Mitchell� Selman�
� Levesque ������ and translated them into a
PDDL encoding� The instances have a growing
number of variables� from � up to �	� We ran the
three planners FF� IPP� and Blackbox on those
planning problems� In contrast to the behavior
observed on almost any of the classical planning
benchmarks� FF was clearly outperformed by the
two other approaches� Typically� it immedeately

found its way down to a state with only few un�
satis�ed clauses� and then got lost in the large
local minimum it was in� which simply couldn�t
be escaped by systematic search� The other plan�
ners did much better due to the kind of inference
algorithms they employ� which can rule out many
partial truth assignments quite early�

Following Frank� Cheeseman� � Stutz ������
we have investigated the state space structures
of the planning benchmarks� collecting empirical
data about the density and size of local minima
and plateaus� This has lead us to a taxonomy
for planning domains� dividing them by the de�
gree of complexity that the respective task�s state
spaces exhibit with respect to relaxed goal dis�
tances� Most of the current benchmark domains
apparently belong to the �simpler� parts of that
taxonomy Ho
mann �		��� We also approach
our hypotheses from a theoretical point of view�
where we measure the degree of interaction that
facts in a planning task exhibit� and draw con�
clusions on the search space structure from that�
Our goal in that research is to devise a method
that automatically decides which part of the tax�
onomy a given planning task belongs to�

Acknowledgements
The author wishes to thank Bernhard Nebel for
discussions and continued support� Thanks also
go to Blai Bonet and Hector Ge
ner for their help
in comparing FF with HSP�

References
Blum� A� L�� and Furst� M� L� ����� Fast plan�
ning through planning graph analysis� Arti�cial
Intelligence �	�������������

Bonet� B� Loerincs� G� and Ge
ner� H� �����
A robust and fast action selection mechanism
for planning� In Proc� AAAI���� �������� MIT
Press�

Bylander� T� ����� The computational complex�
ity of propositional STRIPS planning� Arti�cial
Intelligence ������������	��

Frank� J� Cheeseman� P� and Stutz� J� �����
When gravity fails� Local search topology� Jour�
nal of Arti�cial Intelligence Research ����������

Ho
mann� J�� and Nebel� B� �		�� The FF
planning system� Fast plan generation through
heuristic search� To appear in Journal of Arti��
cial Intelligence Research�

Ho
mann� J� �		�� Local search topology in
planning benchmarks� An empirical analysis� To
appear in Proc� IJCAI�	
� Seattle� Washington�
USA� Morgan Kaufmann�

Mitchell� D� Selman� B� and Levesque� H� J�
����� Hard and easy distributions of SAT prob�
lems� In Proc� AAAI���� �������� San Jose� CA�
MIT Press�

