Planning as Branch and Bound and its
Relation to Constraint-based Approaches

Héctor Geftner
Departamento de Computacion
Universidad Simén Bolivar
Caracas, Venezuela
hector@usb.ve

Abstract

Branching and lower bounds are two key notions in heuristic search
and combinatorial optimization. Branching refers to the way the space of
solutions is searched, while lower bounds refer to approximate cost mea-
sures used for focusing and pruning the search. In AT Planning, admissible
heuristics or lower bounds have received considerable attention recently
and most current optimal planners use them, either explicitly or implic-
itly (e.g., by relying on a plan graph). Branching, on the other hand, has
received less attention and is seldom discussed explicitly in the literature.

In this paper, we make the notion of branching in planning explicit and
relate it to branching schemes used in combinatorial optimization. We
analyze from this perspective the relationship between heuristic-search,
constraint-based and partial-order planning, and between planning and
scheduling. We also introduce a branch-and-bound formulation for plan-
ning that handles actions with durations and use unary resources. The
goals are twofold: to make sense of the various techniques that have been
found useful in planning and scheduling, and to lay the ground for systems
that can effectively combine both.

1 Introduction

In this paper we focus on the problem of planning with Strips actions that
have durations and require unary resources. This problem is a generalization
of problems found in planning and scheduling. On the one hand, it generalizes
the job-shop [35], on the other, it generalizes sequential and parallel planning
[5]. The resulting planning theories are challenging from a computational point
of view and capture more closely the type of planning tasks that are relevant
in practice. Currently, there are few planners with these capabilities (e.g., Ix-
TeT [27] and RAX [23]) and the performance of such planners appears rather



weak. Indeed, such planners are based on the ideas of partial-order planning,
an approach that prevailed in planning research for a number of years [40], but
which recently has been dominated by approaches based on Graphplan, SAT,
and heuristic-search formulations [5, 24, 6].

The goal of this paper is to identify the ideas that have been found useful
in planning, in particular, heuristics, constraint propagation, and non-linear
plans, and to analyze how these ideas can be fit together in order to have
an effective temporal planner. For this, we make use of two key notions in
heuristic search and combinatorial optimization: branching and lower bounds
[34, 1, 12]. Branching refers to the way the space of solutions is searched,
while lower bounds refer to approximate cost measures used for focusing and
pruning the search. In AI Planning, admissible heuristics or lower bounds have
received considerable attention recently, and most optimal planners currently
use them, either explicitly or implicitly (e.g., by relying on a plan graph) [6, 19].
Branching, on the other hand, has received less attention and is seldom discussed
explicitly.

In this paper, we make the notion of branching in planning explicit and relate
it to branching schemes used in combinatorial optimization. We argue that the
directional branching schemes used in heuristic search planning are not adequate
for parallel and temporal planning, and introduce an alternative branch-and-
bound formulation that is more convenient. The formulation integrates ideas
from heuristic search, constraint-based, and partial-order planning in a coherent
way, and provides a suitable platform for integrating planning and scheduling
[37].

This work is related to a number of recent proposals, in particular, those
dealing with the use of constraint-propagation methods for extracting plans from
the plan graph [36], and the use of heuristic estimators to guide partial-order
planners [31]. We aim, however, for a general framework based on the notions
of branching and bounds, where these and other proposals can be understood
and integrated.

The paper is organized as follows. First, we illustrate the notions branching
and bounds by considering two problems from combinatorial optimization: the
traveling salesman problem and the job shop (Sect. 2). In both cases, it’s
possible to do directional branching yet that’s not as effective as constructing
‘partial’ tours and schedules — very much as it’s done in partial-order planning —
and using lower bounds on such partial solutions to prune the search. Then we
review some of the lower bounds that have been proposed recently in sequential
and temporal planning (Sect. 3), and analyze heuristic-search, partial-order,
and SAT/CSP planners as branch-and-bound schemes (Sect. 4). We then show
how lower-bounds as used in heuristic-search approaches, branching as done in
partial-order planning, and constraints as used in SAT and CSP approaches can
all be integrated in a general branch-and-bound scheme for temporal planning
(Sect. 5). We finally discuss implementation-related issues and refinements, and
related work (Sect. 6 and 7).



2 Branch and Bound in Combinatorial Optimiza-
tion

The notion of lower bounds used in Combinatorial Optimization [1, 12] is fa-
miliar in AT where they are called admissible heuristics [32, 34]. Branching, on
the other hand, is a less familiar notion, and the word does not even appear in
the index of AI textbooks. This is probably due to the close correspondence
between branching and action application in the search problems most often
considered in Al. Indeed in problems like the 15-puzzle or Rubik’s Cube, a state
is expanded by applying all possible actions, in planning, a state is expanded
by applying all possible actions either forward or backward, etc. We will refer
to these forms of branching as branching on actions or directional branching.
Directional branching is pervasive in Al yet it’s not always the best way for
structuring the search. To emphasize this point, we consider two problems from
combinatorial optimization where non-directional branching schemes yield su-
perior performance. In both cases, the branching scheme is tightly integrated
with lower bound computations.

2.1 Traveling Salesman Problem

The TSP is the problem of finding a tour with minimum cost through a given
number of cities [1]. One of the most powerful approaches for solving it relies on
the lower bound obtained from a relaxation of the TSP known as the assignment
problem [1, 42].1 The assignment problem or AP is the problem of assigning to
each ‘city’ 4 a unique next ‘city’ mext(i) = j so that the sum of the distances
cij from city i to city j is minimized. Such an assignment may result in a
unique tour or multiple disjoint tours. In both cases, the cost of the assignment
is a lower bound on the cost of the TSP. In the first case, in addition, the
lower bound is ezxact and the optimal assignment represents an optimal tour.
These properties are used in the branch-and-bound scheme for the TSP shown
in Fig. 1. 2

This branch-and-bound scheme can be used in the context of a number
of branch-and-bound algorithms such as IDA* or Depth First Search Branch
and Bound [26]. For example, a complete IDA* algorithm for the TSP can be
obtained by defining the selection of the edge ¢ — j on which to branch and
the order in which the two branches are considered (Step 5). In all branch-and-
bound algorithms, the main operation is the evaluation of the pruning condition
f(o) < C for a threshold cost C, and they differ from one another in the
state o selected for expansion (e.g., depth-first, best-first, etc.) and the way
the threshold is adjusted (decreased until no solutions found, increased until
solution found, etc.).

! Actually, this method is suitable for asymmetric TSPs when costs between pairs of cities
are not symmetric.

2This scheme can be improved by noticing that the AP relaxation generates the same
assignment, and thus the same subtours, for ¢ and ot (see [1, 42]).



1. states o are TSPs
2. initial state oq is original TSP

3. lower bound f(¢) computed by solving AP relaxation of o; result yields
one or more subtours

4. terminal goal states are states whose relaxation yields single tour

5. non-terminal states o expanded by selecting an edge i — j from a subtour
and generating the children al-*j and o;;: the first, forcing the edge i — j
in the solution, the second, excluding the edge ¢ — j from the solution

(namely, 0;; obtained by excluding the edge i — j from o, while O’;_-

obtained by excluding all links ¢ — j' and ¢’ — j for all j' # j and ' # zﬁ

Figure 1: Branch and Bound Scheme for Asymmetric TSPs

For computing optimal solutions, a branch-and-bound scheme must be sound
and complete in the following sense: goal states must represent solutions to the
problem, and some goal states must represent, optimal solutions. Provided these
two conditions, any admissible branch-and-bound algorithm will be guaranteed
to find an optimal solution. The first property is simple to verify for the scheme
above: all the terminal states represent single tours and thus solutions to the
problem. At the same time, splits cannot exclude optimal solutions (namely,
an optimal solution for o will be clearly an optimal solution of one of its two
children), and if ¢ is a terminal state, then the AP relaxation yields one optimal
solution (even if there might be many). So clearly, the branch-and-bound scheme
is sound and complete in the sense above.

Notice that branching is not done by applying the actions of going from one
city to its neighbors but by making commitments; namely, that certain edges
are to be forced in or out of the solution. These commitments form a partial
tour very much as the causal links and precedence constraints define partial
plans in partial order planning. These are forms of non-directional branching
or branching on commitments as opposed to branching on actions. Of course,
both are compatible with the use of lower bounds for pruning the search.

2.2 Job Shop Scheduling

The job shop is relevant to our discussion for two reasons. First, as the TSP, it
provides a clear, well understood domain where it’s feasible to branch on actions
but where that’s not the most effective thing to do. Second, the job shop is a
special case of the general planning task considered in this paper, and the ideas
we find useful here will be usable in the more general setting.

The job-shop problem (JSP) is defined by a set of jobs ji,...,jm, each
consisting of a chain of tasks ¢;1,...,tmn, ¢ = 1,...,m, with durations D(¢;;)
that must be executed in order over a set of n unary resources R(t;;) [35]. A
feasible schedule is an assignment of times T'(¢;;) to each task #;; so that the
precedence constraints in the jobs and the resource constraints are all satisfied.



1. states o are simple temporal problems (STPs)
2. initial state og given by precedence constraints in jobs

3. lower bound f(c) and relaxed schedule h, obtained by solving STP o;
f(o) = oo if STP inconsistent

4. terminal states of two types: o is a dead-end if f(o) = oo and a goal state
if no pairs of tasks in conflict in h,

5. children generated from o by selecting pair of tasks ¢ and ¢’ in conflict in
o, and generating two children o + {t < '} and o + {¢' <t}

Figure 2: Branch and Bound Scheme for Job Shop

Such constraints can be written as
ti; < tij+1 (precedence constraints) (1)
forie[l...m],je[l...n—1], and
R(tij) = R(tr) = tij <t V tg <t;; (resource constraints) (2)
fori,ke€[l...m], j,l €[1...n], where
t < t' stands for T'(t) + D(t) < T(t')

An optimal schedule is a feasible schedule with min makespan where the
makespan is the time at which all tasks have been completed.

Once again, it’s possible to formulate a directional branching scheme in which
actions (sets of parallel tasks) are applied either forward or backward, yet the
resulting branching factor would be too high and more effective schemes have
been developed. Here we’ll follow the approach in [11], that extends ideas from
[8] and [38]. In this scheme, each state o is a relaxed JSP that includes all prece-
dence constraints in the original JSP but no resource constraints. The relaxed
problem corresponds to a Simple Temporal Problem [14], which is tractable and
can be solved by a number of shortest-path and constraint-propagation algo-
rithms [14, 10, 18]. The algorithms determine the consistency of the STP ¢ and
if so return lower bounds h,(t) on the times in which each task ¢ may start,
and hence, a lower bound f(o) on the makespan. We’'ll refer to the schedule
in which each tasked ¢;; is executed at its lower bound h,(t;;) as the relazed
schedule and denote it by h,. It’s known that the relaxed schedule satisfies the
STP o, and thus is a solution of the original JSP iff it satisfies the resource
constraints (2). Otherwise, there must be a pair of tasks ¢ and t’' in conflict in
o; namely, tasks that use the same resource and whose execution overlaps in
h,. This suggests the branch-and-bound scheme shown in Fig. 2.

It’s simple to verify that this branch-and-bound scheme is also sound and
complete in the sense defined above: terminal goal states are solutions to the
problem, and some of them are optimal solutions. Like the scheme for the TSP,



this scheme shows many of the features that make a branch-and-bound scheme
powerful: a tight integration between branching and lower bound computations,
a small number of children, fast and potentially incremental computation of
lower bounds, etc.

3 Bounds in AI Planning

A recent development in AT planning is the notion of heuristic estimators and
their automatic extraction from Strips and ADL problem encodings [30, 7].
Heuristic estimators provide approximate measures of the ‘cost to go’ and can
be used to guide the search for plans in the context of algorithms such as A*,
IDA*, and Hill-Climbing. Two examples of planners based on these ideas are
HSP and FF [6, 22]. In both, the heuristic function is derived from a planning
problem represented in Strips or ADL by solving a relazed planning problem in
which delete lists are ignored. Since this relaxed problem is still intractable, HSP
and FF make further approximations. For example, HSP, makes the assumption
that subgoals are independent. As a result, the cost to achieve a set of atoms
is approximated by the sum of the costs to achieve each of the atoms in the set.
The resulting heuristic function, called the additive heuristic, is informative and
plugged into standard heuristic search algorithms yields planners that are very
competitive [6]. The additive heuristic, however, is not a lower bound, and hence
it’s not useful to find optimal plans.

3.1 Heuristics h™

A family of admissible heuristics (lower bounds) h™, for m = 1,2, ... for se-
quential and parallel Strips planning is formulated in [19]. The heuristic A™
approximates the cost of a set of atoms C by the cost of the most costly subset
of size m in C. Thus, for m = 1, h™ approximates the cost of a set of atoms
by the cost of the most costly atom in the set, for m = 2, h™ approximates the
cost of the set by the cost of the most costly atom pair in the set, and so on.
Formally, the function h™(C) for a set of atoms C is defined by the functional
equation

0 if C C sg, else
h™(C) =< mingeg(c) [1 +h™(B)] if |C| <m, else (3)
maxgcc,Bl=m h"(B) if [C]>m

where R(C), called the regression set of C, stands for the states B that can be
obtained by regressing C' through one of the actions.® For sequential planning,
the actions stand for the primitive operators, while for parallel planning, the
actions stand for sets of compatible primitive operators (see [19] for details).

3More precisely, B € R(C) iff for some action a s.t. add(a) N C # § and del(a) N C = 0,
B = C — add(a) + pre(a). The notion of regression is familiar in AI and corresponds to the
‘inverse’ application of actions; namely, B € R(C) iff B is a minimal set of atoms that would
lead to C by applying one of the actions [32].



The higher the value of m, the more accurate the heuristic but the more
expensive its computation. The computation of A™ is similar to the computation
of shortest paths in a graph whose nodes are the different atom sets of size equal
to or smaller than m. Thus its complexity is a low polynomial in |A|™ where
|A| is the number of atoms. As an illustration, for m = 1, Equation 3 above
simplifies to

0 if C C s, else
B(C) = { mingeom[L + bl (prec(0))] if C = {p}, else (4)
max,ec h' ({p}) if |C]>1

where p is an atom and O(p) stands for the operators o that add p. Similar
expressions can be obtained for m = 2, m = 3, etc, yet computing h™ for m > 2
is expensive and does not appear to pay off in practice.

3.2 Graphplan Heuristic

Graphplan is perhaps the first modern planner and had a significant in plan-
ning research [5]. Graphplan builds first a plan graph made of a number of
propositional and action layers, and then starting from the last layer attempts
to extract a plan from the plan graph. If successful, the plan is returned, if not,
a new attempt is made by extending the graph by one layer and so successively.
As argued in [6] and [19], Graphplan can be understood accurately as an heuris-
tic search planner that combines an IDA* regression search for parallel plans
with an admissible heuristic function hg represented in the plan graph. For a
set of atoms C, hg(C) is the index of the first layer in the plan graph in which
all atoms in C' appear without a mutex. This heuristic is equivalent to the h2
heuristic for parallel planning; namely hg = h? [19].

3.3 Heuristics for Temporal Planning

[20] shows how the heuristics h™ can be extended to estimate makespan (com-
pletion time) in a temporal setting where actions can be executed concurrently
and have different durations. The equation for m = 1 becomes

0 if C C s, else
BC) =4 mingeoq[D(0) + hh(prec(o))] if C = {p}, else  (5)
maxpec hip ({p}) if [C] >1

where the only change from the parallel estimator h! to the temporal estimator
hi. is the substitution of the fixed cost 1 by D(0), the temporal duration of the
operator o. For m = 2, the temporal estimator h% departs from parallel h?
in other ways; see [20] for details. While the h' estimators are often too weak
and the h? estimators are normally preferred, in this paper, for simplicity, we
discuss branching schemes in the context of the former only. The generalization
to higher-order estimators is direct but the details are involved. The measures
K (C) are all lower bounds on the time needed to make C true.



4 Branch-and-Bound Schemes in AI Planning

While few approaches in AI Planning have been described as branch-and-bound
schemes, most can be understood in those terms and there are interesting lessons
that can be learned from that perspective. Clearly optimal state-based planners
such as HSPr* and Graphplan are branch-and-bound planners combining h?
lower bounds with regression branching. Partial order planning, on the other
hand, is a smart branching scheme for planning but which does not rely on any
lower bounds. Finally, SAT and CSP planners, are characterized by branching
schemes based on variable-splitting, and lower bound computation based on con-
straint propagation. In some cases, constraint propagation is just the mechanism
for incrementally computing the lower bounds, in others, constraint propagation
provides an incomplete evaluation of the pruning condition f*(o) < C used in
branch-and-bound algorithms, where f* is the exact bound and C'is a threshold
cost. In this section we elaborate this view, and in the next, we introduce a new
branch-and-bound formulation that combines several of these ideas.

4.1 State Planning

Total and partial order planners both search in the space of plans. However,
while total order planners build linear plans from the ‘beginning’ (forward plan-
ning) or ‘end’ (regression planning), partial order planners build plans non-
linearly. In both cases, the state o in the search is a partial plan, yet since
partial linear plans are either plan prefixes or suffixes, and standard markovian
assumptions hold, partial linear plans can be summarized by suitably defined
states represented by sets of atoms. This is why linear planners are often called
state planners.

State planners for sequential planning branch on the set of applicable op-
erators either forward or backward. The heuristics A™ provide useful lower
bounds in this setting. In state-based planning, the evaluation function f(s) is
obtained by combining two terms, the accumulated cost g(s) and a lower bound
h(s) on the ‘cost to go’. This is typical in state-based search but different from
what we have seen in the TSP and the JSP (and what’ll see in other planning
approaches) where there is no ‘accumulated cost’ and f = h.

[19] reports results for an optimal planner based on regression search and
the heuristic h2. The planner is competitive and often superior to the best
Graphplan and SAT/CSP planners in the sequential setting, but is not as good
as the latter in the parallel setting. The problem is that the branching factor
grows exponentially in either forward or backward parallel planning. Indeed, if
there are n primitive operators applicable in a state s, there are up to 2" possible
parallel actions. SAT and CSP formulations, are not affected by this explosion.
In SAT, all variables are binary, and thus branching on variables always makes
for a branching factor of 2. If this branching scheme is supplemented by good
and efficient lower bound computations, then it may represent a more powerful
approach (yet see below).



4.2 Partial Order Planning

Partial order Planning (POP) refers to a non-directional branching scheme used
in Planning [40]. POP planners are currently not competitive with modern plan-
ners because the latter all rely on some form of heuristic estimation or lower
bound computation. POP on the other hand, is a pure and blind branching
scheme. The performance of POP planners can be enhanced through the ad-
dition of heuristic estimators (e.g., see [31]), although deriving effective lower
bounds in the POP setting appears to be more difficult than deriving similar
bounds in state planning. We consider partial-order planning here because it
represents a branching scheme that is particularly suitable for more expressive
forms of planning such as temporal planning with resources. Indeed, two of
the most expressive temporal planners, IxTeT [27] and RAX [23] are based on
partial-order planning schemes. The potential advantages of POP in this setting
have been discussed in [37]. The difficulty of deriving useful lower bounds will
be addressed below where we show how the A7 heuristics can be modified to
estimate completion time of partial plans.

The state in POP is a partial plan o = (Steps, Prec, CL, Open), where Steps
is a set of actions, Prec is a set of precedence constraints on Steps, CL is a
set of causal links, and Open is a set of open preconditions.* A causal link
a —p a' states that action a supports the precondition p of action a in o, while
an open precondition is a pair (p,a) such that p is a precondition of action a
currently unsupported. With these notions, POP branching can be described as a
process of finding and repairing ‘llaws’. An open precondition (p,a) is repaired
by selecting an action a' that adds p, and adding the precedence constraint
a' < a to Prec and the causal link a' =, a to CL (a’ should also be added to
Steps). Similarly, a threat occurs when there is a causal link a; —, a2 in CL
and an action a € Steps that deletes p such that the ordering a; < a' < as
is consistent. This flaw is repaired my making this ordering inconsistent; i.e.,
by placing either the precedence constraint a’ < a; or az < a’ in Prec. The
resulting branching scheme is shown in Fig. 3. The actions Start and End are
dummy actions that summarize the information in the initial situation I and
the goals G; namely, Start is defined as an operator with empty preconditions
and add list equal to I, and End is defined as an operator with preconditions
equal to G and empty postconditions.

It’s interesting to compare POP branching (Fig. 3) with the branch-and-
bound scheme for the job shop (Fig. 2). In the job-shop, the state o corresponds
to a set of precedence constraints Prec, while in POP it also includes a set of
actions Steps, a set of causal links C'L, and a set of open preconditions Open.
Consider, however, planning theories that satisfy one of these conditions:

1. for each atom p there is single action that adds p

2. deletes lists are all empty

If condition 1 holds, we can remove all ‘open preconditions’ flaws in one shot
without backtracking, and thus can remove the fields Steps and Open from

4We assume that all actions are grounded.



1. states o are partial plans (Steps, Prec, CL, Open)

2. g9 is ({Start, End}, {Start < End},®,{(G;, End);}), where the G;’s are
the goals

3. terminal states of two types: o is a dead-end if Prec inconsistent, and a
goal state if o has no flaws

4. children o; generated from o by selecting a flaw in o and extending o
with each possible repair (see text)

Figure 3: Branching scheme in partial-order planning

o. Similarly, causal links C'L in o are not required if condition 2 is satisfied.
Of course, there is no much planning left to be done in the classical setting
when conditions 1 and 2 are satisfied. Yet that situation is meaningful when ac-
tions have durations and use unary resources. Indeed, those theories correspond
closely to the job shop and will be considered in Section 5.

4.3 SAT and CSP Branch and Bound

Most SAT and CSP formulations of optimal planning can be understood as
branch-and-bound schemes in which the states o are partial variable assign-
ments and branching is performed by selecting a variable and extending the
partial assignment with each of its possible values. However, rather than com-
puting explicit lower bounds f(o) and then plugging these bounds in the pruning
condition f(o) < C in branch-and-bound algorithms, SAT and CSP formula-
tions often bypass the computation of explicit lower bounds and provide instead
a sound but incomplete evaluation of the pruning condition f*(c) < C for the
optimal bound f*(o). These pruning condition is represented by one or more
formulas or constraints and its violation is detected by inferring an inconsis-
tency. For example, in a SAT planner such as Blackbox, the pruning condition
becomes the pair of clauses p;5 and g15 when the goal is G = {p, ¢} and Black-
box is trying to find a plan in 14 time steps. Inference is done by some form
of constraint propagation in a theory that includes all the constraints in the
problem, and in certain cases, some derived constraints. For example, Blackbox
does inference by unit resolution over a theory that is obtained from the plan
graph, which incorporates derived constraints such as propositional and action
mutexes.

We say that a constraint-based implementation of a branch-and-bound algo-
rithms performs explicit lower bound computations, when constraint propaga-
tion is used to compute the lower bounds f(o). For example, the RAX planner is
a temporal planner that performs explicit lower bound computation by solving
STPs in each state o by means constraint-propagation. In this case, constraint-
propagation is the mechanism for computing the lower bounds incrementally.
On the other hand, we say that a constraint-based branch-and-bound algorithm
performs implicit lower bound computations, when constraint-propagation is

10



used to evaluate the pruning condition f*(¢) < C directly. This is the case in
most SAT and CSP planners. Notice that in the first case, constraint propaga-
tion is done over a tractable theory that is completely solved; in the second case,
constraint propagation is done as a limited form of inference over an intractable
theory. Once again, approaches to the job-shop that ignore resource constraints
belong to the first class, while approaches that take resource constraints into ac-
count belong to the second class (e.g., [33, 2, 9]). To a certain extent, the novelty
and success of recent constraint-based formulations of branch-and-bound algo-
rithms for combinatorial optimization problems has to do with the additional
pruning that can be obtained when explicit computation of lower bounds, as in
traditional branch-and-bound algorithms, is replaced by implicit computations
based on suitable propagation rules [21, 17].

5 New Branch-and-Bound Formulations

We have seen that the notions of branching and bounds allow us to clarify
the relationships between the different approaches in planning and to relate
planning with other combinatorial optimization problems. Now, we want to
take advantage of this view to introduce a novel branch-and-bound formulation
that integrates a number of the ideas we have discussed: partial order planning,
lower bounds, and constraints. The formulation is quite general from a planning
point of view, and it accommodates actions with durations and unary resources.
While it’s not as expressive as IxTeT [27] and RAX [23], it may scale up better
due to the use of lower bounds. We introduce the formulation in several steps,
but first define the notions that we’ll use.

5.1 Preliminary Definitions

We consider a simple extension of the Strips language that accommodates con-
current actions with durations and unary resources. Each action or operation
a is characterized by a precondition, add, and delete lists prec(a), add(a), and
del(a). As usual, prec(a) stands for the set of atoms that must be true for a
to be executed, while add(a) (resp. del(a)) stands for the set of atoms that
become true (resp. false) as a result of a. In addition, there is a time duration
D(a) and a set of unary resources required R(a). We assume durations to be
positive integers except for the dummy actions Start and End that have zero
durations. Unary resources refer to resources that cannot be divided or shared
(e.g., a machine that can perform one task at a time until completion) and the
set of resources R(a) may or may not be empty

Two actions a and a' are mutex when their executions cannot overlap. More
precisely, a and o' are mutez if a) a and a’ require a common resource, i.e., R(a)N
R(a') # 0, or b) a and o' interact destructively, i.e., a deletes a precondition
or positive effect of a’, or a' deletes a precondition or positive effect of a. Two
actions are compatible if they are not mutex.

A schedule P is a finite set of time stamped actions {(a;,t;), i = 1,...,n,

11



where a; is an action and ¢; is a non-negative integer. The same action can be
executed more than once in P if a; = a; for ¢ # j. In such a case, a; and a;
refer to two occurrences of the same action. We say that a; precedes a; in P,
and write a; < a;, when t; + D(a;) < t;, and say that a; and a; overlap in P
when a; £ a; and a; £ a;.

A schedule P is a wvalid plan iff no two occurrences of mutex actions overlap
in P and for every action a; its preconditions p € prec(a) are true at time ¢;.
This condition is inductively defined as follows:

e pis true at time ¢t = 0 if p is true in the initial situation

e pis true at time ¢ > 0 if p is true at time ¢ — 1 and no action a in P ending
at t deletes p, or some action a' in P ending at ¢t adds p

From now on, a plan will refer to a wvalid plan. The makespan of a plan
P, t,(P), is the min time at which all goals are true, and the end time of
P, t.(P), is the min time at which all actions in P have terminated. Clearly,
tm(P) < te(P) and normally t,,(P) = t.(P), yet for convenience we will allow
plans in which this last condition does not hold. We’ll call such plans non-
normal and they can easily be normalized by excluding actions that terminate
after the makespan.

We are interested in the task of computing a valid plan P with minimum
makespan that achieves a goal G from a given initial situation I and a given
set of operators O. When there are no required resources and all action du-
rations are equal, the task reduces to optimal parallel planning as supported
in Graphplan [5] and Blackbox [25]. Sequential planning is obtained when all
action durations are equal and there is a single unary resource common to all
actions. Similarly, the job shop is obtained by having an action a;; for each task
t;; with precondition done(t;j—1) and postconditions done(t;;), the exception
being the first task in each job which has no preconditions.

5.2 Disjunctive Branching for Positive Theories

We’ll assume initially a class of domains where actions have durations and use
unary resources but have no deletes. We call these theories positive. Positive
domains are restricted from the point of view of planning, but are quite general
from a scheduling point of view; indeed, they stand for a generalization of the
job shop where there may be alternative tasks for achieving a job, alternative
resources, arbitrary preconditions, etc. We’ll exploit two properties of positive
domains that will make the formulation simpler, namely that

1. causal links are not needed for preserving the truth of atoms, and

2. no operator needs to be executed more than once.

The second property generalizes the condition found in most scheduling prob-
lems where all operators are executed ezactly once. Thus positive theories,
stand halfway between planning and the job shop.
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The branching scheme for the job shop (Fig. 2) can be easily generalized to
positive theories. The main departure is the definition of the initial state 0. In
the job shop, og is defined as the set of precedence constraints

T(tij) + D(ti;) < T(tij41) (6)

for each pair of successive tasks t;; and ;41 in the jobs. In planning, tasks
(actions) are not ordered explicitly by precedence constraints but implicitly by
their preconditions. This implicit ordering can be rendered explicit by means
of equations similar to the ones characterizing the temporal estimators A7'. For
example, Equation 4 for hl. can be rewritten as:

(0 = { mscop[Ploy i) HEGhde g

where we assume now the presence of the actions Start and End,’ and hl.(a)
is a lower bound on the time needed to execute action a

hr(a) = hy(prec(a)) (®)

These equations on lower bounds can be made to look similar to precedence
constraints (6) by means of two transformations. First, we project the equations
on actions only by unfolding the left-hand-side of Equation 8 to get

hi(a) = max {min [D(a')+h%p(a')]} 9)

peprec(a) | a'€0(p)

Second, we express the resulting equation on lower bounds as an equation on
temporal variables T (a), where T'(a) is a variable that stands for the time at
which action a is executed in the plan and whose domain is the set of non-
negative integers extended with oo. Intuitively, T'(a) = 0o means that action a
is not executed in the plan and we assume 7'(a) + D(a) = oo if T'(a) = 00.

Recasting Equation 9 on the temporal variables T'(a), we obtain the set of
temporal constraints:

T(a) > m(i)r(l ) [D(a') + T(a')] for each p € prec(a) (10)
a’'€O0(p

These constraints are similar to the precedence constraints (6) for the job shop
except for the min operator, and we will call them precondition constraints.
These precondition constraints are derived from the heuristic h' so we say that
they are precondition constraints of degree 1. In principle, precondition con-
straints of degree m > 1 could be defined, but we won’t use them in this paper.

It’s not difficult to show that precedence and precondition constraints are
similar from a computationally point of view: they are tractable, they can be
solved by simple variations of shortest path algorithms, and the lower bounds

ShL.(Start) = 0, D(Start) = 0, and Start € O(p) if p is true in the initial situation.
6This is so that a’ < a always holds when T'(a) = oo, even if T(a’) = oo.
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states o are Extended STPs
initial state oo given by precondition constraints (10)
relaxed plan h, obtained by solving ESTP o; f(o) = h,(End)

terminal goal states o if mutex constraints (11) not violated by any pair
of actions a and a’' in relaxed schedule h,

-~ L N

5. branching from non-terminal o done by picking one such pair of actions
a and o' and generating children o + {a < @’} and o + {a’ < a}

Figure 4: Branch and Bound Scheme for Positive Planning Theories

h(a) obtained for each temporal variable T'(a) define a consistent solution. We’ll
call the theories that combine precondition and precedence constraints, Ex-
tended STPs. Note, however, that due to the inclusion of co in the domain of the
temporal variables, ESTPs are always consistent as the assignment T'(a) = oo
is always a solution. Of course, we are interested in the lowest consistent value
of these variables, and in particular in the lower bound of the variable T'(End)
which provides the lower bound on the state; i.e., f(o) = h, (End).

The branch-and-bound scheme for positive planning theories is similar to the
scheme for the job-shop (Fig. 2) due to the similarity between feasible schedules
in the job-shop and valid plans in positive theories. To show this, let’s represent
an assignment over the variables T'(a) by a list of pairs P = (a;,t;); so that
T(ar) =ty # oo if a; € P, and T'(ay,) = ¢ if a, ¢ P. Then we have that:

Proposition 1. P = (a;,t;); is a valid plan iff the assignment P satisfies the
precondition constraints (10) and the mutex constraints

mutez(a,a’) = a <ad V a' <d (11)

Due to the similarity between precondition and precedence constraints on
the one hand, and resource and mutex constraints on the other, it’s simple to
recast the branch-and-bound scheme for the job-shop (Fig. 2) into a sound and
complete scheme for positive theories.” This is shown in Fig. 4.

5.3 Causal Link Branching in Presence of Deletes

Positive theories are more general than the job-shop as they involve arbitrary
preconditions and positive postconditions, and not all actions need to be sched-

"In order to prove soundness, we need to show that in any relaxed schedule h, all actions
a are scheduled after each precondition p in prec(a) has been established by some action ap.
This easily follows from (10). Completeness is more subtle; we need to show that some goal
states represent optimal (valid) plans. This can be done by showing that the search tree
contains paths that lead to the left-shifted optimal plans, i.e., the optimal plans in which the
actions occur as early as possible (any plan can be ‘left-shifted’ by moving actions to the left
in the time axis, from beginning to end). If P is one such plan, such paths are the ones in
which for each conflict between two actions a and a’, the ordering a < a’ is selected when
a < a in P or aisin P but a’ is not.
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uled. Still the restriction of ‘no deletes’ is a strong one from the point of view
of planning. This restriction guarantees that causal links are not needed and
that no operator needs to be scheduled more than once (assumptions 1 and 2
above). Now we will relax the first assumption. We’'ll refer to a plan in which
no operator is scheduled more than once as a canonical plan. The scheme we
develop below is suitable for solving planning theories in which some optimal
plans are canonical. Theories such as the blocks-world are canonical in this
sense, some instances of logistics are not. Similarly, the theories considered
in scheduling (where all tasks are scheduled ezactly once) and positive planning
theories are canonical too.

In the presence of deletes, the scheme above is neither sound nor complete,
as the preconditions of an action may be deleted before the action is executed.
Causal links, as introduced in [29], allow us to detect such conditions and fix
them. A causal link a —, a' states that action a precedes a’ and makes its
precondition p true, and that no action a” that deletes p is scheduled between
a and a'.

Causal links can be used as in POP, yet we’ll use them differently in order
to get better lower bounds. In POP, the state (partial plan) keeps track of the
current causal links but not of the causal links that have been tried and failed.
Yet, both sets of causal links are informative for computing lower bounds. For
example, consider a proposition p that is only ‘added’ by the Start action (i.e.,
p holds in the initial situation) and by an action a, with duration 5. Then, if at
some point, an open precondition (p,a) is selected for support and the causal
link Start —, a fails, it can be inferred immediately that a must be scheduled
after action a, and thus T'(a) > 5.

For this reason, we introduce finite domain variables S(p, a) for each precon-
dition p of action a which we call them support variables. Initially, the domain
D(p, a) of the support variable S(p, a) is O(p), i.e., the set of operators that add
p, yet this domain will change dynamically during the search. In particular, a
causal link o' —, a, is asserted by setting S(p, a) = a', and hence D(p,a) = {a'},
and is retracted by setting S(p, a) # a’, hence deleting a’ from D(p, a).

Provided this representation of causal links, the precondition constraints can
be written as

T(a) > n};i(n )[T(a') + D(a")] for each p € pre(a) (12)
a' €D(a,p

where the minimization is done over the dynamic domain D(a,p) and not over
the static domain O(p). The planning task can then be expressed as a constraint-
satisfaction problem as follows.

Proposition 2. P = (a;,t;); is a valid canonical plan iff the assignment P
over the temporal variables T (a) and some assignment over the support variables
S(p, a) jointly satisfy 1) the dynamic precondition constraints (12), 2) the mutex
constraints (11), and 8) the causal link constraints

T(a) # 00 & S(p,a) =a' & pedel(a”) = a" <a VvV a<d’  (13)
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1. states o = (Precs, Doms), where Precs are precedence and precondition
constraints, and Doms stand for the dynamic domains D(p,a) for all
p € prec(a) and all a

2. initial state og = (Precsg, Domsg), where Precsg stands for the precon-
dition constraints (12) and Domsg for the domains D(p,a) = O(p)

3. relaxed schedule h, computed by solving ESTP Precs, over domains
Doms; lower bound f(o) = h,(End)

4. terminal goals states o = (Precs, Doms) if mutex constraints (11) vio-
lated by no action pair (a,a’), and causal link constraints (13) violated
by no action triplet (a,a’,a”) in relaxed schedule h,

5. children generated from non-terminal state o = (Prec, Doms) by selecting
a culprit (a,a’) and branching [a < a';a’ < a], or by selecting a culprit
(a,a',a") and branching [S(p,a) # d';S(p,a) = d',d" < a;S(p,a) =
a',a’' < a"], updating Precs and Doms accordingly (see text).

Figure 5: Branch and Bound for Canonical Planning

Like the disjunctive constraints for mutexes, and unlike the preconditions
constraints, the causal link constraints are intractable. As a result, the branch-
and-bound scheme computes relaxed schedules h, by considering the precondi-
tion and posted precedence constraints only, and branches over the disjunctions
in either mutex or causal link constraints that are violated in h,. The resulting
scheme is shown in Fig. 5. The expression ‘branching on [Updatesl; Updates2]
in 0 = (Precs, Doms)’ means that two children are generated, one in which o
is updated with Updatesl, the other in which is updated with Update2. If an
update contains the expression a < a’, this constraint is added to Precs; if it
contains the expression S(p,a) = a' (S(p,a) # a'), then the domain D(p,a) is
updated to D(p,a) := {a'} (D(p,a) := D(p,a) — {a'}).

Notice that unlike, partial-order planning branching schemes, we don’t re-
quire a unique causal link support for all actions. Such unique support, may
result however from the constraints S(p,a) = o’ and S(p,a) # a' posted during
the search. At the same time, we don’t resolve all potential conflicts (threats),
but the actual conflicts that result in the relaxed plan (a similar idea is used
by [11] in scheduling). A final difference is that the search is not goal oriented.
This may be a problem when the set of relevant actions is small in comparison
with the set of all actions. Actually, the same occurs in SAT formulations [25]
and CSP formulations over the plan graph [15, 36, 28].

5.4 Goal Oriented Branching

In partial-order-planning and planners such IxTeT and RAX, the set of opera-
tors Steps to be scheduled is built incrementally, starting with the actions Start
and End, and checking for conflicts within Steps only. This makes the search
more goal-oriented, something that pays off when the set of relevant actions is
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1. states o = (Steps, Precs, Doms), where Steps is a set of actions, and
Precs and Doms are before

2. initial state o9 = ({Start, End}, Precsg, Domsg) with Precy and Domsg
as before

3. relaxed schedule h, computed by solving ESTP Precs over domains
Doms; lower bound f(o) = h,(End)

4. terminal goals states o = (Steps, Precs, Doms), if |D(p,a)| = 1 for all
a € Steps, and in relaxed schedule h,, mutex constraint (11) is violated
by no action pair (a,a’), and causal link constraint (13) is violated by no
action triplet (a,a’,a") for a,a,a” in Steps

5. children generated from non-terminal state o = (Prec, Doms) by selecting
a culprit (a,a’) and branching [a < a';a’ < a], or by selecting a culprit
(a,a’,a") and branching [¢" < a;a’ < a"], or by selecting a domain
|D(p,a)| > 1 for a € Steps, and branching by setting S(p,a) = q;
and adding a; to Steps, for each a; € D(p,a)

Figure 6: Goal-oriented branch-and-bound for Canonical Plans

small in comparison with the set of all actions. These modifications can be easily
included in the branch-and-bound scheme above to yield the scheme shown in
Fig. 6. Which scheme is better remains an open empirical question, yet it’s use-
ful to make these distinctions explicit. For example, RAX is a constraint-based
planner that does goal-oriented branching, while Blackbox and CSP-Graphplan
are constraint-planners that do not.

5.5 Scheduling an Action Multiple Times

The schemes above are all restricted to compute canonical plans where each
action is scheduled at most once. Planning theories where this restriction does
not hold, however, are common. Nonetheless, extending the schemes for dealing
with such theories is not difficult. In principle, if an action a can appear twice
in a plan, we can create two copies of a, a; and as, and all the schemes above
will handle such copies correctly as if they were different actions. Actually, the
same trick can be done as long as we have an upper bound on the number of oc-
currences of each action. Alternatively, when considering plans with makespan
less than or equal to a threshold C, we can create copies ag, a1, ..., am Of
an action a, where m = C' — D(a) and the domain of T'(a;) is restricted to the
single time point i. Something like this is done in Blackbox and Graphplan-CSP
approaches where the actions a; are treated as boolean variables.

Creating copies of an action a dynamically, as done normally in partial-order
planning, is not sound in this framework. This is because the makespan and
lower bound of a plan can decrease when copies are introduced. A way around
this difficulty is to introduce a distinction between action templates and action
copies. Action copies are created dynamically as in POP, and once a copy a is
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created from a template a, the precedence constraint T(a) > T'(a) is posted.
Action copies can be included in plans but action templates can’t: they can only
appear in precondition constraints. The result is that the constraints that are
posted during the search do not affect the lower bound of action templates and
thus of future copies. This device, however, while general, may not be effective
as the resulting bounds may be too weak.

6 From Formulation to Implementation

We have shown that the notions of branching and lower bounds provide a useful
perspective for understanding and relating a number of ideas in planning. We
have also presented a formulation of temporal planning with unary resources
that integrates non-linear branching and lower bound computation, which may
provide a suitable platform for building systems that combine planning and
scheduling. Implementing such systems, however, whether for positive, canoni-
cal, or general theories, is not direct, and there are additional issues that need
to be addressed. We hope that others may want to undertake the challenge.
Here we discuss some of them.

e Variable (and value) selection heuristics are needed and they are often
crucial for performance; namely, criteria for selecting the ‘law’ to fix and
the order in which to try the repairs. Slack and contention based heuristics
are common in scheduling research [4]. Such selection heuristics require
not only lower bounds but time windows; i.e., lower and upper bounds.

e Lower and upper bounds can be obtained from the same computation
with little overhead [14]. In addition, such computations have to be incre-
mental, so that the time windows for the child are obtained incrementally
from the time windows for the parent. Constraint-based implementation
are well suited for this, in particular, if they match the performance of
shortest-path algorithms such as Bellman-Ford [3]

e Mutex and causal link constraints, are intractable, and play a passive
role in the schemes we have considered. Limited forms of inference over
such constraints, however, as captured in recent CP implementation of
branch-and-bound algorithms [33, 2, 9, 21, 17], may speed up the search
considerably by pruning additional parts of the state space.

e The precondition constraints we have used have been defined from the hl.
heuristic estimator. Precondition constraints based on high-order estima-
tors, in particular h% [20], will introduce more variables but may yield
better bounds and better performance

It may also be useful to develop methods for analyzing planning domains,
determining the number of times in which an action may have to be scheduled.
This may be intractable in general, but some easy cases could be identified (e.g.,
if there are no deletes, no action need to be scheduled more than once, etc.) In
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particular, it seems that better lower bounds can be derived if the theory is
known to be canonical.

7 Related Work

The view of planning as branch-and-bound is an extension of the view of planning
as heuristic search [30, 6]. The latter is tied to directional branching schemes
while the former is more general and includes partial-order and constraint-based
planning too. In this framework, POP [29, 40] is a smart but blind branching
scheme, while constraint-based planners [25, 15, 36, 28] are branch-and-bound
planners in which the computation of explicit lower bounds f(o) is replaced by
an incomplete evaluation of the pruning condition f*(o) < C for the exact value
function f*. This implicit lower-bound schemes, have considerable promise as
they can prune additional parts of the search space through the use of suitable
propagation rules [33, 2, 9, 17] and are incremental (inference is deductive and
branching just adds formulas). Constraint-based approaches, however, take
many different forms and often differ along several dimensions; e.g.

e branching: some planners try to schedule all actions (e.g., Blackbox,
CSP-Graphplan); others build the set of actions incrementally, as in POP
(e.g., RAX)

e surrogate constraints: some planners do constraint-propagation over a
theory extended with implicit constraints obtained from the plan graph
(Blackbox, CSP-Graphplan) or by hand (CPlan [39]); others do it directly
over the given theory (SATPlan)

e propagation: some planners do complete constraint-propagation over
tractable theories (RAX), most others do incomplete propagation over
intractable ones

The scheme we have presented that combines non-linear branching with
lower bounds is related to [31], where an heuristic estimator is introduced
to guide a partial-order planner. Similarly, [36], explains the limitations of
Graphplan and the benefits of Blackbox in terms of a non-directional branching
scheme.

Systems that accommodate planning and scheduling capabilities include Ix-
TeT [27], RAX [23], Aspen [16], O-Plan [13] and SIPE [41]. The performance
of these systems, however, does not appear to match the performance of mod-
ern planners and often rely on explicitly supplied control-knowledge. This is
likely due to the weak lower bounds that are used when they are used at all. In
planners such as IxTeT and RAX, such lower bounds could be boosted by in-
cluding the precondition constraints (10) among the constraints that are checked
for consistency in every state. Indeed, the precondition constraints capture the
heuristics ™ that have been found so useful in state planners such as Graphplan
and HSPr* [19].
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8 Conclusions

In this paper, we have analyzed the notion of branching in AI planning and have
related it to branching schemes in combinatorial optimization. We have also
analyzed heuristic-search, partial-order, and constraint-based planning from this
perspective, trying to sort commonalities and differences. We have also argued
that directional branching schemes as used in heuristic search planning are not
suitable for parallel and temporal planning, and introduced a new branch-and-
bound formulation that appears more convenient. We have also tried to clarify
the relationship between planning and scheduling techniques by considering a
number of planning theories whose expressive power lies somewhere between the
job-shop and temporal planning. We expect that some of the branch-and-bound
schemes that we have presented can contribute to the development of systems
that effectively integrate planning and scheduling capabilities.
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