
Planning Wit stic s 

Thomas ean, Leslie Pack Kaelbling, Jak irman, Ann Nicholson 
Department of Computer Science 

Brown University, Providence, RI 02912 
tld@cs.brown.edu 

Abstract’ 

We provide a method, based on the theory of 
Markov decision problems, for efficient planning 
in stochastic domains. Goals are encoded as 
reward functions, expressing the desirability of 
each world state; the planner must find a policy 
(mapping from states to actions) that maximizes 
future rewards. Standard goals of achievement, 
as well as goals of maintenance and prioritized 
combinations of goals, can be specified in this 
way. An optimal policy can be found using ex- 
isting methods, but these methods are at best 
polynomial in the number of states in the do- 
main, where the number of states is exponen- 
tial in the number of propositions (or state vari- 
ables). By using information about the start- 
ing state, the reward function, and the transi- 
tion probabilities of the domain, we can restrict 
the planner’s attention to a set of world states 
that are likely to be encountered in satisfying 
the goal. Furthermore, the planner can gener- 
ate more or less complete plans depending on 
the time it has available. We describe exper- 
iments involving a mobile robotics application 
and consider the problem of scheduling differ- 
ent phases of the planning algorithm given time 
constraints. 

Introduction 
In a completely deterministic world, it is possible for 
a planner simply to generate a sequence of actions, 
knowing that if they are executed in the proper order, 
the goal will necessarily result. In nondeterministic 
worlds, planners must address the question of what to 
do when things do not go as expected. 

The method of triangle tables [Fikes et al., 19721 
made plans that could be executed robustly in any 
circumstance along the nominal trajectory of world 
states, allowing for certain classes of failures and 
serendipitous events. It is often the case, however, that 
an execution error will move the world to a situation 
that has not been previously considered by the planner. 

Many systems (SIPE, for example [Wilkins, 1988]) can 
monitor for plan “failures” and initiate replanning. Re- 
planning is often too slow to be useful in time-critical 
domains, however. Schoppers, in his universal plans 
[Schoppers, 19871, gives a method for generating a re- 
action for every possible situation that could transpire 
during plan execution; these plans are robust and fast 
to execute, but can be very large and expensive to gen- 
erate. There is an inherent contradiction in all of these 
approaches. The world is assumed to be deterministic 
for the purpose of planning, but its nondeterminism 
is accounted for by performing execution monitoring 
or by generating reactions for world states not on the 
nominal planned trajectory. 

In this paper, we address the problem of planning in 
nondeterministic domains by taking nondeterminism 
into account from the very start. There is already a 
well-explored body of theory and algorithms address- 
ing the question of finding optimal policies (universal 
plans) for nondeterministic domains. Unfortunately, 
these methods are impractical in large state spaces. 
However, if we know the start state, and have a model 
of the nature of the world’s nondeterminism, we can 
restrict the planner’s attention to a set of world states 
that are likely to be encountered on the way to the 
goal. Furthermore, the planner can generate more or 
less complete plans depending on the time it has avail- 
able. In this way, we provide efficient methods, based 
on existing techniques of finding optimal strategies, for 
planning under time constraints in non-deterministic 
domains. Our approach addresses uncertainty result- 
ing from control error, but not sensor error; we assume 
certainty in observations. 

We assume that the environment can be modeled as 
a stochastic automaton: a set of states, a set of actions, 
and a matrix of transition probabilities. In the simplest 
cases, achieving a goal corresponds to performing a se- 
quence of actions that results in a state satisfying some 
proposition. Since we cannot guarantee the length of a 
sequence needed to achieve a given goal in a stochastic 
domain, we are interested in building planning systems 
that minimize the expected number of actions needed 
to reach a given goal. 

574 Dean 

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



In our approach, constructing a plan to achieve a 
goal corresponds to finding a policy (a mapping from 
states to actions) that maximizes expected perfor- 
mance. Performance is based on the expected accu- 
mulated reward over sequences of state transitions de- 
termined by the underlying stochastic automaton. The 
rewards are determined by a reward function (a map- 
ping from states to the real numbers) specially formu- 
lated for a given goal. A good policy in our framework 
corresponds to a universal plan for achieving goals 
quickly on average. 

In the following, we refer to the automaton modeling 
the environment as the system automaton. Instead of 
generating the optimal policy for the whole system au- 
tomaton, we formulate a simpler or restricted stochas- 
tic automaton and then search for an optimal policy 
in this restricted automaton. The state space for the 
restricted automaton, called the envelope, is a subset 
of the states of the system automaton, augmented with 
a special state OUT that represents being in any state 
outside of the envelope. 

The algorithm developed in this paper consists of 
two basic subroutines. Envelope extension adds states 
to the restricted automaton, making it approximate 
the system automaton more closely. Policy generation 
computes an optimal policy for the restricted automa- 
ton; a complete policy for the system automaton is 
constructed by augmenting the policy for the restricted 
automaton with a set of default actions or reflexes to 
be executed for states outside the envelope. 

The algorithm is implemented as an anytime algo- 
rithm [Dean and Boddy, 19881, one that can be inter- 
rupted at any point during execution to return an an- 
swer whose value at least in certain classes of stochastic 
processes improves in expectation as a function of the 
computation time. We gather statistics on how enve- 
lope extension and policy generation improve perfor- 
mance and use these statistics to compile expectations 
for allocating computing resources in time-critical sit- 
uations. 

In this paper, we focus primarily on the details of the 
algorithm and the results of a series of computational 
experiments that provide some indication of its merit. 
Subsequent papers will expand on the representation 
for goals and deal with more complicated models of in- 
teraction that require more sophisticated methods for 
allocating computational resources. 

lanning Algorithm 
Definitions We model the entire environment as a 
stochastic automaton. Let S be the finite set of world 
states; we assume that they can be reliably identified 
by the agent. Let A be the finite set of actions; ev- 
ery action can be taken in every state. The transition 
model of the environment is a function mapping ele- 
ments of S x A into discrete probability distributions 
over S. We write PR(s~, a, sq) for the probability that 
the world will make a transition from state si to state 

sz when action a is taken. 
A policy 7r is a mapping from S to A, specifying an 

action to be taken in each situation. An environment 
combined with a policy for choosing actions in that 
environment yields a Markov chain [Kemeny and Snell, 
1960]. 

A reward function is a mapping from S to 8, speci- 
fying the instantaneous reward that the agent derives 
from being in each state. Given a policy 7r and a reward 
function R, the value of state s E S, VT(s), is the sum 
of the expected values of the rewards to be received at 
each future time step, discounted by how far into the 
future they occur. That is, VT(s) = ~~oytE(Rt), 
where Rt is the reward received on the tth step of ex- 
ecuting policy 7r after starting in state s. The dis- 
counting factor, y, is between 0 and 1 and controls 
the influence of rewards in the distant future. Due to 
properties of the exponential, the definition of V can 
be rewritten as 

vi&) = R(s) + y x PR(s, r(s), s’)h(s’) . (1) 
S’ES 

We say that policy T dominates (is better than) X’ if, 
for all s E S, V,(s) >_ V’l (s), and for at least one 
s E S, VT(s) > V+(s). A policy is optimal if it is not 
dominated by any other policy. 

One of the most common goals is to achieve a cer- 
tain condition p as soon us possible. If we define the 
reward function as R(s) = 0 if p holds in state s and 
R(s) = -1 th o erwise, and represent all goal states as 
being absorbing, then the optimal policy will result in 
the agent reaching a state satisfying p as soon as pos- 
sible. Absorbing means that all actions result in the 
same state with probability 1; Vu E A, PR(s, a, s) = 1. 
Making the goal states absorbing ensures that we go to 
the “nearest” state in which p holds, independent of the 
states that will follow. The language of reward func- 
tions is quite rich, allowing us to specify much more 
complex goals, including the maintenance of properties 
of the world and prioritized combinations of primitive 
goals. 

A partial policy is a mapping from a subset of S 
into actions; the domain of a partial policy r is called 
its envelope, &. The fringe of a partial policy, F,, is 
the set of states that are not in the envelope of the 
policy, but that may be reached in one step of policy 
execution from some state in the envelope. That is, 
F7r = {s E s 1 3s’ E 2% s.t. PR(s’, r(s’), s) > 0) . 

To construct a restricted automaton, we take an en- 
velope 8 of states and add the distinguished state OUT. 
For any states s and s’ in C and action a in ,A, the tran- 
sition probabilities remain the same. Further, for every 
s E & and a E A, we define the probability of going 
out of the envelope as 

PR(S, a, OUT) = 1 - x PR(s, a, s’) . 

S’EE 

The OUT state is absorbing. 

eal-Time Planning & Simulation 575 



The cost of falling out of the envelope is a param- 
eter that depends on the domain. If it is possible to 
re-invoke the planner when the agent falls out of the 
envelope, then one approach is to assign V(OUT) to be 
the estimated value of the state into which the agent 
fell minus some function of the time to construct a new 
partial policy. Under the reward function described 
earlier, the value of a state is negative, and its mag- 
nitude is the expected number of steps to the goal; if 
time spent planning is to be penalized, it can simply be 
added to the magnitude of the value of the OUT state 
with a suitable weighting function. 

Overall Structure We assume, initially, that there 
are two separate phases of operation: planning and 
execution. The planner constructs a policy that is fol- 
lowed by the agent until a new goal must be pursued or 
until the agent falls out of the current envelope. More 
sophisticated models of interaction between planning 
and execution are possible, including one in which the 
planner runs concurrently with the execution, sending 
down new or expanded strategies as they are devel- 
oped. Questions of how to schedule deliberation are 
discussed in the following section (see also [Dean et 
al., 19931). E xecution of an explicit policy is trivial, so 
we describe only the algorithm for generating policies. 

The high level planning algorithm, given a descrip- 
tion of the environment and start state .sc is as follows: 

1. Generate an initial envelope 8 

2. While (, # S) and (not deadline) do 

2.1 Extend the envelope 8 
2.2 Generate an optimal policy r for restricted 

tomaton with state set f U W-JT~ 
au- 

3. Return K 

The algorithm first finds a small subset of world states 
and calculates an optimal policy over those states. 
Then it gradually adds new states in order to make the 
policy robust by decreasing the chance of falling out of 
the envelope. After new states are added, the optimal 
policy over the new envelope is calculated. Note the 
interdependence of these steps: the choice of which 
states to add during envelope extension may depend 
on the current policy, and the policy generated as a re- 
sult of optimization may be quite different depending 
on which states were added to the envelope. The al- 
gorithm terminates when a deadline has been reached 
or when the envelope has been expanded to include 
the entire state space. In the following sections, we 
consider each subcomponent of this algorithm in more 
detail. 

Generating an initial envelope This high-level al- 
gorithm works no matter how the initial envelope is 
chosen, but if it is done with some intelligence, the 
early policies are much more useful. In our examples, 
we consider the goal of being in a state satisfying p 

as soon as possible. For such simple goals of achieve- 
ment, a good initial envelope is one containing a chain 
of states from the initial state, SO, to some state satis- 
fying p such that, for each state, there is some action 
with a non-zero probability of moving to the next state 
in the chain. 

In the implemented system, we generate an initial 
envelope by doing a depth-first search from SO consid- 
ering the most probable outcome for each action in 
decreasing order of probability. This yields a set of 
states that can be traversed with fairly high probabil- 
ity to a goal state. More sophisticated techniques could 
be used to generate a good initial envelope; our strat- 
egy is to spend as little time as possible doing this, so 
that a plausible policy is available as soon as possible. 

Generating an optimal policy Howard’s policy it- 
eration algorithm is guaranteed to generate the optimal 
policy for the restricted automaton. The algorithm 
works as follows: ’ 

1. Let ?r’ be any policy on C 

2. While K # 7r’ do loop 

2.1 7r := 7r’ 
2.2 For all s E z, calculate V*(s) by solving the set 

of 111 linear equations in 18 1 unknowns given by 
equation 1 

2.3 For all s E C, if there is some action a E A s.t. 
bb) + 7 &E u{OUT} PR(s, “, a>v&‘>l 3 
V*(s), then r’(s) := a; otherwise r’(s) := r(s) 

3. Return 7r 

The algorithm iterates, generating at every step a pol- 
icy that strictly dominates the previous policy, and 
terminates when a policy can no longer be improved, 
yielding an optimal policy. In every iteration, the val- 
ues of the states under the current policy are com- 
puted. This is done by solving a system of equations; 
although this is potentially an O(l s 12.“) operation, 
most realistic environments cannot transition from ev- 
ery state to every other, so the transition matrix is 
sparse, allowing much more efficient solution of the 
equations. The algorithm then improves the policy by 
looking for states s in which doing some action a other 
than r(s) for one step, then continuing with ?r, would 
result in higher expected reward than simply executing 
?r. When such a state is found, the policy is changed 
so that it always chooses action a in that state. 

This algorithm requires a number of iterations at 
most polynomial in the number of states; in practice for 
for an instance of our domain with 6000 world states, it 
has never taken more than 16 iterations. When we use 
this as a subroutine in our planning algorithm, we gen- 
erate a random policy for the first step, and then for 

‘Since V(OLJT) is fixed, and the OUT state is absorb- 
ing, it does not need to be explicitly included in the policy 
calculations. 

576 Dean 



all subsequent steps we use the old policy as the start- 
ing point for policy iteration. Because, in general, the 
policy does not change radically when the envelope is 
extended, it requires very few iterations (typically 2 or 
3) of the policy iteration algorithm to generate the op- 
timal policy for the extended envelope. Occasionally, 
when a very dire consequence or an exceptional new 
path is discovered, the whole policy must be changed. 

Extending the envelope There are a number of 
possible strategies for extending the envelope; the most 
appropriate depends on the domain. The aim of the 
envelope extension is to judiciously broaden the subset 
of the world states, by including states that are out- 
side the envelope of the current policy but that may be 
reached upon executing the policy. One simple strat- 
egy is to add the entire fringe of the current policy, F,; 
this would result in adding states uniformly around the 
current envelope. It will often be the case, however, 
that some of the states in the fringe are very unlikely 
given the current policy. 

A more reasonable strategy, similar to one advocated 
by Drummond and Bresina [Drummond and Bresina, 
19901, is to look for the IV most likely fringe states. We 
do this by simulating the restricted automaton and ac- 
cumulating the probabilities of falling out into each 
fringe state. We then have a choice of strategies. We 
can add each of the N most likely fringe states. Al- 
ternatively, for goals of achievement, we can take each 
element of this subset of the fringe states and finda 
chain of states that leads back to some state in the 
envelope. In the experiments described in the follow- 
ing sections, fringe states are added rather than whole 
paths back to the envelope. 

Example In our approach, unlike that of Drummond 
and Bresina, extending the current policy is coupled 
tightly and naturally to changing the policy as required 
to keep it optimal with respect to the restricted view of 
the world. The following example illustrates how such 
changes are made using the algorithm as described. 

The example domain is mobile-robot path planning. 
The floor plan is divided into a grid of 166 locations, 
L, with four directional states associated with each 
location, V = {N, S, E, W}, corresponding to the di- 
rection the robot is facing, resulting in a total of 664 
world states. The actions available to the robot are 
{STAY, GO,TURN-RIGHT, TURN-LEFT,TURN-ABOUT}. 
The transition probabilities for the outcome of each 
action may be obtained empirically. In our experimen- 
tal simulation the STAY action is guaranteed to suc- 
ceed. The probability of success for GO and turning ac- 
tions in most locations were 0.8, with the remainder of 
the probability mass divided between undesired results 
such as overshooting, over-rotating, slipping sideways, 
etc. The world also contains sinks, locations that are 
difficult or impossible to leave. On average each state 
has 15.6 successors. 

Figure 1 shows a subset of our domain, the locations 
surrounding a stairwell, which is a complete sink, i.e., 
there are no non-zero transitions out of it; also, it is 
only accessible from one direction, north. In this fig- 
ure there are four small squares associated with each 
location, one for each possible heading; thus each small 
square corresponds to a state, the direction of the ar- 
row shows the policy for the robot in that location 
and with that heading. Figure 1 (a) shows the opti- 
mal policy for a small early envelope; Figures l(b) and 
(c) show two subsequent envelopes where the policy 
changes to direct the robot to circumvent the stair- 
well, reflecting aversion to the risk involved in taking 
the shortest path. 

eliberation Scheduling 
Given the two-stage algorithm for generating policies 
provided in the previous section, we would like the 
agent to allocate processor time to the two stages when 
faced with a time critical situation. Determining such 
allocations is called deliberation scheduling [Dean and 
Boddy, 1988]. In this paper, we consider situations 
in which the agent is given a deadline and an initial 
state and has until the deadline to produce a policy 
after which no further adjustments to the policy are 
allowed. The interval of time from the current time 
until the deadline is called the deliberation interval. 
We address more complicated situations in [Dean et 
al., 19931. 

Deliberation scheduling relies on compiling statis- 
tics to produce expectations regarding performance im- 
provements that are used to guide scheduling. -In gen- 
eral, we cannot guarantee that our algorithm will pro- 
duce a sequence of policies, %c, %I, ii2, . . ., that increase 
in value, e.g., V+,(SO) < V& (SO) < V*,(Q) - . ., where 
the iii are complete policies constructed by adding re- 
flexes to the partial policies generated by our algo- 
rithm. The best we can hope for is that the algo- 
rithm produces a sequence of policies whose values in- 
crease in expectation, e.g., E[V+,(so)] < E[V+,(so)] < 
E[Ve, (so)] * * -> where here the initial state SO is con- 
sidered a random variable. In all0 cat ing processor 
time, we are concerned with the expected improve- 
ment, EIV+l+l(so) - V*,(so)], relative to a given al- 
location of processor time. 

If envelope extension did not make use of the cur- 
rent policy, we could just partition the deliberation 
interval into two subintervals, the first spent in en- 
velope extension and the second in policy generation. 
However, since the two stages are mutually dependent, 
we have to consider performing multiple rounds where 
each round involves some amount of envelope extension 
followed by some amount of policy generation. 

Let tEE, (tpG,) be the time allocated to envelope ex- 
tension (policy generation) in the ith round of the al- 
gorithm and & be the envelope following the ith round 
envelope extension. To obtain an optimal deliberation 
schedule, we would have to consider the expected value 

eal=Time Planning & Simulation 577 



One location in 

Goal 

not in env not in env not in env 

I I 
“Best” 

Path 

env 

ACTIONS 

I,& 

r Turn right 

1 Turnleft 

Turn about 

Stairwell 

Figure 1: Example of policy change for different en- 
velopes near a complete sink. The direction of the ar- 
row indicates the current policy for that state. (a) Sink 
not in the envelope: the policy chooses the straightfor- 
ward shortest path. (b) S k in included: the policy skirts 
north around it. (c) All states surrounding the stair- 
well included: the barriers on the south, east and west 
sides allow the policy take a longer but safer path. For 
this run y = 0.999999 and V(OUT) = -4000. 

of the final policy given k = 1,2, . . . rounds and all pos- 
sible allocations to tEEi and tpG, for 1 2 i 5 k. we 
suspect that finding the optimal deliberation schedule 
is NP-hard. To expedite deliberation scheduling, we 
use a greedy algorithm based on the following statis- 
tics. 

1. 

2. 

The expected improvement starting with an enve- 
lope of size m and adding n states: i?[V~,+,(s~) - 
V+,(S0)lm =I& I,m+ 7-h =IEi+ll]; 
The expected time required to extend by n states 
an envelope of size nx and compute the opti- 
mal policy for the resulting restricted automaton: 
E[tEE,+PG,)m=l~~I,m+n=I~~+l)]. 

After each round of envelope extension followed by pol- 
icy generation we have an envelope of some size nz; we 
find that n maximizing the ratio of (1) and (2), add 
n states, and perform another round, time permitting. 
If the deadline occurs during envelope extension, then 
the algorithm returns the policy from the last round. If 
the deadline occurs during policy generation, then the 
algorithm returns the policy from the last iteration of 
policy iteration. 

Results 
In this section, we present results from the iterative re- 
finement algorithm using the table lookup deliberation 
scheduling strategy and statistics described in the pre- 
vious sections. We generated 1.6 million data points 
to compute the required statistics for the same robot- 
path-planning domain. The start and goal states were 
chosen randomly for executions of the planning algo- 
rithm using a greedy deliberation strategy, where N, 
the number of fringe states added for each phase of 
envelope extension, was determined from the delibera- 
tion scheduling statistics. 

We compared the performance of (1) our planning 
algorithm using the greedy deliberation strategy to (2) 
policy iteration optimizing the policy for the whole do- 
main. Our results show that the planning algorithm 
using the greedy deliberation strategy supplies a good 
policy early, and typically converges to a policy that 
is close to optimal before the whole domain policy it- 
eration method does. Figure 2 shows average results 
from 620 runs, where a single run involves a particular 
start state and goal state. The graph shows the av- 
erage improvement of the start state under the policy 
available at time t, V+(Q), as a function of time. In 
order to compare results from different start/goal runs, 
we show the average ratio of the value of the current 
policy to the value of the optimal policy for the whole 
domain, plotted against the ratio of actual time to the 
time, T,,t , that the policy iteration takes to reach that 
optimal value. 

The greedy deliberation strategy performs signifi- 
cantly better than the standard optimization method. 
We also considered very simple strategies such as 
adding a small fixed N each iteration, and adding the 

578 Dean 



Value 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 

0.0 -- 1 Tim 
0.00 O-20 0.40 0.60 0.80 1.00 

Figure 2: Comparison of planning algorithm using 
greedy deliberation strategy (dashed line) with the pol- 
icy iteration optimization method (solid line). 

whole fringe each iteration, which performed fairly well 
for this domain, but not as well as the greedy pol- 
icy. Further experimentation is required to draw defini- 
tive conclusions about the comparative performance of 
these deliberation strategies for particular domains. 

elated Work and Conchsions 
Our primary interest is in applying the sequential de- 
cision making techniques of Bellman [Bellman, 19571 
and Howard [Howard, 19601 in time-critical applica- 
tions. Our initial motivation for the methods discussed 
here came from the ‘anytime synthetic projection’ work 
of Drummond and Bresina. [Drummond and Bresina, 
19901. We improve on the Drummond and Bresina 
work by providing (i) coherent semantics for goals in 
stochastic domains, (ii) theoretically sound probabilis- 
tic foundations, (iii) and decision-theoretic methods for 
controlling inference. 

The approach described in this paper represents a 
particular instance of time-dependent planning [Dean 
and Boddy, 19881 
Horvitz’ [Horvitz, 

and borrows from, among others, 
1988] approach to flexible com- 

putation. Boddy [Boddy, 19911 describes solutions 
to related problems involving dynamic programming. 
Hansson and Mayer’s BPS (Bayesian Problem Solver) 
[Hansson and Mayer, 19891 supports general state- 
space search with decision-theoretic control of infer- 
ence; it may be that BPS could be used as the ba- 
sis for envelope extension thus providing more fine- 
grained decision-theoretic control. Christiansen and 
Goldberg [Christiansen and Goldberg, 19901 also ad- 
dress the problem of planning in stochastic domains. 

The approach is applicable to stochastic domains 
with certain characteristics; typically there are mul- 
tiple paths to the goal and the domain is relatively be- 
nign. If there is only one path to the goal all the work 
will be done by the procedure finding the initial en- 
velope, and extending the envelope only improves the 
policy if the new states can be recovered from. Our fu- 
ture research plans involve extending the approach in 
several directions: allowing more complex goals; per- 

forming more complicated deliberation scheduling such 
as integrating online deliberation in parallel with the 
execution of policies; relaxing the assumption of obser- 
vation certainty to handle sensor error. 

Acknowledgements. Thomas Dean’s work was sup- 
ported in part by a National Science Foundation Presiden- 
tial Young Investigator Award IRI-8957601, by the Ad- 
vanced Research Projects Agency of the Department of 
Defense monitored by the Air Force under Contract No. 
F30602-91-G-0041, and by the National Science founda- 
tion in conjunction with the Advanced Research Projects 
Agency of the Department of Defense under Gontract No. 
IRI-8905436. Leslie KaelbIing’s work was supported in part 
by a National Science Foundation National Young Investi- 
gator Award IRI-9257592 and in part by ONR Contract 
N00014-91-4052, ARPA Order 8225. 

References 
Bellman, R. 1957. Dynamic Programming. Princeton Uni- 
versity Press. 

Boddy, M. 1991. Anytime problem solving using dynamic 
programming. In Proceedings AAAI-91. AAAI. 738-743. 

Ghristiansen, A., and Goldberg, K. 1990. Robotic 
manipulation planning with stochastic actions. In 
DARPA Workshop on Innovative Approaches to Plan- 
ning, Scheduling and Control. San Diego,Galifornia. 

Dean, T., and Boddy, M. 1988. An analysis of time- 
dependent planning. In Proceedings AAAI-88. AAAI. 49- 
54. 

Dean, T.; KaelbIing, L.; Kirman, J.; and Nicholson, A. 
1993. Deliberation scheduling for time-critical sequential 
decision making. Submitted to Ninth Conference on Un- 
certainty in Artificial Intelligence. 

Drummond, M., and Bresina, J. 1990. Anytime synthetic 
projection: Maximizing the probability of goal satisfac- 
tion. In Proceedings AAAI-90. AAAI. 138-144. 

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning 
and executing generalized robot plans. Artificial Intelli- 
gence 3~251-288. 

Hansson, O., and Mayer, A. 1989. Heuristic search as 
evidential reasoning. In Proceedings of the Fifth Workshop 
on Uncertainty in AI. 152-161. 

Horvitz, E. J. 1988. Reasoning under varying and uncer- 
tain resource constraints. In Proceedings AAAZ-88. AAAI. 
111-116. 

Howard, R. A. 1960. Dynamic Programming and Markov 
Processes. MIT Press, Cambridge, Massachusetts. 

Kemeny, J. G. and SneII, J. L. 1960. Finite Markov 
Chains. D. Van Nostrand, New York. 

Schoppers, M. J. 1987. Universal plans for reactive robots 
in unpredictable environments. In Proceedings IJCA I 10. 
IJGAII. 1039-1046. 

Wilkins, D. E. 1988. Practical Planning: Extending the 
Classical A I Planning Paradigm. Morgan-Kaufmann, Los 
Altos, GaIifornia. 

Real-Time Planning & Sinmlatisn 579 


