
100

5 Plan Recognition: Background

In Chapter 1, we outlined several key areas in which progress must be to support agent-

based dialogue systems. First we mentioned that we needed a dialogue model as well as

a way of describing the communicative intentions associated with utterances. We have

presented solutions to both of these in Chapter 4. Once we havea representation of

communicative intentions for utterances, we need a way of performing intention recog-

nition: the recognition of communicative intentions based on context and the speaker’s

utterance.

Unfortunately, a full model for intention recognition in agent-based dialogue is be-

yond the scope of this thesis. Instead, in the remaining chapters, we make several

contributions to the more general field of plan recognition which we believe are the

first steps towards creating a practical intention recognizer for agent-based dialogue.

Although much work has been done in intention recognition (see [Carberry1990b;

Lochbaum, Grosz, and Sidner2000]) these methods assume a plan-based model of di-

alogue and are not directly applicable to our agent-based model. We do believe, how-

ever, they can be extended to our model, so we do not discount them. Instead, we focus

on several problems with intention recognition and the moregeneral problem of plan

recognition. As plan recognition is a more general form of intention recognition, solu-

tions in the general domain will be applicable to current intention recognizers as well

101

as future work on intention recognition for agent-based dialogue.

In this chapter, we first discuss the relationship between intention recognition and

plan recognition. We then outline some general requirements for plan recognition and

discuss previous work in this field. Finally, we conclude andintroduce the solutions

presented in the coming chapters.

5.1 Intention Recognition and Plan Recognition

Intention recognition is a special case ofplan recognition: the general task of inferring

an agent’s goals and plans based on observed actions. In intention recognition, observed

actions are speaker utterances and the goals are the speaker’s communicative intentions.

Plan recognition is typically divided into two types. Inkeyhole recognition, the

agent being observed is unaware of (or does not care about) the observation. Inintended

recognition, on the other hand, the agent knows it is being observed and chooses its

actions in a way such to make its plan clear to the observer.1 Intention recognition is

a type ofintended recognition, as the speaker forms his actions (utterances) in such a

way to make his communicative intentions clear to the hearer.2

Despite the fact that intention recognition is a type of intended recognition, and that

the speaker forms his utterances intentions so as to make hiscommunicative intentions

“easy” to recognize, intention recognition remains a hard problem for the community,

both in terms of domain-independence, as well as runtime efficiency. All intention

recognizers that we are aware of use at their core a plan recognizer. Thus any problems

1A third type of plan recognition occurs when the agent is trying to thwart recognition of its plans.

Pollack [1986] calls this anactively non-cooperating actor. Very little research has been done for this

third type of recognition (although cf. [Azarewicz et al.1986]), which may be why it is frequently not

included in the typology.
2Note, that this is the case even in deceptive conversation, as the speaker forms his utterances so as

to make his feigned intentions clear.

102

with plan recognizers in general have been inherited also byintention recognizers. We

now turn our attention to plan recognition in general.

5.2 Requirements for Plan Recognition

Plan recognition has not only been used in dialogue systems,but also in a number of

other applications, including including intelligent userinterfaces [Bauer and Paul1993;

Horvitz and Paek1999; Rich, Sidner, and Lesh2001], traffic monitoring [Pynadath and

Wellman1995], and hacker intrusion detection [Geib and Goldman2001]. All of these

applications (including dialogue) have a common set of requirements they place on a

plan recognizer:

1. Speed:Most applications use plan recognition “online,” meaning they use recog-

nition results before the observed agent has completed its activity. Ideally, plan

recognition should take a fraction of the time it takes for the observed agent to

execute its next action.

2. Early prediction: In a similar vein, applications need accurate plan prediction

as early as possible in the observed agent’s task execution.Even if a recognizer

is fast computationally, if it is unable to predict the plan until after it has seen the

last action in the agent’s task, it will not be suitable for online applications, which

need recognition resultsduring task execution.

3. Partial prediction: If full recognition is not immediately available, applications

can often make use of partial information. For example, if the parameter values

are not known, just knowing the goal schema may be enough for an application

to notice that a hacker is trying to break into a network.

As we discuss below, previous work in plan recognition does not provide these

needed features. Typically, systems will sacrifice one attribute for another.

103

5.3 Previous Work in Plan Recognition

In this section, we discuss previous work in plan recognition. This can be divided

into two different types. The first is plan recognition basedon logic, while the second

includes probabilities.

5.3.1 Logic-based Plan Recognition

Most plan recognizers use a plan library, which represents goals in the domain, and

the (typically hierarchical) plans associated with them. Logic-based recognizers can be

characterized by the use of logical methods to exclude goalsand plans in the hierarchy

made impossible given the observed actions.

There have been several types of logic-based plan recognizers. We first discuss

work that bases plan recognition on chaining. Then we discuss plan recognition as

circumscription, and finally, plan recognition based on parsing algorithms.

Plan Recognition as Chaining

Allen and Perrault [1980] created one of the earliest plan recognizers. Given a single

observed action, the recognizer used various rules to either forward chain from the ac-

tion to a goal, or backwards chain from an expected goal to theaction. Rules supported

not only chaining on preconditions and effects, but also hierarchically to higher levels

of recipes. Heuristics were used to control and focus rule application for chaining.

Carberry [1983; 1990b] extended Allen and Perrault’s work tocover multiple suc-

cessive action observations. Each new action is independently upwards chained until

further chaining would create ambiguity. Then, the new action is merged into the plan

recognized so far based on previous observations. Ambiguity of where a plan “attaches”

is resolved by the use of focusing heuristics, which assume that action observations are

often coherently clustered together.

104

Plan Recognition as Circumscription

The seminal work on plan recognition was done by Kautz [1987;1990; 1991][Kautz

and Allen1986], who casts plan recognition as the logical inference process of circum-

scription. This provided a rich plan representation — essentially that of first order logic

and a temporal logic to represent actions and time.

Kautz represented the space of possible plans as a plan library called the event

hierarchy, which included both abstraction and decomposition (subaction) relations.

Goals and actions were represented as complex schemas that included parameter val-

ues. Certain actions were labeled asendactions, meaning that they were an end unto

themselves, or a possible ultimate goal of an agent.

Kautz showed that by assuming that the event hierarchy is complete and that all

events are disjoint, plan recognition becomes a problem of logical circumscription.

Given a certain set of observations (also represented in first order logic) a set ofcovering

modelsis computed which are somewhat like possible worlds in whichthe observations

are true, and each contains a separate possible goal and planfor the agent.

Runtime of the recognizer is exponential in the size of the event hierarchy (e.g., all

goals and subgoals), which means it is not scalable to larger, more realistic domains.

However, it does have several other features, including a rich representational power

(including interleaved plans, partially-ordered recipes, and goal and action parameters,

to name a few). It also supports partial prediction through the ability to predict just a

goal schema as well as to predict an abstract goal. As discussed below, it also suffered

from the general inability of logic-based systems to deal with ambiguity.

Plan Recognition as Parsing

To make plan recognition more tractable, Vilain [1990] describes a method of con-

verting a subset of Kautz’s plan hierarchy into a grammar. Plan recognition is then

performed by running a chart parser over observed actions. Byusing this approach,

105

runtime complexity becomesO(|H|2n3) whereH is the set of goals and subgoals in

the plan library andn is the number of observed actions.

This vast improvement over exponential runtime comes at a cost: the grammar ap-

proach decreases the representational power substantially; it requires totally-ordered

recipes; and does not handle goal and action parameters. (Vilain suggests that param-

eters could be handled as a feature grammar, although this would make the algorithm

NP-Complete.) The lack of goal parameters means a possible explosion in the number

of goals in certain domains, since each instance of a goal schema must be modeled as a

separate goal.

In addition, it is not entirely clear if online predictions can be made by the recog-

nizer. Vilain suggests that this could be done by looking at dotted rules on the chart,

but it is not clear how much predictive power this would give the recognizer.

General Shortcomings of Logic-based Recognizers

A general problem with logic-based recognizers (as noted in[Charniak and Gold-

man1993]) is their inability to deal with ambiguity. This comes from the fact that,

upon each new observed action, they prune away only the predictions which become

logically impossible. Unfortunately, this impacts early prediction substantially, as most

plan recognition domains are highly ambiguous, especiallywhen only the first few

actions from a plan have been observed. In order to disambiguate further, uncertain

reasoning is often used.

5.3.2 Probabilistic Plan Recognition

Several lines of probabilistic plan recognition have been explored. We discuss here the

use of Dempster-Shafer theory, probabilistic abduction and belief networks.

106

Dempster-Shafer Theory

Two systems use Dempster-Shafer theory (DST) to add probabilistic reasoning to plan

recognition. Carberry [1990a] used DST to her logic-based recognizer (see above) to

do default inferencing when further upwards chaining was ambiguous.

Bauer [1995] uses DST to represent and combine the probability of goals given

observed actions. He uses a subset of Kautz’ plan library which includes an abstrac-

tion hierarchy and a single level partially ordered recipes. He uses results of previous

recognition sessions to learn a DSTbasic probability assignment(bpa) which roughly

corresponds to the a priori goal probability (an abstract goal is defined a the set of its

base goals).

In addition, he uses the plan library itself (and a corpus if available [Bauer1994]) to

train another set of bpas which roughly correspond to the probability of a goal given an

observed action. A bpa is defined for each action in the domain, and gives probability

mass to each goal in which it is part of a recipe.

The recognition algorithm is as follows: the prediction bpais initialized to the a

priori goal probabilities. Then, for each observed action,the precomputed bpa for

that action is retrieved, and then each of the possible goalsis logically checked with

respect to constraints (e.g., ordering constraints). If all constraints for all goals hold,

the bpa remains the same. Otherwise, probability mass is taken away from logically

impossible goals and redistributed. Then, this bpa is combined with the prediction bpa

by Dempster’s rule of combination resulting in the new prediction bpa.

It is unclear if this algorithm is scalable, however. DST is known to be exponential

in the general case, and although Bauer mentions some possible solutions (like restrict-

ing bpa subsets to be only abstract goals) it is unclear how this restriction would be

handled by Dempster’s rule of combination and what the effect on recognition would

be. Also, the approach does not support a decomposition hierarchy, and thus is unable

to make predictions about intermediate subgoals and plans.

107

Probabilistic Abduction

Appelt and Pollack [1991] designed a framework in which planrecognition3 could be

modeled as weighted abduction. The framework allows inferences to be encoded as

prolog-like rules with a weight attached to them. If the consequent of the rule can be

logically proven, there is no cost. However, if it is assumed, then the algorithm incurs

the cost of the weight of that step. Out of all possible solutions, the one with the lowest

weight is then chosen.

Appelt and Pollack mention several drawbacks to their work.First, in the general

case, the algorithm is intractable (NP-hard). Also, weights assigned to abduction rules

are not probabilities and must be assigned by hand. They report that local changes in

these rules can affect global recognition in subtle ways.

Goldman et al. [1999] also model plan recognition as an abduction problem. They

model the process of plan execution, and then reverse the decisions to make an abduc-

tive model. In addition, three parts of the execution process are made probabilistic:

the agent’s choice of a top goal, the agent’s choice between competing recipes for a

goal (or subgoal), and the agent’s choice of what action to execute next (from the set of

currently executable actions).

This framework is the first of which we are aware to model plan recognition with

the fact in mind that the agent is executing the action, as opposed to other work which

just works on a plan library data structure. Because of this, they are able to model many

things with other systems could not, including multiple, interleaved plans and evidence

from failure to observe an action.

Like Appelt and Pollack, however, Goldman et al. define a theoretical framework,

but do not deal with the problem of tractability. Although they do not analyze complex-

3Actually, they do what they callplan ascription, which is the (more difficult) process of attributing

mental states to an agent, the combination of which can then signal that the agent has a mental plan of

the form described in [Pollack1986].

108

ity, it is likely that this framework suffers from the same intractability problems that

Appelt and Pollack’s abduction framework had.

Belief Networks

Charniak and Goldman [1993] use a belief network (BN) to encodethe plan recognition

problem. Nodes in their BN include propositions such as the existence of an object or

event, its type, and its role within some plan. As actions areobserved, they are added to

the network in this kind of encoding (with the appropriate arcs between them), and new

nodes are generated which explain possible connections between them and the possible

plans encoded in the network. After these nodes (and connections) have been added,

the posteriori probabilities of other nodes (especially goals) can be computed to predict

the plan.

Huber et al. [1994] propose a method to automatically convert a plan execution

library into a BN, albeit one with a different structure. Their BNs include only events

(not parameters) and directly encode the links between them(not through intermediary

role nodes like Charniak and Goldman).

Unfortunately, reasoning with BNs is exponential in the sizeof the network. To

attempt to deal with this, Charniak and Goldman use a message-passing algorithm to

keep the number of nodes restricted, although the size of thenetwork grows with each

new observation (and the likely goals chained from it). The system of Huber et al. has

a static BN and is likely not scalable to large plan libraries.

5.4 Goal Recognition

In the last section, we discussed previous work in plan recognition. We now discuss

work on a special case of plan recognition:goal recognition. Whereas the task of plan

109

recognition is the recognition of an agent’s goal and plan, goal recognition attempts

only to recognize the goal.

Although not as informative as full plan recognition, goal recognition has been an

active research area of late, partially because it has been noticed that many applications

simply do not need full plan recognition results. For example, Horvitz and Paek [1999]

built an AI receptionist which observed actions (includingnatural language utterances)

to determine the user’s goal, which the receptionist then did for them. Here, the goal

was something only the receptionist itself could accomplish, thus the users typically

did not have a plan.

Additionally, goal recognition naturally removes some of the ambiguity present in

plan recognition. It is still the case that a set of observed actions could be accounted

for by any number of goals, but plan recognition has the additional ambiguity that,

even if the agent’s goal can be unambiguously identified, it could be associated with a

large number of plans, all consistent with the observed actions. For this reason, in fact,

most of the plan recognizers mentioned above do not predict afully-specified, fully-

disambiguated plan at each timestep, but rather apartial plan that includes only those

parts which are disambiguated. We believe that a fast goal recognizer could be used in

a hybrid system to focus the search in a slower plan recognizer (although we leave this

to future work).

Goal recognizers can be classified by the goal structure theytry to recognize.Flat

goal recognizers attempt to recognize goals at just one level, typically the top-level goal.

Hierarchical goal recognizers, on the other hand, attempt to recognize active subgoals

in addition to the top-level goal. Note that hierarchical goal recognition is different

from general plan recognition in that in plan recognition, the attempt is to recognize

the entire plan tree, whereas with hierarchical goal recognition, one only attempts to

recognize the chain of the active subgoals, i.e., the line ofsubgoals which trace the last

observed action to the top-level goal.

We first discuss previous work on flat goal recognizers, and then hierarchical goal

110

recognizers.

5.4.1 Flat Goal Recognizers

Logic-based Systems

Following recent successful work on using graph analysis indoing planning synthesis

[Blum and Furst1997], Hong [2001] uses graph analysis for goal recognition. His

system incrementally constructs agoal graphconsisting of nodes representing state

predicates and observed actions. Each observed action has incoming edges from state

predicates that fulfill its preconditions, and outgoing edges to predicates that are its

effects. Predicates which remain true across actions are also connected. Predicates also

connect to goal nodes whose goal state they contribute to. This provides a list of all

goal states partially or fully fulfilled by the actions up until the last observation. The

algorithm then uses the graph to compute which goals were causally linked to which

actions. If a majority of observed actions contributed to a certain goal, it is reported as

a recognized goal.

The algorithm does not require a hand-built plan library, but rather just uses descrip-

tions of base-level actions and high-level goal states. As Hong points out, however, this

algorithm is only appropriate for post hoc goal analysis, and not online goal recogni-

tion, as it does not quickly converge on a single goal. The reason for this is that the

effects of an action may contribute to any number of goals, and it only becomes clear

near the end of the agent’s execution which of these is reallybeing focused on.

Lesh’s RIGS-L system [Lesh and Etzioni1995b; Lesh and Etzioni1995a; Lesh and

Etzioni1996; Lesh1998] uses analysis of a different kind ofgraph to do goal recogni-

tion. RIGS is initialized with a fully-connectedconsistency graphof action and goal

schemas and instantiated actions observed thus far. Edges between action schema nodes

are used to signifysupportbetween them, and edges to goal schema nodes signifycom-

pletion. Given this graph, the algorithm uses rules to remove graph elements while

111

still keeping the graph correct. For example, thematchingrule removes an edgeex,y

where no effect ofx matches a precontidion ofy (and thus does not directly support it).

The goal connectionrule deletes goal schemas which are no longer connected to the

graph. After the algorithm has run, any goal schema that is not connected is no longer

consistent with the evidence, and any remaining goal schemas are instantiated by the

algorithm and predicted as possible goals.

The runtime complexity of RIGS-L isO(|G| + (|A| + |L|)6) whereG is the set of

goal schemas,A is the set of action schemas, andL is the set of observed actions. Note

that, although this is linear in the number of goal schemas, it is only polynomial overall,

unless|G| >> |A|, which we do not believe is the case in most domains.

Lesh then uses RIGS-L as a component of the BOCES goal recognizer, which uses

version spacesfrom the machine learning field to represent the set of possible goals

and mark which are consistent (without, however, actuallyenumeratingthe goals). The

set of goals are defined and then based on this definition, the goal recognizer keeps

track of boundaries between those goals which are consistent and which are not. Lesh

shows that BOCES has a runtime complexity ofO(log(|G|)) for a certain subclass of

goals calleddecomposable goals, goals in which adding a conjunct makes them more

specific (like searching for an item with a set of features). Runtime for other classes of

goals is the same as that of RIGS-L.

For decomposable goals, BOCES has been shown to run quickly foreven hundreds

of thousands of goals. However, these goals are defined in a certain way, namely the

combination of conjuncted domain predicates, which is typically the case in decom-

posable goals such as constrained searching. However, manytypical goal recogni-

tion domains do not exclusively include decomposable goals. For decomposable goals,

however, BOCES is probably unbeatable.

Logic-based goal recognizers in general also have the same drawbacks mentioned

for logical plan recognizers above, namely, that they are unable to distinguish between

logically consistent goals, which leads us to probabilistic flat goal recognizers.

112

Probabilistic Systems

Horvitz and Paek [1999] use a 3-layered Belief Network to recognize users’ goals in a

secretarial setting. The system not only uses observed actions in the network, but also

other factors like world state. The top layer network tries to recognize an abstract goal.

When confidence in a single goal at this level is high enough, control passes to the next

level, which attempts to recognize a more concrete goal, andso on. The system is able

to perform partial recognition because it can return just anabstract goal when it is not

certain enough about a more specific version. As the system uses a Belief Network, its

worst-case complexity is exponential in the size of the network. Also, as is the case for

probabilistic systems, probability distributions must somehow be estimated for each of

the nodes and it is unclear this would be done.

Albrecht et al. [1998] use a dynamic belief network (DBN) to predict the top-level

goal and next action in a multi-user dungeon (MUD) game. Theyestimate probabilities

from logs of actual game sessions, where a user attempts to complete one of 20 quests

(goals). Although not reported, the runtime complexity of the recognizer appears to

be linear in the number of goals, and is quite similar to the statistical goal schema

recognizer we present in Chapter 7 (although see Section 7.2.1 for a discussion of

differences). Their recognizer, however only recognizes atomic goals and is not able to

handle parameters. It also does not support partial prediction. However, it was the first

goal recognizer of which we are aware which used a large corpus to learn probabilities

as well as to evaluate the recognizer.

5.4.2 Hierarchical Goal Recognizers

The last section discussed flat goal recognizers, which onlyrecognize the agent’s top-

level goal. In this section, we report on several recent recognizers which recognize all

of an agent’s active subgoals, as well as the top-level goal.

Pynadath [1999][Pynadath and Wellman2000] uses probabilistic state-dependent

113

grammars (PSDGs) to do plan recognition. PSDGs are probabilistic context-free gram-

mars (PCFGs) in which the probability of a production is a function of the current state.

This allows, for example, the probability of a recipe (production) to become zero if one

of its preconditions does not hold. Subgoals are modeled as non-terminals in the gram-

mar, and recipes are productions which map those non-terminals into an ordered list of

non-terminals or terminals. During recognition, the recognizer keeps track of only the

current productions and the state variables as a DBN with a special update algorithm.

The most likely string of current productions is predicted as the current hierarchical

goal structure.

If the total state is observable, Pynadath claims the complexity of the update algo-

rithm to be linear in the size of the plan hierarchy (number ofproductions).4 However,

if the state is only partially observable, the runtime complexity is quadratic in the num-

ber of states consistent with observation, which grows exponentially with the number

of unobservable state nodes.

Additionally, the recognizer only recognizes atomic goalsand does not take param-

eters into account. Finally, although the PSDG allows fine probability differences for

productions depending on the state, it is unclear how such probability functions could

be learned from a corpus, as the state space can be quite large.

Bui [2002][Bui, Venkatesh, and West2002] performs hierarchical recognition of

Markov Decision Processes. He models these using an Abstract Hidden Markov Model

(AHMM) which are multi-level Hidden Markov Models where a policy at a higher

level transfers control to a lower level until the lower level ’terminates.’ The addition

of memory to these models [Bui2003] makes them very similar tothe PSDGs used

by Pynadath in that each policy invokes a ’recipe’ of lower-level policy and does not

continue until the lower level terminates.

Recognition is done using a DBN, but because this is intractable, Bui uses a method

called Rao-Blackwellization (RB) to split network variables into two groups. The first

4This claim is disputed in [Bui2002].

114

group (which includes the state variables as well as a variable which describes the high-

est terminating state in the hierarchy) is estimated using sampling methods. Then, using

those estimates, exact inference is performed on the secondpart (the policy variables).

The separation is such that exact inference on the second group becomes tractable,

given that the first group is known.

The recognizer was used in a system which tracked human behavior in an office

building at three abstract levels, representing individual offices at the bottom level,

then office groups, then finally the entire building. Policies at each level were defined

specific to each region (for example the policy (behavior) ofusing the printer in the

printer room). In this model, only certain policies are valid in a given state (location),

which helps reduce the ambiguity. Typically, the domain is modeled such that lower-

level policies become impossible as the agent moves to another room, which makes it

fairly clear when they then terminate.

Although the algorithm was successful for this tracking task, it is unclear, however,

how effective estimation of policy termination would be in general (e.g., when most

policies are valid in most states). Also, similar to Pynadath, this method only recognizes

atomic goals and does not support parameters.

5.5 Towards Statistical Goal Recognition

As mentioned above, we need goal recognizers which are fast,and make early (and

possibly partial) predictions. However, most current recognizers are either not scalable

or severely limit the representation of the domain.

In the following chapters, we present astatistical goal recognizerwhich uses ma-

chine learning techniques to train the recognizer on a particular domain given a corpus.

As it learns domain behavior from the corpus, it does not utilize a plan library and does

not therefore limit plan representation in that respect. Inaddition, it supports parame-

terized goal and action schemas and can make partial predictions if not all parameter

115

values are known. We will show that it is scalable and can makequick and early pre-

dictions.

The remainder of the thesis is as follows. As the recognizer needs a corpus to be

trained on, in Chapter 6 we present the two corpora which we usein our experiments.

The first was gathered from human users in the Linux domain. However, as many

domains do not lend themselves to easy observation, we present a general method for

stochastically producing artificial corpora for plan recognition and use this method to

produce a corpus in the emergency planning domain.

In Chapter 7, we present a flat goal recognizer which is linear in the number of

goals and present its performance on the two corpora described above. Finally, in

Chapter 8, we extend this flat recognizer into a hierarchical goal recognizer and present

experimental results for it as well.

Finally, in Chapter 9, we conclude the thesis and discuss directions of future work.

