"Rw'

CHAPTER 3

SEARCH STRATEGIES FOR
DECOMPOSABLE PRODUCTION
SYSTEMS

In chapter 1, we introduced decomposable production systems and
structures called AND/OR trees, for controlling their operation. In this
chapter we describe some heuristic strategies for searching AND/OR
trees and graphs. We also describe some search techniques for graphs
used in game-playing systems.

3.1. SEARCHING AND/OR GRAPHS

Recall that the AND or the OR label given to a node in an AND/OR
tree depends upon that node’s relation to its parent. In one case, a parent
node labeled by a compound database has a set of AND successor nodes,
each labeling one of the component databases. In the other case, a parent
node labeled by a component database has a set of OR successor nodes,

ach labeling the database resulting from the application of alternative
rules to the component database.

We are generally concerned with AND/OR graphs rather than with
the special case of trees, because different sequences of rule applications
may generate identical databases. For example, a node could be labeled
by a component database resulting both from having split a compound
one and from having applied a rule to another one. In this case, it would

be called an OR node with respect to one parent and an AND node with -
respect to the other parent. For this reason, we do not generally refer to °

the nodes of an AND/OR graph as being AND nodes or OR nodes;
99

{)

SEARCH STRATEGIES FOR DECOMPOS ABLE PRODUCTION SYSTEMS

instead, we introduce some more general notation, appropriate for
graphs. We continue to call these structures AND/OR graphs, however,
and use the terms AND nodes and OR nodes when discussing AND/OR
trees.

We define AND/OR graphs here as hypergraphs. Instead of arcs
connecting pairs of nodes, there are hyperarcs connecting a parent node
with a set of successor nodes. These hyperarcs are called connectors. Each
k-connector is directed from a parent node to a set of k successor nodes. (If
all of the connectors are 1-connectors, we have the special case of an
ordinary graph.)

In Figure 3.1, we show an example of an AND/OR graph. Note that
node n, has a 1-connector directed to successor n; and a 2-connector
directed to the set of successors { ny,n5}. For k > 1, k-connectors are
denoted in our illustrations by a curved line joining the arcs from parent
to elements of the successor set. (Using our earlier terminology, we could
have regarded nodes n; and n; as a set of AND nodes, and we could have
regarded node n; as an OR node, relative to their common parent n,; but
note that node n,, for example, belongs to a set of AND nodes relative to
its parent n; but is an OR node relative to its parent n;.)

]

ny

ngQ O ng

.8

ns,0
Fig. 3.1 An AND/OR graph.

100

SEARCHING AND/OR GRAPHS

In an AND/OR tree, each node has at most one parent. In trees and
graphs we call a node without any parent a root node. In graphs, we call a
node having no successors a leaf node (a tip node for trees).

A decomposable production system defines an implicit ANI?/OR
graph. The initial database corresponds to a distinguished node in the
graph called the start node. The start node has an outgoing connector to a
set of successor nodes corresponding to the components of the initial
database (if it can be decomposed). Each production rule corresponds to
a connector in the implicit graph. The nodes to which such a connector is
directed correspond to component databases resulting after rule applica-
tion and decomposition into components. There is a set of terminal nqdes
in the implicit graph corresponding to databases satisfying the termina-
tion condition of the production system. The task of the production
system can be regarded as finding a solution graph from the start node to

the terminal nodes.

Roughly speaking, a solution graph from node n to node set N of an
AND/OR graph is analogous to a path in an ordinary graph. It can.be
obtained by starting with node n and selecting exactly one outgoing
connector. From each successor node to which this connector is directed,
we continue to select one outgoing connector, and so on, until eventually
every successor thus produced is an element of the set N. In Figun.'e 3.2,
we show two different solution graphs from node ny to { n;,ns} in the

graph of Figure 3.1.

We can give a precise recursive definition of a solution graph. ?l‘h.e
definition assumes that our AND/OR graphs contain no cycles, that is, it
assumes that there is no node in the graph having a successor that is also
its ancestor. The nodes thus form a partial order which guarantees
termination of the recursive procedures we use. We henceforth make this
assumption of acyclicity.

R]

ns ny
ns3

n6‘
ny ng nz ng

Fig. 3.2 Two solution graphs.
101

g - ; &% Stk R o, .
R R e B TR R NN T A, s R O i e e RO

- SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

Let G’ denote a solution graph from node n to a set N of nodes of an
AND/OR graph G. G’ is a subgraph of G. ‘ ‘

If n is an element of N, G’ consists of the single node n;
otherwise, if n has an outgoing conneétor, K, directed to nodes

{ny,...,n;} such that there is a solution graph to N from each of n,,
wherei = 1,.. ., k, then G’ consists of node n, the connector, K, the nodes

{n1,....,m}, and the solution graphs to N from each of the nodes in

{ng,..m}; , T
otherwise, there is no solution graph from n to N.

Analogous to the use of arc costs in ordinary graphs, it is often useful to
assign costs to connectors in AND/OR graphs. (These costs model the
costs of rule applications; again we need to assume that each cost is
greater than some small positive number, e.) The connector costs can
then be used to calculate the cost of a solution graph. Let the cost of a
solution graph from any node n to N be denoted by k(n,N). The cost
k(n,N) can be recursively calculated as follows:

If n is an element of N, k(n,N) = 0.

Otherwise, n has an outgoing connector to a set of successor nodes

{n1,-.,n;} in the solution graph. Let the cost of this connector be Cp.
Then,

k(n,Ny=c, + k(n;,N) + ... + k(n;,N).

We see that the cost of a solution graph, G, from n to N is the cost of
the outgoing connector from n (in G) plus the sum of the costs of the
solution graphs from the successors of n (in G’) to N. This recursive
definition is satisfactory because we are assuming acyclic graphs.

Note that our definition of the cost of a solution graph might count the
costs of some connectors in the solution graph more than once. In
general, the cost of an outgoing connector from some node m is counted
in the cost of a solution graph from n to N just as many times as there are
paths from n to m in the solution graph. Thus, the costs of the two
solution graphs in Figure 3.2 are 8 and 7 if the cost of each k-connector is

102

AO*: AHEURISTIC SEARCH PROCEDURE FOR AND/OR GRAPHS

Beyoild merely finding any solution graph from the start node to a set
of terminal nodes, we may want to find one having minimal cost. We call
such a solution graph an optimal solution graph. Let the cost of an
optimal solution graph from n to a set of terminal nodes be denoted by
the function A*(n). :

3.2. AO*; A HEURISTIC SEARCH PROCEDURE FOR
AND/OR GRAPHS '

i ?1 ;‘,' < !

As with'ordiflary graphs, we define the process of expanding a node as
the application of a successor operator that generates all of the successors
of a node (through all outgoing connectors). We might now define a
breadth-first search algorithm for searching implicit AND/OR graphs. to
find solution graphs. Again, since breadth-first procedures are unin-
formed about the problem domain, they are typically not sufficiently
efficient for Al applications. We are naturally led to ask whether some
search procedure using an evaluation function with a heuristic compo-
nent can be devised for AND/OR graphs.

We now describe a search procedure that uses a heuristic function
h(n) that is an estimate of h*(n), the cost of an optimal solution graph
from node n to a set of terminal nodes. Just as with GRAPHSEARCH,
simplifications in the statement of the procedure are possible if 4 satisfies
certain restrictions.

Let us impbse a monotone restriction on h, that is, for every connector
in the implicit graph directed from node n to successors ny,. . ., 1, we
assume:

h(n)<c+ h(n)) + ...+ h(n),

where c is the cost of the connector. This restriction is analogous to the
monotone restriction on heuristic functions for ordinary graphs. If
h(n) =0 for n in the set of terminal nodes, then the monotone
restriction implies that 4 is a lower bound on h*, that is, h(n) < h*(n)
for all nodes n.

fr N
: 103

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

Our heuristic search procedure for AND/OR graphs can now be stated
as follows:

Procedure AO*

1 Create a search graph, G, consisting solely of
the start node, s. Associate with node
sacostg(s) = h(s).

If s is a terminal node, label s SOLVED.

2 until 5 is labeled SOLVED, do:

3 begin

4 Compute a parrial solution graph, G/,
in G by tracing down the marked connectors
in G from s. (Connectors of G will be

marked in a subsequent step.)

5 select any nonterminal leaf node, n, of
G’. (We discuss later how this
selection might be made.) -~

6 Expand node n generating all of its successors
and install these in G as successors of .
For each successor, n;, not already
occurring in G, associate the cost
q(n;) = h(ny).
Label SOLVED of these successors that are
terminal nodes. (See text for discussion of what to
do in case node n has no successors.)

7 Create a singleton set of nodes, S, containing —
just node n. R

8 until S is empty, do:

9 begin
10 Remove from S a node m such that
m has no descendants in G occurring
in S.

104

AO”: AHEURISTIC SEARCH PROCEDURE FOR AND/OR GRAPHS

11 Revise the cost g (m) for m, as follows:

for each connector directed from m to a
set of nodes { ny;,. . ..m; }

compute g;(m) = ¢; + q(ny) + ...

either just been computed in a

previous pass through this inner loop Lo
: or (if this is the first pass) they were
Foy computed in step 6.] f’Y hals

P Set g(m) to the minimum over all
' outgoing connectors of ¢;(m) and
mark the connector through which this
. minimum is achieved, erasing the previous
marking if different. If all of the
successor nodes through this connector
are labeled SOLVED, then label node m
: SOLVED.

12 If m has been marked SOLVED or if the
revised cost of m is different than its
just previous cost, then add to S all
those parents of m such that m is one

3 - of their successors through a marked
‘ " connector.
13 end

14 end ‘. i

Algorithm AO* can best be understood as a repetition of the following
two major operations. First, a top-down, graph-growing operation (steps
4-6) finds the best partial solution graph by tracing down through the
marked connectors. These (previously computed) marks indicate the
current best partial solution graph from each node in the search graph.
(Before the algorithm terminates, the best partial solution graph does not
yet have all ?f its leaf nodes terminal, which is why it is called partial.)
One of the nonterminal leaf nodes of this best partial solution graph is
expanded, and a cost is assigned to its successors.

The second major operation in AO* is a bottom-up, cost-revising,
connector-marking, SOLVE-labeling procedure (steps 7-12). Starting
with the node just expanded, the procedure revises its cost (using the

105

+ q(my). [The g(n;) have Cleodgn by £

R I

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS

newly computed costs of its successors) and marks the outgoing connec-
tor on the estimated best “path” to terminal nodes. This revised cost
estimate is propagated upward in the graph. (Acyclicity of our graphs
guarantees no loops in this upward propagation.) The revised cost, g (n),
is an updated estimate of the cost of an optimal solution graph fromntoa
set of terminal nodes. Only the ancestors of nodes having their costs
revised can possibly have their costs revised, so only these need be
considered. Because we are assuming the monotone restriction on A, cost
revisions can only be cost increases. Therefore, not all ancestors need
have cost revisions, but only those ancestors having best partial solution
graphs containing descendants with revised costs (hence step 12).

When the AND/OR graph is an AND/OR tree, the bottom-up
operation can be simplified somewhat (because then each node has only
one parent).

To avoid making algorithm AO* appear more complex than it already
does, we ignored the possibility (in step 6) that the node selected for
expansion might not have any successors. This case is easily handled in
step 11 by associating a very high ¢ value cost with any node, m, having
no successors (or, more generally, any node recognized as not belonging
to any solution graph). The bottom-up operation will then propagate this
high cost upward, which eliminates any chance that a graph containing
this node might be selected as an estimated best solution graph.

Suppose some node n has a finite number of descendants in the
implicit AND/OR graph and that these do not comprise a solution graph
from n to a set of terminal nodes. Then, eventually, the revised cost, g (n),
for node n will have a very high value. The assignment of a very high
value, ¢ (), to the start node can therefore be taken to signal that there is
no solution graph from the start node.

It is possible to prove that if there is a solution graph from a given node
to a set of terminal nodes, and if h(n) < h*(n) for all nodes, and if A
satisfies the monotone restriction, Them algorithm AO* will terminate in
an optimal solution graph. (This optimal solution graph can be obtained
by tracing down from s through the marked connectors at termination.
The cost of this optimal solution graph is equal to the g value of s at
termination.) Thus, we can say that algorithm AO* with these restrictions
is admissible. We omit the proof of this result here; the interested reader
is referred to Martelli and Montanari (1973).

106

==
QX Gt

AO*: AHEURISTIC SEARCH PROCEDURE FOR AND/OR GRAPHS

A breadth-first algorithm can be obtained from AO* by using h =0.
Because such an h function satisfies the monotone restriction (and is a
lower bound on h*), the breadth-first algorithm using it is admissible.

As an example of the use of AO*, let us consider again the graph of
Figure 3.1. Suppose that the following estimates are available:

h(ng) =0,h(n;) =2,h(ng) = 4 h(ns) = 4,
h(n) =1, h(n5) = 1, h(ng) = 2, h(n;) =0,
h(n8)= 0.

Let nodes n, and n; be terminal nodes, and let the cost of each
k-connector be k. Note that our h function provides a lower bound on h *
and satisfies the monotone restriction.

The search graphs obtained after various cycles through the outer loop
of AO* are shown in Figure 3.3. In each graph, the revised ¢ values are
shown next to each node; heavy arrows are used to mark connectors, and
nodes labeled SOLVED are indicated by solid circles. During the first
cycle, we expand node ngy; next we expand node n,, then node n;, and
then node n,. After node n, is expanded, node n, is labeled SOLVED.
The solution graph (with minimal cost equal to 5) is obtained by tracing
down through the marked connectors.

We have not yet discussed how AO* selects (in step 5) 4 nonterminal
leaf node of the estimated best partial solution graph to expand. Perhaps
it would be efficient to select that leaf node most likely to change the
estimate of the best partial solution graph. If the estimate of the best
partial solution graph never changes, AO* must eventually expand all of
the nonterminal leaf nodes of this graph anyway. However, if the
estimate is eventually going to change to some more nearly optimal
graph, the sooner AO* makes this change, the better. Possibly the
expansion of that leaf node having the highest h value would most likely

result in a changed estimate. ’F‘*"L Q, A /7/}/7

As with algorithms A and A* for ord@ graphs, AO* may be
modified in a variety of ways to render it more practical in special
situations. First, rather than recompute a new estimated best partial
solution graph after every node expansion, one might instead expand one

107

)

-

-

50

n;

108

ng 5 g 5
ny "o
ny
/oo /
A .
ne g 2
n3 4 > 1304 " &
n 0
672 ng 6 0"y
0

SEARCH STRATEGIES FOR DECOMPOSABLE PRODUCTION SYSTEMS
[

3 ny 4 "
5
EN
"
/ ,
n o2
T 4
n
74

150
1

N ? ¢
After one cycle m(ﬁ\ After two cycles

After three cycles After four cycles

Fig. 3.3 Search graphs after various cycles of AO*.

xtLATIONSHIPS BETWEEN DECOMPOSABLE AND COMMUTATIVE SYSTEMS

or more leaf nodes and some number of their descendants all at once, and
then recompute an estimated best partial solution graph. This strategy
reduces the overhead expense of frequent bottom-up operations but
:ncurs the risk that some node expansions may not be on the best solution

graph.

A staged-search strategy may also be used for AND/OR graphs. To
employ it, one periodically reclaims needed storage space by discarding
some of the AND/OR search graph. One might, for example, determine
a few of those partial solution graphs within the entire search graph
having the largest estimated costs. These can then be discarded periodi-
«ally (with the risk, of course, of discarding one that might turn out to be
_:n.av of an optimal solution graph.)

13. SOME RELATIONSHIPS BETWEEN
DECOMPOSABLE AND COMMUTATIVE
SYSTEMS

*

In chapter I we mentioned that several problems could be solved by
production systems working in either forward or backward directions.
(Whether one chooses to call a given direction forward, or backward, is
often arbitrary.) Here we illustrate that certain types of commutative
forward systems are dual to decomposable backward ones.

Suppose that we have a production system based on the following
rewrite rules:

-

RI: T—> A,B
R2: ToB.C
R3: 45D

Ré: BLEF
RS: .,NI.VQ
R6: CoG

109

