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Abstract

Branching and lower bounds are two key notions in heuristic search and combinatorial optimization. Branch-
ing refers to the way the space of solutions is searched, while lower bounds refer to approximate cost measures
used for focusing and pruning the search. In AI Planning, admissible heuristics or lower bounds have received
considerable attention and most current optimal planners use them, either explicitly or implicitly (e.g., by
relying on a plan graph). Branching, on the other hand, has received less attention and is seldom discussed
explicitly. In this paper, we make the notion of branching in planning explicit and relate it to branching
schemes used in combinatorial optimization. We analyze from this perspective the relationship between
heuristic-search, constraint-based and partial-order planning, and between planning and scheduling. We also
introduce a branch-and-bound formulation for planning that handles actions with durations and use unary
resources, and consider a range of theories that stand halfway between planning and scheduling. The goals
are twofold: to make sense of various techniques that have been found useful in planning and scheduling in
a unified framework, and to lay the ground for systems that can effectively combine both capabilities. We
have also implemented a planner based on this formulation on top of a constraint programming language
and present some preliminary results.

Keywords: artificial intelligence, planning, branch and bound, constraint programming, scheduling, heuris-
tics, branching



1. states σ are TSPs
2. initial state σ0 is original TSP
3. lower bound f(σ) computed by solving AP relaxation of σ; result yields one or

more subtours
4. terminal goal states are states whose relaxation yields single tour
5. non-terminal states σ expanded by selecting an edge i → j from a subtour and

generating the children σ+
ij and σ

−
ij : the first, forcing the edge i→ j in the solution,

the second, excluding it.

Fig. 1. Basic Branch and Bound Scheme for Asymmetric TSPs

1 Branch and Bound in Combinatorial Optimization

The notion of lower bounds used in Combinatorial Optimization [1, 12] is familiar in AI where they are
called admissible heuristics [33, 34]. Branching, on the other hand, is a less familiar notion, and the word
does not even appear in the index of AI textbooks. This is probably due to the close correspondence between
branching and action application in the search problems most often considered in AI such as the 15-puzzle
or Rubik’s Cube, where a state is expanded by applying all possible actions either forward or backward. We
will refer to these forms of branching as branching on actions or directional branching. Directional branching
is pervasive in AI yet, as known in combinatorial optimization and constraint programming, it’s not always
the best way for structuring the search.

1.1 Traveling Salesman Problem

The TSP is the problem of finding a tour with minimum cost through a given number of cities [1]. One
of the most powerful approaches for solving it relies on the lower bound obtained from a relaxation of the
TSP known as the assignment problem [1, 43].3 The assignment problem or AP is the problem of assigning
to each ‘city’ i a unique next ‘city’ next(i) = j so that the sum of the distances cij from city i to city j is
minimized. Such an assignment may result in a unique tour or multiple disjoint tours. In both cases, the cost
of the assignment is a lower bound on the cost of the TSP. In the first case, in addition, the lower bound
is exact and the optimal assignment represents an optimal tour. These properties are used in the standard
branch-and-bound scheme for the TSP shown in Fig. 1 [1, 43]. Notice that branching is not done by applying
the actions of going from one city to its neighbors but by making commitments; namely, forcing certain
edges in or out of the solution. These commitments form a partial tour very much as the causal links and
precedence constraints define partial plans in partial order planning [41].

This branch-and-bound scheme can be used in the context of a number of branch-and-bound algorithms
such as IDA* (Iterative Deepening A*) or DFS B&B (Depth First Search Branch and Bound)[25]. In all
branch-and-bound algorithms, the main operation is the evaluation of the pruning condition f(σ) ≤ B for a
bound B and each node σ; if the condition is not satisfied, node σ is pruned.

For computing optimal solutions, a branch-and-bound scheme must be sound and complete in the follow-
ing sense: goal states must represent solutions to the problem, and some goal states must represent optimal
solutions. Provided these two conditions, any admissible branch-and-bound algorithm will find an optimal
solution. Both properties are easy to verify for the scheme in Fig. 1.

1.2 Job Shop Scheduling

The job-shop problem (JSP) is defined by a set of jobs j1, . . . , jm, each consisting of a chain of tasks
ti1, . . . , tin, i = 1, . . . ,m, with durations D(tij) that must be executed in order over a set of n unary
resources R(tij) [35]. A feasible schedule is an assignment of times T (tij) to each task tij so that the
precedence constraints in the jobs and the resource constraints are all satisfied. Such constraints can be
written as

tij ≺ ti,j+1 (precedence constraints) (1)

3 Actually, this method is best for asymmetric TSPs when costs between pairs of cities are not symmetric.



1. states σ are simple temporal problems (STPs)
2. initial state σ0 given by precedence constraints in jobs
3. lower bound f(σ) and relaxed schedule hσ obtained by solving STP σ; f(σ) =∞

if STP inconsistent
4. terminal states of two types: σ is a dead-end if f(σ) = ∞ and a goal state if no

pairs of tasks in conflict in hσ
5. children generated from σ by selecting pair of tasks t and t′ in conflict in σ, and

generating two children σ + {t ≺ t′} and σ + {t′ ≺ t}

Fig. 2. Basic Branch and Bound Scheme for Job Shop

for i ∈ [1 . . .m], j ∈ [1 . . . n− 1], and

R(tij) = R(tkl) ⇒ tij ≺ tkl ∨ tkl ≺ tij (resource constraints) (2)

for i, k ∈ [1 . . .m], j, l ∈ [1 . . . n], where t ≺ t′ stands for T (t) +D(t) ≤ T (t′).

An optimal schedule is a feasible schedule with min makespan where the makespan is the time at which
all tasks have been completed.

Once again, it’s possible to formulate a directional branching scheme in which actions (sets of parallel
tasks) are applied either forward or backward, yet the resulting branching factor is too high and more effective
schemes have been developed. Here we’ll follow the approach in [10], that extends ideas from [7] and [39].
In this scheme, each state σ is a relaxed JSP that includes all precedence constraints in the original JSP
but no resource constraints. The relaxed problem corresponds to a Simple Temporal Problem [14], which is
tractable and can be solved by a number of shortest-path and constraint-propagation algorithms[9, 19]. The
algorithms determine the consistency of the STP σ and if so return lower bounds hσ(t) on the times at which
each task t may start, and hence, a lower bound f(σ) on the makespan. We’ll refer to the schedule in which
each task tij is executed at its lower bound hσ(tij) as the relaxed schedule and denote it by hσ. It’s known
that the relaxed schedule satisfies the STP σ, and thus is a solution of the original JSP iff it satisfies the
resource constraints (2). Otherwise, there must be a pair of tasks t and t′ in conflict in σ; namely, tasks that
use the same resource and whose execution overlaps in hσ. These ideas underlie the basic branch-and-bound
scheme for the Job Shop shown in Fig. 2. For more sophisticated techniques, see [2].

2 Branch-and-Bound Schemes in AI Planning

In traditional AI planning, planning tasks are expressed in Strips by means of a set A of atoms or boolean
variables of interest, a set O of operators, an initial situation I ⊆ A, and a goal situation G ⊆ A [17].
Operators a are defined by means of three sets of atoms, an add list add(a) with the atoms that become
true after doing action a, a delete list del(a) with the atoms that become false after a, and the precondition
list pre(a) with the atoms that need to be true for the action a to be applicable. The basic planning task is
to find a sequence of operators or plan that maps the initial situation I into the goal G.

Branching in AI planning is discussed implicitly in terms of the space in which the search for plans is
done. State or directional planners are said to search in the space of states, while partial order planners are
said to search in the space of plans. This is a useful distinction, yet it does not always reveal what these
approaches have in common or what they have in common with other approaches such as those based on
SAT (Propositional Satisfability) or CSP (Constraint Satisfaction Problems) formulations (yet see [37]). All
planners, indeed, search in the space of plans; directional planners just exploit a decomposition property for
which a partial plan tail or head σ can be summarized by the state s obtained by regressing the goal or
progressing the initial state through the partial plan σ. Indeed, the completion of σ is independent of σ given
the state s, and similarly, the estimated cost f(σ) of the best completion of σ can be decomposed into the
accumulated cost g(σ), that depends only on σ, and the heuristic cost h(s), that depends only on s. This
decomposition does not hold in non-directional planners, yet the idea of using an estimated cost function
f(σ) or similar mechanism for guiding and pruning the search remains feasible and necessary for scaling up.



2.1 State Planning

Modern state planners for sequential planning branch on the set of applicable operators either forward from
the initial state or backward from the goal, and use an heuristic function h(s) for guiding or pruning the
search. A useful heuristic can be obtained by ignoring deletes and assuming that the cost to achieve a set
of atoms is given by the sum of the costs of achieving each atom in the set. This ’additive’ heuristic is not
admissible but is often quite effective [30, 6]. An admissible (lower bound) ’max’ heuristic can be obtained
by approximating the cost to achieve a set of atoms by the cost of the most costly atom in the set. A
family of informative and admissible heuristics hm, for m = 1, 2, . . . that generalizes the ’max’ heuristic is
formulated in [20]. The heuristic hm approximates the cost of a set of atoms C by the cost of the most costly
subset of size m in C. For m = 1, the heuristic hm is equivalent to the max heuristic, while for m > 1,
more informative but more expensive heuristics are obtained. A formulation of these heuristics for parallel
planning is also developed in [20] where it’s shown that the heuristic hm, for m = 2, is equivalent to the
heuristic underlying Graphplan [3]. More recently, [21] shows how the heuristics hm can be extended to
estimate makespan (completion time) in a temporal setting where actions can be executed concurrently and
have different durations. The equation characterizing the temporal heuristic hmT for m = 1 is

h1
T (C) =







0 if C ⊆ s0, else
mina∈O(p)[D(a) + h1

T (prec(a))] if C = {p}, else
maxp∈C h1

T ({p}) if |C| > 1
(3)

where O(p) stands for the set of actions a that add p and D(a) stands for the duration of a. The measures
hmT (C) are all lower bounds on the time needed to make the set of atoms C true. The regression-based tempo-
ral planner in [21] uses the heuristic hmT for m = 2. Below, for simplicity, we use the h1

T estimator. Equations
like (3) above are solved in polynomial time using variations of single source shortest path algorithms.

[20] reports results for an optimal planner based on regression search and the heuristic h2. The planner is
competitive and often superior to the best Graphplan and SAT/CSP planners in the sequential setting, but is
not as good as the latter in the parallel setting. The problem is that the branching factor grows exponentially
in either forward or backward parallel planning. Indeed, if there are n primitive operators applicable in a
state s, there are up to 2n possible parallel actions.

2.2 Partial Order Planning

Partial order Planning (pop) refers to a non-directional branching scheme used in AI Planning for many years
[41]. pop planners are not competitive with modern planners because the latter rely on some form of heuristic
estimation or pruning mechanisms, while pop is a pure branching scheme. The performance of pop planners
can be enhanced through the addition of heuristic estimators (e.g., see [32]), although deriving effective
lower bounds in the pop setting appears to be more difficult than deriving similar bounds in state planning.
We consider partial-order planning here because it represents a branching scheme that is particularly suited
for more expressive forms of planning such as temporal planning with resources. Indeed, two of the most
expressive temporal planners, IxTeT [26] and RAX [22] are based on partial-order planning schemes. The
potential advantages of pop in this setting have been discussed in [38]. The difficulty of deriving useful
lower bounds will be addressed below where we show how the hmT heuristics can be modified to estimate the
completion time of partial plans.

2.3 SAT and CSP Branch and Bound

Most SAT and CSP formulations of optimal planning (e.g., [23, 40, 16, 36, 28]) can be understood as branch-
and-bound schemes in which the states σ are partial variable assignments and branching is performed by
selecting a variable and extending the partial assignment with each of its possible values. However, rather
than computing explicit lower bounds f(σ) and evaluating the pruning condition f(σ) ≤ B for a bound B

as in standard branch-and-bound algorithms, SAT and CSP formulations represent the condition f(σ) ≤ B

as an explicit constraint which is checked for consistency using some form of constraint propagation. For
example, in a SAT planner such as Blackbox [23], when the goal is G = {p, q} and the bound is 10, this
condition takes the form of two clauses p10 and q10 that are added to the theory. Explicit computation
of lower bounds and consistency checking through constraint propagation are two alternative methods for
pruning the search which as shown in [8, 18], can often be combined.



3 New Branch-and-Bound Formulations

The notions of branching and bounds make the relationships between the different approaches in planning
more explicit and relate planning with other combinatorial optimization problems. Now, we’ll take advantage
of this view to introduce some novel branch-and-bound formulations that integrates a number of the ideas
we have discussed: non-directional plans, lower bounds, and constraints.

3.1 Preliminary Definitions

We consider a simple extension of Strips where each action a has a duration D(a) and uses a set of unary
resources R(a). We assume durations to be positive integers except for the dummy actions Start and End,
as used in partial-order planning, that have zero durations.

Two actions a and a′ are mutex when a) a and a′ require a common resource, i.e., R(a) ∩ R(a′) 6= ∅,
or b) a and a′ interact destructively, i.e., a deletes a precondition or positive effect of a′, or a′ deletes a
precondition or positive effect of a [3].

A schedule P is a finite set of time stamped actions 〈ai, ti〉, i = 1, . . . , n, where ai is an action and ti
is a non-negative integer. We say that ai precedes aj in P , and write ai ≺ aj , if ti + D(ai) ≤ tj , and say
that ai and aj overlap in P when ai 6≺ aj and aj 6≺ ai. A schedule P is a valid plan iff mutex actions do
not overlap in P and for every action ai its preconditions p ∈ prec(a) are true at time ti. This condition is
defined inductively from t = 0 in a direct way.

From now on, a plan will refer to a valid plan. The makespan of a plan P is the min time at which all
goals are true. We are interested in computing a valid plan P with minimum makespan.

3.2 Disjunctive Branching for Positive Theories

We’ll assume initially a class of domains where actions have durations and use unary resources but have no
deletes. We call these theories positive. Positive domains are restricted from the point of view of planning,
but are quite general from a scheduling point of view; indeed, they stand for a generalization of the job shop
where there may be alternative tasks for achieving a job, alternative resources, arbitrary preconditions, etc.
We’ll exploit two properties of positive domains that make the formulation simpler, namely that

1. causal links are not needed for preserving the truth of atoms, and
2. no operator needs to be executed more than once.

The second property generalizes the condition found in most scheduling problems in the literature where all
operators are executed exactly once. Thus positive theories, stand halfway between temporal planning and
the job shop.

The branching scheme for the job shop (Fig. 2) can be easily generalized to positive theories. The main
departure is the definition of the initial state σ0. In the job shop, σ0 is defined as the set of precedence
constraints

T (tij+1) ≥ D(tij) + T (tij) (4)

for each pair of successive tasks tij and tij+1 in the jobs. In planning, tasks (actions) are not ordered
explicitly by precedence constraints but implicitly by their preconditions. This implicit ordering can be
rendered explicit by means of equations similar to the ones characterizing the temporal estimators hmT . For
example, Equation 3 for h1

T can be rewritten as:

h1
T (C) =

{

mina∈O(p)[D(a) + h1
T (a)] if C = {p}, else

maxp∈C h1
T ({p}) if |C| > 1

(5)

where we assume now the presence of the actions Start and End,4 and h1
T (a) is a lower bound on the time

needed to start the execution of action a

h1
T (a) = h1

T (prec(a)) (6)

4 h1
T (Start) = 0, D(Start) = 0, and Start ∈ O(p) if p is true in the initial situation.



1. states σ are Extended STPs
2. initial state σ0 given by precondition constraints (8)
3. relaxed plan hσ obtained by solving ESTP σ; f(σ) = hσ(End)
4. terminal goal states σ if mutex constraints (9) not violated by any pair of actions

a and a′ in relaxed schedule hσ
5. branching from non-terminal σ done by picking one such pair of actions a and a′

and generating children σ + {a ≺ a′} and σ + {a′ ≺ a}

Fig. 3. Branch and Bound Scheme for Positive Planning Theories

These equations on lower bounds can be made to look similar to precedence constraints (4) by means of
two transformations. First, we project the equations on actions by unfolding the left-hand-side of Equation 6
to get

h1
T (a) = max

p∈prec(a)

{

min
a′∈O(p)

[D(a′) + h1
T (a

′)]

}

(7)

Second, we express the resulting equation on lower bounds as an equation on temporal variables T (a), where
T (a) is a variable that stands for the time at which action a is executed in the plan and whose domain is the
set of non-negative integers extended with ∞. Intuitively, T (a) =∞ means that action a is not executed in
the plan and we assume that a′ ≺ a for all a′ when T (a) =∞.

Recasting Equation 7 on the temporal variables T (a), we obtain the set of temporal constraints:

T (a) ≥ min
a′∈O(p)

[D(a′) + T (a′)] for each p ∈ prec(a) (8)

These constraints are similar to the precedence constraints (4) for the job shop except for the min operator,
and we call them precondition constraints. It’s not difficult to show that precedence and precondition con-
straints have similar computational properties: they are tractable, they can be solved by simple variations
of shortest path algorithms, and the lower bounds h(a) obtained for each temporal variable T (a) define a
consistent solution. We’ll call the theories that combine precondition and precedence constraints, Extended
STPs. Due to the inclusion of ∞ in the domain of the temporal variables, ESTPs are always consistent as
the assignment T (a) =∞ is always a solution. Of course, we are interested in the lowest consistent value of
these variables, and in particular in the lower bound of the variable T (End) which provides the lower bound
on the state; i.e., f(σ) = hσ(End).

The branch-and-bound scheme for positive planning theories (Fig. 3) follows from the scheme for the
job-shop (Fig. 2) due to the similarity between feasible schedules in the job-shop and valid plans in positive
theories. To show this, let’s represent an assignment over the variables T (a) by a list of pairs P = 〈ai, ti〉i
so that T (ak) = tk 6=∞ if ai ∈ P , and T (ak) =∞ if ak 6∈ P . Then we have that:

Proposition 1. P = 〈ai, ti〉i is a valid plan iff the assignment P satisfies the precondition constraints (8)
and the mutex constraints

mutex(a, a′) =⇒ a ≺ a′ ∨ a′ ≺ a′ (9)

Valid plans in this setting are thus similar to feasible schedules in the job shop, from which the similarity
between the corresponding branch-and-bound schemes follows.

3.3 Causal Link Branching in Presence of Deletes

Positive theories are more general than the job-shop as they involve arbitrary preconditions and positive
postconditions, and not all actions need to be scheduled. Still the restriction of ‘no deletes’ is a strong one
from the point of view of planning. This restriction guarantees that causal links are not needed and that
no operator needs to be scheduled more than once (conditions 1 and 2 above). Now we will relax the first
assumption. We’ll refer to a plan in which no operator is scheduled more than once as a canonical plan.
The scheme we develop below is suitable for solving planning theories in which some optimal plans are
canonical. Theories such as the blocks-world are canonical in this sense, some instances of logistics are
not. Similarly, the theories considered in scheduling (where all tasks are scheduled exactly once) and positive
planning theories are canonical too.



1. states σ = 〈Precs,Doms〉, where Precs are precedence and precondition con-
straints, and Doms stand for the domains of the temporal and support variables
T (a) and S(p, a)

2. initial state σ0 = 〈Precs0, Doms0〉, where Precs0 stands for the precondition
constraints (10) and Doms0 for initial domains of temporal and support variables

3. relaxed schedule hσ computed by solving ESTP Precs; lower bound f(σ) =
hσ(End)

4. terminal goals states σ = 〈Precs,Doms〉 if mutex constraints (9) violated by no
action pair (a, a′), and causal link constraints (11) violated by no action triplet
(a, a′, a′′) in relaxed schedule hσ

5. children generated from non-terminal state σ = 〈Prec,Doms〉 by selecting a
mutex conflict (a, a′) and branching [a ≺ a′; a′ ≺ a], or a causal link conflict
(a, a′, a′′) and branching [S(p, a) 6= a′;S(p, a) = a′, a′′ ≺ a;S(p, a) = a′, a′ ≺ a′′]
(updating Precs and Doms accordingly).

Fig. 4. Branch and Bound for Canonical Planning

In the presence of deletes, the scheme above is neither sound nor complete, as the preconditions of an
action may be deleted before the action is executed. Causal links, as introduced in [29], allow us to detect
such conditions and fix them. A causal link a→p a

′ states that action a precedes a′, makes its precondition
p true, and no action a′′ that deletes p is scheduled between a and a′.

Causal links can be used as in pop, yet we’ll use them differently in order to get better lower bounds. We
introduce finite domain variables S(p, a) for each precondition p of action a which we call support variables.
Initially, the domain D(p, a) of the support variable S(p, a) is O(p), i.e., the set of operators that add p,
yet this domain changes dynamically during the search. In particular, a causal link a′ →p a, is asserted by
setting S(p, a) = a′ and retracted by setting S(p, a) 6= a′. Provided this representation of causal links, the
precondition constraints can be written as

T (a) ≥ min
a′∈D(a,p)

[T (a′) +D(a′)] for each p ∈ pre(a) (10)

where the minimization is done over the dynamic domain D(a, p) and not over the static domain O(p). The
planning task can then be expressed as a constraint-satisfaction problem as follows.

Proposition 2. P = 〈ai, ti〉i is a valid canonical plan iff the assignment P over the temporal variables T (a)
and some assignment over the support variables S(p, a) jointly satisfy 1) the precondition constraints (10),
2) the mutex constraints (9), and 3) the causal link constraints

T (a) 6=∞ & S(p, a) = a′ & p ∈ del(a′′) ⇒ a′′ ≺ a′ ∨ a ≺ a′′ (11)

Like mutex constraints, and unlike preconditions constraints, causal link constraints are disjunctive and
thus intractable. As a result, the resulting branch-and-bound scheme computes relaxed schedules hσ by
considering the precondition and posted precedence constraints only, and branches over the disjunctions on
either the mutex or causal link constraints that are violated in hσ (we call them the mutex and causal link
conflicts; causal link conflicts are similar to threats in partial-order planning). The resulting scheme is shown
in Fig. 4.

3.4 Goal Oriented Branching

In partial-order-planning and planners such IxTeT and RAX, the set of operators Steps to be scheduled
is built incrementally, starting with the actions Start and End, and checking for conflicts within Steps

only. This makes the search more goal-oriented, something that pays off when the set of relevant actions
is small in comparison with the set of all available actions. This modification can be easily included in the
branch-and-bound scheme above resulting in scheme shown in Fig. 5.



1. states σ = 〈Steps, Precs,Doms〉, where Steps is a set of actions, and Precs

and Doms as before
2. initial state σ0 = 〈{Start, End}, P recs0, Doms0〉 with Prec0 and Doms0 as be-

fore
3. relaxed schedule hσ computed by solving ESTP Precs; lower bound f(σ) =

hσ(End)
4. terminal goals states σ = 〈Steps, Precs,Doms〉, if |D(p, a)| = 1 for all a ∈ Steps,

and in relaxed schedule hσ, no mutex or causal link conflicts for actions in Steps.

5. children generated from non-terminal state σ = 〈Prec,Doms〉 by selecting a
mutex conflict (a, a′) and branching [a ≺ a′; a′ ≺ a], or by selecting a causal link
conflict (a, a′, a′′) for which S(p, a′) = a and branching [a′′ ≺ a; a′ ≺ a′′], or by

selecting a domain |D(p, a)| > 1 for a ∈ Steps and an action a′ ∈ D(p, a)
and branching [S(p, a) = a′;S(p, a) 6= a′].

Fig. 5. Goal-oriented branch-and-bound scheme for canonical plans

4 Implementation

In order to test the feasibility of these ideas above, we have implemented a planner based on the goal-
oriented branching scheme shown in Fig. 5. The planner has the flavor of a partial-order planner yet it
builds (optimal) parallel plans (only actions with unit durations are currently handled) and uses the h1 (h1

T )
heuristic estimator in the form of the precondition constraints (10), among other differences. Also, as we
will see, while its performance is not as good as the best optimal SAT and CSP parallel planners, it is as
good as or better than Graphplan and HSP parallel planners, something that doesn’t hold for (optimal) POP
planners. This, and the fact that the implementation can be improved and can be extended to handle actions
with non-unit durations, make the approach computationally appealing and worth of further exploration. A
limitation of the current planner is that it computes (optimal) canonical plans only, hence plans where the
same ground action is done multiple times are not considered. This limitation is discussed below.

The planner is implemented on top of the constraint logic programming language GNU Prolog [15] with
some routines written in C++. The reasons for a constraint-based implementation are basically two. First,
branching decisions are constraints and CP languages offer built-in, incremental mechanisms for propagating
their effects over the temporal and support variables. Second, CP languages offer primitives that allow for
limited forms of reasoning over disjunctions such as those appearing in mutex and causal link constraints,
which as we will see, allow for further pruning.

In the planner, the computation of the lower bounds f(σ) for partial plans σ and the evaluation of the
pruning condition f(σ) ≤ B for a bound B, are replaced by constraint-propagation and consistency checking
over the problem constraints and the goal constraint T (End) ≤ B that states that the goal must be achieved
by time B.

The problem constraints include the precondition constraints, that currently capture the h1 estimator,
and the constraints that are posted dynamically during the search, that include precedence constraints over
the temporal variables, and equality and inequality constraints over the support variables. The states σ in
the search, which stand for partial plans, correspond in the implementation to the domains of the temporal
and support variables and the constraints over them.

The planner performs a Depth First Search with bound B, which is increased by one when the search fails.
The initial value of B is given by the lower bound of the variable T (End) in the initial state σ0. Branching
in this search is done according to the scheme in Fig. 5: a ’flaw’ in the partial plan σ is selected and each
of its possible fixes is tried until a terminal goal state is obtained or an inconsistency is found. Flaws are
of three types: mutex conflicts, causal link conflicts, and open preconditions, and each step is followed by
constraint propagation.

This basic implementation does not compete with modern optimal parallel planners such as Graphplan
or Blackbox. An important limitation is the use of the h1 (h1

T ) estimator which is too weak, as it assumes the
time needed to make a set of atoms true is given by the time needed to make each individual atom in the set
true. The h2 estimator takes into account interactions between pairs of atoms and results in a more informed
lower bound. Planners such as Graphplan and Blackbox do indeed use the h2 estimator (for actions with unit
duration) which is implicitly encoded in the plan graph [20]. The same is true for the optimal parallel and



temporal heuristic search planners HSPr* [20] and TP4 [21]. In our formulation, however, encoding the h2

estimator results in several thousands of constraints and variables, something that seems to be beyond the
capabilities of the CP tools we tried. We thus settled for a compromise and used the h2 estimator computed
in the initial state to prune the domain of the temporal variables T (a) only. More precisely, we compute the
h2(a) values of all actions a, and set the constraints T (a) ≥ h2(a).

In the basic scheme, disjunctive mutex and causal link constraints play a passive role in the search: they
are checked in every state, and among those violated by the relaxed plan (the lower bounds of the temporal
variables T (a)), one disjunction is selected for creating a split. In the implementation, we take advantage
of the ability to perform a limited form of inference over disjunctions, and post all such disjunctions. Then
when a disjunct A ≺ B becomes false in the search, the other disjunct becomes immediately true, saving
splits and backtracks. (see also [32]).

This form of disjunctive reasoning is actually extended in three ways. First, we compute the transitive
closure of all posted precedence constraints so that checking the consistency of a precedence relation is done
by a lookup operation. Second, we make use of the h2 values computed over all actions a and all atom
pairs p, q to identify implicit mutex and causal link conflicts, that generate additional valid disjunctions. 5

Third, and finally, for the purpose of detecting mutex and causal link conflicts and posting the corresponding
disjunctions, we treat the support variables S(p, a), that represent the (possibly undetermined) action that
supports precondition p of a, as if they were normal actions. Thus for example, when a′ is an action in Steps

that deletes p such that S(p, a) ≺ a′ ≺ a is consistent, a disjunction a′ ≺ T (p, a) ∨ a ≺ a′ is posted, where
T (p, a) is a temporal variable that encodes the starting time of the (possibly undetermined) action that
supports precondition p of a.6 Some additional constraints are used to keep the support variables S(p, a) and
the temporal variables T (p, a) in sync. In particular, a′ ≺ T (p, a) implies S(p, a) 6= a′, and a′ ≺ T (p, a) iff
a′ ≺ a′′ for all a′′ ∈ D(p, a), where D(p, a) is the domain of the support variable S(p, a). Similar constraints
follow for ’Â’ in place of ’≺’.

The planner, that we call bbp for branch-and-bound planner, accommodates the basic algorithm, the
extensions above, and a simple ’flaw’ selection heuristic based on the criticality of the flaw measured in terms
of the slack and the number of conflicts of the actions involved. While further work is needed to tune up the
code and the heuristics, the performance of the current planner is promising. Table 6 shows the performance
of the planner over a set of widely used benchmarks, in relation to other modern, domain-independent
optimal parallel and temporal planners such as Graphplan, Blackbox, IPP [24], HSPr*, and TP4 (we don’t
include STAN [27] in the comparison, as it uses mechanisms that are adapted to these types of domains).
bbp is not as good as Blackbox, yet it appears to be as good or better than Graphplan and the heuristic
search planners. At the same time, these results are preliminary and we believe that they can be improved
substantially.

5 Discussion

There are three ways in which we believe the current implementation can be improved. First, we need to
devote more time to tune up the variable and value selection heuristics (namely, the heuristics for selecting
flaws and for ordering the repairs). These heuristics are known to have a big impact on performance. Second,
we need to tune up the propagation rules. Right now, a few tens of nodes are generated by second, and
thus, while the overall number of nodes is often much smaller than in other planners, this does not always
translate in faster times. Third, the precondition constraints used for capturing the h1

T lower bounds need
to be extended to for capturing the more informed h2

T bounds.
The extensions for accommodating actions with non-unit durations are not implemented yet but are

minor. In any case, we believe that the performance of a temporal planner should approach the performance
of the best parallel planners when only actions of unit durations are considered. No optimal temporal planner
has this property yet, nonetheless, we believe that this approach offers a promising alternative.

5 More precisely, we treat the atom pair p, q as mutually exclusive (mutex) when h2(p, q) > B, where B is the current
bound, and say that an action a e-deletes an atom p when a deletes p or when a has a precondition or positive
effect q that is mutex with p. Then, it can be shown that mutex and causal link constraints remain true when the
delete lists of actions a are replaced by extended delete lists, i.e., the lists of atoms p e-deleted by a.

6 Actually, this is more subtle when a′ is one of the possible values of S(p, a). In such case, the disjunction becomes
S(p, a) = a′ ∨ (S(p, a) 6= a′ ∧ (a′ ≺ T (p, a) ∨ a ≺ a′)).



Problem bbp bbox gplan ipp tp4 hspr*

bw-large.a 3.04 4.8 0.35 0.15 0.92 0.22

bw-large.b 25.8 -/- 26.53 6.06 - 32

bw-large.c - -/- -/- -/- - -

rocket.ext.a 40.63 2.67 -/- 16.36 184 85

rocket.ext.b 54.13 3.81 -/- 39.86 148 52

logistics.a 2.08 2.83 -/- -/- - -

logistics.b 1094.97 10.65 -/- -/- - -

logistics.c NC 1743.7 -/- -/- - -

Fig. 6. Results of some optimal parallel and temporal planners over set of benchmarks. Entries report times measured
in seconds. All experiments ran on a PIII 500 MHZ machine with 250M RAM per run. Runs cut after 2000 secs. Sym-
bols ’-’ and ’-/-’ mean that planner ran out of time or memory respectively. The Graphplan (GPlan) implementation
used from the Blackbox (BBox) distribution; Blackbox ran with Satz Solver. NC above means that the optimal plans
are not canonical.

The most serious limitation in the planner and in its underlying formulation is the consideration of
canonical plans only where ground actions are executed at most once. One way to overcome this limitation
is to replace the dynamic precondition constraints (10), that depend on the current domain D(a, p) of the
support variables S(a, p), by the static precondition constraints (8) that depend on their initial domains
only. In this way, arbitrary number of action ’copies’ can be added to the plan, but the resulting lower bound
propagation becomes weaker. On the other hand, if it is known that actions can be repeated, say, 2 times,
then it is sufficient to add a copy a′ of each action a in the domain, along with the constraint that a′ cannot
be in the plan when a is not (this is a form of symmetry pruning). Still, the best way to go from canonical
to non-canonical plans in this setting remains open. Nonetheless, the focus on plans in which every action is
done at most once, is a sensible way to approach the integration of planning and scheduling where actions
are normally done exactly once.

6 Related Work

The view of planning as branch-and-bound is an extension of the view of planning as heuristic search [30,
5, 6] which is tied to directional branching schemes. The use of heuristics in non-linear planning has been
considered recently in [32] where a high-performance non-optimal POP planner is introduced. While our bbp

planner has been developed independently, there are a number of ideas that are common to both planners
such as the ideas of exploiting mutex information and reasoning with disjunctions. Rintanen in [36] explains
the limitations of Graphplan and the benefits of Blackbox in terms of a non-directional branching scheme.
His approach is further elaborated in [28]. Systems that accommodate planning and scheduling capabilities
include IxTeT [26] and RAX [22] (yet see also [31, 11, 13, 42]) although their domain-independent performance
is weak due to the use of poor lower bounds. CPlan [40] is a high performance constraint-based planner
that requires a highly tuned model of the domain to operate. Finally, [4] is a planner based on an integer
programming formulation that does IP branch-and-bound using a standard IP solver.

7 Summary

Heuristic search planning appears currently as the best approach for sequential planning. On the other
hand, for temporal or parallel planning, the directional branching schemes used in heuristic search planning
lead to a large branching factor and weak performance. In this paper we have laid out a framework for
integrating lower bounds, as used in heuristic search planners, with non-directional branching schemes, as
found in in partial-order planning and SAT/CSP formulations. We have also tried to clarify the relationship
between planning and scheduling techniques by considering a number of planning theories whose expressive
power lies somewhere between the job-shop and temporal planning. We have also implemented a planner on
top of a constraint programming system, and obtained some preliminary results that show the potential of
this approach for developing high-performance domain-independent temporal planners that exploit recent
advances in classical planning.
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