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Abstract

Most recent strides in scaling up planning have centered around two competing themes—
disjunctive planners, exemplified by Graphplan, and heuristic state search planners, exemplified by
UNPOP, HSP and HSP-r. In this paper, we present a novel approach for successfully harnessing
the advantages of the two competing paradigms to develop planners that are significantly more
powerful than either of the approaches. Specifically, we show that the polynomial-time planning
graph structure that the Graphplan builds provides a rich substrate for deriving a family of highly
effective heuristics for guiding state space search as well as CSP style search. The main leverage
provided by the planning graph structure is a systematic and graded way to take subgoal interactions
into account in designing state space heuristics. For state space search, we develop several families
of heuristics, some aimed at search speed and others at optimality of solutions, and analyze many
approaches for improving the cost-quality tradeoffs offered by these heuristics. Our normalized
empirical comparisons show that our heuristics handily outperform the existing state space heuristics.
For CSP style search, we describe a novel way of using the planning graph structure to derive highly
effective variable and value ordering heuristics. We show that these heuristics can be used to improve
Graphplan’s own backward search significantly. To demonstrate the effectiveness of our approach vis
a vis the state-of-the-art in plan synthesis, we present AltAlt, a planner literally cobbled together from
the implementations of Graphplan and state search style planners using our theory. We evaluate AltAlt
on the suite of problems used in the recent AIPS-2000 planning competition. The results place AltAlt
in the top tier of the competition planners—outperforming both Graphplan based and heuristic search
based planners.  2001 Published by Elsevier Science B.V.
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1. Introduction

In the last few years, the planning community has developed a number of attractive and
scalable approaches for solving deterministic planning problems. Prominent among these
are “disjunctive” planners, exemplified the Graphplan algorithm of Blum and Furst [2],
and heuristic state space planners, exemplified by McDermott’s UNPOP [33] and Bonet
and Geffner’s HSP-r planners [3,4]. The Graphplan algorithm can be seen as solving
the planning problem using CSP techniques. A compact k-length CSP encoding of the
planning problem is generated using a polynomial-time data structure called “planning
graph”, which is then searched for a solution [20]. On the other hand, UNPOP, HSP, HSP-r
are simple state space planners which explicitly search in the space of world states. Their
superior performance comes from the heuristic estimators they use to evaluate the goodness
of children states. As such, it is not surprising that heuristic state search planners and
Graphplan based planners have generally been seen as competing approaches [46].

Indeed, the sources of strength (as well as weaknesses) of Graphplan and heuristic state
search planners are quite different. By posing the planning problem as a CSP and exploiting
the internal structure of the state, Graphplan is good at dealing with problems where
there are a lot of interactions between actions and subgoals. Also, Graphplan guarantees,
theoretically, to find an optimal solution if one exists. On the other hand, having to exhaust
the whole search space up to the solution bearing level is a big source of inefficiency of the
Graphplan.

In UNPOP, HSP and HSP-r, the heuristic can be seen as estimating the number of
actions required to reach a state (either from the goal state or the initial state). To make
the computation tractable, these heuristic estimators make strong assumptions about the
independence of subgoals. Because of these assumptions, state search planners often thrash
badly in problems where there are strong interactions between subgoals. Furthermore,
these independence assumptions also make the heuristics inadmissible, precluding any
guarantees about the optimality of solutions found. In fact, the authors of UNPOP
and HSP/HSP-r planners acknowledge that taking the subgoal interactions into account
in a tractable fashion to compute more robust and/or admissible heuristics remains a
challenging problem [4,33].

In this paper, we provide a way of successfully combining the advantages of the
Graphplan and heuristic state search approaches. Our main insight is that the planning
graph structure can be used as the basis for deriving effective heuristics for both state
search and CSP style search. We list our specific contributions below.

(1) We will show that the planning graph is a rich source for deriving effective and
admissible heuristics for controlling state space search. Specifically, we describe
how a large family of heuristics—with or without admissibility property—can be
derived in a systematic manner from a (leveled) planning graph. These heuristics
are then used to control a regression search in the state space to generate plans.
The effectiveness of these heuristics is directly related to the fact that they give a
better account of the subgoal interactions. We show how the propagation of binary
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(and higher order) mutual exclusion relations makes the heuristics derived from the
planning graph more sensitive to negative subgoal interactions. Positive interactions
are accounted for by exploiting structure of the planning graph which explicitly
shows when achieving a subgoal also, as a side effect, achieves another subgoal. We
provide a thorough cost-benefit evaluation of these heuristics:
• We provide a comparative analysis of the tradeoffs offered by the various

heuristics derived from the planning graph. We also show that our heuristics are
superior to known HSP style heuristics (e.g., HSP-r [3]) for planning problems.
• We consider and evaluate the costs and benefits involved in using planning

graphs as the basis for deriving state space heuristics. We point out that planning
graphs, in addition to supporting heuristic generation, also significantly reduce
the branching factor of the state space search by helping it focus on the
applicable actions. As for the heuristic generation cost, in addition to adapting
several existing optimizations for generating planning graphs efficiently, we also
demonstrate that it is possible to cut cost while keeping the effectiveness of the
heuristics largely intact by working with partially grown planning graphs.

(2) To show that our approach for deriving heuristics from planning graphs is competi-
tive with the current state-of-the-art plan synthesis systems, we implement our ideas
in a planner called AltAlt. AltAlt is literally cobbled together from the implementa-
tions of Graphplan and state search style planners using our theory. We compare
AltAlt’s performance on the benchmark problems used in the recent AIPS-2000
Planning Competition [1]. Our results indicate that AltAlt’s performance on these
problems puts it squarely in the top tier of two or three best planners in the compe-
tition.

(3) To further clarify the connections between heuristic state-search and Graphplan, we
show that the distance based heuristics, similar to those we derive from the plan-
ning graph, can also be used to control Graphplan’s own backward search. It is well
known that Graphplan’s backward search can be seen as a variation of standard sys-
tematic backtracking search for constraint satisfaction problems [19]. In order to
improve this search, we show how the planning graph can be used to derive more
effective variable and value ordering heuristics for backward search. Of specific in-
terest is our empirical observation that armed with these heuristics, Graphplan can
largely avoid its unproductive exhaustive searches in the non-solution bearing levels.
This is accomplished by starting with planning graphs that are longer than the min-
imal length solutions. Surprisingly, our heuristics make the search on such longer
planning graphs both very efficient, and near-optimal (in that the quality of plans
produced are close to the ones produced by the original Graphplan).

(4) Our work also makes several pedagogical contributions. To begin with, we point
out that the ideas inherent in Graphplan style systems, and the heuristic state search
planners are complementary rather than competing. We also point out that plan-
ning graph based heuristics developed in our work are closely related to “memory
based heuristics” (such as pattern databases) [28] that are currently popular in the
AI search community. Given that the planning graph can be seen as a representation
of the CSP encoding of the planning problem, and mutex propagation can be seen as
a form of consistency enforcement, our work also foregrounds the interesting con-
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nections between the degree of (local) consistency of the underlying CSP encoding
of the planning problem, and the effectiveness of the heuristics generated from the
encoding.

The rest of the paper is organized as follows. Section 2 reviews the state space search
approach in planning, exemplified by a state search planner such as HSP-r. We discuss the
limitations of the heuristic estimators in planners of this approach. Section 3 discusses how
the Graphplan’s planning graph can be used to measure subgoal interactions. Section 4 de-
velops several families of effective heuristics, which aim at search speed without insisting
on admissibility. Section 5 focuses on generating the admissible heuristic for optimal plan-
ning. Several implementational issues of computing the heuristic functions are investigated
in Section 6. Section 7 describes AltAlt, a planning system based on our ideas, and presents
a comparative evaluation of its performance vis a vis other state of the art planners. In Sec-
tion 8 we show how the planning graph can be used to develop highly effective variable
and value ordering heuristics for CSP encodings for planning problems. We demonstrate
their effectiveness by using them to improve the efficiency of Graphplan’s own backward
search. Section 9 discusses the related work, and Section 10 summarizes the contributions
of our work.

2. Planning as heuristic guided state space search

Planning can be naturally seen as a search through the space of world states [39]. Unless
stated otherwise, in this paper, we shall assume the simple STRIPS [12] model of classical
planning. 2 In this model, each state is represented as a set of propositions (or subgoals).
We are given a complete initial state S0, goal G, which is a set of subgoals and can be
incomplete, and a set of deterministic actions Ω . Each action a ∈ Ω has a precondition
list, add list and delete list, denoted by Prec(a),Add(a),Del(a), respectively. The planning
problem is concerned with finding a plan, e.g., a sequence of actions in Ω , that when
executed from the initial state S0 will achieve the goal G.

In progression state space search, an action a is said to be applicable to state S if
Prec(a) ⊆ S. The result of the progression of S over an applicable action a is defined
as:

Progress(S, a)= S + Add(a)−Del(a).

The heuristic function over a state S is the cost estimate of a plan that achievesG from the
state S.

In regression state space search, an action a is said to be applicable to state S if
Add(a) ∩ S 	= ∅ and Del(a) ∩ S = ∅. The regression of S over an applicable action a
is defined as:

Regress(S, a)= S + Prec(a)− Add(a).

The heuristic function over a state S is the cost estimate of a plan that achieves S from
initial state S0.

2 Our theory and techniques work with little change for simple extensions to STRIPS model, such as actions
with negated preconditions, and a single effect list consisting of positive and negative literals (instead of delete
and add lists).
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The efficiency of state search planners and the quality of the solutions that they return
depend critically on the informedness and admissibility of these heuristic estimators,
respectively. The difficulty of achieving the desired level of informedness and admissibility
of the heuristic estimates is due to the fact that subgoals interact in complex ways. There are
two kinds of subgoal interaction: negative interactions and positive interactions. Negative
interactions happen when achieving one subgoal interferes with the achievement of some
other subgoal. Ignoring this kind of interactions would normally underestimate the cost,
making the heuristic uninformed. Positive interactions happen when achieving one subgoal
also makes it easier to achieve other subgoals. Ignoring this kind of interactions would
normally overestimate the cost, making the heuristic estimate inadmissible.

For the rest of this section we will demonstrate the importance of accounting for subgoal
interactions in order to compute informed and/or admissible heuristic functions. We do so
by examining the weakness of heuristics such as those used in HSP-r [3], which ignore
these subgoal interactions. Similar arguments can also be generalized to other state space
planners such as HSP and UNPOP.

2.1. Importance of accounting for subgoal interactions: Case study of HSP-r

HSP-r planner casts the planning problem as search in the regression space of the
world states. The heuristic value of a state S is the estimated cost (number of actions)
needed to achieve S from the initial state. It is important to note that since the cost of a
state S is computed from the initial state and we are searching backward from the goal
state, the heuristic computation is done only once for each state. Then, HSP-r follows a
variation of the A* search algorithm, called Greedy Best First, which uses the cost function
f (S) = g(S) + w ∗ h(S), where g(S) is the accumulated cost (number of actions when
regressing from goal state) and h(S) is the heuristic value of state S. The heuristic function
h is computed under the assumption that the propositions constituting a state are strictly
independent. Thus the cost of a state is estimated as the sum of the cost for each individual
proposition making up that state.

Heuristic 1 (Sum heuristic). hsum(S)←∑
p∈S h(p).

The heuristic cost h(p) of an individual proposition p is computed using an iterative
procedure that is run to fixpoint as follows. Initially, each proposition p is assigned a cost
0 if it is in the initial state I , and∞ otherwise. For each action a that adds some proposition
p, h(p) is updated as:

h(p)←min
{
h(p),1+ h(Prec(a)

)}
. (1)

Where h(Prec(a)) is computed using the sum heuristic (Heuristic 1). The updates
continue until the h values of all the individual propositions stabilize. This computation can
be done before the backward search actually begins, and typically proves to be quite cheap.

Because of the independence assumption, the sum heuristic turns out to be inadmissible
(overestimating) when there are positive interactions between subgoals (because achieving
some subgoal may also help achieving other subgoals). Sum heuristic is also less informed
(significantly underestimating) when there are negative interactions between subgoals (be-
cause achieving a subgoal deletes other subgoals). Bonet and Geffner [3] provide two sep-
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arate improvements aimed at handling these problems to a certain extent. Their simple
suggestion to make the heuristic admissible is to replace the summation with the “max”
function.

Heuristic 2 (Max heuristic). hmax(S)←maxp∈S h(p).

This heuristic, however, is often much less informed than the sum heuristic as it grossly
underestimates the cost of achieving a given state.

To improve the informedness of the sum heuristic, HSP-r adopts the notion of mutex
relations first originated in Graphplan planning graph [2]. But unlike Graphplan, only static
propositional mutexes (also known as binary invariants) are computed. Two propositions
p and q form a static mutex when they cannot both be present in any state reachable from
the initial state. The static mutex relations can be seen as evidence of an extreme form of
negative interactions. Since the cost of any set containing a mutex pair is infinite, we define
a variation of the sum heuristic called the “sum mutex” heuristic as follows:

Heuristic 3 (Sum mutex heuristic).

h(S) ← ∞ if ∃p,q ∈ S s.t. mutex(p, q)∑

p∈S
h(p) otherwise.

In practice, the sum mutex heuristic turns out to be much more powerful than the sum
heuristic and HSP-r implementation uses it as the default.

We now provide a brief summary of the procedure for computing mutexes used in HSP-r
[3]. The basic idea is to start with a large set of potential mutex pairs and iteratively
weed out those pairs that cannot be actually mutex. The set M0 of potential mutexes is
computed as the union of sets MA and MB , defined as follows: MA is the set of all pairs
of propositions 〈p,q〉, such that for some action a in A, p ∈ Add(a) and q ∈ Del(a), and
MB is the set of all pairs 〈r, q〉, such that for some 〈p,q〉 ∈MA and for some action a, r ∈
Prec(a) and p ∈ Add(a). This computation precludes from consideration potential mutexes
〈r, s〉, where r and s are not in the add, precondition or delete lists of any single action. As
we shall see below, this turns out to be an important limitation in several domains.

The sum mutex heuristic used by HSP-r, while shown to be powerful in domains where
the subgoals are relatively independent such as the logistics and gripper domains [3],
thrashes badly on problems where there is a rich interaction between actions and subgoal
sequencing. Specifically, when a subgoal can be achieved early but gets deleted much
later when other subgoals are achieved, the sum heuristic is unable to account for this
interaction. To illustrate this, consider a simple problem from the grid domain [33] shown
in Fig. 1. Given a 3× 3 grid, the initial state is denoted by two propositions at(0,0) and
key(0,1) and the goal state is denoted by 2 subgoals at(0,0) and key(2,2). Notice the
subgoal interaction here: The first subgoal at(0,0) is already true in the initial state. When
key(2,2) is first achieved, at(0,0) is no longer true and needs to be re-achieved. There are
three possible actions: the robot moves from one square to an adjacent square, the robot
picks up a key if there is key in the square the robot currently resides, and the robot drops
the key at the current square. One obvious solution is as follows: The robot goes from
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Fig. 1. A simple grid problem and the first level of regression search on it.

(0,0) to (0,1), picks up the key at (0,1), moves to (2,2), drops the key there, and finally
moves back to (0,0). This is in fact the optimal 10-action plan. We have run (our Lisp re-
implementation of) HSP-r planner on this problem and no solution was found after 1 hour
(generating more than 400,000 nodes, excluding those pruned by the mutex computation).
The original HSP-r written in C also runs out of memory (250 MB) on this problem.

It is easy to see how HSP-r goes wrong. First of all, according to the mutex computation
procedure that HSP-r uses (described above), we are able to detect that when the robot
is at a square, it cannot be in an adjacent square. But HSP-r’s mutex computation cannot
detect the type of mutex that says that the robot can also not be in any other square as well
(because there is no single action that can place a robot from a square to another square not
adjacent to where it currently resides).

Now let’s see how this limitation of sum mutex heuristic winds up fatally misguiding
the search. Given the subgoals (at(0,0), key(2,2)), the search engine has three potential
actions over which it can regress the goal state (see Fig. 1(b)). Two of these—move from
(0,1) or (1,0) to (0,0)—give the subgoal at(0,0), and the third—dropping key at (2,2),
which requires the precondition at(2,2)—gives the subgoal key(2,2). If either of the move
actions is selected, then after regression the robot would be at either (0,1) or (1,0), and
that would increase the heuristic value because the cost of at(0,1) or at(1,0) is 1 (both
of which are greater than the cost of at(0,0)). If we pick the dropping action, then after
regression, we have a state that has both at(0,0) (the regressed first subgoal), and at(2,2)
(the precondition of dropping the key at (2,2)). While we can see that this is an inconsistent
state, the mutex computation employed by HSP-r does not detect this (as explained above).
Moreover, the heuristic value for this invalid state is actually smaller than the other two
states corresponding to regression over the move actions. This completely misguides the
planner into wrong paths, from which it never recovers. HSP-r also fails or worsens the
performance for similar reasons in the travel, mystery, grid, blocks world, and eight puzzle
domains [32].

3. Exploiting the structure of Graphplan’s planning graph

In the previous section, we showed the types of problems where ignoring the (negative)
interaction between subgoals in the heuristic often leads the search into wrong directions.
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Fig. 2. Planning graph for the 3× 3 grid problem.

On the other hand, Graphplan’s planning graph contains such information in the form of
mutex constraints, and can be used to compute more effective heuristics.

The Graphplan algorithm [2] works by converting the planning problem specification
into a planning graph. Fig. 2 shows part of the planning graph constructed for the 3× 3
grid problem shown in Fig. 1. As illustrated here, a planning graph is an ordered graph
consisting of two alternating structures, called “proposition lists” and “action lists”. We
start with the initial state as the zeroth level proposition list. Given a k level planning
graph, the extension of the structure to level k + 1 involves introducing all actions whose
preconditions are present and not mutex in the kth level proposition list. In addition to
the actions given in the domain model, we consider a set of dummy “noop” actions, one
for each condition in the kth level proposition list (the condition becomes both the single
precondition and effect of the noop). Once the actions are introduced, the proposition list at
level k + 1 is constructed as just the union of the effects of all the introduced actions. The
planning graph maintains dependency links between the actions at the level k + 1, their
preconditions in the level k proposition list and their effects in the level k + 1 proposition
list.

The critical asset of the planning graph, for our purposes, is the efficient marking and
propagation of mutex constraints during the expansion phase. The propagation starts at
level 1, with the pairs of actions that have static interference 3 labeled mutex. Mutexes are
then propagated from this level forward by using two simple propagation rules:

(1) Two propositions at level k are marked mutex if all actions at level k that support one
proposition are pair-wise mutex with all actions that support the second proposition.

(2) Two actions at level k + 1 are mutex if they have static interference or if one of the
propositions (preconditions) supporting the first action is mutually exclusive with
one of the propositions supporting the second action.

3 Two actions have a static interference if the union of their preconditions and effects is inconsistent. A set is
considered inconsistent if it contains a literal p as well as its negation.



X. Nguyen et al. / Artificial Intelligence 135 (2002) 73–123 81

Fig. 2 shows a part of the planning graph for the robot problem specified in Fig. 1. The
curved lines with x-marks denote the mutex relations. The planning graph can be seen as
a CSP encoding [22,46], with the mutex propagation corresponding to a form of directed
partial 1- and 2-consistency enforcement [22]. Higher order mutexes can also be computed
and propagated in a similar fashion, corresponding to a higher degree of consistency
enforcement. The CSP encoding can be solved using any applicable CSP solving methods
(a special case of which is Graphplan’s backward search procedure).

Normally, Graphplan attempts to extract a solution from the planning graph of length l,
and will expand it to level l + 1 only if that solution extraction process fails. Graphplan
algorithm can thus guarantee that the solution it finds is optimal in terms of number of
steps. To make the optimality hold in terms of number of actions (a step can have multiple
actions), we need to start with a planning graph that is serial [20]. A serial planning graph
is a planning graph in which every pair of non-noop actions at the same level are marked
mutex. These additional action mutexes propagate to give additional propositional mutexes.
A planning graph is said to level off when there is no change in the action, proposition and
mutex lists between two consecutive levels.

Definition 1. A mutex relation is called static (or “persistent”) if it remains a mutex at
the level where the planning graph levels off. A mutex relation is called dynamic (or level
specific) if it is not static.

Based on the above mutex computation and propagation rules, the following properties
can be easily verified:

(1) The number of actions required to achieve a pair of propositions is no less than
the index of the smallest proposition level in the planning graph in which both
propositions appear without a mutex relation.

(2) Any pair of propositions having a static mutex relation between them can never be
achieved starting from the initial state.

(3) The set of actions present in the level where the planning graph levels off contains
all actions that are applicable to states reachable from the initial state.

The three observations above give a rough indication as to how the information in the
leveled planning graph can be used to guide state search planners. The first observation
shows that the level information in the planning graph can be used to estimate the cost
of achieving a set of propositions. Furthermore, the set of dynamic propositional mutexes
help give a finer distance estimate. The second observation allows us to prove certain world
states that are unreachable from the initial state. The third observation shows a way of
extracting a finer (smaller) set of applicable actions to be considered by the regression
search.

4. Extracting effective state space heuristics from planning graph

We shall describe how a family of state space heuristics can be extracted from the
planning graph. This section is concerned with improving the effectiveness of the heuristics
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Fig. 3. A road map of heuristics extracted from planning graph.

and the solution quality without insisting on strict admissibility of the heuristic functions.
Section 5 is concerned with improving admissible heuristics for finding optimal solutions.

Fig. 3 gives a high level road map of the heuristics to be explored. We use a phased
exposition where in we present and evaluate one family of heuristics, and use the
limitations discovered by the evaluation to motivate the exploration of the next family
of heuristics. To this end, we start by briefly describing how these heuristics are evaluated.
We test the heuristics on a variety of planning domains. These include several well-known
benchmark domains such as the blocks world, rocket, logistics, 8-puzzle, gripper, mystery,
grid and travel. Some of these were used in the AIPS-98 [32] and AIPS-00 competition [1].
These domains are believed to represent different types of planning difficulty. Problems
in the rocket, logistics and gripper domains are typical of those where the subgoals are
relatively independent. These domains are also called parallel domains, because of the
nature of their solutions. The grid, travel and mystery domains add to logistic domains the
hardness of the “topological” combinatorics, while the blocks world and 8-puzzle domains
also have very rich interactions between actions and subgoal sequencing.

All the heuristics extracted from the planning graph as well as HSP-r’s sum heuristic
are plugged into the same regression search engine using a variation of A* search’s cost
function f (S) = g(S) + w ∗ h(S). We set w = 1 in all experimental results described
in this subsection, except for the parallel domains (e.g., rocket, logistics and gripper)
where the heuristics work best (in terms of speed) with w = 5. 4 To make the comparisons
meaningful, all the planners are implemented in Allegro Common Lisp, and share most of
the critical data structures. The empirical studies are conducted on a 500 MHz Pentium-
III with 256 MB RAM, running Linux. All the times reported include both heuristic
computation time and search time, unless specified otherwise.

4 See [3,26] for a discussion on the effect of different relative weighting of g and h components using w in
best first search.
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4.1. Set-level heuristic

We are now ready to extract heuristics from the planning graph. Unless stated otherwise,
we will assume that we have a serial planning graph that has been expanded until it has
leveled off (without doing any solution extraction).

Definition 2 (Level). Given a set S of propositions, lev(S) denotes the index of the first
level in the leveled serial planning graph in which all propositions in S appear with no
subset of S marked mutex. If no such level exists, then lev(S)=∞. We also write lev(p)
for lev({p}).

Traditionally, only binary mutexes are computed in the Graphplan algorithm’s planning
graph. However, mutexes up to order (size) k (k = 3,4, . . .) can also be computed. Given
a fixed k, the planning graph can be built in polynomial time in terms of the problem size.
Therefore lev(S) can be computed in polynomial time. Nevertheless, it should be noted
that the cost of building the planning graph increases exponentially in terms of k.

Proposition 1. If only binary mutexes are present in the planning graph, then:

lev(S)= max
p1,p2∈S

lev
({p1,p2}

)
.

If mutexes up to order k are present in the planning graph, and |S|� k, then:

lev(S)= max
p1,p2,...,pk∈S

lev
({p1,p2, . . . , pk}

)
.

It is easily seen that in order to have increased value of function lev(S), one has to
compute and propagate more mutexes, including those of higher order.

It takes only a small step from the observations made in Section 3 to arrive at our first
heuristic derived from the planning graph:

Heuristic 4 (Set-level heuristic). hlev(S)← lev(S).

Consider the set-level heuristic in the context of the robot example in previous section.
The subgoal, key(2,2), first comes into the planning graph at the level 6, however at that
level this subgoal is mutexed with another subgoal, at(0,0), and the planning graph has
to be expanded 4 more levels until both subgoals are present and non-mutex. Thus the
cost estimate yielded by this heuristic is 10, which is exactly the true cost achieving both
subgoals.

It is easy to see that set-level heuristic is admissible. Secondly, it can be significantly
more informed than the max heuristic, because the max heuristic is equivalent to the set-
level heuristic extracted from a planning graph without mutex constraints. Thirdly, a by-
product of the set-level heuristic is that it already subsumes much of the static mutex
information used by the sum mutex heuristic. Moreover, the propagated mutexes in the
planning graph wind up being more effective in detecting static mutexes that are missed by
HSP-r. In the context of the robot example, HSP-r can only detect that a robot cannot be at
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squares adjacent to its current square, but using the planning graph, we are able to detect
that the robot cannot be at any square other than its current square.

Tables 1 and 2 show that the set-level heuristic outperform HSP-r and is competitive
with Graphplan 5 in domains such as grid, mystery, travel and 8-puzzle 6 Many of these
problems prove intractable for HSP-r’s sum mutex heuristic. We attribute this performance
of the set-level heuristic to the way the negative interactions between subgoals are
accounted for by the level information.

Interestingly, the set-level heuristic fails in the domains in which the sum heuristic
typically does well such as the rocket world and logistics. These are domains where the
subgoals are fairly independent of each other. Closely examining the heuristic values
reveals that the set-level heuristic is too conservative and often underestimates the real
cost in these domains. A related problem is that the range of numbers that the cost of a
set of propositions can take is limited to integers less than or equal to the length of the
planning graph. This range limitation leads to a practical problem as these heuristics tend
to attach the same numerical cost to many qualitatively distinct states, forcing the search
to resort to arbitrary tie breaking.

To overcome these limitations, we pursue two families of heuristics that try to account
for the subgoal interactions in different ways. The first family, called “partition-k”
heuristics, attempts to improve and generalize the set-level heuristic using the sum heuristic
idea. Specifically, it estimates the cost of a set in terms of the costs of its partitions. The
second family, called “adjusted-sum” heuristics, attempts to improve the sum heuristic
using the set-level idea. Specifically, it starts explicitly from the sum heuristic and
then considers accounting for the interactions among subgoals based on the planning
graph’s level information. These two families are described separately in the next two
subsections.

4.2. Partition-k heuristics

When the subgoals are relatively independent, the sum of their cost gives a much better
estimate, whereas the level value of the set tends to underestimate cost significantly. To
avoid this problem and at the same time keep track of the interaction between subgoals,
we want to partition the set S of propositions into subsets, each of which has k elements:
S = S1 ∪ S2 ∪ · · · ∪ Sm (if k does not divide |S|, one subset will have less than k elements),
and then apply the set-level heuristic value on each partition. Naturally, we are interested in
a partitioning in which the propositions in different partitions do not interact among each
other. By interacting we mean the two propositions have either a of dynamic (level specific)
or a static mutex in the planning graph. These notions are formalized by the following
definitions.

5 Graphplan implemented in Lisp by M. Peot and D. Smith.
6 8puzzle-1, 8puzzle-2 and 8puzzle-3 are two hard and one easy eight puzzle problems of solution length 31, 30

and 20, respectively. Grid3 and grid4 are simplified from the grid problem at AIPS-98 competitions by reducing
number of keys and grid’s size.
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Table 1
Number of actions/total CPU time in seconds. The dash (–) indicates that no solution was found in 3 hours or 500 MB. All the heuristics are implemented in Lisp and
share the same state search data structure and algorithm. The empirical studies are conducted on a 500 MHz Pentium-III with 512 Meg RAM, running Linux

Problem Graphplan Sum mutex set-lev partition-1 partition-2 adj-sum combo adj-sum2

bw-large-a 12/13.66 12/41.64 12/26.33 12/19.02 14/19.79 12/17.93 12/20.38 12/19.56

bw-large-b 18/379.25 18/132.50 18/10735.48 18/205.07 20/90.23 22/65.62 22/63.57 18/87.11

bw-large-c – – – – 32/535.94 30/724.63 30/444.79 28/738.00

bw-large-d – – – – 48/2423.32 – – 36/2350.71

rocket-ext-a – 36/40.08 – 32/4.04 54/468.20 40/6.10 34/4.72 31/43.63

rocket-ext-b – 34/39.61 – 32/4.93 34/24.88 36/14.13 32/7.38 28/554.78

att-log-a – 69/42.16 – 65/10.13 66/116.88 63/16.97 65/11.96 56/36.71

att-log-b – 67/56.08 – 69/20.05 66/113.42 67/32.73 67/19.04 47/53.28

gripper-15 – 45/35.29 – 45/12.55 45/178.39 45/16.94 45/16.98 45/14.08

gripper-20 – 59/90.68 – 59/39.17 61/848.78 59/20.54 59/20.92 59/38.18

8puzzle-1 31/2444.22 33/196.73 31/4658.87 35/80.05 39/130.44 39/78.36 39/119.54 31/143.75

8puzzle-2 30/1545.66 42/224.15 30/2411.21 38/96.50 36/145.29 42/103.70 48/50.45 30/348.27

8puzzle-3 20/50.56 20/202.54 20/68.32 20/45.50 20/232.01 24/77.39 20/63.23 20/62.56

travel-1 9/0.32 9/5.24 9/0.48 9/0.53 9/0.77 9/0.42 9/0.44 9/0.53

grid3 16/3.74 – 16/14.09 16/55.40 16/121.94 18/21.45 19/18.82 16/15.12

grid4 18/21.30 – 18/32.26 18/86.17 18/1261.66 18/37.01 18/37.12 18/30.47

aips-grid1 14/311.97 – 14/659.81 14/870.02 14/1142.83 14/679.36 14/640.47 14/739.43

mprime-1 4/17.48 – 4/743.66 4/78.730 4/565.47 4/76.98 4/79.55 4/722.55
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Table 2
Number of nodes generated/expanded. The dash (–) indicates that no solution was found after generating more than 500000 nodes, or runs out of memory

Problem Graphplan Sum mutex set-lev partition-1 partition-2 adj-sum combo adj-sum2

bw-large-a – 77/12 456/108 71/13 101/19 71/13 66/12 83/16

bw-large-b – 210/34 315061/68452 15812/3662 1088/255 271/56 171/37 1777/338

bw-large-c – – – – 1597/283 8224/1678 747/142 8248/1399

bw-large-d – – – – 5328/925 – – 10249/1520

rocket-ext-a – 769/82 – 431/43 16246/3279 658/69 464/41 3652/689

rocket-ext-b – 633/66 – 569/50 693/64 1800/173 815/72 60788/8211

att-log-a – 2978/227 – 1208/89 3104/246 2224/157 1159/85 1109/74

att-log-b – 3405/289 – 1919/131 2298/161 4219/289 1669/115 1276/85

gripper-15 – 1775/178 – 1775/178 4204/1396 1358/150 1350/150 503/95

gripper-20 – 3411/268 – 3411/263 10597/3509 840/149 840/149 846/152

8puzzle-1 – 1078/603 99983/56922 1343/776 1114/613 1079/603 1980/1129 2268/1337

8puzzle-2 – 1399/828 51561/29176 1575/926 1252/686 1540/899 475/279 6544/3754

8puzzle-3 – 2899/1578 1047/617 575/318 2735/1539 1384/749 909/498 765/440

travel-1 – 4122/1444 25/9 93/59 97/60 40/18 40/18 37/18

grid3 – – 49/16 3222/1027 4753/1443 1151/374 865/270 206/53

grid4 – – 44/18 7758/4985 24457/14500 1148/549 1148/549 51/18

aips-grid1 – – 108/16 5089/864 9522/1686 835/123 966/142 194/25
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Definition 3. The (binary) interaction degree between two propositions p1 and p2 is
defined as

δ(p1,p2)= lev
({p1,p2}

)−max
{
lev(p1), lev(p2)

}
.

For any pair of propositions p1,p2 that are present in the planning graph, it is simple to
note that when p1 and p2 are dynamic mutex, 0< δ(p1,p2) <∞. When p1 and p2 are
static mutex, δ(p1,p2)=∞. When p1 and p2 have no mutex relation, δ(p1,p2)= 0.

Definition 4. Two propositions p and q are interacting with each other if and only if
δ(p, q) > 0. Two sets of propositions S1 and S2 are non-interacting if no proposition in S1

is interacting with a proposition in S2.

We are now ready to state the family of partitioning heuristics:

Heuristic 5 (Partition-k heuristic). hpart−k(S)←∑
Si

lev(Si), where S1, . . . , Sm are k-
sized partitions of S.

The question of how to partition the set S when 1< k < |S|, however, is interesting. For
example, for k = 1, we have h(S)=∑

p∈S lev(p). From Table 1, we see that the partition-1
heuristic exhibits similar behavior to sum mutex heuristic in domains where the subgoals
are fairly independent (e.g., gripper, logistics, rocket), and it is clearly better than the sum
mutex heuristic in all other domains except blocks world.

For k = |S|, we have the set-level heuristic, which is very good in a set of domains that
the sum mutex heuristic does not perform very well (e.g., grid world, travel, mprime).

For k = 2, we can implement a simple greedy pairwise partitioning scheme as follows:
(i) Choose the pair of propositions p1,p2 in S that gives the maximum interaction degree
δ(p1,p2) (if there are more than one such pair, simply choose one randomly), make
{p1,p2} one of the partitions of S. (ii) Now recursively partition the set S−{p1,p2} using
the same approach. 7

As Table 1 shows, the resulting heuristic exhibits interesting behavior: It can solve many
problems that are intractable for either the sum heuristic or the set-level heuristic. In fact,
the partition-2 heuristic can scale up very well in domains such as the blocks world,
returning a 48-step solution for bw-large-d (19 blocks) after generating just 5328 nodes
and expanding 925 nodes in 2423 sec.

A related question is which value of k leads to the best partition-k heuristic. While it
is not likely that a single partitioning scheme will be effective across different domains,
it would be interesting to have a fuller account of behavior of the family of partition-k
heuristics, depending on the partitioning parameters, with respect to different problem
domains.

7 We note that this greedy scheme may not (and is not intended to) give a 2-partition with the highest cumulative
δ values of all the partitions.
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Adaptive partitioning. Another attractive idea is to consider “adaptive partition” heuris-
tics that do not insist on equal sized partitions. Based on our definition of subgoal inter-
action (Definition 4), we attempt a simple procedure that we call adaptive partitioning
of a given set S as follows. Given a set S, choose any proposition p1 ∈ S. Initially, let
S1 = {p1}. For each proposition p ∈ S1, add to set S1 all propositions in S − S1 that are
interacting with p. This is repeated until S1 becomes unchanged. Thus we have partitioned
S into S1 and S − S1, where these two subsets are not interacting with each other whereas
each proposition in S1 interacts with some other member in the same set. This procedure
is recursively applied on the set S − S1 and so on.

Unfortunately, a partitioning heuristic that uses this adaptive partitioning and then
applies the set-level heuristic on each partitions does not appear to scale up well in most
domains that we have tested. The reason, we think, is that since the set of mutex constraints
that we have been able to exploit from the planning graph so far involve only two state
variables (i.e., binary mutex), it may not be as helpful to apply the set-level heuristic on
partitions of size greater than two.

4.3. Adjusted-sum heuristics

We now consider improving the sum heuristic by accounting for both negative and
positive interactions among propositions. Since fully accounting for either type of
interaction alone can be as hard as the planning problem itself, we circumvent this difficulty
by using a phased approach. Specifically, we ignore one type of subgoal interaction in order
to account for the other, and then combine them both together.

Let cost(p) denote the cost of achieving a proposition p according to the sum heuristic.
Note that it is simple to embed the sum heuristic value into the planning graph. We maintain
a cost value for each new proposition. Whenever a new action is introduced into the
planning graph, we update the value for that proposition using the same updating rule 1
in Section 2.

We are now interested in estimating the cost cost(S) for achieving a set S =
{p1,p2, . . . , pn}. Suppose lev(p1) � lev(p2) � · · · � lev(pn). Under the assumption that
all propositions are independent, we have

cost(S)← cost(S − p1)+ cost(p1).

Since lev(p1) � lev(S − p1), proposition p1 is possibly achieved before the set S − p1.
Now, we assume that there are no positive interactions among the propositions, but there
may be negative interactions. Therefore, upon achieving S − p1, subgoal p1 may have
been deleted and needs to be achieved again. This information can be extracted from the
planning graph as follows. According to the planning graph, set S −p1 and S are possibly
achieved at level lev(S − p1) and level lev(S), respectively. If lev(S − p1) 	= lev(S) that
means there may be some interaction between achieving S−p1 and achieving p1 (because
the planning graph has to expand up to lev(S) to achieve both S −p1 and p1). To take this
negative interaction into account, we assign:

cost(S)← cost(S − p1)+ cost(p1)+
(
lev(S)− lev(S − p1)

)
. (2)
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Fig. 4. The cost incurred for ignoring the negative interactions.

Applying this formula to S − p1, S −p1 − p2 and so on, we derive:

cost(S)←
∑

pi∈S
cost(pi)+ lev(S)− lev(pn).

Note that lev(pn) = maxpi∈S lev(pi) as per our setup. Thus the estimate above is
composed of the sum heuristic function hsum =∑

pi∈S cost(pi) and an additional cost
lev(S) − maxpi∈S lev(pi). We will call this difference the interaction degree among
propositions in set S.

Definition 5. The interaction degree among propositions in a set S is

∆(S)= lev(S)−max
p∈S lev(p).

It should be noted that the notion of binary interaction degree (Definition 2) is only a
special case of the above definition for a set of two propositions. In addition, when there is
no negative interaction among subgoals, ∆(S)= 0, as expected (see Fig. 4). We have the
following heuristic:

Heuristic 6 (Adjusted-sum heuristic).

hadjsum(S)←
∑

pi∈S
cost(pi)

︸ ︷︷ ︸
hsum(S)

+∆(S).

Tables 1 and 2 show that this heuristic does very well across all the different types of
problems that we have considered. From Table 1, we see that the solutions provided by the
adjusted-sum heuristic are longer than those provided by other heuristics in many problems.
The reason for this is that in many domains achieving a subgoal also helps achieve others,
and so the first term hsum(S)=∑

pi∈S cost(pi) actually overestimates. We can improve the
solution quality by replacing the first term of hadjsum(S) by another estimate, costp(S), that
takes into account this type of positive interaction while ignoring the negative interactions
(which are anyway accounted for by ∆(S)).

Since we are ignoring the negative interactions, once a subgoal is achieved, it will never
be deleted again. Furthermore, the order of achievement of the subgoals pi ∈ S would
be roughly in the order of lev(pi). Let pS be a proposition in S such that lev(pS) =
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Fig. 5. Extracting the length of a plan that ignores the negative interactions.

maxpi∈S lev(pi). pS will possibly be the last proposition that is achieved in S. Let aS be an
action in the planning graph that achieves pS in the level lev(pS), where pS first appears.
(If there is more than one such action, note that none of them will be noop actions, and we
would select one randomly.)

By regressing S over action aS , we have the state S + Prec(aS)− Add(aS). Thus, we
have the recurrence relation (assuming unit cost for the selected action aS)

costp(S)← 1+ costp
(
S + Prec(aS)− Add(aS)

)
. (3)

This regression accounts for the positive interactions in the sense that by subtracting
Add(aS) from S, any proposition that is co-achieved when pS is achieved is not counted
in the cost computation. Since lev(Prec(aS)) is strictly smaller than lev(pS) (because
aS achieve pS at level lev(pS)), recursively applying Eq. (3) to its right hand side will
eventually reduce to a state S0 where lev(S0)= 0, and costp(S0) is 0 (see Fig. 5).

It is interesting to note that the repeated reductions involved in computing costp(S)
indirectly extract a sequence of actions (the aS selected at each reduction), which would
have achieved the set S from the initial state if there were no negative interactions. In this
sense, costp(S) is similar in spirit to the “relaxed plan” heuristic proposed in [5,18].

Replacing hsum(S) with costp(S) in the definition of hadjsum, we get an improved version
of adjusted-sum heuristic that takes into account both positive and negative interactions
among propositions.

Heuristic 7 (Adjusted-sum2 heuristic). hadjsum2(S)← costp(S) +∆(S) where costp(S)
is computed using Eq. (3), and ∆(S) is defined by Eq. (5).

Table 1 shows that adjusted-sum2 heuristic can solve all types of problems considered.
The heuristic is only slightly worse than the adjusted-sum heuristic in terms of speed, but
gives a much better solution quality. In our experiments, with the exception of problems
in the rocket domains, the adjusted-sum2 heuristic often gives optimal or near optimal
solutions.

Finally, if we discard the third term in the adjusted-sum heuristic, we would get an
estimate consisting of two two components, hsum(S), which is good in domains where
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subgoals are fairly independent, and hlev(S), which is good in a complementary set of
domains (see Table 1). Thus the sum of these two different heuristic estimates yields a
combination of differential power effective in wider range of problems.

Heuristic 8 (Combo heuristic). h(S)← hsum(S) + hlev(S), where hsum(S) is the sum
heuristic value and hlev(S) is the set-level heuristic value.

Surprisingly, as shown in Table 1 the combo heuristic is even slightly faster than the
adjusted-sum heuristic across all types of problems while the solution quality remains
comparable.

4.4. Further improvements to the adjusted-sum heuristic functions

Since the family of adjusted-sum heuristics turns out to be the most effective, we devote
this subsection to further analysis of and possible avenues of improvement for this heuristic
family. So far, we have started from the sum heuristic and tried to improve it by accounting
for both negative and positive subgoal interactions extracted from the planning graph. The
formulation, culminated in the derivation of adjusted-sum2 heuristic, is quite interesting
in the way it supposedly accounts for subgoal interactions. This heuristic function is
composed of two components: costp(S), which estimates the cost of the plan by trying
to account for the positive interactions while ignoring the negative interactions, and ∆(S),
which intends to measure the “penalty” cost for ignoring such negative interactions.

Improving the informedness of the adjusted-sum heuristic family involves a more
accurate account of the negative interactions captured by∆(S)= lev(S)−maxpi∈S lev(pi),
i.e., increasing its value. One way to do this is to improve the accuracy of lev(S). Recall
that lev(S), by definition, is the index of the first level in the planning graph in which all
propositions in S are present and not mutex with one another. Following Proposition 1,
improving the accuracy of lev(S) involves computing and propagating more mutexes,
including higher order ones. Unfortunately, this task is also computationally hard. 8 In
Section 5 we shall investigate this in detail in the quest to improve the admissible set-level
heuristic for efficient optimal planning.

For now, let us consider improving ∆(S) given only binary mutex constraints. In this
case, we may want to improve the negative penalty cost function ∆(S) by accounting for
the interactions more aggressively. Specifically, we might explicitly consider the interac-
tions between every pair of individual propositions in a given set S = {p1,p2, . . . , pn}.
For each pair of p and q , the interaction is reflected by its interaction degree, as defined in
Definition 2 as δ(p, q)= lev({p,q})−max{lev(p), lev(q)}. A conservative estimation for
the total cost incurred by negative interactions would be:

∆max(S)= max
p,q∈S δ(p, q). (4)

Heuristic 9 (Adjusted-sum2M heuristic). hadjsum2M(S) ← costp(S) + ∆max(S) where
costp(S) is computed using Eq. (3), and ∆(S) is as given in Eq. (4).

8 Even computing all binary mutexes can be as hard as the planning problem [2].
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Table 3
Evaluating the relative effectiveness of the adjusted-sum2 and adjusted-sum2M heuristics using ∆ and ∆max to
account for negative interactions. Column “Opt” shows the length of the optimal sequential plan. Column “Est”
shows the estimated distance from goal to the initial state according to the heuristic. Length/time shows the length
of plan found and the total run time in seconds. #N-gen and #N-exp are number of nodes generated and expanded
during the search, respectively

Problem Opt h(S)= costp(S)+∆(S) h(S)= costp(S)+∆max(S)

Est Length/time #N-gen/#N-exp Est Length/time #N-gen/#N-exp

bw-large-a 12 13 12/19.56 83/16 14 12/19.96 71/13

bw-large-b 18 17 18/87.11 1777/338 18 18/82.56 489/95

bw-large-c 28 26 28/738.00 8248/1399 27 28/851.68 6596/1131

bw-large-d 36 35 36/2350.71 10249/1520 35 36/2934.11 8982/1310

rocket-ext-a 26 26 31/43.63 3652/689 26 29/21.95 438/43

rocket-ext-b 25 26 28/554.78 60788/8211 26 26/21.75 401/37

att-log-a 52 50 56/36.71 1109/74 50 55/79.22 1069/69

att-log-b 44 40 47/53.28 1276/85 40 45/105.09 1206/78

gripper-15 45 32 45/14.08 503/95 32 45/33.64 501/94

gripper-20 59 42 59/38.18 846/152 42 59/106.80 840/149

8puzzle-1 31 26 31/143.75 2268/1337 28 31/659.55 5498/3171

8puzzle-2 30 22 30/348.27 6544/3754 24 30/561.80 4896/2822

8puzzle-3 20 17 20/62.56 765/440 19 20/67.46 479/272

travel-1 9 9 9/0.53 37/18 9 9/0.57 37/18

grid3 16 13 16/15.12 206/53 13 16/20.73 382/97

grid4 18 18 18/30.47 51/18 18 18/32.80 51/18

It can be shown that when only binary mutexes are computed in the planning graph,
∆max(S) � ∆(S). 9 In addition, when there are no interactions among any pair of
propositions, ∆max(S) = ∆(S) = 0. In Table 3 we compare the relative effectiveness
of adjusted-sum2 and adjusted-sum2M heuristics using ∆ and ∆max, respectively. It is
interesting to note that both heuristic functions tend to give admissible estimates in most
problems. Furthermore, since ∆max(S) � ∆(S) for all S, hadjsum2M tends to give closer
cost estimate than hadjsum2, resulting in overall improvement in most problems considered.
In particular, the lower number of nodes expanded and generated in the rocket domain is
quite significant.

In the domains where the interactions themselves are relatively independent of one
another, the interactions among subgoals might be better captured by summing the
interaction degree of all pairs of the propositions. To avoid overcounting such interactions,

9 Indeed, suppose pm and pr are two propositions such that lev({pm,pr }) = maxpi ,pj∈S lev({pi,pj }).
Since we only consider binary mutexes, maxpi ,pj∈S lev({pi,pj }) = lev(S). Thus, ∆max(S) � δ(pm,pr ) =
lev({pm,pr })−max{lev(pm), lev(pr )} = lev(S)−max{lev(pm), lev(pr )}� lev(S)−maxpi∈S lev(pi )=∆(S).
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we might want to partition the set S into pairs Si = {pi1,pi2} and summing the interaction
degree of all these pairs, i.e., δ(pi1,pi2)=∆(Si). Thus we would have:

∆sum(S)=
∑

i

∆(Si).

In our experiments however, the adjusted-sum2 heuristic using ∆sum did not result in
any significant improvement over adjusted-sum2M heuristic on most problems. It actually
turned out to be worse in several domains. The reason, we think, is that in most domains,
the independence among interactions themselves is not a reasonable assumption to make.

We conclude this section with a brief discussion of avenues for improving the
admissibility of the adjusted-sum heuristics. The first component in the adjusted-sum
heuristic function, costp(S), returns the cost of a plan that solves the relaxed version of
the problem in which the negative effects of actions are completely ignored. Although
the positive interactions are accounted for in its computation, costp(S) is by no means
guaranteed to be a lower bound of the optimal solution for the original problem. The reason
for this is that there may be more than one plan satisfying the relaxed problem. Taking the
minimum-length plan among all possible solutions to the relaxed problem would ensure a
lower bound of the original problem’s optimal plan. However, this task is known to be NP-
hard [4]. We can see that improving the admissibility of the heuristic function hadjsum2(S)

directly involves improving the admissibility of the component costp(S), i.e., lowering its
value. Thus, one way to do this would be considering more than one plan for the relaxed
problem and then taking the minimum plan cost. This will of course make the computation
much more costly.

5. Finding optimal plans with admissible heuristics

We now focus on admissible heuristics that can be used to produce optimal plans (where
the plan cost is measured in terms of the number of actions in the plan). While research in
the AI search literature concentrates entirely on admissible heuristics (and finding optimal
solutions), traditionally, efficient generation of optimal plans has received little attention
in the planning community. In [20] Kambhampati et al. point out that while standard
Graphplan is not guaranteed to produce optimal plans in terms of number of actions, 10

a version called “serial Graphplan”, which uses a serial planning graph (see Section 3)
instead of the standard planning graph, is guaranteed to produce optimal plans. In contrast,
none of the known heuristic state space planners [3,4,33,41] focus on generating optimal
solutions efficiently. 11

In fact, it is very hard to find an admissible heuristic that is effective enough to be
useful across different planning domains. As mentioned earlier, in [4], Bonet and Geffner

10 Standard Graphplan algorithm produces plans that are optimal in the number of steps. Since a step can
contain an arbitrary number of actions, it is easy to create problems where Graphplan produces a k-step plan
with m actions, even when there is an n-action serial plan (k < n < m). For serial Graphplan, each step contains
exactly one action, and thus step optimality implies optimality with respect to number of actions.

11 An exception is the work by Haslum and Geffner [17], which was done around the same time as ours; see
Section 9 for a discussion.
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Table 4
Column titled “Len” shows the length of the found optimal plan (in number of actions). Column titled “Est”
shows the heuristic value the distance from the initial state to the goal state. Column titled “Time” shows CPU
time in seconds. “GP” shows the CPU time for serial Graphplan

Problem Len max set-level w/ memo GP

Est Time Est Time Est Time

8puzzle-1 31 – 14 4658 28 1801 2444

8puzzle-2 30 10 – 12 2411 28 891 1545

8puzzle-3 20 8 144 10 68 19 50 50

bw-large-a 12 6 34 8 21 12 16 14

bw-large-b 18 8 – 10 10735 16 1818 433

bw-large-c 28 12 – 14 – 20 – –

grid3 16 16 13 16 13 16 5 4

grid4 18 10 33 18 30 18 22 22

rocket-ext-a – 5 – 6 – 11 – –

introduced the max heuristic that is admissible. In the previous section, we introduced
the set-level heuristic that is admissible and gives a closer cost estimate than the max
heuristic. We tested the set-level heuristic on a variety of domains using A* search’s cost
function f (S)= g(S)+ h(S). The results are shown in Table 4, and clearly establish that
the set-level heuristic is significantly more effective than the max heuristic. Grid, travel and
mprime are domains where the set-level heuristic gives very close estimates (see Table 1).
Optimal search is less effective in domains such as the 8-puzzle and blocks world. Domains
such as logistics and gripper remain intractable under reasonable time and memory limits.

The main problem once again is that the set-level heuristic still hugely underestimates
the cost of a set of propositions. One reason for this is that there are many n-ary (n > 2)
dynamic mutex constraints implicitly present in the planning graph, that are never marked
during planning graph construction, and thus cannot be used by the set-level heuristic. This
suggests that identifying and using higher order mutexes can improve the effectiveness
of the set-level heuristic. Suppose that we consider computing and propagating mutex
constraints up to order k in the planning graph. The mutex computation and propagation
corresponds to computing the set-level value lev(S) for |S|� k. For |S|> k, the set-level
heuristic value becomes:

h(S)← lev(S)= max
p1,p2,...,pk∈S

lev
({p1,p2, . . . , pk}

)
. (5)

We have presented a family of admissible set-level heuristics, whose informedness can
be improved by increasing the size (order) of mutexes one wants to utilize. In practice,
exhaustively propagating all higher order mutexes is likely to be an infeasible idea [2,20],
as it essentially amounts to full consistency enforcement of the underlying CSP. According
to Blum [2], even computing and propagating 3-ary mutexes can be very expensive.
A seemingly zanier idea is to use a limited run of Graphplan’s own backward search,
armed with EBL [22], to detect higher order mutexes in the form of “memos”. We have



X. Nguyen et al. / Artificial Intelligence 135 (2002) 73–123 95

implemented this idea by restricting the backward search to a limited number of backtracks
lim= 1000. This lim can be increased by a factor µ> 1 as we expand the planning graph
to the next level. Table 4 shows the performance of the set-level heuristic using a planning
graph adorned with learned memos. We note that the heuristic value (of the goal state) as
computed by this heuristic is significantly better than the set-level heuristic operating on the
vanilla planning graph. For example in 8puzzle-2, the normal set-level heuristic estimates
the cost to achieve the goal as 12, while using memos pushes the cost to 28, which is quite
close to the true optimal value of 30. This improved informedness results in a speedup
on all problems we considered (up to 3× in the 8puzzle-2, 6× in bw-large-b), even after
adding the time for memo computation using limited backward search.

We also compared the performance of the two set-level heuristics with serial Graphplan,
which also produces optimal plans. The set-level heuristic is better in the 8-puzzle
problems, but not as good in the blocks world problems (see Table 4). We attribute this
difference to the fact that more useful mutexes are probably captured by the limited search
of memos in the 8-puzzle problems than in the blocks world problems.

6. Implementational issues in extracting heuristics from planning graphs

6.1. Improving the efficiency of the heuristic computation

The main cost of heuristic computation lies in the construction of a leveled-off serial
planning graph. Once this planning graph is constructed, the useful information necessary
for computing the heuristic value of a given set can be accessed quickly from the graph
data structure.

Although the planning graph structure is in principle polynomial in terms of time and
memory, the cost of its computation in fact varies according to different domains. In
the parallel domains where there is little interaction among subgoals, the planning graph
consumes very little memory and building time. For example, it takes only seconds to
build a planning graph for the att-log-a problem, which has a solution of length 56. On the
other hand, in domains where there are strong interactions among subgoals, the resulting
planning graph can be very big and costly to build, as it has to store many more mutex
constraints. The blocks world or grid world are examples of such domains. For instance,
the planning graph for bw-large-c takes about 400 seconds to build out of 535 seconds of
total run time for partition-2 heuristic (in Lisp). The planning graph size may also become
unwieldy, exhausting the available memory in some cases. For instance, the program runs
out of memory (250 MB) on problem bw-large-d when the combo heuristic is extracted
from a normal planning graph.

Fortunately, there are a variety of techniques for improving the efficiency of planning
graph construction in terms of both time and space. We discuss two important ones below.

Using compact representations of planning graphs. An obvious optimization is the use
of compact bi-level representation that exploits the structural redundancy in the planning
graphs (cf. STAN planner [30]), which can help improve the cost of heuristic computation
significantly. In fact, in one of our experiments, by using a bi-level planning graph as a basis
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Table 5
Total CPU time improvement from using bi-level planning graphs for
computing combo heuristic

Problem Normal PG Bi-level PG Speedup

bw-large-b 63.57 20.05 3×
bw-large-c 444.79 114.88 4×
bw-large-d – 11442.14 100×
rocket-ext-a 4.72 1.26 4×
rocket-ext-b 7.38 1.65 4×
att-log-a 11.96 2.27 5×
att-log-b 11.09 3.58 3×
gripper-20 20.92 7.26 3×
8puzzle-1 119.54 20.20 6×
8puzzle-2 50.45 7.42 7×
8puzzle-3 63.23 10.95 6×
travel-1 0.44 0.12 4×
grid-3 18.82 3.04 6×
grid-4 37.12 14.15 3×
aips-grid-1 640.47 163.01 4×
mprime-1 79.55 67.75 1×

for our heuristics, 12 we could achieve significant speedups (up to 7×) in all problems, and
we were also able to solve more problems than before because the planning graph takes
less memory (see Table 5).

Using partial planning graphs. We can also limit the heuristic computation cost
more aggressively by trading heuristic quality for reduced cost of the planning graph’s
construction. Specifically, in the previous sections, we discussed the extraction of heuristics
from a leveled planning graph. Since the state search does not operate on the planning graph
directly, we need not use the full leveled graph to preserve completeness. Any subgraph of
the full leveled planning graph can be utilized as the basis for the heuristic computation.
There are at least three ways of computing a subgraph of the leveled planning graph:

(1) Grow the planning graph to some length less than the level where it levels off. For
example, we may grow the graph up to the level where all the top level goals of the
problem are present without any mutex relations.

(2) Limit the time spent on marking mutexes on the planning graph.
(3) Introduce only a subset of applicable actions at each level of the planning graph.

For example, we can exploit techniques such as RIFO [35] and identify a subset

12 The Lisp source code for fast bi-level planning graph construction is provided by Terry Zimmerman.



X. Nguyen et al. / Artificial Intelligence 135 (2002) 73–123 97

of the action instances in the domain that are likely to be relevant for solving the
problem.

Any combination of these techniques can be used to limit the space and time resources
expended on computing the planning graph. What is more, it can be shown that the
admissibility and completeness of the heuristic are unaffected by the first two techniques.

We have implemented the first technique in a planner called AltAlt (see Section 7).
Specifically, we build a compact bi-level planning graph only up to the level where all
of the subgoals first appear without being mutex, i.e., level lev(S), where S is the set of
subgoals being considered. The rationale for doing this is that most relevant states regressed
from S are likely to have the lev value less than lev(S). As a result, the heuristic function
value for these states will remain unchanged even if the planning graph is not expanded to
level off.

When a graph is not grown to level off, the notion of lev has to be redefined as follows:

Definition 6 (Level in a partially grown graph). lev∗(S)=min(lev(S), l + 1), where l is
the index of the last level that the planning graph has been grown to.

In principle, the resulting heuristic may not be as informed as the original heuristic from
the full planning graph. We shall see in the Section 7.1 that in many problems the loss of
informedness is more than offset by the improved time and space costs of the heuristic.

6.2. Limiting the branching factor of regression search using planning graphs

Although the preceding discussion focused on the use of planning graphs for computing
the heuristics for guiding the state search, as mentioned earlier in Section 3, the planning
graph is also used to pick the action instances considered in expanding the regression
search tree. The set of actions occuring in the planning graph has two useful characteristics:

1. All action instances that are applicable in reachable states are present in the final level
of a leveled planning graph.

2. In regression search, action instances that first occur in earlier levels are more likely
to be applicable to states that are closer to the initial state.

The simplest way of picking action instances from the planning graph is to consider all
action instances that are present in the final level of the planning graph. From the property 1
above, we can see that if the graph has been grown to level off, limiting regression search
to this subset of actions is guaranteed to preserve completeness. Using just this set of
reachable actions would reduce the branching factor for the regression search. In addition,
when there is a set of actionsA such that f (Regress(S, a)) has the same value for all a ∈A,
we could break tie by favoring an action in A that occurs in the planning graph the earliest.

A more aggressive, albeit theoretically incomplete, selective expansion approach, that
we call sel-exp strategy, involves the following. To begin with, instead of growing the
planning graph to level off, we expand it up to level l = lev(G), whereG is the set of initial
subgoals. Suppose that we are trying to expand a state S during the regression search, then
only the set of actions appearing in the action level lev(S) is considered for regressing the
state S. The intuition behind sel-exp strategy is that the actions in level lev(S) comprise the
actions that are likely to achieve the subgoals of S in the most direct way from the initial
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state. While this strategy may in principle result in the incompleteness of the search, 13

in practice we have not found a single instance in which sel-exp strategy fails to find a
solution that can be found considering the full set of actions. As we shall see in the next
section, the sel-exp strategy has a significant positive effect on the performance of AltAlt
in some domains such as the Schedule World [1].

6.3. Comparing time and space complexity of graph construction vs. dynamic
programming style computation

Most of the heuristic functions developed in the previous sections are based on
computing the level value of some set of propositions. This function can also be computed
using dynamic programming (DP) style computation without explicitly growing planning
graphs. Specifically, according to Proposition 1, this computation boils down to computing
lev function value for all pairs of propositions (assuming that only binary mutexes are
computed). Mutex marking and propagation in the planning graph directly correspond
to the updating procedure of the lev function. In addition, upon convergence lev values
directly correspond to the lev values extracted from a leveled planning graph. In fact, in
a recent work, Haslum and Geffner [17] start from the DP formulation to derive a family
of heuristics that are closely connected to the set-level heuristic function h(S) = lev(S)
developed in Section 4. The heuristics used in HSP and HSP-r planners are also computed
using a bottom-up DP approach.

The bottom line is that, unlike the Graphplan algorithm, which needs to construct the
planning graph structure in order to search for a solution subgraph, we might not need to
compute the planning graph in order to compute our heuristics. Thus, one might wonder
whether building the planning graph would be more costly both in terms of time and space,
compared to the DP style computation. We will show that this is not the case. In fact, using
a bi-level representation of the graph and efficient mutex marking procedures such as those
in STAN [30], the time taken for building the graph tends to be lower than the time taken
for the updating procedures to converge. Furthermore, the additional amount of memory
required to store such a graph is often not very significant and serves a useful purpose.

Indeed, the level-by-level expansion of the planning graph can be seen as a DP style
updating procedures for lev values. The interesting point is that, only the actions that are
applicable in the previous level are considered in the updating procedures, and only the
pairs of propositions whose lev value changes are actually updated. Thus, the expansion of
the planning graph can be seen as a selective and directional way of updating the lev values
efficiently, improving the convergence time of the updating process.

Let us now consider the issue of memory. Let P andA be the total number of (grounded)
propositions and actions, respectively, for a given problem. Let α,β , and γ be the average
number of bytes needed to store a single proposition, a mutex relation, and an action,
respectively. Using a DP computation, only the lev values of all propositions and the pairs
of propositions—there are P(P − 1)/2 of those—are stored, taking (αP + βP(P − 1)/2)
bytes. In the bi-level representation of planning graph, the set of propositions, pairs of

13 Because some actions needed for the solution plan that appear much later at levels of index greater than l are
not considered.
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mutexes, and the set of actions are all that need to be stored. These numbers are essentially
independent of the number of levels the planning graph needs to expand, since the value
of any of these entities with respect to each particular level is represented by one bit, not
by duplication as in the original Graphplan’s planning graph. Thus, the amount of memory
needed to store the bi-level graph structure is (αP + βP(P − 1)/2 + γA) bytes. The
additional amount of memory the planning graph actually has to store is the set of all
actions, which is γA bytes. This amount is often not very significant, as it is independent
of the number of graph levels. Moreover, as we saw in Section 6.2, the set of actions is
actually very helpful in focusing the search.

To summarize, contrary to initial impressions, the planning graph does not take much
more memory than using DP procedures to come up with the same heuristic functions.
Furthermore, that additional amount of memory needed by the planning graph actually
stores the action information, which is very useful in improving the relevance of the search.
In addition, the graph tends to level off faster than the convergence rate of the lev values
using dynamic programming approach. This underscores the fact that the planning graph
can serve not only as a powerful conceptual model, but also an efficient implementational
model for computing effective admissible heuristics.

7. AltAlt, a state search planner using planning graph based heuristics

Until now, we concentrated on analyzing the tradeoffs among the various heuristics one
can extract from the planning graph. The implementation used was aimed primarily at
normalized comparisons among these heuristics. To see how well a planner based on these
heuristics will compare with other highly optimized implementations, we built AltAlt, 14

a planner implemented in C programming language. AltAlt is implemented on top of two
highly optimized existing planners—STAN [30] that is a very effective Graphplan style
planner is used to generate planning graphs, and HSP-r [3], a heuristic search planner
provides an optimized state search engine. AltAlt uses planning graph based heuristics
developed in Section 4.4 to guide its search. Empirical results show that AltAlt can be
orders of magnitude faster than both STAN and HSP-r, validating the effectiveness of
the heuristics being used. An earlier version of AltAlt took part in the automated track
in the AIPS-2000 planning competition [1]. At the time of competition it was still not
completely debugged. In the competition, AltAlt managed to stay in the middle range
among the 12 competitors. The current debugged and optimized version, on the other hand,
is competitive with the fastest planners in the competition, including Hoffman’s FF [18],
Bonet and Geffner’s HSP2.0 [3,4], and Refanidis’s GRT [41].

The high-level architecture of AltAlt is shown in Fig. 6. The problem specification and
the action template description are first fed to a Graphplan style planner, which constructs
a planning graph for that problem in polynomial time. We use the publicly available
STAN implementation [30] for this purpose as it provides fast mutex marking routines
and memory-efficient implementation of the planning graph (see below). This planning
graph structure is then fed to a heuristic extractor module that is capable of extracting a

14 A Little of This and a Little of That.



100 X. Nguyen et al. / Artificial Intelligence 135 (2002) 73–123

Fig. 6. Architecture of AltAlt.

variety of effective and admissible heuristics, described in Section 4. The heuristics, along
with the problem specification, and the set of ground actions in the final action level of the
planning graph structure (see below for explanation) are fed to a regression state-search
planner. The regression planner code is adapted from HSP-r [3].

7.1. Evaluating the performance of AltAlt

AltAlt’s performance on many benchmark problems, as well as the test suite used in the
AIPS-2000 planning competition, is remarkably robust. Our initial experiments suggest
that AltAlt system is competitive with some of the best systems that participated in the AIPS
competition [1]. The evaluation studies presented here are however aimed at establishing
two main facts:

(1) AltAlt convincingly outperforms STAN and HSP-r, showing that it indeed leverages
complementary strengths of Graphplan and heuristic state search planning.

(2) AltAlt is able to reduce the cost of its heuristic computation with very little negative
impact on the quality of the solutions produced (see Section 7.2).

Our experiments were all done on a Linux system running on a 500 MHz pentium III
CPU with 256 megabytes of RAM. We compared AltAlt with the latest versions of both
STAN and HSP-r systems running on the same hardware. We also compared AltAlt to
FF and HSP2.0, which are two of the best planners at the AIPS-2000 competition [1].
HSP2.0 is a recent variant of the HSP-r system that runs both regression search (HSP-r)
and progression search (HSP) in parallel. FF is a very efficient state search planner using
a novel local search algorithm and many useful pruning techniques. The problems used
in our experiments come from a variety of domains, and were derived primarily from the
AIPS-2000 competition suites, but also contain some other benchmark problems from the
literature. Unless noted otherwise, in all the experiments, AltAlt was run with the heuristic
hAdjSum2M (Section 4.4), and with a planning graph grown only until the first level where
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top level goals are present without being mutex (see discussion in Section 6). For each
node representing a state S, only the action instances present in the action level lev(S) of
the planning graph are used to expand nodes in the regression search (see sel-exp strategy
in Section 6.2).

Table 6 shows some statistics gathered from head-on comparisons between AltAlt,
STAN, HSP-r, HSP2.0 and FF across a variety of domains. For each system, the table gives
the time taken to produce the solution, and the length (measured in the number of actions)

Table 6
Comparing the performance of AltAlt with STAN, a state-of-the-art Graphplan system, HSP-r, a state-of-the-
art heuristic state search planner, and HSP2.0 and FF, two planning systems that competed at the AIPS-2000
competition

STAN3.0 HSP-r HSP2.0 FF AltAlt(AdjSum2M)

Problem Time Length Time Length Time Length Time Length Time Length

gripper-15 – – 0.12 45 0.19 57 0.02 45 0.31 45

gripper-20 – – 0.35 57 0.43 73 0.02 57 0.84 57

gripper-25 – – 0.60 67 0.79 83 0.03 67 1.57 67

gripper-30 – – 1.07 77 1.25 93 0.08 77 2.83 77

tower-3 0.04 7 0.01 7 0.01 7 0.02 7 0.04 7

tower-5 0.21 31 5.5 31 0.04 31 0.02 31 0.16 31

tower-7 2.63 127 – – 0.61 127 0.15 127 1.37 127

tower-9 108.85 511 – – 14.86 511 1.92 511 48.45 511

8puzzle-1 37.40 31 34.47 45 0.64 59 0.19 47 0.69 31

8puzzle-2 35.92 30 6.07 52 0.55 48 0.15 84 0.74 30

8puzzle-3 0.63 20 164.27 24 0.34 34 0.08 42 0.19 20

8puzzle-4 4.88 24 1.35 26 0.46 42 0.05 44 0.41 24

aips-grid1 1.07 14 – – 2.19 14 0.06 14 0.88 14

aips-grid2 – – – – 14.06 26 0.29 39 95.98 34

mystery2 0.20 9 84.00 8 10.12 9 0.12 10 3.53 9

mystery3 0.13 4 4.74 4 2.49 4 0.03 4 0.26 4

mystery6 4.99 16 – – 148.94 16 – – 62.25 16

mystery9 0.12 8 4.8 8 3.57 8 0.20 8 0.49 8

mprime2 0.567 13 23.32 9 20.90 9 0.14 10 5.79 11

mprime3 1.02 6 8.31 4 5.17 4 0.04 4 1.67 4

mprime4 0.83 11 33.12 8 0.92 10 0.03 10 1.29 11

mprime7 0.418 6 – – – – – – 1.32 6

mprime16 5.56 13 – – 46.58 6 0.10 7 4.74 9

mprime27 1.90 9 – – 45.71 7 0.41 5 2.67 9
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Fig. 7. Results in blocks world domain.

of the solution produced. Dashes show problem instances that could not be solved by the
corresponding system under a time limit of 10 minutes. We note that AltAlt demonstrates
robust performance across all the domains. It decisively outperforms STAN and HSP-r in
most of the problems, easily solving both those problems that are hard for STAN and those
that are hard for HSP-r. We also note that the solutions produced by AltAlt are as good as
or of better quality than those produced by the other two systems on most problems. The
table also shows a comparison with HSP2.0 and FF. While HSP2.0 predictably outperforms
HSP-r, it is still dominated by AltAlt, especially in terms of solution quality. FF is clearly
shown to be very fast here, but it fails to solve some problems that AltAlt solves. AltAlt
gives better solution quality in most problems.

The plots in Figs. 7, 8 and 9 compare the time performance of STAN, HSP-r, HSP2.0
and AltAlt in specific domains. The plot in Fig. 7 summarizes the problems from blocks
world and the plot in Fig. 8 refers to the problems from logistics domain, while the plot
in Fig. 9 refers to the problems from the scheduling world. These are three of the standard
benchmark domains used in the recent planning competition [1]. We see that in all domains,
AltAlt clearly dominates STAN. It dominates HSP2.0 in logistics and is competitive with
it in the blocks world. Scheduling world was a very hard domain for most planners in the
recent planning competition [1]. We see that AltAlt scales much better than both STAN and
HSP2.0 in this domain. HSP-r is unable to solve any problem in this domain. Although not
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Fig. 8. Results in logistics domain.

Fig. 9. Results in schedule domain.
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shown in the plots, the length of the solutions found by AltAlt in all these domains was as
good as, or better than, the other two systems.

7.2. Using partial graphs to reduce the heuristic computation cost

In the experiments described in the previous section we used a partial (non-leveled)
planning graph that was grown only until all the goals are present and are non-mutex in
the final level. As the discussion in Section 6 showed, deriving heuristics from such partial
planning graphs may trade cost of the heuristic computation for solution quality. To see if
this is indeed the case, we ran experiments comparing the same heuristic hAdjSum2M derived
once from full leveled planning graph, and once from the partial planning graph stopped at
the level where goals first become non-mutexed.

The plots in Figs. 10 and 11 show the results of the experiments with a large set of
problems from the scheduling domain. Fig. 10 shows the total time taken for heuristic
computation and search, Fig. 11 compares the length of the solution found for both
strategies. We can see very clearly that if we insist on full leveled planning graph, AltAlt is
unable to solve problems beyond the first 81, while the heuristic derived from the partial
planning graph scales all the way to 161 problems. The total planning time associated

Fig. 10. Results on trading heuristic quality for cost by extracting heuristics from partial planning graphs.
Comparison of running times.
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Fig. 11. Results on trading heuristic quality for cost by extracting heuristics from partial planning graphs.
Comparison of the quality of solutions.

with the partial planning graph based heuristic is significantly lower, as expected, in all
problems. The plot in Fig. 11 shows that even on the problems that are solved by both
strategies, we do not incur any appreciable loss of solution quality because of the use of
partial planning graph. There are very few points below the diagonal corresponding to the
problem instances on which the plans generated with the heuristic derived from the partial
planning graph are longer than those generated with heuristic derived from the full leveled
planning graph. Interestingly there are also instances where the solutions obtained using
heuristics derived from partial planning graphs are actually better than those obtained using
heuristics derived from the full leveled graph. We note that this behavior, while surprising,
is nevertheless theoretically plausible, given that the hAdjSum2M heuristic is not admissible
to begin with.

The results above validate our contention in Section 6.1 that the heuristic computation
cost can be kept within limits. It should be mentioned here that the planning graph
computation cost depends a lot upon domain. In domains such as Towers of Hanoi, where
there are very few irrelevant actions, the full and partial planning graph strategies are
almost indistinguishable in terms of cost. In contrast, domains such as grid world and
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scheduling world incur significantly higher planning graph construction costs, and thus
benefit more readily from the use of partial planning graphs.

8. Planning graph based heuristics for CSP search, and their application to
Graphplan’s backward search

In the previous sections we have formulated a family of heuristics extracted from the
planning graph and showed that these heuristics can be very effective in guiding the state
space search of the planner. In this section we shall demonstrate that the planning graph
can also serve as the basis for extracting heuristics to improve Graphplan’s own CSP style
search. these heuristics can also be applied to improve the Graphplan algorithm’s CSP style
backward search significantly.

This section is organized as follows. First we shall give a brief review and critique
of the variable and value ordering strategies used by Graphplan in its backward search.
Then we shall present several heuristics for variable and value ordering based on the level
information on the planning graph. Finally, we evaluate the effectiveness of these heuristics
and discuss the advantages they offer.

8.1. Variable and value ordering in Graphplan’s backward search

As briefly reviewed in Section 3, the Graphplan algorithm consists of two interleaved
phases—a forward phase, where a data structure called planning graph is incrementally
extended, and a backward phase where the planning graph is searched to extract a valid
plan.

The search phase on a k level planning graph involves checking to see if there is a
sub-graph of the planning graph that corresponds to a valid solution to the problem. This
involves starting with the propositions corresponding to goals at level k (if all the goals
are not present, or if they are present but a pair of them are marked mutually exclusive,
the search is abandoned right away, and the planning graph is grown another level). For
each of the goal propositions, we then select an action from the level k action list that
supports it, such that no two actions selected for supporting two different goals are mutually
exclusive (if they are, we backtrack and try to change the selection of actions). At this
point, we recursively call the same search process on the k − 1 level planning graph, with
the preconditions of the actions selected at level k as the goals for the k − 1 level search.
The search succeeds when we reach level 0 (corresponding to the initial state).

Previous work [20,24,45] had explicated the connections between this backward search
phase of Graphplan algorithm and constraint satisfaction problems (specifically, the
dynamic constraint satisfaction problems, as introduced in [34]). Briefly, the propositions
in the planning graph can be seen as CSP variables, while the actions supporting them can
be seen as their potential values. The mutex relations specify the constraints. Assigning an
action (value) to a proposition (variable) makes variables at lower levels “active” in that
they also now need to be assigned actions.

The order in which the backward search considers the (sub)goal propositions for
assignment is what we term the variable (goal) ordering heuristic. The order in which
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the actions supporting a goal are considered for inclusion in the solution graph is the
value (action) ordering heuristic. In their original paper [2], Blum and Furst argue that
variable and value ordering heuristics are not particularly useful in improving Graphplan,
mainly because exhaustive search is required in the levels before the solution bearing level
anyway. There are however reasons to pursue variable and value ordering strategies for
Graphplan.

(1) In many problems, the search done at the final level accounts for a significant part
of the overall search. Thus, it will be useful to pursue value and variable ordering
strategies, even if they improve only the final level search.

(2) There may be situations where one might have lower bound information about the
length of the plan, and using that information, the planning graph search may be
started from levels at or beyond the minimum solution bearing level of the planning
graph.

Indeed, we will show that Graphplan’s search can be significantly improved using
certain types of variable and value ordering heuristics. What is more interesting is that
these heuristics are directly drawn from the planning graph using some of the same ideas
used on deriving the state search heuristics (in Sections 4 and 5). We shall briefly show
the ineffectiveness of the existing heuristics for Graphplan search in the next subsection,
motivating the derivation of a family of heuristics extracted from the planning graph.

8.2. The ineffectiveness of existing heuristics for Graphplan’s search

The original Graphplan algorithm did not commit to any particular goal or value ordering
heuristic. The implementation however does default to a value ordering heuristic that
prefers to support a proposition by a noop action, if available. Although the heuristic of
preferring noops seems reasonable (in that it avoids inserting new actions into the plan
as much as possible), and has mostly gone unquestioned, 15 it turns out that it is hardly
infallible. Our experiments with Graphplan reported in [23] showed that using noops first
heuristic can, in many domains, drastically worsen the performance. Specifically, in most
of the problems, considering noops first worsens performance over not having any specific
value ordering strategy (and default to the order in which the actions are inserted into the
planning graph).

In the CSP literature, the standard heuristic for variable ordering involves trying the most
constrained variables first [44]. A variable is considered most constrained if it has the least
number of actions supporting it. Although some implementations of Graphplan such as
SGP [45] include this variable ordering heuristic, empirical studies elsewhere have shown
that by and large this heuristic leads to at best marginal improvements. In particular, the
results reported in [19] show that the most constrained first heuristic leads to about 4×
speedup at most.

One reason for the ineffectiveness of the most-constrained-first variable ordering is that,
the number of actions that can achieve a given goal, i.e., the number of values that can
be assigned for a given variable, does not adequately capture the difficulty of finding an

15 In fact, some of the extensions of Graphplan search, such as Koehler’s incremental goal sets idea [25]
explicitly depend on Graphplan using noops first heuristic.
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assignment for that variable. This is because a variable with fewer actions supporting it
may actually be much harder to handle than another with many actions supporting it, if
each of the actions supporting the first one eventually lead to activation of many more and
harder to assign new variables.

8.3. Extracting heuristics from the planning graph for Graphplan’s search

In contrast to standard CSP search, the Graphplan search process does not end as soon as
we find an assignment for the current level variables. Instead, the current level assignments
activate specific goal propositions at the next lower level and these need to be assigned; this
process continues until the search reaches the first level of the planning graph. Therefore,
what we need to improve this search is a heuristic that finds an assignment to the current
level goals, which is likely to activate fewer and easier to assign variables at the lower
levels. Fortunately, the family of state space heuristics developed earlier in Section 4 are
exactly concerned with this type of estimation.

To make this connection clearer, let us consider the planning graph shown in the left
of Fig. 12, and the corresponding CSP style backward search in the right. Consider the
variable ordering in a given level, say, level 2 in the planning graph, where we have two
variables (goals) g1 and g2. Intuitively, since the search is done in the backward direction,
we might want to choose the goal that is achieved the last. This is directly related to the
difficulty (cost) of achieving a subgoal g from the initial state, which can be captured by
the notion of level value of g, namely lev(g) (see Definition 2).

Considering the value ordering given a variable g2, there are two possible value
assignments for g2, corresponding to two actions a4 and a5. The likelihood that such
a value assignment would activate easier-to-assign variables in the next lower levels
is directly related to the cost of making the corresponding actions a4 and a5 become
applicable in a plan executed from the initial state. This cost in turn is directly related
to the cost of achieving the set of preconditions of the corresponding actions, namely
Prec(a4) = {p2,p3} and Prec(a5) = {p4}. We can apply the family of heuristic functions

Fig. 12. A planning graph example and the CSP style regression search on it. To avoid cluttering, we do not show
all the noops and mutex relations.
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developed earlier for measuring the cost of achieving a set of preconditions for a given
action.

Now, we are ready to state our variable and value ordering heuristics for Graphplan
search:

Propositions are ordered for assignment in decreasing value of their levels. Actions
supporting a proposition are ordered for consideration in increasing value of their
costs. (The cost of actions are defined below.)

These heuristics can be seen as using a “hardest to achieve goal (variable) first/easiest to
support action (value) first” idea, where hardness is measured in terms of the level of the
propositions.

We use the three different heuristic functions developed in Section 4 for estimating the
cost of actions: max, partition-1 and set-level heuristic. The reason these heuristics are
used is that they are derived directly from the level information extracted from the planning
graph and thus are very cheap to compute.

Max heuristic: The cost of an action is the maximum of the cost (distance) of the
individual propositions making up the precondition list of that action, namely,
costMax(a)=maxp∈Prec(a) lev(p). For example, the cost of A3 supporting G1 in
Fig. 12 is 1 because A3 has two preconditions P2 and P3, and both have level 1
(thus maximum is still 1). This heuristic is adapted from the max heuristic (see
Section 2).

Sum heuristic: The cost of an action is the sum of the costs of the individual
propositions making up that action’s precondition list, namely, costSum(a) =∑

p∈Prec(a) lev(p). For example, the cost of A4 supporting G2 in Fig. 12 is 2
becauseA4 has two preconditionsP2 and P3, and both have level 1. This heuristic
is adapted from the partition-1 heuristic (see Section 4).

Level heuristic: The cost of an action is the index if the first level at which the entire set of
that action’s preconditions are present without being mutex. Thus costLevel(a)=
lev(Prec(a)). For example, the cost of A5 supporting G2 in Fig. 12 is 1 because
A5 has one precondition P4, and it occurs in level 1 of the planning graph for the
first time. This heuristic is adapted from the set-level heuristic (see Section 4).

It is easy to see that the cost assigned by Level heuristic to an action a is just 1 less than
the index of the level in the planning graph where a first occurs in the planning graph.
Thus, we can think of the Level heuristic as using the uniform notion of “first appearance
level” of an action or proposition to do value and variable ordering.

In general, the Max, Sum and Level heuristics can give widely different costs to an
action. For example, consider the following entirely plausible scenario: an action a has
preconditions P1, . . . ,P10, where all 10 preconditions appear individually at level 3. The
first level where they appear without any pair of them being mutually exclusive is at
level 20. In this case, it is easy to see that a will get the cost 3 by Max heuristic, 30
by the Sum heuristic and 20 by the Level heuristic. In general, we have: costMax(a) �
costSum(a) and costMax(a)� costLevel(a), but depending on the problem costLevel(a) can
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be greater than, equal to or less than costSum(a). We have experimented with all three
heuristics.

8.4. Evaluation of the effectiveness of level based heuristics

We have implemented the three level based heuristics described in the previous section
for Graphplan backward search and evaluated its performance as compared to normal
Graphplan. Note that all the heuristics use the same variable (goal) ordering strategy, and
differ only in the way they order values (actions). Our implementations were based on
the Graphplan implementation bundled in the Blackbox system [24], which in turn was
derived from Blum and Furst’s original implementation [2] 56. Tables 7 and 8 show the
results on some standard benchmark problems. The columns titled “Max GP”, “Lev GP”
and “Sum GP” correspond respectively to Graphplan armed with the Max, Level and Sum
heuristics for value ordering (and the same “highest level first” idea for variable ordering).
CPU time is shown in minutes. For our Pentium Linux machine 500 MHz with 256 MB of
RAM, Graphplan would normally exhaust the physical memory and start swapping after
about 30 minutes of running. Thus, we put a time limit of 30 minutes for most problems (if
we increased the time limit, the speedups offered by the level based heuristics get further
magnified).

Table 7
Effectiveness of Level heuristic in solution bearing planning graphs. The columns titled Lev GP, Max GP and Sum
GP differ in the way they order actions supporting a proposition. Max GP considers the cost of an action to be the
maximum cost of any if its preconditions. Sum GP considers the cost as the sum of the costs of the preconditions
and Lev GP considers the cost to be the index of the level in the planning graph where the preconditions of the
action first occur and are not pairwise mutex

Problem Normal GP Max GP Lev GP Sum GP Speedup

Length Time Length Time Length Time Length Time Max Lev Sum

bw-large-a 12/12 0.008 12/12 0.005 12/12 0.005 12/12 0.006 1.6× 1.6× 1.3×
bw-large-b 18/18 0.76 18/18 0.13 18/18 0.13 18/18 0.085 5.8× 5.8× 8.9×
bw-large-c – >30 28/28 1.15 28/28 1.11 – >30 >26× >27× –

huge-fct 18/18 1.88 18/18 0.012 18/18 0.011 18/18 0.024 156× 171× 78×
bw-prob04 – >30 8/18 5.96 8/18 8 8/19 7.25 >5× >3.7× >4.6×
rocket-ext-a 7/30 1.51 7/27 0.89 7/27 0.69 7/31 0.33 1.70× 2.1× 4.5×
rocket-ext-b – >30 7/29 0.003 7/29 0.006 7/29 0.01 10000× 5000× 3000×
att-log-a – >30 11/56 10.21 11/56 9.9 11/56 10.66 >3× >3× >2.8×
gripper-6 11/17 0.076 11/15 0.002 11/15 0.003 11/17 0.002 38× 25× 38×
gripper-8 – >30 15/21 0.30 15/21 0.39 15/23 0.32 >100× >80 >93×
ferry41 27/27 0.66 27/27 0.34 27/27 0.33 27/27 0.35 1.94× 2× 1.8×
ferry-5 – >30 33/31 0.60 33/31 0.61 33/31 0.62 >50× >50× >48×
tower-5 31/31 0.67 31/31 0.89 31/31 0.89 31/31 0.91 0.75× 0.75× 0.73×
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Table 8
Effectiveness of level based heuristics for standard Graphplan search (including failing and succeeding levels)

Problem Normal GP Max GP Lev GP Sum GP Speedup

Length Time Length Time Length Time Length Time Max Lev Sum

bw-large-a 12/12 0.008 12/12 0.006 12/12 0.006 12/12 0.006 1.33× 1.33× 1.33×
bw-large-b 18/18 0.76 18/18 0.21 18/18 0.19 18/18 0.15 3.62× 4× 5×
huge-fct 18/18 1.73 18/18 0.32 18/18 0.32 18/18 0.33 5.41× 5.41× 5.3×
bw-prob04 8/20 30 8/18 6.43 8/18 7.35 8/19 4.61 4.67× 4.08× 6.5×
rocket-ext-a 7/30 1.47 7/26 0.98 7/27 1 7/31 0.62 1.5× 1.47× 2.3×
rocket-ext-b – >30 7/28 0.29 7/29 0.29 7/28 0.31 >100× >100× >96×
tower-5 31/31 0.63 31/31 0.90 31/31 0.89 31/31 0.88 0.70× 0.70× 0.71×

Notice that the heuristics are aimed at improving the search only in the solution
bearing levels (since no solution exists in the lower levels anyway). Table 7 compares the
effectiveness of standard Graphplan (with noops-first heuristic), and Graphplan with the
three level based heuristics in searching the planning graph containing minimum length
solution. As can be seen, the final level search can be improved by 2 to 4 orders of
magnitude with the level based heuristics. Looking at the Speedup columns, we also note
that all level based heuristics have approximately similar performance on our problem set
(in terms of CPU time).

Table 8 considers the effectiveness when incrementally searching from failing levels to
the first successful level (as the standard Graphplan does). The improvements are more
modest in this case. This suggests that a large proportion of the search time is spent on
the failing levels, and the current combination of our value ordering and variable ordering
heuristics generally do not help detect failures early in these levels.

To understand the relative roles played by value (action) and variable (goal) ordering
strategies in improving the efficiency of Graphplan search, we also ran the Graphplan
armed with only variable ordering heuristic, and Graphplan armed with only value ordering
heuristic (which is the max heuristic). In all cases, we consider search in the first solution
bearing level. The results are shown in Table 9. They show that variable ordering alone is
less effective than value ordering heuristic.

Interestingly, the results in Table 9 also show that the variable ordering heuristic when
combined with the value ordering max heuristic provides even better performance than
value ordering heuristic alone, in a number of problems, most notably those in the blocks
world domain. In this domain, the improvement ranges from 5 up to several orders of
magnitude. This type of synergy between variable and value ordering heuristics, while not
entirely surprising, is quite desirable. Generally, variable ordering heuristics attempt to
improve performance in failing branches, while the value ordering heuristics aim to direct
the search towards branches leading to solutions. Since the value ordering heuristics are
rarely perfect, in that they can guarantee backtrack free search, there are always failing
branches even with a value ordering heuristic. A synergistic variable ordering heuristic can
improve performance on these branches.
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Table 9
Results comparing the relative importance of the variable and value ordering heuristics on Graphplan’s search (in
the first solution bearing level)

Problem Normal GP Max GP Var.Order only Value.Order only

Length Time Length Time Length Time Length Time

bw-large-a 12/12 0.008 12/12 0.005 12/12 0.010 12/12 0.007

bw-large-b 18/18 0.76 18/18 0.13 18/18 0.29 18/18 0.61

bw-large-C – >30 28/28 1.15 – >30 – >30

huge-fct 18/18 1.88 18/18 0.012 18/18 0.90 18/18 2.77

bw-prob04 – > 30 8/18 5.96 – >30 8/19 8

rocket-ext-a 7/30 1.51 7/27 0.89 7/30 2.75 7/27 0.35

rocket-ext-b – > 30 7/29 0.003 7/26 1.80 7/29 0.009

att-log-a – >30 11/56 10.21 – >30 11/55 1.01

gripper-6 11/17 0.076 11/17 0.002 11/17 0.080 11/15 0.002

gripper-8 – > 30 15/23 0.30 – > 30 15/21 0.28

ferry41 27/27 0.66 27/27 0.34 27/27 0.87 27/27 0.24

ferry-5 – > 30 31/31 0.60 – > 30 31/31 0.46

tower-5 31/31 0.67 31/31 0.89 31/31 0.79 31/31 0.78

8.5. Graph-length insensitivity of level based heuristics

The impressive effectiveness of the level based heuristics for solution bearing planning
graphs suggests an alternative (“inverted”) approach for organizing Graphplan’s search—
instead of starting from the smaller length planning graphs and interleave search and
extension until a solution is found, we may want to start on longer planning graphs and
come down. One usual problem is that searching a longer planning graph is both more
costly, and is more likely to lead to non-minimal solutions. To see if the level based
heuristics are less sensitive to these problems, we investigated the impact of doing search
on planning graphs of length strictly larger than the length of the minimal solution.

Table 10 shows the performance of Graphplan with the Max heuristic, when the search
is conducted starting from the level where minimum length solution occurs, as well as
3, 5 and 10 levels above this level. Table 11 shows the same experiments with with the
Level and Sum heuristics. The results in these tables show that Graphplan with a level
based variable and value ordering heuristic is surprisingly robust with respect to searching
on longer planning graphs. We note that the search cost grows very little when searching
longer planning graphs. We also note that the quality of the solutions, as measured in
number of actions, remains unchanged, even though we are searching longer planning
graphs, and there are many non-minimal solutions in these graphs. Even the lengths
in terms of number of steps remain practically unchanged—except in the case of the
rocket-a and rocket-b problems (where it increases by one and two steps respectively) and
logistics problem (where it increases by two steps). (The reason the length of the solution
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Table 10
Results showing that level based heuristics are insensitive to the length of the planning graph being searched

Problem Normal GP Max GP +3 levels +5 levels +10 levels

Length Time Length Time Length Time Length Time Length Time

bw-large-a 12/12 0.008 12/12 0.005 12/12 0.007 12/12 0.008 12/12 0.01

bw-large-b 18/18 0.76 18/18 0.13 18/18 0.21 18/18 0.21 18/18 0.25

bw-large-c – >30 28/28 1.15 28/28 4.13 28/28 4.18 28/28 7.4

huge-fct 18/18 1.88 18/18 0.012 18/18 0.01 18/18 0.02 18/18 0.02

bw-prob04 – > 30 8/18 5.96 – >30 – >30 – >30

rocket-ext-a 7/30 1.51 7/27 0.89 8/29 0.006 8/29 0.007 8/29 0.009

rocket-ext-b – > 30 7/29 0.003 9/32 0.01 9/32 0.01 9/32 0.01

att-log-a – >30 11/56 10.21 13/56 8.63 13/56 8.43 13/56 8.58

gripper-6 11/17 0.076 11/17 0.002 11/17 0.003 11/17 0.003 11/15 0.004

gripper-8 – > 30 15/23 0.30 15/23 0.38 15/23 0.57 15/23 0.33

ferry41 27/27 0.66 27/27 0.34 27/27 0.30 27/27 0.43 27/27 0.050

ferry-5 – > 30 33/31 0.60 31/31 0.60 31/31 0.60 31/31 0.61

tower-5 31/31 0.67 31/31 0.89 31/31 0.91 31/31 0.91 31/31 0.92

Table 11
Performance of Level and Sum heuristics in searching longer planning graphs

Lev GP Sum GP

Problem +3 levels +5 levels +10 levels +3 levels +5 levels +10 levels

Length Time Length Time Length Time Length Time Length Time Length Time

bw-large-A 12/12 0.007 12/12 0.008 12/12 0.01 12/12 0.007 12/12 0.008 12/12 0.008

bw-large-B 18/18 0.29 18/18 0.21 18/18 0.24 20/20 0.18 20/20 0.28 20/20 0.18

bw-large-C 28/28 4 28/28 3.9 28/28 4.9 – >30 – >30 – >30

huge-fct 18/18 0.014 18/18 0.015 18/18 0.019 18/18 0.014 18/18 0.015 18/18 0.019

bw-prob04 11/18 18.88 – >30 – >30 – >30 – >30 – >30

rocket-ext-a 9/28 0.019 9/28 0.02 9/28 0.02 8/28 0.003 8/28 0.004 8/28 0.006

rocket-ext-b 9/32 0.007 9/32 0.006 9/32 0.01 7/28 0.011 7/28 0.012 7/28 0.014

att-log-a 13/56 8.48 14/56 8.18 13/56 8.45 13/56 8 13/56 8.18 13/56 8.45

gripper-6 11/15 0.003 11/15 0.003 11/15 0.003 11/15 0.004 11/15 0.004 11/15 0.004

gripper-8 15/21 0.4 15/21 0.47 15/21 0.4 15/21 0.47 15/21 0.47 15/21 0.4

ferry41 27/27 0.30 27/27 0.30 27/27 0.34 27/27 0.30 27/27 0.30 27/27 0.34

ferry-5 31/31 0.60 31/31 0.60 31/31 0.60 31/31 0.59 31/31 0.60 31/31 0.61

tower-5 31/31 0.89 31/31 0.89 31/31 0.89 31/31 0.87 31/31 0.87 31/31 0.87
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in terms of number of steps is smaller than the length of the planning graph is that in
many levels, backward search armed with level based heuristics winds up selecting noops
alone, and such levels are not counted in computing the number of steps in the solution
plan.)

A way of explaining this behavior of the level based heuristics is that even if we start to
search from arbitrarily longer planning graph, since the heuristic values of the propositions
remain the same, we will search for the same solution in the almost the same route (modulo
tie breaking strategy). Thus the only cost incurred from starting at longer graph is at the
expansion phase and not at the backward search phase.

This remarkable insensitivity of level based heuristics to the length planning graph
means that we can get by with very rough information (or guess-estimate) about the lower-
bound on the length of solution bearing planning graphs. It must be noted that the default
“noops-first” heuristic used by Graphplan implementations does already provide this type
of robustness with respect to search in non-minimal length planning graphs. In particular,
the noops-first heuristic is biased to find a solution that winds up choosing noops at all the
higher levels—thereby ensuring that the cost of search remains the same at higher length
planning graphs. However, as the results in [23] point out, this habitual postponement of
goal achievement to earlier levels is an inefficient way of doing search in many problems.
Other default heuristics, such as the most-constrained first, or the “consider goals in the
default order they are introduced into the proposition list”, worsen significantly when asked
to search on longer planning graphs. By exploiting the structure of the planning graph, our
level based heuristics give us the robustness of noops-first heuristic, while at the same time
avoiding its inefficiencies.

9. Related work

This section is organized into two parts. The first part (Section 9.1) deals with relations
between our work and the existing work on heuristic search planners. The second part
(Section 9.2) discusses the broad relations between our work and the work on heuristics in
the AI search literature.

9.1. Relations to other heuristic search planners

Given the current popularity of heuristic search planners, it is somewhat surprising to
note that the interest in the distance based heuristics in AI planning is a relatively new
development. Ghallab and his colleagues were the first to report on a reachability based
heuristic in IxTeT [14] for doing action selection in a partial order planner. However the
effectiveness of their heuristic was not adequately established. Subsequently the idea of
distance based heuristics was independently (re)discovered by McDermott [31,33] in the
context of his UNPOP planner. UNPOP was one of the first domain-independent planners
to synthesize 40 action long plans (Graphplan was the other, more well known, planner that
showed such scale-up). A second independent re-discovery of the idea of using distance
based heuristics in planning happened with Bonet and Geffner’s work [4]. The respectable
performance of HSP planner in the 1998 AIPS planning competition (where all the other
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competitors were variants of Graphplan algorithm) increased the community’s interest
in heuristic search planners in general. Since then, there have been a slew of efforts in
developing effective heuristics for domain independent planners.

The current work on heuristics for planning can be classified broadly along three
dimensions:

(1) the basis for the heuristics,
(2) the approach used to compute them, and
(3) the types of planners that the heuristics are directed towards.

We will briefly discuss these three dimensions and how the existing systems vary along
them.

9.1.1. Basis for the heuristics
All current heuristic search planners derive their heuristics from reachability (distance)

information. Informally, reachability information characterizes (sets) of world states in
terms of their distance from the initial state. It should be clear that computing fully accurate
reachability information for the entire state space is going to be harder than solving the
planning problem in the first place. Thus, the heuristics are ofen based on coarse-grained
(approximate) reachability information. Main variation among planners based on distance
heuristics is in terms of the accuracy and granularity of the reachability information used.
This in turn depends on the extent to which the subgoal interactions are accounted for
in deriving the heuristics. Early planners such as UNPOP and HSP derived reachability
information (and heuristics) with an assumption of subgoal independence. In other words,
the distance of a state S containing the literals p1,p2, . . . , pi from the initial state is seen
as the sum of the distances of the individual literals. The informedness of these heuristics
can be improved by accounting for negative interactions between subgoals, while their
admissibility can be improved by accounting for the positive interactions.

Our work describes a way of using the planning graphs to aggressively accounting for
both positive and negative interactions among subgoals. Specifically, our best heuristics
such as adjusted-sum2, adjusted-sum2M and combo start with a heuristic estimate that
uses the assumption of subgoal independence, but adjust this estimate to take both positive
and negative interactions into account. We also discuss ways in which the accuracy of the
heuristics can be improved in a graded way by improving the degree to which we account
for the subgoal interactions (see Section 4.4).

Although there have been other recent planners that have considered accounting for
either negative or positive interactions between subgoals, AltAlt is the first planner to
support consideration of both types of interactions in a systematic way. It is nevertheless
worth comparing AltAlt’s planning graph based approach to these other planners. We
have already noted (Section 2.1) that HSP-r accounts for negative interactions using a
form of static mutex relations between literals. AltAlt’s use of planning graphs allows it
to exploit not just static (persistent) mutexes, but also dynamic (level specific) mutexes.
We have argued that level specific mutexes improve the informedness of the heuristics,
and our empirical comparisons with HSP-r validate this argument. As can be seen from
the comparisons between AltAlt and HSP-r, the planing graph provides a more effective
method for accounting for negative interactions.
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FF [18] and GRT [41] focus on accounting for positive interactions between subgoals.
Specifically, Hoffman [18] uses the length of the first relaxed plan found in a relaxed plan-
ning graph (without mutex computation) as the heuristic value. This can be seen as a special
case of our adjusted-sum2 heuristic h(S)= costp(S)+∆(S), with ∆(S)= 0, completely
ignoring the negative interactions. 16 Refanidis [41] extracts the co-achievement relation
among subgoals from the first relaxed plan to account for the positive interactions. 17

Our work also reveals interesting connections between the extraction of distance based
heuristics that do a better job of accounting for subgoal interactions, and the idea of
improving the consistency level of a CSP encoding of the planning problem. Specifically,
as has been noted elsewhere (cf. [9,19]) a planning graph can be seen as a CSP encoding
whose solution corresponds to a valid plan for the problem. The propagation of mutex
constraints on the planning graph can be seen as improving the consistency level of the
underlying CSP encoding [8,20]. In particular, the Graphplan’s standard mutex propagation
routines can be seen as a form of directed partial 1- and 2-consistency enforcement [8,
20]. The fact that the informedness of the heuristics derived from the planning graph
improves with mutex propagation, can be seen as explicating the connection between
the effectiveness of the heuristics and the degree of consistency of the underlying (CSP)
encoding from which they are derived. This connection is exploited in an interesting
way in Section 5, where we described a way of improving the informedness of the
set-level heuristic with the help of memos unearthed by a limited run of Graphplan’s
backward search. Memos can be seen as enforcing higher order consistency on the
planning graph, and thus their use improves the heuristic. Finally, the invariants derived
by domain pre-processors such as TIM [13] and DISCOPLAN [15], or in [42], can
be seen as persistent (static) memos, and thus they too can improve the quality of the
heuristics.

9.1.2. Computation of the heuristics
IxTET and UNPOP compute the distance heuristics on demand using a top-down

procedure. Given a state S whose distance needs to be estimated, both IxTET and UNPOP
do an approximate version of regression search (called “greedy regression graphs”
in UNPOP) to estimate cost of that state. The approximation involves making an
independence assumption and computing the cost of a state S as the sum of the costs
of the individual literals comprising S. When a literal p is regressed using an action a
to get a set of new subgoals S′, S′ is again split into its constituent literals. UNPOP
also has the ability to estimate the cost of partially instantiated states (i.e., states whose
literals contains variables). HSP and HSP-r use a bottom-up approach for computing the
heuristics. They use an iterative fixed point computation to estimate the distance of every
literal from the given initial state. The computation starts by setting the distance of the
literals appearing in the initial state to 0, and the distance of the rest of the literals to

16 Bonet and Geffner [5] also discussed a similar idea, but did not actually use it in their HSP planner.
17 In fact, the extraction of the co-achievement relation among subgoals does consider the delete effects of the

actions. However, this is not considered to the extent to adequately account for the negative interactions among
the subgoals (because the first relaxed plan corresponding to which the co-achievement relations are extracted
may or may not be the correct plan to be found).
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∞. The distances are then updated until fixpoint using action application. The updating
scheme uses independence assumptions in the following way: if there is an action a

that gives a literal p, and a requires the preconditions p1,p2, . . . , pi , then the cost of
achieving p is updated to be the minimum of its current cost, and the sum of cost of a
plus the sum of the costs of achieving p1,p2, . . . , pi . Once this updating is done to fixed
point, estimating the cost of a state S involves simply looking up the distances of the
literals comprising S and summing them up. In their recent work, Haslum and Geffner
[17] point out that this bottom up fixed point computation can be seen as an approximate
dynamic programming procedure for computing the distances of the states from the initial
state. The approximation involves setting the distance of a state S to the maximum of
the distances of its k-sized subsets. With k = 2, this becomes equivalent to our set-level
heuristic.

AltAlt uses the planning graph data structure to estimate the costs of the various states.
Since the planning graph is computed once for a given problem (initial state), it is akin to a
bottom-up computation of the distance heuristics. As we discussed in detail in Section 6.3,
basing the bottom-up computation on the planning graph rather than on an explicit dynamic
programming computation can offer some advantages: We have seen that AltAlt can use the
information in the planning graph to derive a many qualitatively different heuristics over
and above the “sum” heuristic. We have also noted (see Section 6.3) that the planning graph
structure offers the important side benefit of action selection heuristics.

9.1.3. Types of planners using the distance heuristics
Distance based heuristics can be used to control the search of any type of classical

planner. UNPOP and HSP both used their distance heuristics to control the search of a
progression planner. A problem with the use of distance based heuristics to progression
planners is that since the initial state changes from action application, the distance
computation has to be repeated, and distance estimates updated, after every action
application. This tends to increase the cost of heuristic computation. Two approaches
have been explored to keep the cost of heuristic computation in check: (i) reversing the
direction of distance computation and (ii) reversing the direction of search (refinement).
The problem with reversing the direction of distance computation is that the goal state
is rarely fully specified in planning. To our knowledge, GRT [41] is the only planner
to compute the heuristic in the reverse direction, and it does this by first (heuristically)
elaborating the partial goal state into a plausible complete and consistent state, and then
carrying out the reachability computation from this complete state. One problem with this
approach of course is that there can be an exponential number of complete states consistent
with the given (partial) goal state, and it is not obvious which of these will be shortest
distance from the initial state. The alternative of doing distance computation over all the
complete states is of course too expensive. Several planners—including HSP-r and AltAlt
reverse the direction of search, and thus focus on controlling regression planners, instead
of progression planners.

Interestingly, while regression planners can avoid recomputing the distance estimates
on each operator application, they do not necessarily dominate progression planners using
distance based heuristics. One reason for this is that progression and regression planners
exploit the distance heuristics for different purposes. Progression planners already search
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through the space of consistent and reachable states, and thus need the heuristics only to
give their search a goal-directed flavor. 18 They can accomplish this with the aid of even
those heuristics that make simplistic independence assumptions. Regression planners, on
the other hand have goal-directedness built-in, but need the heuristics to get the reachability
and consistency information about their search states. For this, they tend to need heuristics
that do a better job of accounting for subgoal interactions (especially the negative
interactions). Since heuristics that do a better job of accounting for subgoal interactions
are harder to compute than those that just use subgoal independence assumptions, it is
not surprising that heuristic progression planners are competitive with (and in some cases
better than) heuristic regression planners. Indeed, the planner that performed the best
in the 2000 AIPS planning competition, FF, was a progression planner whose heuristic
only accounts for positive interactions between subgoals (it should be mentioned that the
superior performance of FF is attributed also in large part to its focus on a reduced set of
relevant actions, and the use of forced goal orderings and a forced hillclimbing strategy
[18]).

Contrary to the impressions created by the early work, the use of distance based
heuristics is by no means limited to state space planners. In Section 8 we discussed
distance based variable and value ordering heuristics for Graphplan. In [6], Cayrol et al.
independently discovered the level based variable ordering heuristic for Graphplan. For
value ordering, they use the Graphplan’s noops first heuristic. Interestingly, they report
that this combinations leads to reasonable improvements in standard Graphplan search
(which includes both failing and succeeding levels). In [9], the utility of distance based
variable and value ordering heuristics in solving CSP encodings of planning problems
is investigated. In our recent work on RePOP [37], we have demonstrated the utility of
distance heuristics in partial order planning. Sapa [10] is a recent metric temporal planner
that uses distance heuristics derived from planning graphs.

As of this writing, heuristic state search planners, including AltAlt seem to be
outperforming Graphplan, and other disjunctive planners based on CSP or SAT encodings
in classical planning domains. This does not necessarily mean that the other planning
techniques are slated for obsolescence. Heuristic state search planners are still quite
incapable of generating “parallel” plans of the kind that disjunctive planners such as
standard Graphplan and GP-CSP [9,17] can generate. There are also several reasons to
believe that partial order planners might offer important advantages in planing in metric
temporal domains [37,43]. On a larger note, one lesson of this research is that there are
bound to be important synergistic interactions among efforts on scaling and generalizing
the different planning techniques. Afterall, we have shown that the planning graph, which
was originally developed as part of the disjunctive planning techniques, can be of critical
importance in deriving effective distance based heuristics!

18 Progression planners also suffer from higher branching factor, since there are often more applicable actions
than relevant ones. The branching factor can however be controlled by techniques such as our sel-exp strategy
that focus on just the set of actions that appear in the planning graphs. In fact, an action selection strategy of this
type has been credited for a significant part of the effectiveness of FF [18].
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9.2. Parallels with AI search literature

Extracting effective and admissible heuristics has traditionally been a central problem
in the AI search literature [40]. Interestingly, deriving effective heuristics for domain-
independent planning started to receive attention only recently, beginning with the work
by McDermott [33] and Bonet and Geffner [3,4], who demonstrated that it is possible to
derive very good domain-independent heuristics for state space planners. One important
difference between the work in AI search and AI planning communities is that the
former often focuses on heuristics for specific domains, while the latter considers only
domain-independent heuristics. Nevertheless, there are interesting parallels between the
work on heuristic generation in these two communities. We explore these relations
below.

In the AI search literature, the standard method for computing heuristic functions is
to compute the cost of exact solutions to a relaxed version of the original problem. For
example, in the 8-puzzle problem we solve a relaxed version of the problem by assuming
that any tile can be moved to an adjacent square and multiple tiles can occupy the same
square. This leads to the well-known Manhattan heuristic function, which is the sum of all
Manhattan distances of each individual tile positions in the initial and goal states. Since
each individual tile can move independently of each other in the relaxed problem, this
“sum” heuristic is admissible. However, this heuristic estimate is still not very accurate
when we move to bigger problems such as the 15-puzzle, because the interactions among
the tiles are not accounted for.

Most early domain-independent heuristics in AI planning, such as those introduced by
Ghallab et al. [14], McDermott [33] and Bonet and Geffner [3,4], make the assumption
that subgoals are independent of one another in a manner similar to the Manhattan distance
heuristic. These heuristics are neither admissible nor robust. There are many domains in
which they cannot solve even the simplest problem instances (cf. Fig. 1).

Obviously, a better heuristic has to go beyond the independence assumption by
aggressively taking into account subgoal interactions. In the search literature, Culberson
and Schaeffer [7] introduced the notion of pattern databases as a method for accounting
for such interactions. For instance, in the 15-puzzle problem, they start by focusing on a
distinguished subset of tiles, such as the seven tiles in the right column and bottom row.
These distinguished subsets are called the fringe patterns. The minimum number of moves
required to get the fringe pattern tiles from their initial state to the goal state, including any
required moves of other (non-patterned) tiles as well, is obviously a lower bound on the
distance from the initial state to the goal state of the original problem. Since the number of
such patterns is smaller, they can be computed in the preprocessing phase and then stored
efficiently in the memory. Furthermore, multiple pattern databases can be exploited, and
the heuristic function can take on the maximum values in all different patterns stored in
a given state. This technique was effectively used for solving problem with large search
space such as 15-puzzle [7] and Rubik’s Cube [27].

Our admissible set-level heuristic is in a way related to the pattern database idea, where
each pair of subgoals can be seen as a “pattern”. The difference here is that lev({p1,p2})
is not the exact cost (distance) of achieving the pair {p1,p2}, but a lower bound provided
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by the planning graph. 19 The set-level heuristic thus involves taking the maximum values
among all the “patterns” existing in a given set. Furthermore, the accuracy of the set-level
heuristic can be improved by increasing the size and number of patterns, corresponding to
the computation of the higher-order mutexes.

The idea of pattern databases can be pushed further by identifying disjoint patterns, in
the sense that each disjoint pattern involves disjoint subsets of tiles as in the 15-puzzle
problem, and only moves involving the tiles in the patterns are counted for each pattern.
The sum of the distance values corresponding to each of the disjoint patterns existing in
a given state gives a much more accurate distance estimate of that state than taking the
maximum. A trivial example of the disjoint pattern database is the Manhattan distance,
wherein each individual disjoint pattern can be seen as a single tile position.

While the sum of disjoint pattern databases provides a very powerful rule for raising the
accuracy of the heuristic estimate, the problem with this idea is that it is not easy to identify
the disjoint patterns in a given domain. Indeed, the existence of these disjoint patterns
requires the actions to affect only subgoals within a given pattern. For most problems,
this requirement rarely holds. As noted by Korf [28], disjoint databases cannot be used
on the Rubik’s Cube. In the AI planning literature, Edelkamp [11] recently developed a
method for identifying disjoint patterns, and used that to apply pattern databases technique
to devise admissible heuristics in a number of planning domains.

In between the two extremes (i.e., the max and sum of the pattern databases) lies
a technique that attempts to combine the two ideas in a different way. Consider, in a
15-puzzle problem, a database that contains the number of moves required to correctly
position every pair of tiles. While most of the pairs would return the value which is exactly
the Manhattan distance, some special positions return a longer pairwise distance due to
the subgoal interactions that are considered explicitly. This increased distance value is
added into the Manhattan distance, providing a significant improvement into the Manhattan
heuristic (which basically assumes subgoal independence). This is the basic idea behind the
linear-conflict heuristic function, first proposed by Hansson et al. [16]. Korf and Taylor [29]
have applied this idea to solving 24-puzzle successfully. Along the way they introduced
several important ideas for accounting for the subgoal interactions. For instance as in
the 24-puzzle, there may be many pairs whose pairwise distances are longer than their
respective Manhattan distances. Given a state corresponding to a configuration of tile
positions, the set of tiles have to be partitioned into disjoint subsets in a way that maximize
the sum of all the pairwise distances. Furthermore, the same idea can be generalized to
distances of triples or quadruples of tiles as well.

The improvement to the Manhattan distance using the linear-conflict idea in the 24-
puzzle problems is related to our ideas in the adjusted-sum heuristic family, where we add
to the sum heuristic a quantity ∆(S), which accounts for the negative interactions among
subgoals.

19 Computing the exact cost of achieving a pair of subgoals may not be any easier than the original problem
itself. In fact, may planning problems have only one or two subgoals to begin with.
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10. Concluding remarks

In this paper, we showed that the planning graph structure used by Graphplan provides a
rich source for deriving heuristics for guiding both state space search and CSP style search.

In the case of state space search, we described a variety of heuristic families, that use
the planning graph in different ways to estimate the cost of a set of propositions. Our
empirical studies show that many of our heuristics have attractive tradeoffs in comparison
with existing heuristics. In particular, we provided three heuristics—“adjusted-sum2”,
“adjusted-sum2M” and “combo”—which when used in conjunction with a regression
search in the space of states, provide performance that is superior to both Graphplan
and existing heuristic state search planners, such as HSP-r. We discussed many ways
of improving the cost-quality tradeoffs offered by these heuristics—with the prominent
among them being derivation of heuristics from partially grown planning graphs. Our
empirical studies demonstrate that this approach often cuts down the cost of heuristic
computation significantly, with little discernible loss in the effectiveness of the heuristic.
Finally, we showed that AltAlt, a hybrid planning system based on our heuristics, is very
competitive with the state-of-the-art plan synthesis systems. Specifically, our evaluation of
AltAlt on the AIPS 2000 planning competition data puts its performance on par with the
top tier planners in the competition.

In the case of CSP search, we showed how we can derive highly effective variable
and value ordering heuristics, which can be used to drive Graphplan’s own backward
search. We showed that search with these heuristics has the attractive property of being
largely insensitive to the length of the planning graph being searched. This property makes
it possible to avoid exhaustive search in non-solution bearing levels by starting with a
planning graph that is longer than the minimal length solution.

Our work also makes several pedagogical contributions. To begin with, we show how the
strengths of two competing approaches—heuristic state search and Graphplan planning—
can be harnessed together to synthesize a family of planners that are more powerful than
either of the base approaches [21]. Secondly, we show that cost estimates of sets of
subgoals, that have hither-to been used primarily as the basis for heuristics in the context
of state space search, can also be used in the context of CSP search to give rise to very
effective variable and value ordering heuristics. Our discussion of relations between our
work and the work on memory based heuristics in the search community shows how the
planning graph can be seen as playing the same role for planning, as pattern databases play
for usual state space search problems such as 15-puzzle. In particular, the main attraction
of the planning graph from the point of view of heuristic derivation is that it provides a
systematic and graded way of capturing the subgoal interactions. Finally, our discussion
of the effect of mutex constraint propagation on the effectiveness of the heuristics points
out the close relation between the degree of consistency of the CSP encoding of a planning
problem, and the informedness of the heuristics derived from that planning graph.

While this work mainly focused on deriving heuristics for planning algorithms by state
space and CSP search, we believe that the framework for deriving heuristics that we present
here is quite general and can be exploited in other contexts. One such example is the
work in [37], where we use planning graph based heuristics to develop a significantly
fast partial order planner called RePOP. RePOP is the first partial order planner to rival
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the performance of Graphplan style planners. Another example is the work in [10], which
presents a state of the art heuristic metric temporal planner called Sapa. Sapa extends the
notion of planning graphs to metric temporal domains, and uses these generalized planning
graphs to derive heuristics to control search. Sapa is one of the first domain independent
planners to promise scalable performance in metric temporal domains.
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