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Abstract

Scaling conformant planning is a problem that has
received much attention of late. Many planners
solve the problem as a search in the space of belief
states, and some heuristic guidance techniques have
been developed to estimate the distance between
belief states. We claim that heuristic techniques in
the past involved an ad-hoc combination of clas-
sical planning heuristics and cardinality measures.
We discuss how to combine them systematically,
with the help of planning graphs, such that the
measures reflect the reachability of relevant states
within belief states. To demonstrate these ideas we
show how distances between belief states can be es-
timated by a set of reachability heuristics within a
conformant regression planner named �������	�
��� .

1 Introduction
Ever since CGP [Smith and Weld, 1998] a series of planners
have been developed for tackling conformant planning prob-
lems – including GPT [Bonet and Geffner, 2000], C-Plan
[Castellini et al., 2001], PKSPlan [Bacchus, 2002], Frag-
Plan [Kurien et al., 2002], HSCP [Bertoli et al., 2001], and
KACMBP [Bertoli and Cimatti, 2002]. Some of these plan-
ners are extensions of heuristic state search planners, yet de-
spite their success there is as yet little understanding on what
the basis for heuristics should be.

Given the different search strategies used by the planners,
it was hard to analyze the impact of various heuristics apart
from the planning substrate that is used. Of the different
strategies, only GPT and KACMBP use non-trivial reacha-
bility heuristics, however the former uses an explicit repre-
sentation, and the latter uses a factored representation with
BDDs. GPT has even been outperformed by HSCP (a precur-
sor to KACMBP that relies only on belief state cardinality for
guidance). This says little of the merit of the heuristics of the
two approaches because while HSCP’s search engine, based
on binary decision diagrams, is quite sophisticated, its heuris-
tics are quite primitive. KACMBP improves upon HSCP by
combining an adjusted cardinality heuristic with a reachabil-
ity heuristic. The forward chaining planner uses a reachabil-
ity heuristic similar to FF [Hoffmann and Nebel, 2001], in
that it takes a relaxed projection from the current belief state
to the goal and sums over the costs of literals in the current
belief state, or finds the maximum distance between any state

in the current belief state and the goal state. The adjusted
cardinality and reachability are combined by a weighted sum
to get a heuristic value. Still, comparisons of the heuristic
effectiveness of KACMBP cannot be decoupled from the ef-
fectiveness of the search substrate.

Thus, we will discuss the effectiveness of the heuristic
techniques in a decoupled fashion to explore what measures
may be beneficial for any substrate. We argue that the pre-
vious idea of using the maximum distance between any pair
of states in the belief states in the distance computation is not
the best means to assign heuristic values to a search belief
state, nor does cardinality have a real meaning when cost-
ing distance. The reason that the maximum distance is used
by forward-chaining planners like KACMBP and GPT is that
there is a single goal state and each of the states in the cur-
rent belief state must be able to reach the goal, otherwise the
distance for the current belief state is infinite. However, when
there are multiple goal states, then a maximum of all distances
doesn’t make sense because all of the states in the current be-
lief state must reach a goal state, not all goal states. Also,
cardinality has been seen as an effective heuristic for guid-
ing search by leveraging the knowledge that there are multi-
ple initial states and a single goal state. However, as search
progresses or regresses, there can be an arbitrary number of
states in any belief state. Cardinality just happens to work
well when the domain is structured such that there is a mono-
tonic increase or decrease in the size of a belief states during
search. In other words, each action that is used in a confor-
mant plan will either increase (in regression) or decrease (in
progression) the size of the current belief state, and all other
actions either decrease (in regression), increase (in progres-
sion), or maintain the size of the belief state. This occurs in
many of the domains in conformant planning literature like��
��

, ������� , and � 
���� . Cardinality can lead the search astray
in the

��
��
domain, for instance, if there were many pack-

ages but in the initial state we specify that the bomb is in one
of a subset of the packages. In regression, there will still be
applicable actions for dunking each of the packages (possibly
containing a bomb or not). Cardinality will direct the search
to arbitrarily select dunk actions that may or may not be for
packages that are relevant to the problem because regressing
each action will increase the cardinality of a belief state.

Given these observations, our intent is to:

1. Describe, in general, what heuristic estimates for con-
formant planning should be measuring

2. Show how such heuristics can be computed with plan-



ning graphs

3. Provide empirical comparisons of the computation ap-
proaches.

To facilitate this discussion, we describe and evaluate the
heuristics within a conformant planner called ���
���	�
��� .�������	����� does regression search in the space of “clausal
states” (which are conjunctive representations for sets of
states). The challenges in developing planning graph based
heuristics for ���
���	�
��� include: (i) handling the reachability
cost of sets of states represented as clauses and (ii) handling
uncertainty in the initial state by basing heuristics on multiple
(rather than a single) planning graphs. Our empirical studies
show that planning graph based heuristics provide accurate
guidance compared to cardinality heuristics as well as the
reachability heuristic used by GPT, and are competitive with
forward space combination heuristics used within KACMBP.

We present our work by first explaining the state and action
representation used within ���
���	�
��� , then discuss appropriate
heuristic measures for conformant planning, followed by the
set of heuristics used within ���
���	�
��� for search control, fol-
lowed by empirical evaluation, related work, and concluding
remarks.

2 State and Action Representation

State Representation: As discussed in [Bonet and Geffner,
2000], conformant planning can be seen as a search in the
space of belief states.

A belief state
�����

is a set of multiple world states� �����
	�	�	��
�����
	�	�	��������
.

We choose clausal states as a factored representation, in
CNF, of belief states.

A clausal state � � � , logically equivalent to
��� �

, is a set
of clauses

� � � �
	�	�	�� ��� �
	�	�	�� ��� � where each ��� is a disjunction
of a set of literals

��� ���
	�	�	�� �
� �
	�	�	�� ��� �
. A conjunctive clausal

state � � �� is a set of unit clauses, when ! ��� � ! "$# . � � ��
also refers to a state

� �
with a conjunctive set of literals��� ���
	�	�	�� �
� �%	�	�	�� ��� �

.
Using the

� 
�� � 1 problem as a running example for this
paper, the clausal state representation of

��
�� � ’s initial state
is: � ��& "(' )+*�, �
- � �/. �0�%1�
���2 # 3 
���254�67�%18- 
���2 #93 - 
���254�6;:

A clausal state � ��� is said to be satisfied by another clausal
state � � ��< if every clause � � in � � � is satisfied by � � ��< .
More specifically, � ��� is satisfied by � ��� < if=0>0?A@�>CB�DFEG> ? < @�>�B D < s.t. ��� <9H ��� .

For example, if � ��& " ' 1�
���2 #I3 
���254J6K�%18- 
���2 #I3- 
���254�6;:
, and � ��� "L' 18- � �/. � 3 
���2 #M3 
���254�6;:

, then � ���
is satisfied by � � & .

A clausal state � ��� is said to be inconsistent with another
state � ��� < , if there is a clause �N��O � ��� s.t.

- ��� is satisfied
by � � � < .

For example, if � ��& " ' - )+*�, ��- � �/. �0�%1�
���2 #P3
���254�67�%1Q- 
���2 #�3 - 
���254�6;: , and � � � "(' � �/. �0� )+*�, ��1�
���2 #R3
1Bomb in the Toilet with Clogging.For the uninitiated, here are

the arcana of the Bomb in the Toilet family of problems: Bomb in
the Toilet ( SMTAU )–the problem includes two packages, one of which
contains a bomb, and a toilet. The goal is to disarm the bomb and
the only allowable actions are dunking a package in the toilet. The
variation “bomb in the toilet with clogging” or SVTAUNW says that the
toilet will clog unless it is “flushed” after each “dunking” action.


���254�6;:
, then � ��� is inconsistent with � ��& because the nega-

tion of )+*�, in � ��� is satisfied by
- )+*�, in � ��& .

The set of constituents X 1 � ���Y6 of a clausal state
is all minimal conjunctive clausal states

�0�
that sat-

isfy � ��� . X 1 � ���Y6 is equivalent to a DNF representa-
tion of a clausal state’s CNF representation. For exam-
ple,

��
�� � ’s initial state � � & " ' )+*�, ��- � �Q. ����1�
���2 #Z3
���254�67�%1Q- 
���2 #�3 - 
���254J6Y: ; the set of constituents X 1 � ��&�6 "� ' )+*�, �
- � �/. �0� 
���2 # �
- 
���254�:[� ' )+*�, �
- � �/. �0� 
���254G�
- 
���2 # :[� .
Since we’re dealing with partial regression states,X 1 � � � 6 may not represent all states in a belief state��� �

, so we define \X 1 � � � 6 as the complete set of
states represented by

���R�
. For example, if

��
�� � ’s
initial state were partial � ��& " ' )+*�, ��1�
���2 #]3
���254�67�%1Q- 
���2 #^3 - 
���254�6Y:

; the set of constituentsX 1 � ��&�6 " � ' )+*�, � 
���2 # ��- 
���254�:/� ' )+*�, � 
���254_��- 
���2 # :Q� ,
but \X 1 � � & 6 " � ' )+*�, � � �/. �0� 
���2 # �
- 
���254�: ,' )J*�, ��- � �Q. ��� 
���254G��- 
���2 # : , ' )+*�, � � �Q. ��� 
���2 # ��- 
���254�: ,' )J*�, ��- � �Q. ��� 
���254G��- 
���2 # :[� .
Action Representation: An action )a` , of the action set�b" � )�# �
	�	�	�� ) ` �
	�	�	�� )Gc � , is described in terms of (1) an ex-
ecutability precondition d_e , and (2) several conditional ef-
fects of the form ( f gLhidagkj l�g ), where dGg and l�g
are, in general, clausal states2. The executability precondi-
tion dae (a clausal state) of the action must hold for the ac-
tion to be executable. Each conditional effect is of the form' antecedent (precondition d g ) j consequent (effect l g )

:
. The

antecedent or consequent of the individual effects can be
empty. In the first case, the action has a defined outcome
in any state; and in the second case, the corresponding effects
occur in all worlds. The conditional effects fmg make up a setnpo7q " � f � �
	�	�	�� f g �
	�	�	�� fsr � .

As an example, the actions for
��
�� � are expressed as:

)at9u ��vKw�� h � dGeVh - � �/. � , d � h 
���2 #Vjkl � h - )+*�, , l�xyh � �/. ���)at9u ��vKw x5h � dGeVh - � �/. � , d � h 
���254 jkl � h - )+*�, , l�xyh � �/. ���)az��{u�| � h � l � h - � �Q. ���
Regression: Conformant planning by regression is just a
search in the space of clausal states, starting with the goal
state and regressing it non-deterministically over all relevant
actions. Clausal states are regressed until finding a clausal
state that is satisfied by the initial state. The main difference
between regression search in conformant and classical plan-
ning is that because of disjunction in the initial state a con-
formant planner cannot split the disjunction in a regressed
state3 into the search space – and thus has to handle disjunc-
tive clausal states directly.

Following [Pednault, 1987], regressing a clausal state � � �
over an action ) ` involves taking the union of causation and
preservation clauses of each �N�}O � ��� w.r.t. each effect f g
of )+` . Formally, the result � � ��< of regressing the clausal state� ��� over the action ) ` is defined as:� ��� < " � � � * ��~�~ 1 � ����� ) ` 6 " =0>0?A@�>CB�DQ=��G�%@���� q dGe��� �G�o q 1 ��� 6 �Z�

�G�o q 1 ��� 6
2 �%� is a conjunctive clausal state because we are only considering

non-deterministic actions.
3To see this, consider that we have a goal ����� . Splitting the

disjuncts into the search space treats the goal as ����� , which will
not be satisfied if the initial state has �}�5� .
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Figure 1: Regression path for
��
�� � example.

Executability clause ( dGe ) is the executability precondition of) ` . This is what must hold in � ��� < for ) ` to have been appli-
cable.

Causation clause for a clause � � w.r.t an effect f9g h�dag jl g of an action ) ` (denoted by
� �G�o q 1 ��� 6 ) is defined as the

weakest clause that must hold in the state before )G` such thatf g causes ��� . Formally
� � �o q 1 �m� 6 is defined as:� � � 3Zdag !�f g h dGg�jkl�g O n o q and l�g satisfies � � � .

Preservation clause of a clause � � w.r.t. an effect f9g�h�dag�jl g of action ) ` (denoted by �
�G�o q 1 �m� 6 ) is defined as the weak-

est clause that must be true before )a` such that � � is not vio-
lated by the effect l g of f g . Formally �

� �o q 1 ��� 6 is defined:� - dGg�!�f g hJdag�jkl�g�O n o q and l�g satisfies
- � � � .

Example of Regression and Search: Since clausal state re-
gression is not commonly discussed in planning literature, we
will now give a complete example of clausal state regression
search within

� 
�� � . The search states are shown schemati-
cally in Figure 1. We start with initial and goal clausal states:� ��& "(' )J*�, ��- � �Q. ����1�
���2 #93 
���254J6K��1Q- 
���2 #93 - 
���254J6Y:� �&% "(' - )+*�, :) tmu �JvKw�� and ) t9u ��vKw x are applicable for regression at� �&% because they both have

- )J*�, as a conditional ef-
fect consequent. The regressed states � � � and � � x are
constructed from the causation clause and the executability
clause for the respective actions.� �R� " � � � * ��~�~ 1 � � % � ) t9u ��vKwC�
6 " ' - � �/. �0�%1�
���2 # 3- )+*�, 6;:� � x " � � � * ��~�~ 1 � � % � ) t9u ��vKw x 6 " ' - � �/. �0�%1�
���254 3- )+*�, 6;:

Notice that in classical planning, we would have said here
that ��� � * ��~�~ 1 � �'% � )at9u ��v7w�� 6 "(' - � �/. �0� 
���2 # : since

- )+*�,
is directly given by ) tmu �JvKw�� . However, the weakest precon-
ditions for

- )J*�, to be true after )Gt9u ��vKw�� is
1�
���2 #03 - )+*�, 6

rather than just
- )+*�, .)+z��{u�| � is applicable to both � � � and � � x because it has- � �Q. � as an effect. The regressed states � �)( and � �+* are

constructed based on the executability clause, but the precon-
dition is always true, so the only change is the removal of- � �Q. � .� � ( " � � � * ��~�~ 1 � �R��� ) z��{u�| � 6 "P' 1�
���2 #93 - )J*�, 6Y:� �+* " � � � * ��~�~ 1 � � x � )+z��{u�| � 6 "P' 1�
���254 3 - )J*�, 6Y:

Finally, both
, � �)- actions are applicable again for the

same reason as the generation of � ��� and � � x . Choosing
the unchosen

, � �)- action, given the search path, will lead
to a state with new information. After regressing all applica-
ble

, � �)- actions, we get � �'. , � �&/ , � �&0 , and � �'1 .� � . " � � � * ��~�~ 1 � �&( � )+tmu �JvKw x 6 " ' - � �/. �0�%1�
���2 #+3 
���254 3- )+*�, 6;:� �&/ " � � � * ��~�~ 1 � � ( � ) t9u ��vKwC�
6 " ' - � �Q. ����1�
���2 #i3- )+*�, 6;:� �&0 " � � � * ��~�~ 1 � � * � ) tmu �JvKw��%6 " ' - � �/. �0�%1�
���2 #+3 
���254 3- )+*�, 6;:� � 1 " � � � * ��~�~ 1 � �+*J� )at9u ��vKw x 6 " ' - � �Q. ����1�
���254 3- )+*�, 6;:� � . and � � 0 are both satisfied by � �R& because every
clause in the clausal states is satisfied by a clause in the ini-
tial state, so either is a terminal search node, and the path of
actions leading to it is a conformant plan.

3 Factored Belief State Distance Estimation
We will start by discussing what measures are worth estimat-
ing for providing heuristic guidance for conformant planning.
Consider the example in Figure 2; there are two belief states��� �

and
��� x that we are trying to assign heuristic measures

for the difficulty of reaching the initial belief state
��� &

. We
would like to estimate

, �
and

, x , the actual lengths of con-
formant plans from

����&
to

��� �
and

��� x , respectively. The
arcs on

��� x labeled 2 � and 2 x are showing how state dis-
tance measures are combined.

There are several factors to consider and leverage in mak-
ing this estimation of

, �
and

, x :
1: \X 1���� � 6 , the set of states in the belief state.

2: Reachability measures between pairs of individual states,3 � �54�v
, where each pair is a state

�Rv
from

��� &
and

���
from�����

, as well as 2 � and 2�x , the combination techniques for the
distances of individual states to obtain

3 �
, a distance estimate

to
, �

.

3: The overlap of independent plans that reach the relevant
states of

��� �
from states in

��� &
.

The cardinality of a belief state may be used as a cheap
heuristic that assumes that a larger belief state has more prob-
ability of containing the states in the initial belief state. How-
ever, this can be misleading because even though a belief state
is large, we may not be able to extend it to include the initial
states, during regression

The reachability measures of pairs of states (
3 � �540v

) or pairs
of belief states and states (

3 � 40v
) also reflect how difficult a

conformant plan will be to construct. These
3 � �54�v

and
3 � 4�v

measures can be handled as either numbers estimating the
plan length or sets of actions estimating a plan. Also impor-
tant is how to combine the

3 � �54�v
and

3 � 4�v
measures to ulti-

mately get the estimate
3 �

. We define two combinations: 2 � ,
which uses the

3 � �540v
’s or estimates directly to get the

3 � 4�v
measures, and 2sx , which combines the

3 � 4�v
measures or esti-

mates directly to get
3 �

. The applicable operations allowable



h( � ��� ) = � �

h( � � 	 ) = � 	

� �

� 	

� �

� �

� �

�#�
: � � � � �
� �

: � � � ���
� 	

: � � � ��	

� 	
: � � 	���	� �
: � � 	�����#�
: � � ��� �� 	
: � � ����	� �
: � � ������#�
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: � � ����	� �
: � � �����

�$�
: � 	 � � �� 	
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: � 	 � ���

�#�
: � � 	�� �

�#�
: � 	�� �� 	
: � 	���	� �
: � 	����

�#�
: � � � �� 	
: � � ��	� �
: � � ���

��� : distance from � � � to � ���
��� �
	 : distance from � � � to state

�

�
- state in � � �
�

- belief state�
- state in � � �

� �

� 	

�$�

� ���

��	

� �

� 	 �$�
: � 	 	�� �� 	
: � 	 	���	� �
: � 	 	����

� � 	

� � �

��� 
 ��	 : distance from state
�
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�
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 ��	 values

� 	 : Combination of � � �
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Figure 2: Example of Conformant Plan Distance Estimation in Belief Space

in 2 � and 2Cx for numerical estimates are minimum, maxi-
mum, and average; and for estimated sets of actions we can
take the minimum cardinality set, maximum cardinality set,
or the union of sets. Note, sets of actions can be turned into
numerical estimates by taking the cardinalities of the sets; this
necessarily happens before we get a final number for

3 �
.

Furthermore, of the reachability measures for
��� O \X 1���� � 6

there can be much redundancy because the same actions may
be used in many of the individual plans that map the initial
states

��� &
into X 1���� � 6 , hence have high overlap. As we will

show, keeping sets of actions instead of numerical estimates
for the

3
measures can allow us to reason about overlap.

For example, in Figure 2, only using !m\X 1������86 ! to estimate3 �
will tell us that

�����
is a better choice because there are

four states in it, opposed to two in
��� x . This may not be the

best choice because it could be the case that
=0�
�
v 3G�8�54�v "�� .

Alternatively, abandoning cardinality and using a heuristic
similar to GPT, we’d set both 2 � and 2 x to take a max in or-
der to find the �����

�
�
v 3 � �54�v

to for the estimate
3 �

. However,
this is problematic for the same reason as !9\X 1���� � 6 ! because
maybe

E+�
�
v 3G�8�54�v "�� . Then we’d eliminate

��� �
from con-

sideration by assigning
3G�

a cost of � , even though the other
states in

�����
may all have very low distances to

��� &
, with

respect to the distances of states in
��� x .

This brings up an important point for considering how to
define 2 � and 2�x for costing a belief state. We would prefer
2 � to be a minimization because a state

�0� O ��� �
may not

even be relevant to achieving the state
� v O ����&

and taking
the max would give

3 � 4�v "�� . The minimization is impor-

tant because we need only one state
� � O �����

to have a finite
distance for each

�Rv O ��� &
. However, for 2 x it is impor-

tant to take a maximization because the distance from
�����

to����&
is at least the largest distance from the minimum-cost

relevant states of
��� �

, and if for any state
�Rv O ��� &

that the
distance

3 � 40v "�� then
3 � "�� because that initial state

� v
is unreachable, from

�����
.

Another approach, that of KACMBP [Bertoli and Cimatti,
2002], is to consider a heuristic that combines reachability
with relevance-based cardinality (or as they call truth percent-
age) for forward chaining search. The reachability measure is
taken either similar to GPT as a �����

�
�
v 3 � �54�v

, or a sum over
the costs of goal literals in a projection from

�y�
to get

3 �
.

The lesson to be learned is that in regression not all of the
states

� � O �����
need to be costed with respect to each of

the initial states, only the min-cost
���

for each
�Rv O ��� &

.
Whereas, in progression, if there is a single goal state, then
each of the states in the current belief state must have finite
distance to the goal to be useful. However, the same argument
for regression holds in progression when there are multiple
goal states; we only care that each of the states in the current
belief state has finite distance to one of the goal states. So
we would like to take the max of the min-cost distances from
each of the states to one of the goal states because some of
the states in the current state may not be able to reach all of
the goal states.

4 Heuristics
This section provides, first, three sets of heuristics that es-
timate these distance computations, and second, approxima-



tions to the distance computations that improve performance.
All of the heuristics used in �������	�
��� are within the context

of greedy best first search (cf. [Bonet and Geffner, 1999]),
where the reachability cost of a clausal state is � 1 � �R�Y6 "��1 � � � 6���������1 � � � 6 . The

�01 � � � 6 term is the number of
actions regressed from the goal state to reach � �R� , � is the
weight term, and

�R1 � ���86 is the heuristic estimate of how
many actions are needed to reach the initial state from � � � .
The search is guided by expanding the clausal states with the
lowest cost � 1 � ���86 .

For the remainder of this section, to illustrate the computa-
tion of each heuristic, we use an example from

��
�� � called� ��
�� � ,4 where a courteous package dunker has to disarm
the bomb and leave the toilet unclogged. This problem is
used because the goal state has two conjuncts, allowing better
illustration of heuristic computation that combines the costs
of individual subgoals. The initial clausal state is � ��& "' )J*�, ��- � �Q. ����1�
���2 #53 
���254�67�%18- 
���2 # 3 - 
���254J6Y:

, and the
goal is � � % "(' - � �/. �0��- )+*�, : . The optimal action sequences
to reach G from I is:

� , � �)-G2 #�j
	 ���0~ � j , � �)-G254 j	 ����~ ��� , or
� , � �)-G254 j�	 ����~ � j , � �)-G2 #�j
	 ���0~ ��� ,

thus the optimal heuristic estimate is
�
��1 � � % 6 "�� because

in either plan there are four actions.

4.1 Cardinality
The idea behind cardinality is to count the number of states
that are represented by a belief state. This can be useful in
regression because the more states that are in a belief state
the better chance that the initial states are in the belief state.
The first means by which we make this measure is to take a
belief state and find its set of constituents, X 1 � �R�86 , to approx-
imate \X 1 � � � 6 . Using a clausal state � � � directly, we expand� ��� into its set of constituent states X 1 � ���Y6 and count them.
Formally,���;o r�� 1 � ���Y6 " !�X 1 � ���86 ! .

For instance in � ��
�� � ,
� �;o r�� 1 � � % 6 " # .

4.2 Single planning graph heuristics
The base approach for using planning graphs for con-
formant planning heuristics is to just take all the lit-
erals in the initial state clauses and insert each literal
into the initial layer of the planning graph, ignoring in-
teractions between possible worlds. Thus, for � � 
�� � ,
the initial level of the planning graph is expressed as� ��& "(' )J*�, ��- � �Q. ��� 
���2 # � 
���254_��- 
���2 # �
- 
���254�: , ignoring
the “xor” connective between


���2 # and

���254

. Once the
planning graph is computed, the level � 1 ��� 6 at which a par-
ticular literal appears in the planning graph is later used at its� . ~ � . Notice, 2 x "�� because there is only one

3 � 40v
value

estimated by a single planning graph.
The most simple conformant planning heuristic to compute

on a planning graph is� � o���1 � ���Y6 " �����>0?[@�>�B D � . ~ � 1 �m� 6 , where� . ~ � 1 ��� 6 " ����� ��� @�>0? 1 � 1 � � 6 6 .
Here we use 2 � " estimate, and 2 x "�� when construct-

ing the cheapest set of literals and taking the max cost literal.
This is approximate to GPT’s heuristic because it takes the
max distance to reach a literal of the goal state, which is an
underestimate of the most distant state. Another heuristic is:

4Courteous BiTC.

� |;u�� 1 � ���86 "  >�?[@�>�B D � . ~ � 1 ��� 6
which sums costs of the literals of the closest estimated

state in the belief state. It uses 2 � " estimate, and 2 x "� . Other heuristics considering mutex information can be
computed on a single graph, and we have investigated several
of them. They are not discussed here for lack of space.

The main disadvantages of single planning graph heuris-
tics is that they make it hard to reason about the overlap of
independent plans from the initial states, and make it difficult
to identify consistent states because the graph is built from an
inconsistent union of literals.

4.3 Multiple planning graph heuristics
Single graph heuristics are mostly uninformed because the
initial belief state corresponds to multiple possible states. The
lack of accuracy is because single graphs are often not able
to capture propagation of world specific support information.
Consider, in

��
�� � , if
, � �)-G2 # was the only action, then, � �)-G2 # has nothing to be mutex with. We could say that- )+*�, is reachable in level 1, but in fact the cost of

- )+*�, is
infinite (since there is no

, � �)-G254 to fully support
- )+*�, ),

and there is no conformant plan5.
To account for this and sharpen the heuristic estimate by

accounting for support across all possible worlds, multiple
planning graphs ! are considered. Given the initial clausal
state � � & , we grow a planning graph " v O#! for each con-
junctive initial state

� v O�X 1 � ��&�6 . With multiple graphs, the
achievability cost of a clausal state is computed in terms of its
achievability in all the constituent graphs. In general we only
build the minimal independent set of graphs for � ��& becauseX 1 � ��&�6 is the set of minimally satisfying states. Hence, one
disjunct is chosen from each clause to construct a graph, thus
the independent set of graphs. We now can estimate many3 � 4�v

measures and need 2Cx to combine them.
For example in

� 
�� � , there would be two graphs built
(Figure 3). They would have the respective conjunctive initial
levels:��&%$ h ' )+*�, ��- � �Q. ��� 
���2 # ��- 
���254�:� &'& h ' )+*�, ��- � �Q. ���
- 
���254_� 
���254�:

In the graph for the first world,
�R&%$

,
- )+*�, comes in only

through
, � �)-G2 # at level 1. In the graph for the second

world,
��& &

,
- )J*�, comes in only through

, � �)-G254 at level 1.
Thus, the multiple graphs show which actions in the different
worlds contribute to the same fact’s support.

There are several ways to compute the achievability cost of
a clausal state with multiple graphs, as follows:

Sum-max (
� |;u��)( �+* ): The easiest heuristic to compute with

multiple planning graphs is
� |;u�� ( �+* . The

� |;u�� ( �+* 1 � � � 6
computes the sum of the cost of the clauses in � ��� for each
graph " v O,! and takes the maximum. Formally:� |;u��)-/.10 1 � ���Y6 " �����3254 @7698 � |;u��;: 4 1 � ���Y6%<

Here we use 2 � " estimate, and 2CxV" maximum.
� |;u��)( �=*

considers the minimum cost, relevant literals of a belief state
(those that are reachable given an initial state for each graph" v ) to get

3 � 40v
measures. The max is taken because the esti-

mate accounts for the worst (i.e., the plan needed in the most

5If any of the planning graphs does not “reach” all of the goals,
then this is an indication that a conformant plan does not exist (as
would be the case with only the >@?BA/CEDGF action in SMTAUNWIH ).
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Figure 3: Multiple planning graphs for � ��
�� � , with
facts used for

� |;u�� ( �+* 1 � � % 6 circled, facts used for� ��e��7eY� ( �+* 1 � �&%m6 in boxes, and actions for
��� w ( �=* 1 � �&%m6 and��� w ��� D �	� 1 � �&%N6 in ovals.

difficult world to achieve the subgoals)6. This max nullifies
the chance of getting any overlap information between the
worlds, but taking an average or sum wouldn’t help either
because there is no way to tell overlap by looking at the nu-
merical estimates for each world.

From the � ��
�� � , the goal is � � % " ' - � �/. �0��- )+*�, : .
Computing the

� |Fu��)( �=* 1 � �'%�6 (Figure 3) finds
� |;u��;: $ "(#

(denoted by circled facts in the top graph),
� |;u��;: & " # (de-

noted by the circled facts in the bottom graph), and the max,� |;u�� ( �+* 1�
56 " # .
Level-max (

� ��e��7eY� ( �+* ): Similar to
� |;u�� -/.10 , � ��e��7e;� ( �+* is

found by first finding
� ��e��7eY� : 4 to get

3 � 4�v
for each graph" v O,! , then the max of this value across the graphs is taken.� ��e��7eY� : 4 1 � � � 6 is computed by taking the minimum among

the
��� O X 1 � � � 6 , of the first level ( ���
� 1Q���%6 ) in the planning

graph where no two literals in the constituent
� �

are mutually
exclusive. Formally:� ��e��7eY� : 4 1 � ���Y6 " � ��� B��
@�����>�B D�� 1 ���
� 1Q� � 6�6� ��e��7eY� ( �=* 1 � � � 6 " ����� 254 @�>CB�� 11� ��e��7e;� : 4 1 � � � 6 6

Here we use 2 � " minimum or estimate to get
� ��e��7eY� : 4 ,

then 2 x " maximum for
� ��e��7eY� ( �+* . Note, this heuristic is ad-

missible. By the same reasoning as in classical planning, the
first level where all the subgoals are non-mutex is an under-
estimate of the true cost of a state. This holds for each of the
graphs. Taking the max accounts for the most difficult world
in which to achieve a constituent state of � � � and is thus a
provable underestimate of

� �
.

For the � ��
�� � goal � � % "b' - � �Q. ���
- )J*�, : , computing
the

� ��e��7eY� ( �+* 1 � �&%�6 (Figure 3) finds
� ��e��7e;� : $ " 4

(denoted
by level containing facts inside boxed for the top graph),� ��e��7eY� : & " 4

(denoted by level containing facts inside boxed

6This closely resembles the reachability heuristic used in
KACMBP.

for the top graph), and the max,
� ��e��7e;� ( �+* 1 � �'%m6 " 4

.

RP-max (
� � w ( �+* ): Following the same maximization logic

as the
� |Fu��)( �=* and

� ��e��7eY� ( �=* heuristics for 2Cx , but to account
for the actual number of actions used,

� � w ( �=* is computed by
finding the relaxed plan from the constituent

� � O � ��� that
contributes to the

� ��e��7eY� : 4 1 � ���86 for each " v O ! and taking
the max of the number of actions in the relaxed plan.

The relaxed plan for a clausal state � �R� is computed by a
backward chaining search on the planning graph. We start at
the constituent

��� O X 1 � � � 6 , such that
���

is the constituent
at level � , computed in

� ��e��7eY� : 4 1 � ���86 " � . From
� �

at level
� , for each subgoal

� � O � �
, a supporting action is selected

(ignoring mutexes) from the ��� � action level. Once, a sup-
porting set of actions ( ~ �	����� ) is determined, the support for
the actions in ~ �	��� � is added to the list of subgoals to support
for level ��� # . Then, we look at level � � # the algorithm
repeats and continues until the initial level is reached. Thus,
a relaxed plan is the set � 2 254 " � ~ �	��� � � 254 , ..., ~ �	�!� | � 254 , ...,~ �	����� � 254 � . Formally, when

� ��e��7eY� : 4 1 � ���86 " � :
� � w ( �+* 1 � � � 6 " ����� 254 @76#" � |�$ � ! ~ �	��� | � 254 ! %
Here 2 � = minimum is used to get the cheapest estimated

relaxed plan for each initial state, then 2 x " maximum is
used to get

3 �
. This gives an inadmissible estimate for the

number of actions to reach the easiest constituent state in the
most difficult world.

For � � 
�� � , the goal is � � % "(' - � �Q. ���
- )+*�, : . Comput-
ing the

��� w ( �+* 1 � �&%N6 (Figure 3) finds
��� w : $ "'& ( ~ �	��� � "	 ����~ ��� ~ �	�!� x " � , � �)-_2 # � 	 ���0~ ��� actions in ovals for

the top graph),
��� w : & "(& ( ~ �	��� � " 	 ���0~ �R� ~ �	����x]"� , � �)-G254_� 	 ���0~ ��� ), actions in ovals for the bottom graph),

and the max,
��� w ( �+* 1 � �&%�6 ")& . Notice that this is the clos-

est multiple graph estimate, so far, for
�
��1 � � % 6 , but it can be

improved.

RP-union (
� � w ��� D �	� ): Observing the relaxed plans com-

puted in the
��
�� � example given for

��� w ( �+* , the relaxed
plans extracted from each graph are different. This informa-
tion can be leveraged to account for the interaction or overlap
of the two worlds. Notice, that ~ �	���0x for both graphs con-
tained a 	 ����~ � action which is not dependent on whether the
bomb is in either package. Also, ~ �	���0x contains a

, � �)-G2 #
for the first graph, and

, � �)-G254 for the second graph. Now,
taking the union of the two relaxed plans, would give ~ �	��� x "� , � �)-G2 # ��, � �)-G254_� 	 ����~ ��� , thus accounting for the ac-
tion that is the same between possible worlds and the actions
that differ.

A relaxed plan is computed for each graph " v O! , as in
� � w ( �+* . Then, starting from the last action

level(
� ��e��7e;� ( �+* 1 � ���;6 ) and repeating for each ~ �	���0| until the

first level, we union the sets of actions for each relaxed plan
at each level into another relaxed plan [ � 2 u � �+* � 1 � ���Y6 "= | � e � D � 254 @76 ~ �	��� � � 254 ]. Notice, the relaxed plans are right-
aligned, hence the unioning of steps proceeds from the last
step of each relaxed plan to create the last step of ~ �	���,� � u � �-* � ,
then the second to last step for each relaxed plan is unioned
for ~ �	�!� � 4�� � u � �-* � and so on. Then the sum of the numbers
of actions of the each ~ �	���0| in the � 2 u � �+* � is used as the
heuristic value. Formally, when

� ��e��7eY� ( �+* 1 � ���Y6 " � :



� � w ��� D �	� 1 � ���86 " � |�$ � ! ~ �	����| � u � �+* � !
Here 2 � " minimum, and 2CxV" union.� � w ��� D �	� doesn’t follow the same form as the rest of the

techniques, rather it estimates
3 �

by finding the relaxed plans
corresponding to , 
�� � 3 � �

for each
-

, then unions the relaxed
plans to get the overlap of plans for relevant states.

The insight of this heuristic is that taking the union of
action levels of relaxed plans between graphs will account
for the same action being used at the same level in multiple
worlds, or overlap. Thus the unioned relaxed plan contains
a representative set of overlapping actions for achieving the
relevant states in a clausal state in all worlds.

For the � ��
�� � goal � �'% " ' - � �/. �0��- )+*�, : , comput-
ing the

� � w ��� D ��� 1 � � % 6 (Figure 3) finds � 2 2 $ " � ~ �	��� � "	 ����~ ��� ~ �	�!��xi" � , � �)-G2 # � 	 ���0~ ����� , � 2 2 & " � ~ �	��� � "	 ����~ ��� ~ �	�!��xL" � , � �)-G254_� 	 ����~ ���J� , and � 2 u � �+* � "� ~ �	��� � " 	 ����~ ��� ~ �	��� x " � , � �)-G2 # ��, � �)-G254G� 	 ����~ ���J� .
Thus,

��� w ��� D �	� 1 � �&%�6 "�� , which is equal to the optimum
estimate

� ��1 � �&%N6 .
4.4 Reducing the Cost of Estimating Belief State

Distance with Clausal States
Searching in the space of clausal states complicates heuristic
computation by us having to reason about the reachability of
sets of states from sets of states. We want to find a state within
the set

��� �
that is the easiest to reach, with respect to the

number of actions needed of each " v in the set of
�

planning
graphs to get

3 �
. When

��� # , we are using multiple planning
graphs to represent different initial states, and need to perform
some combination 2Cx of the

3 � 4�v
measures for each " v in the

set of
�

planning graphs to get
3 �

. Otherwise when
� " # , 3 �

is simply the
3 � 4��

measure. However, there still remains the
issue of finding

3 � 40v
from the

3 � �54�v
’s. There are three main

ways , � , to get the cost
3 � 4�v

measures of a belief state
��� �

,
with respect to an initial state belief state

��� &
.

� � � h Expand X 1 � � � 6 and get
3 � �540v

, for each of the states� �
on graph " v corresponding to

� v O ����&
. Then we

could combine all of the
3 � �540v

to get
3 � 40v

by using 2 � .
� � x h Cost the cheapest minimal set of literals to get only

one
3 � �540v

that is used for
3 � 40v

. This corresponds to 2 �
being an estimate.

� � ( h Cost the estimated cheapest minimal state to get
only one

3 � �540v
that is used for

3 � 4�v
. This also corre-

sponds to 2 � being an estimate.

The first, and complete, method � � for finding
3 � 4�v

is to
explicitly expand a clausal state into the set of states that it
represents (equated with converting CNF to DNF), by find-
ing X 1 � ���Y6 , then getting a heuristic estimate for each state inX 1Q�m6 and taking the minimum, maximum, or average for 2 � .
Clearly, a clausal state can represent an exponential number
of states, so we desire a more efficient (less explicit) means
of finding the

3 � 4�v
. Notice that if 2 � were a summation that

we would be able to adjust the heuristic to consider the cardi-
nality of � � � .

The second idea �yx is to combine the cost of a set of liter-
als that minimally satisfies a clausal state. This set of literals
isn’t checked for consistency, and may not even represent a
valid state. It is found by assuming 2 � " estimated mini-
mum and taking the min cost literal from each clause (not

checking the resulting set for consistency). � x is used for
the single planning graph heuristics as well as

� |Fu��)( �=* . All
other heuristics, besides

� �;o r�� use either � � or � ( .
The third idea � ( is construct only one state and use it

for the estimate (enforcing 2 � " minimum), thus avoiding
the DNF expansion cost of � � 7. The state we construct is
partially specified by all of the unit clauses in the clausal
state. However there still remains the choice of an appropri-
ate subset of the literals of the non-unit clauses to complete
the state8. The appropriate subset is chosen such that the con-
structed state is the estimated easiest to reach of the set. This
is similar to � � when 2 � " min, but we avoid costing

� � #
states. The greedy approach to selecting the subset of liter-
als from the non-unit clauses is to take the single literal from
each clause that appears at the lowest level in the planning
graph. The algorithm for this selection is as follows:
(1) Sort the literals in each non-unit clause by increasing level
of first appearance.
(2) Sort the non-unit clauses in decreasing order, using the
level of the first element of the clause as the key
(3) While the set of non-unit clauses is non-empty and the
current partial state is a consistent state (i.e. the literals of the
partial state appear non-exclusive at some level in the graph)

(a) Insert the first literal of the first non-unit clause into the
partial state

(b) Remove all clauses from the list of non-unit clauses that
contain the literal from (a)
(4) If the complete constructed state or partial state is not con-
sistent, then the cost of the clausal state is set to infinity, other-
wise the cost of the clausal state is the cost of the constructed
state.

5 Empirical evaluation
This section presents the results9 of our experimentation with
the heuristics within �������	�
��� . We also compare with the
competing approaches (CGP, GPT, HSCP, and KACMBP) for
several domains and problems.

The implementation of ���
���	����� uses several off the shelf
planning software packages. The pieces of �������	�
��� are the
IPC parser for PDDL 2.1 , the HSP-r search engine [Bonet
and Geffner, 1999], and the IPP planning graph [Koehler et
al., 1997]. The custom parts of the implementation include
the action representation, clausal state representation and re-
gression operator, not to mention the heuristic calculation.

In addition to the standard domains used in conformant
planning–such as Bomb-in-the-Toilet variants, we also devel-
oped two new domains. We chose these domains because
they demonstrate higher difficulty in the attainment of sub-
goals, having many plans of varying length.

The �y.�� ��* ~ domain is a conformant adaptation of the
analogous domain of the IPC. The added uncertainty to the
initial state is conditions that rule whether an image objective
is visible from various vantage points due to weather. The

7Notice, that using ��� for a single planning graph doesn’t make
sense because consistent states cannot be identified on a planning
graph built from unioned initial states.

8Only one literal from each clause is taken because selecting
more literals will only increase the cost of the state.

9All tests were run in Linux on a Pentium 4 1.6GHz w/512MB
RAM.



Problem HCard HMax HSum HSumMax HLevelMax HRPMax � � HRPMax � ( HRPUnion
Rover1 0/0 0/0 0/0 0/0 129/5 147/5 145/5 145/5

2 0/0 3390/8 182272/8 13701/8 4751/8 420/9 420/9 331/9
3 0/0 23857/10 18185/10 13542/10 5985/10 494/11 489/11 636/11
4 0/0 0/0 0/0 736663/13 0/0 5173/15 5118/15 15530/15

Logistics1 0/0 1217/9 147/9 323/9 198/9 343/11 333/11 321/11
2 0/0 0/0 26438/15 24638/15 2844/15 11312/17 8979/17 6144/19
3 0/0 0/0 2611/14 10079/14 1973/14 7952/17 7536/17 1723/17
4 0/0 0/0 0/0 0/0 9118/18 306615/22 241311/19 164748/26

BiT2 17/2 3/2 3/2 3/2 5/2 10/2 11/2 11/2
10 78/10 3920/10 3921/10 2737/10 5118/10 10560/10 10253/10 462/10
20 364/20 0/0 0/0 0/0 0/0 0/0 0/0 3380/20
30 0/0 0/0 0/0 0/0 0/0 0/0 0/0 41114/30
40 0/0 0/0 0/0 0/0 0/0 0/0 0/0 307590/40

BiTC2 6/3 4/3 4/3 5/3 11/3 16/3 16/3 16/3
10 106/19 9798/19 10072/19 5001/19 10016/19 197191/19 179249/19 801/19
15 353/29 0/0 0/0 0/0 0/0 0/0 0/0 1987/29
20 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4077/39
25 0/0 0/0 0/0 0/0 0/0 0/0 0/0 8218/49
30 0/0 0/0 0/0 0/0 0/0 0/0 0/0 66287/59

Cube2 24682/4 10/3 10/3 19/3 40/3 74/3 64/3 64/3
4 0/0 434/9 434/9 1486/9 2207/9 5021/9 2704/9 3671/9

Figure 4: This table shows the performance of the planning graph heuristics within �������	����� . All heuristics, unless otherwise
indicated, use

� "�� , and � ( , where applicable. Legend – [Search time (ms)/Plan length], “-”: OoMemory or OoTime.

goal is to upload an image of an objective, thus a conformant
plan requires visiting all of the possible vantage points and
taking a picture. Significant negative interaction of actions
comes in through having to calibrate the camera on an ob-
jective before taking the picture, but navigating the rover will
de-calibrate the camera.

The �m. � 
 ~ � 
 � ~ domain is a conformant adaptation of the
classical �m. � 
 ~ � 
 � ~ domain where trucks and airplanes move
packages. The uncertainty is the initial locations of packages.
The problems scale by adding packages and cities. ��. � 
 ~ � 
 � ~
shows that conformant planning problems can require reach-
ability heuristics, but the cost of computing the heuristic must
be considered in relation to the benefit of the search.

Figure 4 shows the performance of the heuristics within���
���	�
��� where the heuristic weight is 5 for all heuristics For�y.�� ��* ~ , � � w ��� D ��� performs well, but the unioning approach
for 2 x may be a bit more costly than simply taking a maxi-
mum, as in

��� w ( �=* . However, in �m. � 
 ~ � 
 � ~ the unioning is
worth the effort because it reduces the overall search time sig-
nificantly over maximization. Furthermore, using sets of ac-
tions as the

3
values proves to be more informed than simply

using numerical estimates. With the exception of
� ��e��7e;� ( �+* ,

the heuristics based on numerical estimates are largely un-
informed on the ��. � 
 ~ � 
 � ~ and � .�� ��* ~ domains. The rea-
son these other heuristics do not provide as much relevant
information is that they are either based on single planning
graphs and/or use �yx to cost a belief state on a planning
graph; this means that we’re not considering overlap of in-
dividual world plans or mutex interactions of literals. Notice,
that

� �;o r�� doesn’t solve any of the problems in these two do-
mains because, as we indicated in section 3, cardinality does
not provide accurate reachability information that is neces-
sary in more complex domains.

Problem CGP GPT HSCP KACMBP HLevelMax HRPUnion
Rover1 135/5 25960/5 3530/7 100/5 129/5 145/5

2 5788/7 - 10690/10 700/13 4751/8 331/9
3 - - 10780/10 710/13 5985/10 636/11
4 - - 30680/13 800/22 0/0 15530/15

Logistics1 64/8 69/9 40/26 20/12 198/9 321/11
2 1323/11 580/15 120/26 200/12 2844/15 6144/19
3 168/10 262/11 - 180/28 1973/14 1723/17
4 4559/14 4756/18 - 210/28 9118/18 164748/26

BiT2 2/1 42/2 20/2 10/2 5/2 11/2
10 63/1 234/10 30/10 20/10 5118/10 462/10
20 1032/1 - 40/20 40/20 0/0 3380/20
30 5492/1 - 20/30 50/30 0/0 41114/30
40 16005/1 - 50/40 80/40 0/0 307590/40

BiTC2 2/3 92/3 20/3 10/3 11/3 16/3
10 - 288/19 20/19 10/19 10016/19 801/19
15 - 34280/19 30/19 40/19 0/0 1987/29
20 - - 10/39 80/39 0/0 4077/39
25 - - 20/49 90/49 0/0 8218/49
30 - - 10/59 140/59 0/0 66287/59

Cube2 42/3 0/3 10/3 40/3 64/3
4 63/9 0/9 0/9 2207/9 3671/9

Figure 5: This table shows the performance of CGP,
GPT, HSCP, KACMBP in comparison with

� ��e��7eY� ( �+* and��� w ��� D �	� . Legend – [Search time (ms)/Plan length], “-”:
OoMemory or OoTime.

However,
� �;o r�� does perform better in the traditional con-

formant planning domains:
��
��

,
� 
�� � , and ������� , as ex-

pected. The surprising thing is that
� �;o r�� , while outperform-

ing in easier problems, does not scale as well as
��� w ��� D �	� .� � w ��� D �	� ’s advantage over

� �;o r�� is that it considers the union
of non-unit costs of the minimum-cost

� � O X 1 � ���86 in de-
termining reachability estimates rather than the sum of unit
costs of X 1 � � � 6 . The advantage of

� � w ��� D �	� over the other
planning graph heuristics in these domains is that it actu-
ally counts the number of actions that are needed among all



worlds. Simply considering a max among worlds gives no
discernible information about reachability because among in-
dividual worlds the initial states are equidistant.

Figure 4 also shows a comparison of
��� w ( �=* when using

� � and � ( to illustrate the speedup of not explicitly expand-
ing X 1 � ���Y6 . The benefit of using � ( appears in problems
where there are many clauses in a clausal state, hence X 1 � ���;6
is large, such as in �m. � 
 ~ � 
 � ~ and in ������� . However, the gain
is small in problems were uncertainty is more limited.

Comparisons to other planners: Although this work is
aimed at giving a general comparison of heuristics for confor-
mant planning, we also present a comparison of two heuris-
tics within �������	����� to some of the other leading approaches
to conformant planning. Note, since each approach uses a
different planning representation (BDDs, Graphplan, or ex-
plicit state space), not all of which even use heuristics, it is
hard to get a standardized comparison of heuristic effective-
ness. Nevertheless, figure 5 compares CGP, GPT, HSCP, and
KACMBP with

� ��e��7eY� ( �=* and
��� w ��� D �	� with respect to run

time and plan length.
An observation independent of the planning substrate is the

optimality of plans. Optimality can be ensured by using ad-
missible heuristics, but of the heuristic approaches that are in-
admissible it is interesting to note that HSCP and KACMBP
tend to generate plans that are highly inoptimal with respect
to plans generated by ���
���	�
��� using

� ��e��7eY� ( �+* and
� � w ��� D �	�

in the �y.�� ��*�~ and ��. � 
 ~ � 
 � ~ domains.
For � .�� ��* ~ , � ��e��7eY� ( �=* and

� � w ��� D �	� provide the best guid-
ance by outperforming CGP, GPT, HSCP, and KACMBP
(on some problems). GPT builds a model of over 10000
states for �y.�� ��* ~ � , and cannot scale for the other versions
of � .�� ��* ~ . CGP has trouble constructing its planning graphs
as the conformant depth of the goal increases. The bi-level
planning graphs in �������	����� can handle large domains better
than CGP’s planning graphs, and thus scale much better.
�m. � 
 ~ � 
 � ~ provides a more fertile means of comparison.

The first lesson to be learned is that HSCP’s cardinality
heuristic, similar to

� �;o r�� , does not scale well. Yet HCSP
does better than

� �;o r�� , indicating that the planning substrate,
opposed to the heuristic, may be responsible for the perfor-
mance. Second, �m. � 
 ~ � 
 � ~ can have relatively complex plan-
ning graphs and as problems scale to include more initial
states, multiple planning graphs become less attractive. This
issue is addressed in the following discussion.

The
� 
��

and
� 
�� � domains show that ���
���	�
��� is com-

petitive with CGP and GPT, but is dominated by HSCP and
KACMBP with respect to handling common structure of
problems.

For ������� , the planning graph heuristics seem to perform
well with respect to the other planners in regards to search
time, but have problems scaling to the level of other planners
as the number of initial states increases exponentially. This
problem is addressed in the followed discussion.

Heuristic Computation Cost: The advantage of our ap-
proach to computing heuristics for conformant planning with
planning graphs is that we can give significant direction to
conformant planners. Additionally, we’ve shown that confor-
mant domains exist that necessitate such accurate estimates.
However, in the current implementation, the cost of comput-
ing the multiple planning graph heuristics is still quite high.
We are pursuing some very promising ideas for reducing this

cost: (1) representing a subset of the initial states as planning
graphs and (2) condensing the multiple planning graphs to
one by using support labels on propositions. These improve-
ments are based on the insight that since the planning graphs
are being used as a basis for heuristics—rather than as a basis
for search, as in the case of CGP—we can limit the amount
of effort we expend in the heuristic computation, by trading
off heuristic accuracy (c.f. [Nguyen et al., 2002]). Choos-
ing the right subset of initial states to use for building graphs
seems tricky, but may be facilitated though identifying uncer-
tainty dependencies between literals and only building graphs
with the dependency sets. The multiple planning graphs can
represent a large amount of redundancy when the possible
worlds are quite similar. To avoid this, we are pursuing an
idea called labeled planning graphs, which use a single con-
densed graph. The literals and actions of the condensed graph
would be labeled to indicate the worlds in which they are sup-
ported. When computing heuristic costs, a literal’s level is not
the first level where it appears, but the first level where its la-
bel indicates it has full support in every world. The labeled
graphs would save time in planning graph construction and
heuristic cost combination among worlds because we could
have 2 x as a direct estimate to get

3 �
. We are currently im-

plementing and investigating these improvements to heuristic
computation.

6 Related Work
The recent interest in conformant planning can be traced
to CGP [Smith and Weld, 1998], a conformant version of
Graphplan, where the graph search is conducted on several
planning graphs, each constructed from one of the possible
initial states. More recent work on C-plan [Castellini et al.,
2001] and Frag-Plan [Kurien et al., 2002] generalize the CGP
approach by ordering the searches in the different worlds such
that the plan for the hardest to satisfy world is found first, and
is then extended to the other worlds. Although �������	����� uti-
lizes planning graphs similar to CGP and Frag-plan, in con-
trast to them, it only uses them to compute reachability esti-
mates. The search itself is conducted in the space of belief
states.

Another strand of work models conformant planning as a
search in the space of belief states. This started with Gene-
sereth and Nourbakhsh [1993], who concentrated on formu-
lating a set of admissible pruning conditions for controlling
search. There were no heuristics for choosing among un-
pruned nodes. GPT [Bonet and Geffner, 2000] extended
this idea to consider a simple form of reachability heuristic.
Specifically, in computing the estimated cost of a belief state,
GPT assumes that the initial state is fully observable. The cost
estimate itself is done in terms of reachability (with relaxed
dynamic programming rather than planning graphs). GPT’s
reachability heuristic is similar to our

� � o�� heuristic because
they both underestimate the cost of the farthest (max distance)
state by looking at a deterministic relaxation of the problem.
In comparison to GPT, �������	����� can be seen as using heuris-
tics that do a better job of considering the cost of the belief
state across the various possible worlds.

A sub-strand of search in belief states is the MBP-family of
planners—CMBP, HSCP [Bertoli et al., 2001] and KACMBP
[Bertoli and Cimatti, 2002]. In comparison to �������	����� , the
CMBP family of planners all represent belief states in terms



of binary decision diagrams, and action application is mod-
eled as modifications to the BDDs. CMBP and HSCP support
both progression and regression in the space of belief states,
while KACMBP is a progression planner. While CMBP con-
centrated on efficient BDD manipulations, HSCP employs
cardinality heuristic in addition. Before computing heuris-
tic estimates, KACMBP pro-actively reduces the uncertainty
(disjunction) in the belief state by taking actions that effec-
tively force the agent into states with reduced uncertainty.
The motivation for this approach, validated by our current
empirical study, is that applying heuristics to belief states
containing multiple states may not give accurate enough di-
rection to the search. While reducing the uncertainty seems
to be an effective idea, we note that (a) not all domains may
contain actions that reduce belief state uncertainty and (b) the
need for uncertainty reduction may be reduced when we have
heuristics that effectively reason about the multiple worlds
(viz., our multiple planning graph heuristics). Nevertheless,
it would be very fruitful to integrate knowledge goal ideas
of KACMBP and the reachability heuristics of �������	�
��� to
handle domains that contain both high uncertainty and costly
goals.

In contrast to these domain-independent approaches that
only require models of the domain physics, PKSPlan [Bac-
chus, 2002] is a forward-chaining knowledge-based planner
that requires richer domain knowledge. Finally, ���
���	����� is
also related to, and an adaptation of the work on reachability
heuristics for classical planning, including �
���	�
��� [Nguyen et
al., 2002], FF Hoffmann and Nebel [2001] and HSP-r Bonet
and Geffner [1999].

7 Conclusion
With the intent of scaling conformant planning to domains
where reachability of subgoals is a non-trivial search prob-
lem, we have:

1. Indicated the heuristic measures for conformant plan-
ning that should be estimated for accurate search con-
trol.

2. Shown how to compute such heuristic measures on plan-
ning graphs when using a clausal, factored representa-
tion of belief states.

3. Provided empirical comparisons of these measures.

We have also presented extensions to our work that are
aimed at scaling conformant planning, through reduced
heuristic computation, to consider even more complex do-
mains.
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