100

5 Plan Recognition: Background

In Chapter 1, we outlined several key areas in which progress be to support agent-
based dialogue systems. First we mentioned that we needaldguke model as well as
a way of describing the communicative intentions assodiafiéh utterances. We have
presented solutions to both of these in Chapter 4. Once we dagpresentation of
communicative intentions for utterances, we need a way dpring intention recog-

nition: the recognition of communicative intentions based onedrand the speaker’s

utterance.

Unfortunately, a full model for intention recognition ineg-based dialogue is be-
yond the scope of this thesis. Instead, in the remainingtengpwe make several
contributions to the more general field of plan recognitidmcl we believe are the

first steps towards creating a practical intention recagriar agent-based dialogue.

Although much work has been done in intention recognitiae (arberry1990b;
Lochbaum, Grosz, and Sidner2000]) these methods assuna@-dased model of di-
alogue and are not directly applicable to our agent-basatemdVe do believe, how-
ever, they can be extended to our model, so we do not discoamt tinstead, we focus
on several problems with intention recognition and the ngmeeral problem of plan
recognition. As plan recognition is a more general form aéimion recognition, solu-

tions in the general domain will be applicable to currengiriion recognizers as well

101

as future work on intention recognition for agent-basetbdiae.

In this chapter, we first discuss the relationship betwetmition recognition and
plan recognition. We then outline some general requiresiemtplan recognition and
discuss previous work in this field. Finally, we conclude amdoduce the solutions

presented in the coming chapters.

5.1 Intention Recognition and Plan Recognition

Intention recognition is a special casepddin recognition the general task of inferring
an agent’s goals and plans based on observed actions. htiagmeecognition, observed

actions are speaker utterances and the goals are the speakemunicative intentions.

Plan recognition is typically divided into two types. keyhole recognitionthe
agent being observed is unaware of (or does not care abeutptervation. limtended
recognition on the other hand, the agent knows it is being observed anosels its
actions in a way such to make its plan clear to the obsérvetention recognition is
a type ofintended recognitionas the speaker forms his actions (utterances) in such a

way to make his communicative intentions clear to the hefarer

Despite the fact that intention recognition is a type ofmoled recognition, and that
the speaker forms his utterances intentions so as to makemmisiunicative intentions
“easy” to recognize, intention recognition remains a haabf@m for the community,
both in terms of domain-independence, as well as runtimeieficy. All intention

recognizers that we are aware of use at their core a planmemsgThus any problems

1A third type of plan recognition occurs when the agent isnigyio thwart recognition of its plans.
Pollack [1986] calls this aactively non-cooperating actoiery little research has been done for this
third type of recognition (although cf. [Azarewicz et algB)), which may be why it is frequently not

included in the typology.
°Note, that this is the case even in deceptive conversatiotheaspeaker forms his utterances so as

to make his feigned intentions clear.

102

with plan recognizers in general have been inherited alsateyntion recognizers. We

now turn our attention to plan recognition in general.

5.2 Requirements for Plan Recognition

Plan recognition has not only been used in dialogue systeatslso in a number of
other applications, including including intelligent ussterfaces [Bauer and Paul1993;
Horvitz and Paek1999; Rich, Sidner, and Lesh2001], traffiaitoong [Pynadath and
Wellman1995], and hacker intrusion detection [Geib andd@@n2001]. All of these
applications (including dialogue) have a common set of irequents they place on a

plan recognizer:

1. Speed:Most applications use plan recognition “online,” meaningytuse recog-
nition results before the observed agent has completedtitstg. Ideally, plan
recognition should take a fraction of the time it takes far tbserved agent to

execute its next action.

2. Early prediction: In a similar vein, applications need accurate plan preaficti
as early as possible in the observed agent’s task execuli@n if a recognizer
is fast computationally, if it is unable to predict the plartibafter it has seen the
last action in the agent’s task, it will not be suitable folioa applications, which

need recognition resultturing task execution.

3. Partial prediction: If full recognition is not immediately available, applicats
can often make use of partial information. For example, éf parameter values
are not known, just knowing the goal schema may be enougmfapalication

to notice that a hacker is trying to break into a network.

As we discuss below, previous work in plan recognition doesprovide these

needed features. Typically, systems will sacrifice onébaite for another.

103

5.3 Previous Work in Plan Recognition

In this section, we discuss previous work in plan recognitid’his can be divided
into two different types. The first is plan recognition basedogic, while the second

includes probabilities.

5.3.1 Logic-based Plan Recognition

Most plan recognizers use a plan library, which represeo#sgn the domain, and
the (typically hierarchical) plans associated with therogic-based recognizers can be
characterized by the use of logical methods to exclude goalgplans in the hierarchy

made impossible given the observed actions.

There have been several types of logic-based plan recagnix®e first discuss
work that bases plan recognition on chaining. Then we ds@lsn recognition as

circumscription, and finally, plan recognition based orspay algorithms.

Plan Recognition as Chaining

Allen and Perrault [1980] created one of the earliest pl@ogeizers. Given a single
observed action, the recognizer used various rules tordah&ard chain from the ac-
tion to a goal, or backwards chain from an expected goal ta¢kien. Rules supported
not only chaining on preconditions and effects, but alsoan@hically to higher levels

of recipes. Heuristics were used to control and focus rutdiegtion for chaining.

Carberry [1983; 1990b] extended Allen and Perrault’s workdeer multiple suc-
cessive action observations. Each new action is indepégdgwards chained until
further chaining would create ambiguity. Then, the newaacis merged into the plan
recognized so far based on previous observations. Amyigtnthere a plan “attaches”
is resolved by the use of focusing heuristics, which assinategiction observations are

often coherently clustered together.

104

Plan Recognition as Circumscription

The seminal work on plan recognition was done by Kautz [198B0; 1991][Kautz
and Allen1986], who casts plan recognition as the logidarence process of circum-
scription. This provided a rich plan representation — esakiythat of first order logic

and a temporal logic to represent actions and time.

Kautz represented the space of possible plans as a planylibatied the event
hierarchy, which included both abstraction and decompusitsubaction) relations.
Goals and actions were represented as complex schemancheated parameter val-
ues. Certain actions were labeledeasl actions, meaning that they were an end unto

themselves, or a possible ultimate goal of an agent.

Kautz showed that by assuming that the event hierarchy ipaenand that all
events are disjoint, plan recognition becomes a problenogitél circumscription.
Given a certain set of observations (also representediofoter logic) a set afovering
modelds computed which are somewhat like possible worlds in wtietobservations

are true, and each contains a separate possible goal anhpthe agent.

Runtime of the recognizer is exponential in the size of thexekieerarchy (e.qg., all
goals and subgoals), which means it is not scalable to langere realistic domains.
However, it does have several other features, includingltanepresentational power
(including interleaved plans, partially-ordered recipgsd goal and action parameters,
to name a few). It also supports partial prediction throughdbility to predict just a
goal schema as well as to predict an abstract goal. As disduseow, it also suffered

from the general inability of logic-based systems to de#hwambiguity.

Plan Recognition as Parsing

To make plan recognition more tractable, Vilain [1990] ddésxs a method of con-
verting a subset of Kautz’s plan hierarchy into a grammaanREecognition is then

performed by running a chart parser over observed actionsusByg this approach,

105

runtime complexity become9(|H|*n?) where H is the set of goals and subgoals in

the plan library and: is the number of observed actions.

This vast improvement over exponential runtime comes as# tloe grammar ap-
proach decreases the representational power substgniiakquires totally-ordered
recipes; and does not handle goal and action parametetain(8uggests that param-
eters could be handled as a feature grammar, although thiklwwake the algorithm
NP-Complete.) The lack of goal parameters means a possipleséan in the number
of goals in certain domains, since each instance of a goahsaimust be modeled as a

separate goal.

In addition, it is not entirely clear if online predictionarm be made by the recog-
nizer. Vilain suggests that this could be done by lookingaitadi rules on the chart,

but it is not clear how much predictive power this would gikie tecognizer.

General Shortcomings of Logic-based Recognizers

A general problem with logic-based recognizers (as notefChmarniak and Gold-
manl1993)) is their inability to deal with ambiguity. Thisroes from the fact that,
upon each new observed action, they prune away only thegbi@us which become
logically impossible. Unfortunately, this impacts earhggiction substantially, as most
plan recognition domains are highly ambiguous, especiahgn only the first few
actions from a plan have been observed. In order to disaratadurther, uncertain

reasoning is often used.

5.3.2 Probabilistic Plan Recognition

Several lines of probabilistic plan recognition have beqgriered. We discuss here the

use of Dempster-Shafer theory, probabilistic abductiahlzlief networks.

106

Dempster-Shafer Theory

Two systems use Dempster-Shafer theory (DST) to add priidtabreasoning to plan
recognition. Carberry [1990a] used DST to her logic-basedgrizer (see above) to

do default inferencing when further upwards chaining wabigoous.

Bauer [1995] uses DST to represent and combine the prolyabfligoals given
observed actions. He uses a subset of Kautz’ plan librarghwimicludes an abstrac-
tion hierarchy and a single level partially ordered recipgs uses results of previous
recognition sessions to learn a D&dsic probability assignmeifbpa) which roughly
corresponds to the a priori goal probability (an abstraet godefined a the set of its

base goals).

In addition, he uses the plan library itself (and a corpusidilable [Bauer1994]) to
train another set of bpas which roughly correspond to thbaisiity of a goal given an
observed action. A bpa is defined for each action in the donaaich gives probability

mass to each goal in which it is part of a recipe.

The recognition algorithm is as follows: the prediction bpanitialized to the a
priori goal probabilities. Then, for each observed actithrg precomputed bpa for
that action is retrieved, and then each of the possible geddgyically checked with
respect to constraints (e.g., ordering constraints). | I€@hstraints for all goals hold,
the bpa remains the same. Otherwise, probability mass éntaway from logically
impossible goals and redistributed. Then, this bpa is coetbwith the prediction bpa

by Dempster’s rule of combination resulting in the new pcadn bpa.

It is unclear if this algorithm is scalable, however. DST motn to be exponential
in the general case, and although Bauer mentions some possittions (like restrict-
ing bpa subsets to be only abstract goals) it is unclear hawdstriction would be
handled by Dempster’s rule of combination and what the effacrecognition would
be. Also, the approach does not support a decompositioarbhgr, and thus is unable

to make predictions about intermediate subgoals and plans.

107

Probabilistic Abduction

Appelt and Pollack [1991] designed a framework in which placognitiort could be

modeled as weighted abduction. The framework allows imigge to be encoded as
prolog-like rules with a weight attached to them. If the camgent of the rule can be
logically proven, there is no cost. However, if it is assupntéen the algorithm incurs
the cost of the weight of that step. Out of all possible sohsi the one with the lowest

weight is then chosen.

Appelt and Pollack mention several drawbacks to their wdiikst, in the general
case, the algorithm is intractable (NP-hard). Also, wesgigsigned to abduction rules
are not probabilities and must be assigned by hand. Theytréyad local changes in

these rules can affect global recognition in subtle ways.

Goldman et al. [1999] also model plan recognition as an damluproblem. They
model the process of plan execution, and then reverse thea®sto make an abduc-
tive model. In addition, three parts of the execution preca® made probabilistic:
the agent’s choice of a top goal, the agent’s choice betweerpeting recipes for a
goal (or subgoal), and the agent’s choice of what action ¢zate next (from the set of

currently executable actions).

This framework is the first of which we are aware to model pkrognition with
the fact in mind that the agent is executing the action, a®sgg to other work which
just works on a plan library data structure. Because of thes; &ire able to model many
things with other systems could not, including multipléeneaved plans and evidence

from failure to observe an action.

Like Appelt and Pollack, however, Goldman et al. define atbiecal framework,

but do not deal with the problem of tractability. Althougleyhdo not analyze complex-

3Actually, they do what they capllan ascription which is the (more difficult) process of attributing
mental states to an agent, the combination of which can tigealsthat the agent has a mental plan of
the form described in [Pollack1986].

108

ity, it is likely that this framework suffers from the samerarctability problems that

Appelt and Pollack’s abduction framework had.

Belief Networks

Charniak and Goldman [1993] use a belief network (BN) to entlee@lan recognition

problem. Nodes in their BN include propositions such as thstexce of an object or

event, its type, and its role within some plan. As actionoéserved, they are added to
the network in this kind of encoding (with the appropriatessvetween them), and new
nodes are generated which explain possible connectiongbetthem and the possible
plans encoded in the network. After these nodes (and caonstthave been added,
the posteriori probabilities of other nodes (especiallglgpcan be computed to predict

the plan.

Huber et al. [1994] propose a method to automatically cdaregslan execution
library into a BN, albeit one with a different structure. ThBNs include only events
(not parameters) and directly encode the links between therthrough intermediary

role nodes like Charniak and Goldman).

Unfortunately, reasoning with BNs is exponential in the szeéhe network. To
attempt to deal with this, Charniak and Goldman use a megsaggng algorithm to
keep the number of nodes restricted, although the size ofdtveork grows with each
new observation (and the likely goals chained from it). Tystesm of Huber et al. has

a static BN and is likely not scalable to large plan libraries.

5.4 Goal Recognition

In the last section, we discussed previous work in plan neitog. We now discuss

work on a special case of plan recognitigmal recognition Whereas the task of plan

109

recognition is the recognition of an agent’s goal and plaral gecognition attempts

only to recognize the goal.

Although not as informative as full plan recognition, goatognition has been an
active research area of late, partially because it has betered that many applications
simply do not need full plan recognition results. For examplorvitz and Paek [1999]
built an Al receptionist which observed actions (includivgural language utterances)
to determine the user’s goal, which the receptionist thenfal them. Here, the goal
was something only the receptionist itself could accorhplibus the users typically

did not have a plan.

Additionally, goal recognition naturally removes some leé ambiguity present in
plan recognition. It is still the case that a set of observdtas could be accounted
for by any number of goals, but plan recognition has the audit ambiguity that,
even if the agent’s goal can be unambiguously identifiedyuia be associated with a
large number of plans, all consistent with the observeaastiFor this reason, in fact,
most of the plan recognizers mentioned above do not predigtyaspecified, fully-
disambiguated plan at each timestep, but rathgaréial plan that includes only those
parts which are disambiguated. We believe that a fast goafrezer could be used in
a hybrid system to focus the search in a slower plan recog(a#eéough we leave this

to future work).

Goal recognizers can be classified by the goal structurettiigyg recognize Flat
goal recognizers attempt to recognize goals at just oné tgpécally the top-level goal.
Hierarchical goal recognizers, on the other hand, attempt to recogniaeaubgoals
in addition to the top-level goal. Note that hierarchicahlycecognition is different
from general plan recognition in that in plan recognitidme attempt is to recognize
the entire plan tree, whereas with hierarchical goal rettimgn one only attempts to
recognize the chain of the active subgoals, i.e., the liribfoals which trace the last

observed action to the top-level goal.

We first discuss previous work on flat goal recognizers, aed thierarchical goal

110

recognizers.

5.4.1 Flat Goal Recognizers
Logic-based Systems

Following recent successful work on using graph analysaoing planning synthesis
[Blum and Furst1997], Hong [2001] uses graph analysis fol geeognition. His
system incrementally constructsgaal graphconsisting of nodes representing state
predicates and observed actions. Each observed actiond¢@sing edges from state
predicates that fulfill its preconditions, and outgoing eslgo predicates that are its
effects. Predicates which remain true across actions smecahnected. Predicates also
connect to goal nodes whose goal state they contribute te prbvides a list of all
goal states partially or fully fulfilled by the actions up iinhe last observation. The
algorithm then uses the graph to compute which goals wersatigdinked to which
actions. If a majority of observed actions contributed t@dain goal, it is reported as

a recognized goal.

The algorithm does not require a hand-built plan libraryrather just uses descrip-
tions of base-level actions and high-level goal states. é&sgoints out, however, this
algorithm is only appropriate for post hoc goal analysig] aat online goal recogni-
tion, as it does not quickly converge on a single goal. Theaedor this is that the
effects of an action may contribute to any number of goald,itanly becomes clear

near the end of the agent’s execution which of these is reallyg focused on.

Lesh’s RIGS-L system [Lesh and Etzionil995b; Lesh and Etzf8ba; Lesh and
Etzioni1996; Lesh1998] uses analysis of a different kingjrafph to do goal recogni-
tion. RIGS is initialized with a fully-connectecbnsistency graplf action and goal
schemas and instantiated actions observed thus far. Edtyesdn action schema nodes
are used to signifgupportbetween them, and edges to goal schema nodes spify

pletion Given this graph, the algorithm uses rules to remove grag@ments while

111

still keeping the graph correct. For example, thatchingrule removes an edgs, ,
where no effect of matches a precontidion gf(and thus does not directly support it).
The goal connectiorrule deletes goal schemas which are no longer connectee to th
graph. After the algorithm has run, any goal schema thatti€manected is no longer
consistent with the evidence, and any remaining goal scherainstantiated by the

algorithm and predicted as possible goals.

The runtime complexity of RIGS-L i©(|G| + (|A| + |L|)®) whereG is the set of
goal schemas is the set of action schemas, ahdk the set of observed actions. Note
that, although this is linear in the number of goal schent@spnly polynomial overall,

unless/G| >> |A|, which we do not believe is the case in most domains.

Lesh then uses RIGS-L as a component of the BOCES goal recognlizeh uses
version spacefrom the machine learning field to represent the set of ptesgjbals
and mark which are consistent (without, however, actuatlymeratinghe goals). The
set of goals are defined and then based on this definition,dhkrgcognizer keeps
track of boundaries between those goals which are consesteilwhich are not. Lesh
shows that BOCES has a runtime complexitytifog(|G|)) for a certain subclass of
goals calleddecomposable goalgoals in which adding a conjunct makes them more
specific (like searching for an item with a set of features)ntitae for other classes of

goals is the same as that of RIGS-L.

For decomposable goals, BOCES has been shown to run quiclkdydorhundreds
of thousands of goals. However, these goals are defined inarcevay, namely the
combination of conjuncted domain predicates, which isdslty the case in decom-
posable goals such as constrained searching. However, typical goal recogni-
tion domains do not exclusively include decomposable géalsdecomposable goals,

however, BOCES is probably unbeatable.

Logic-based goal recognizers in general also have the seeméodcks mentioned
for logical plan recognizers above, namely, that they asblento distinguish between

logically consistent goals, which leads us to probabdifiit goal recognizers.

112

Probabilistic Systems

Horvitz and Paek [1999] use a 3-layered Belief Network to gaize users’ goals in a
secretarial setting. The system not only uses observeahaadt the network, but also
other factors like world state. The top layer network tresdcognize an abstract goal.
When confidence in a single goal at this level is high enougfitrobpasses to the next
level, which attempts to recognize a more concrete goalsarah. The system is able
to perform partial recognition because it can return jusalstract goal when it is not
certain enough about a more specific version. As the systemauBelief Network, its

worst-case complexity is exponential in the size of the netwAlso, as is the case for
probabilistic systems, probability distributions mustrehow be estimated for each of

the nodes and it is unclear this would be done.

Albrecht et al. [1998] use a dynamic belief network (DBN) tedict the top-level
goal and next action in a multi-user dungeon (MUD) game. Tastiynate probabilities
from logs of actual game sessions, where a user attemptsrtplete one of 20 quests
(goals). Although not reported, the runtime complexity loé recognizer appears to
be linear in the number of goals, and is quite similar to ttagistical goal schema
recognizer we present in Chapter 7 (although see Sectiofh #bR.a discussion of
differences). Their recognizer, however only recognizes& goals and is not able to
handle parameters. It also does not support partial predidtiowever, it was the first
goal recognizer of which we are aware which used a large sdiplearn probabilities

as well as to evaluate the recognizer.

5.4.2 Hierarchical Goal Recognizers

The last section discussed flat goal recognizers, which @aggnize the agent’s top-
level goal. In this section, we report on several recentgeizers which recognize all

of an agent’s active subgoals, as well as the top-level goal.

Pynadath [1999][Pynadath and Wellman2000] uses prok#bilstate-dependent

113

grammars (PSDGSs) to do plan recognition. PSDGs are prostabdontext-free gram-
mars (PCFGs) in which the probability of a production is a tiorcof the current state.
This allows, for example, the probability of a recipe (protion) to become zero if one
of its preconditions does not hold. Subgoals are modeledagarminals in the gram-
mar, and recipes are productions which map those non-talsnimo an ordered list of
non-terminals or terminals. During recognition, the retagr keeps track of only the
current productions and the state variables as a DBN with @apgdate algorithm.
The most likely string of current productions is predictexdtlae current hierarchical

goal structure.

If the total state is observable, Pynadath claims the caxitplef the update algo-
rithm to be linear in the size of the plan hierarchy (numbeproiductionsy. However,
if the state is only partially observable, the runtime coemgl is quadratic in the num-
ber of states consistent with observation, which grows egptally with the number

of unobservable state nodes.

Additionally, the recognizer only recognizes atomic g@ald does not take param-
eters into account. Finally, although the PSDG allows fir@bpbility differences for
productions depending on the state, it is unclear how suabatmility functions could

be learned from a corpus, as the state space can be quite large

Bui [2002][Bui, Venkatesh, and West2002] performs hierazahrecognition of
Markov Decision Processes. He models these using an Abbligden Markov Model
(AHMM) which are multi-level Hidden Markov Models where alpy at a higher
level transfers control to a lower level until the lower Ieiterminates.” The addition
of memory to these models [Bui2003] makes them very similah®&oPSDGs used
by Pynadath in that each policy invokes a 'recipe’ of lowardl policy and does not

continue until the lower level terminates.

Recognition is done using a DBN, but because this is intraet&hli uses a method

called Rao-Blackwellization (RB) to split network variablesoitwo groups. The first

4This claim is disputed in [Bui2002].

114

group (which includes the state variables as well as a erahich describes the high-
est terminating state in the hierarchy) is estimated usangpting methods. Then, using
those estimates, exact inference is performed on the sgayh(the policy variables).

The separation is such that exact inference on the secomg drecomes tractable,

given that the first group is known.

The recognizer was used in a system which tracked human ioehavan office
building at three abstract levels, representing indivichfices at the bottom level,
then office groups, then finally the entire building. Polkcat each level were defined
specific to each region (for example the policy (behaviorusihg the printer in the
printer room). In this model, only certain policies are gah a given state (location),
which helps reduce the ambiguity. Typically, the domain mdeled such that lower-
level policies become impossible as the agent moves to anatbm, which makes it

fairly clear when they then terminate.

Although the algorithm was successful for this trackingfaisis unclear, however,
how effective estimation of policy termination would be iargral (e.g., when most
policies are valid in most states). Also, similar to Pynagttis method only recognizes

atomic goals and does not support parameters.

5.5 Towards Statistical Goal Recognition

As mentioned above, we need goal recognizers which aredadtmake early (and
possibly partial) predictions. However, most current grapers are either not scalable

or severely limit the representation of the domain.

In the following chapters, we presenstatistical goal recognizewhich uses ma-
chine learning techniques to train the recognizer on aqadaii domain given a corpus.
As it learns domain behavior from the corpus, it does noizeti plan library and does
not therefore limit plan representation in that respectaddition, it supports parame-

terized goal and action schemas and can make partial poedidt not all parameter

115

values are known. We will show that it is scalable and can nupkek and early pre-

dictions.

The remainder of the thesis is as follows. As the recognieeds a corpus to be
trained on, in Chapter 6 we present the two corpora which wenuger experiments.
The first was gathered from human users in the Linux domainweder, as many
domains do not lend themselves to easy observation, wergraggeneral method for
stochastically producing artificial corpora for plan recitign and use this method to

produce a corpus in the emergency planning domain.

In Chapter 7, we present a flat goal recognizer which is lineahé number of
goals and present its performance on the two corpora descebove. Finally, in
Chapter 8, we extend this flat recognizer into a hierarchical gecognizer and present

experimental results for it as well.

Finally, in Chapter 9, we conclude the thesis and discusstibres of future work.

