
Local Search Techniques for Temporal Planning in LPG

Alfonso Gerevini Ivan Serina Alessandro Saetti Sergio Spinoni
Dipartimento di Elettronica per l’Automazione, Università degli Studi di Brescia

Via Branze 38, I-25123 Brescia, Italy
{gerevini,serina}@ing.unibs.it

Abstract

We present some techniques for planning in temporal do-
mains specified with the recent standard languange PDDL2.1.
These techniques are implemented in LPG, a fully-automated
system that took part in the third International Planning Com-
petition (Toulouse, 2002) showing excellent performance.
The planner is based on a stochastic local search method
and on a graph-based representation called “Temporal Action
Graphs” (TA-graphs). In this paper we present some new
heuristics to guide the search in LPG using this representa-
tion. An experimental analysis of the performance of LPG on
a large set of test problems used in the competition shows that
our techniques can be very effective, and that often our plan-
ner outperforms all other fully-automated temporal planners
that took part in the contest.

Introduction
Local search is emerging as a powerful method to address
domain-independent planning. In particular, two planners
that successfully participated in the recent 3rd International
Planning Competition (IPC) are based on local search: FF
(Hoffmann & Nebel 2001) and LPG. In (Gerevini & Serina
1999; 2002) we presented a first version of LPG using sev-
eral techniques for local search in the space of action graphs
(A-graphs), particular subgraphs of the planning graph rep-
resentation (Blum & Furst 1997). This version handled only
STRIPS domains, possibly extended with simple costs as-
sociated with the actions. In this paper we present some
major improvements that were used in the 3rd IPC to han-
dle domains specified in the recent PDDL2.1 language (Fox
& Long 2001) supporting “durative actions” and numerical
quantities that were not treated in the first version of LPG.

The general search scheme of our planner is Walkplan, a
stochastic local search procedure similar to the well-known
Walksat (Selman, Kautz, & Cohen 1994). Two of the most
important extensions on which we focus in this paper con-
cern the use of temporal action graphs (TA-graphs), instead
of simple A-graphs, and some new techniques to guide the
local search process. In a TA-graph, action nodes are marked
with temporal values estimating the earliest time when the
corresponding action terminates. Similarly, a fact node is
marked with a temporal value estimating the earliest time
when the corresponding fact becomes true. A set of ordering
constraints is maintained during search to handle mutually
exclusive actions, and to represent the temporal constraints

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

implicit in the “causal” relations between actions in the cur-
rent plan.

The new heuristics exploit some reachability information
to weight the elements (TA-graphs) in the search neighbor-
hood that resolve an inconsistency selected from the current
TA-graph. The evaluation of these TA-graphs is based on the
estimated number of search steps required to reach a solu-
tion (a valid plan), its estimated makespan, and its estimated
execution cost. LPG is an incremental planner, in the sense
that it produces a sequence of valid plans each of which im-
proves the quality of the previous ones.

In the 3rd IPC our planner showed excellent performance
on a large set of problems in terms of both speed to compute
the first solution, and quality of the best solution that can be
computed by the incremental process.

The 2nd section presents the action and plan representa-
tion used in the competition version of LPG; the 3rd section
describes its local search neighborhood, some new heuristics
for temporal action graphs, and the techniques for comput-
ing the reachability and temporal information used in these
heuristics; the 4th section gives the results of an experimen-
tal analysis using the test problems of the 3rd IPC illustrating
the efficiency of our approach for temporal planning; finally,
the 5th section gives conclusions and mentions further work.

Action and Plan Representation
Our graph-based representation for temporal plans is an
elaboration of action graphs (Gerevini & Serina 1999;
2002), particular subgraphs of the planning graph represen-
tation. In the following we will assume that the reader is
familiar with this well-known representation and with the
related terminology. We indicate with [u] the proposition
(action) represented by the fact node (action node) u. Given
a planning graph G for a planning problem, without loss of
generality, we can assume that the goal nodes of G in the
last level represent the preconditions of the special action
[aend], which is the last action in any valid plan, while the
fact nodes of the first level represent the effects of the special
action [astart], which is the first action in any valid plan.

An action graph (A-graph) for G is a subgraph A of G
containing aend and such that, if a is an action node of G in
A, then also the fact nodes of G corresponding to the pre-
conditions and positive effects of [a] are in A, together with
the edges connecting them to a. An action graph can contain
some inconsistencies, i.e., an action with precondition nodes
that are not supported, or a pair of action nodes involved in
a mutex relation (or simply in a mutex). In general, a pre-

condition node q of level i is supported in an action graph A
of G if either (i) in A there is an action node at level i − 1
representing an action with (positive) effect [q], or (ii) i = 1
(i.e., [q] is a proposition of the initial state). An action graph
without inconsistencies represents a valid plan and is called
solution graph. A solution graph for G is an action graph
As of G where all precondition nodes of its action nodes are
supported, and there is no mutex between its action nodes.

For large planning problems the construction of the plan-
ning graph can be computationally very expensive, espe-
cially because of the high number of mutex relations. For
this reason our planner considers only pairs of actions that
are persistently mutex (i.e., that hold at every level of the
graph). Persistent mutex relations are derived using a dedi-
cated algorithm that is not reported here for lack of space.

The definition of action graph and the notion of supported
fact can be made stronger by observing that the effects of
an action node can be automatically propagated to the next
levels of the graph through the corresponding no-ops, un-
til there is an interfering action blocking the propagation (if
any), or we reach the last level of the graph. The use of
the no-op propagation, which we presented in (Gerevini &
Serina 2002), leads to a smaller search space and can be in-
corporated into the definition of action graph.

An action graph with propagation is an action graph A
such that if a is an action node of A at level l, then, for any
positive effect [e] of [a] and any level l′ > l of A, the no-op
of e at level l′ is in A, unless there is another action node
at a level l′′ (l ≤ l′′ < l′) which is mutex with the no-op.
Since in the rest of this paper we consider only action graphs
with propagation, we will abbreviate their name simply to
action graphs (leaving implicit that they include the no-op
propagation).

The first version of LPG (Gerevini & Serina 2002) was
based on action graphs where each level may contain an ar-
bitrary number of action nodes, like in the usual definition of
planning graph. The newer version of the system that partic-
ipated in the 3rd IPC uses a restricted class of actions graphs,
called linear action graphs, combined with some additional
data structures supporting a richer plan representation. In
particular, the new system can handle actions having tempo-
ral durations and preconditions/effects involving numerical
quantities specified in PDDL2.1 (Fox & Long 2001). In this
paper we focus mainly on planning for temporal domains.

In order to keep the presentation simple, we describe our
techniques considering only action preconditions of type
“over all” (i.e., preconditions that must hold during the
whole action execution) and effects of type “at end” (i.e.,
effects that hold at the end of the action execution).1

Definition 1 A linear action graph (LA-graph) of G is an
A-graph of G in which each level of actions contains at most
one action node representing a domain action and any num-
ber of no-ops.

It is important to note that having only one action in each
level of a LA-graph does not prevent the generation of par-
allel (partially ordered) plans. In fact, from any LA-graph

1The current version of LPG supports all types of preconditions
and effects that can be expressed in PDDL2.1.

we can easily extract a partially ordered plan where the or-
dering constraints are (1) those between mutex actions and
(2) those implicit in the causal structure of the represented
plan. Regarding the first constraints, if a and b are mutex
and the level of a precedes the level of b, then [a] is or-
dered before [b]; regarding the second constraints, if a has
an effect node that is used (possibly through the no-ops) to
support a precondition node of b, then [a] is ordered before
[b]. These causal relations between actions producing an ef-
fect and actions consuming it are similar to the causal links
in partial-order planning (e.g., (Penberthy & Weld 1992;
Nguyen & Kambhampati 2001)). LPG keeps track of these
relationships during search and uses them to derive some
heuristic information useful for guiding the search (more de-
tails on this in the next section), as well as to extract parallel
plans from the solution graph in STRIPS domains.

For temporal domains where actions have durations and
plan quality mainly depends on the makespan, rather than
on the number of actions or graph levels, the distinction be-
tween one action or more actions per level is scarcely rel-
evant. The order of the graph levels should not imply by
itself any ordering between actions (e.g., an action at a cer-
tain level could terminate before the end of an action at the
next level).

A major advantage of using LA-graphs instead of A-
graphs is that the simple structure of LA-graph supports a
faster and more accurate computation of the heuristic and
reachability information used by the local search algorithm
presented in the next section. This is partly related to the
fact that in LA-graphs the unsupported preconditions are the
only type of inconsistencies that the search process needs
to handle explicitly. Moreover, if a level contained mutex
actions (possibly because of interacting numerical effects)
the resulting state could be indeterminate, and this would
make more difficult evaluating our heuristics and reachabil-
ity information. Finally, having only one action per level
allows us to define a larger search neighborhood. A more
detailed discussion on LA-graphs versus A-graphs is given
in a longer version of this paper (Gerevini & Serina 2003).

For PDDL2.1 domains involving durative actions, our
planner represents temporal information by an assignment
of real values to the action and fact nodes of the LA-graph,
and by a set Ω of ordering constraints between action nodes.
The value associated with a fact node f represents the (es-
timated) earliest time at which [f] becomes true, while the
value associated with an action node a represents the (esti-
mated) earliest time when the execution of [a] can terminate.
These estimates are derived from the duration of the actions
in the LA-graph and the ordering constraints between them
that are stated in Ω.

Definition 2 A temporal action graph (TA-graph) of G is
a triple 〈A, T ,Ω〉 where A is a linear action graph; T is an
assignment of real values to the fact and action nodes of A;
Ω is a set of ordering constraints between action nodes of A.

The ordering constraints in a TA-graph are of two types:
constraints between actions that are implicitly ordered by
the causal structure of the plan (≺C-constraints), and con-
straints imposed by the planner to deal with mutually ex-
clusive actions (≺E-constraints). a ≺C b belongs to Ω if

mutexmutex

L
ev

el
L

ev
el

L
ev

el
2

3
4

L
ev

el
1

(0)

(50)

(50)

(0)(0)

[70]
(120)

(50)

[40]
(160)

(120) (220) (220)(50)(−)

(220)
[100]

(−)(−)(120)(120)(−)

[50]

(0)(0)

(0)(0)(0)(50)

(−)

(160) (120) (160) (220)

PS
fr

ag
re

pl
ac

em
en

ts

INIT

a1

a2

a3

a4

f1 f2 f3

f3

f3

f4

f4

f4

f5

f5

f5

f5

f5

f5

f5

f5

f5

f6

f6

f6

f6

f6

f7

f7

f7

f7

f7

f8

f8

f8

f8

f8 f9 f10

f11

f12

f12

f12

f13

Ω = {a1 ≺C a4; a2 ≺C a3; a1 ≺E a2; a2 ≺E a4}

Figure 1: An example of TA-graph. Dashed edges form chains of
no-ops that are blocked by mutex actions. Round brackets contain
temporal values assigned by T to the fact nodes (circles) and the
action nodes (squares). The Square-nodes marked with facts are
no-ops. The numbers in square brackets represent action durations.
“(–)” indicates that the corresponding fact node is not supported.

and only if a is used to achieve a precondition node of b
in A, while a ≺E b (or b ≺E a) belongs to Ω only if a
and b are mutex in A (a ≺E b, if the level of a precedes
the level of b, b ≺E a otherwise). In the next section we
will discuss how ordering constraints are stated by LPG dur-
ing the search. Given our assumption on the types of action
preconditions and effects in temporal domains, an ordering
constraint a ≺ b (where “≺” stands for ≺C or ≺E) states
that the end of [a] is before the start of [b].2 The tempo-
ral value assigned by T to a node x will be denoted with
Time(x), and it is derived as follows. If a fact node f is
unsupported, then Time(f) is undefined, otherwise it is the
minimum over the temporal values assigned to the actions
supporting it. If the temporal value of every precondition
nodes of an action node a are undefined, and there is no ac-
tion node with a temporal value that must precede a accord-
ing to Ω, then Time(a) is set to the duration of a; otherwise
Time(a) is the sum of the duration of a and the maximum
over the temporal values of its precondition nodes and the
temporal values of the actions nodes that must precede a.

Figure 1 gives an example of TA-graph containing four
action nodes (a1...4) and several fact nodes representing thir-
teen facts. Since a1 supports a precondition node of a4,
a1 ≺C a4 belongs to Ω (similarly for a2 ≺C a3). a1 ≺E a2

2Note that in order to handle all types PDDL2.1 preconditions
and effects, LPG can use additional types of ordering constraints
involving other endpoints of the constrained actions.

belongs to Ω because a1 and a2 are persistently mutex (sim-
ilarly for a2 ≺E a4). The temporal value assigned to the
facts f1...5 at the first level is zero, because they belong to
the initial state. a1 has all its preconditions supported at
time zero, and hence Time(a1) is the duration of a1. Since
a1 ≺ a2 ∈ Ω, Time(a2) is given by the sum of the dura-
tion of a2 and the maximum over the temporal values of its
precondition nodes (zero) and Time(a1). Time(a3) is the
sum of its duration and the time assigned to f9 at level 3,
which is the only supported precondition node of a3. Since
f9 at level 3 is supported only by a2, and this is the only
supported precondition node of a3, Time(a3) is the sum of
Time(f9) and the duration of a3. Since a2 must precede a4

(while there is no ordering constraint between a2 and a3),
Time(a4) is the maximum over Time(a2) and the temporal
values of its supported precondition nodes, plus the duration
of a4. Finally, note that f12 at the last level is supported both
by a4 and a3. Since Time(a3) > Time(a4), we have that
Time(f12) at this level is equal to Time(a4).
Definition 3 A temporal solution graph for G is a TA-
graph 〈A, T ,Ω〉 such that A is a solution LA-graph of G,
T is consistent with Ω and the duration of the actions in A,
Ω is consistent, and for each pair 〈a, b〉 of mutex actions in
A, either Ω |= a ≺ b or Ω |= b ≺ a.

While obviously the levels in a TA-graph do not corre-
spond to real time values, they represent a topological order
for the ≺C-constraints in the TA-graph (i.e., the actions of
the TA-graph ordered according to their relative levels form
a linear plan satisfying all ≺C-constraints). This topological
sort can be a valid total order for the ≺E-constraints of the
TA-graph as well, provided that these constraints are appro-
priately stated during search. Since LPG states a ≺E b if the
level of a precedes the level of b, and b ≺E a otherwise, it
is easy to see that the levels of a TA-graph correspond to a
topological order of the actions in the represented plan sat-
isfying every ordering constraint in Ω.

For planning domains requiring to minimize the plan
makespan each element of LPG’s search space is a TA-graph.
For domains where time is irrelevant (like simple STRIPS do-
mains) the search space is formed by LA-graphs.

In accordance with PDDL2.1, our planner handles both
static durations and durations depending on the state in
which the action is applied. However, in this paper we will
not describe the treatment of dynamic durations, and with-
out loss of generality for the techniques presented in the next
section, we assume that action durations are static.

Each action of a plan can be associated with a cost that
may affect the plan quality. Like action durations, in general
these costs could be either static or dynamic, though the cur-
rent version of LPG handles only static ones. LPG precom-
putes the action costs using the metric for the plan quality
that is specified in the problem description in the PDDL2.1
field “:metric”.3

Local Search in the Space of TA-graphs
In this section we present some search techniques used in
the version of our planner that took part in the 3rd IPC. In

3For simple STRIPS domains, where there is no metric expres-
sion to minimize, the cost of each action is set to one.

order to simplify the notation, instead of using a and [a] to
indicate an action node and the action represented by this
node respectively, we will use a to indicate both of them (the
appropriate interpretation will be clear from the context).

Basic Search Procedure: Walkplan

The general scheme for searching a solution graph (a final
state of the search) consists of two main steps. The first step
is an initialization of the search in which we construct an
initial TA-graph. The second step is a local search process
in the space of all TA-graphs, starting from the initial TA-
graph. We can generate an initial A-graph in several ways
(Gerevini & Serina 1999). In the current version of LPG,
the default initialization strategy is the empty action graph
(containing only astart and aend).

Each basic search step selects an inconsistency σ in
the current TA-graph A, and identifies the neighborhood
N(σ,A) of σ in A, i.e., the set of TA-graphs obtained from
A by applying a graph modification that resolves σ.4

The elements of the neighborhood are weighted accord-
ing to a function estimating their quality, and an element
with the best quality is then chosen as the next possible TA-
graph (search state). The quality of an TA-graph depends on
a number of factors, such as the number of inconsistencies
and the estimated number of search steps required to resolve
them, the overall cost of the actions in the represented plan
and its makespan.

In (Gerevini & Serina 1999; 2002) we proposed three gen-
eral strategies for guiding the local search in the space of
A-graphs. The default strategy that we used in all experi-
mental tests is Walkplan, a method similar to a well-known
stochastic local search procedure for solving propositional
satisfiability problems (Selman, Kautz, & Cohen 1994;
Kautz & Selman 1996). According to Walkplan the best el-
ement in the neighborhood is the TA-graph which has the
lowest decrease of quality with respect to the current TA-
graph, i.e., it does not consider possible improvements. This
strategy uses a noise parameter p. Given a TA-graph A and
an inconsistency σ, if there is a modification for σ that does
not decrease the quality of A, then this is performed, and the
resulting TA-graph is chosen as the next TA-graph; other-
wise, with probability p one of the graphs in N(σ,A) is cho-
sen randomly, and with probability 1 − p the next TA-graph
is chosen according to the minimum value of the evaluation
function. If a solution graph is not reached after a certain
number of search steps (max steps), the current TA-graph
and max steps are reinitialized, and the search is repeated up
to a user-defined maximum number of times (max restarts).

In (Gerevini & Serina 2002) we proposed some heuris-
tic functions for evaluation the search neighborhood of A-
graphs with action costs, but without considering tempo-
ral information. Here we present additional, more powerful
heuristic functions for LA-graphs and TA-graphs that were
used in the 3rd IPC.

4The strategy for selecting the next inconsistency to handle may
have an impact on the overall performance. The default strategy
that we have used in all experiments presented in the next section
prefers inconsistencies appearing at the earliest level of the graph.

Neighborhood and Heuristics for TA-graphs
The search neighborhood for an inconsistency σ in a LA-
graphs A is the set of LA-graphs that can be derived from
A by adding an action node supporting σ, or removing the
action with precondition σ (in linear graphs the only type of
inconsistencies are unsupported preconditions). An action a
supporting σ can be added to A at any level l preceding the
level of σ, and such that the desired effect of a is not blocked
before or at the level of σ. The neighborhood for σ contains
an action graph for each of these possibilities.

Since at any level of a LA-graph there can be at most one
action node (plus any number of no-ops), when we remove
an action node from A, the corresponding action level be-
comes “empty” (it contains only no-ops). When we add
an action node to a level l, if l is not empty, then the LA-
graph is extended by one level, all action nodes from l are
shifted forward by one level, and the new action is inserted
at level l.5 Moreover, when we remove an action node a
from the current LA-graph, we can remove also each action
node supporting only the preconditions of a. Similarly, we
can remove the actions supporting only the preconditions of
other removed action, and so on. While this induced prun-
ing is not necessary, an experimental analysis showed that it
tends to produce plans of better quality more quickly.

The elements of the neighborhood are evaluated accord-
ing to an action evaluation function E estimating the cost of
adding (E(a)i) or removing an action node a (E(a)r). In
general, E consists of three weighted terms evaluating three
aspects of the quality of the current plan that are affected by
the addition/removal of a:
E(a)i = α·Execution cost(a)i+β ·Temporal cost(a)i+

+ γ · Search cost(a)i

E(a)r =α·Execution cost(a)r+β ·Temporal cost(a)r+
+ γ · Search cost(a)r

The first term of E estimates the increase of the plan ex-
ecution cost, the second estimates the end time of a, and
third estimates the increase of the number of the search steps
needed to reach a solution graph. The coefficients of these
terms are used to normalize them, and to weight their rel-
ative importance (more on this in the section “Incremental
Plan Quality”).

We first give a brief intuitive illustration of how the terms
of E are evaluated by LPG, and then a more detailed, for-
mal description. Suppose we are evaluating the addition of
a at level l of the current action graph A. The three terms
of E are heuristically estimated by computing a relaxed plan
πr containing a minimal set of actions for achieving (1) the
unsupported preconditions of a and (2) the set Σ of precon-
ditions of other actions in the LA-graph that would become
unsupported by adding a (because it would block the no-op
propagation currently used to support such preconditions).
This plan is relaxed in the sense that it does not consider the

5Note that the empty levels can be ignored during the extrac-
tion of the plan from the (temporal) solution graph. They could
also be removed during search, if the graph becomes too large. Fi-
nally, if the LA-graph contains adjacent empty levels, and in order
to resolve the selected inconsistency a certain action node can be
added at any of these levels, then the corresponding neighborhood
contains only one of the resultant graphs.

EvalAdd(a)
Input: An action node a that does not belong to the current TA-

graph.
Output: A pair formed by a set of actions and a temporal value t.

1. INITl ← Supported facts(Level(a));
2. Rplan← RelaxedPlan(Pre(a), INITl, ∅);
3. t1 ←MAX{0, MAX{T ime(a′) | Ω |= a′ ≺ a}};
4. t2 ←MAX{t1, End time(Rplan)};
5. A← Aset(Rplan) ∪ {a};
6. Rplan← RelaxedPlan(Threats(a), INITl − Threats(a), A);
7. return 〈Aset(Rplan), t2 + Duration(a)〉.

EvalDel(a)
Input: An action node a that belongs to the current TA-graph.
Output: A pair formed by a set of actions and a temporal value t.

1. INITl ← Supported facts(Level(a));
2. Rplan← RelaxedPlan(Unsup facts(a), INITl, ∅).
3. return Rplan.

Figure 2: Algorithms for estimating the search, execution and
temporal costs for the insertion (EvalAdd) and removal (EvalDel)
of an action node a.

delete-effects of the actions. The derivation of πr takes into
account the actions already in the current partial plan (the
plan represented by A). In particular, the actions in the cur-
rent plan are used to define an initial state for the problem
of achieving the preconditions of a and those in Σ. The re-
laxed subplan for the preconditions of a is computed from
the state INITl obtained by applying the actions in A up to
level l − 1, ordered according to their corresponding levels.
Notice that, as we pointed out in the previous section, the
levels in a TA-graph correspond to a total order of the ac-
tions of the represented partial-order plan that is consistent
with the ordering constraints in Ω (though, of course, this
is not necessarily the only valid total order). The relaxed
subplan for achieving Σ is computed from INITl modified
by the effects of a, and it can reuse actions in the relaxed
subplan previously computed for the preconditions of a.

The number of actions in the combined relaxed subplans
(πr) is used to define a heuristic estimate of the additional
search cost that would be introduced by the new action a.
This estimate takes into account also the number of sup-
ported preconditions that would become unsupported by
adding the actions in πr to A. We indicate these subverted
preconditions with Threats(a). Using the causal-link no-
tation of partial-order planners (e.g., (Penberthy & Weld
1992)), Threats(a) can be defined as the set {f | no-op(f)

and a are mutex; ∃ b, c ∈ A such that b
f
→ c}.

Temporal cost(a) is an estimation of the earliest time
when the new action would terminate given the actions in
πr.6 Execution cost(a) is an estimation of the additional
execution cost that would be required to satisfy the precondi-
tions of a, and is derived by summing the cost of each action
a′ in πr (Cost(a′)). The terms of E(a)r are estimated in a
similar way. More formally, the terms of E(a)i are defined

6Note that the makespan of πr is not a lower bound for
Temporal cost(a), because the possible parallelization of πr

with the actions already in A is not considered.

RelaxedPlan(G, INITl, A)
Input: A set of goal facts (G), the set of facts that are true after ex-

ecuting the actions of the current TA-graph up to level l (INITl),
a possibly empty set of actions (A);

Output: A set of actions and a real number estimating a minimal
set of actions required to achieve G and the earliest time when
all facts in G can be achieved, respectively.

1. t← MAX
g∈G∩INITl

T ime(g);

2. G← G− INITl; ACTS ← A; F ←
⋃

a∈ACTS
Add(a);

3. t←MAX

{

t, MAX
g∈G∩F

T (g)

}

;

4. forall g ∈ G such that g 6∈ F =
⋃

a∈ACTS
Add(a)

5. bestact← ChooseAction(g);
6. Rplan← RelaxedPlan(Pre(bestact), INITl, ACTS);
7. forall f ∈ Add(bestact)− F
8. T (f)← End time(Rplan) + Duration(bestact);
9. ACTS ← Aset(Rplan) ∪ {bestact};
10. t←MAX{t, End time(Rplan) + Duration(bestact)};
11.return 〈ACTS, t〉.

Figure 3: Algorithm for computing a relaxed plan achieving a set
of action preconditions from the state INITl.

as follows:

Execution cost(a)i =
∑

a′∈ Aset(EvalAdd(a))

Cost(a′)

Temporal cost(a)i = End time(EvalAdd(a))

Search cost(a)i = |Aset(EvalAdd(a))|+
∑

a′∈Aset(EvalAdd(a))

|Threats(a′)|

Regarding E(a)r we have

Execution cost(a)r =
∑

a′∈ Aset(EvalDel(a))

Cost(a′) − Cost(a),

while the other two terms are defined as in E(a)i, except
that we use EvalDel instead of EvalAdd.

EvalAdd(a) is a function returning two values (see Fig-
ure 2): the set of actions in πr (Aset) and an estimation
of the earliest time when the new action a would terminate.
Similarly for EvalDel(a), which returns a minimal set of ac-
tions required to achieve the preconditions that would be-
come unsupported if a were removed from A, together with
an estimation of the earliest time when all these precondi-
tions would become supported. The relaxed subplans used
in EvalAdd(a) and EvalDel(a) are computed by RelaxedPlan,
a recursive algorithm formally described in Figure 3. Given
a set G of goal facts and an initial state INITl, RelaxedPlan
computes a set of actions forming a relaxed plan (ACTS) for
achieving G from INITl, and a temporal value (t) estimating
the earliest time when all facts in G are achieved. In Eval-
Add and EvalDel these two values returned by RelaxedPlan
are indicated with Aset(Rplan) and End time(Rplan),
respectively. Supported facts(l) denotes the set of posi-
tive facts that are true after executing the actions at levels
preceding l (ordered by their level); Duration(a) the du-
ration of a; Pre(a) the precondition nodes of a; Add(a)
the (positive) effect nodes of a; Num acts(p, l) an esti-
mated minimum number of actions required to reach p from
Supported facts(l) (if p is not reachable, Num acts(p, l)

is set to a negative number). The techniques for comput-
ing Num acts and updating Time are described in the next
subsection, where we also propose a method for assigning
a temporal value to unsupported fact nodes improving the
estimation of the earliest end time for an action with unsup-
ported preconditions.

After having computed the state INITl using
Supported facts(l), in step 2 EvalAdd uses Relaxed-
Plan to compute a relaxed subplan (Rplan) for achieving
the preconditions of the new action a from INITl. Steps 3–4
compute an estimation of the earliest time when a can be
executed as the maximum of the end times of all actions
preceding a in A (t1) and End time(Rplan) (t2). Steps
5–6 compute a relaxed plan for Threats(a) taking into
account a and the actions in the first relaxed subplan.

EvalDel is simpler than EvalAdd, because the only new in-
consistencies that can be generated by removing a are the
precondition nodes supported by a (possibly through the
no-op propagation of its effects) that would become unsup-
ported. Unsup facts(a) denotes the set of these nodes.

The pair 〈ACTS, t〉 returned by RelaxedPlan is derived by
computing a relaxed plan (Rplan) for G starting from a pos-
sibly non-empty input set of actions A that can be “reused”
to achieve an action precondition or goal of the relaxed prob-
lem. A is not empty whenever RelaxedPlan is recursively
executed, and when it is used to estimate the minimum num-
ber of actions required to achieve Threats(a) (step 6 of
EvalAdd(a)). RelaxedPlan constructs Rplan through a back-
ward process where the action chosen to achieve a (sub)goal
g (bestact) is an action a′ such that (1) g is an effect of a′; (2)
all preconditions of a′ are reachable from INITl; (3) reacha-
bility of the preconditions of a′ require a minimum number
of actions, estimated as the maximum of the heuristic num-
ber of actions required to support each precondition p of a′

(Num acts(p, l)); (4) a′ subverts the minimum number of
supported precondition nodes in A (Therats(a′)). More
precisely, ChooseAction(g) returns an action satisfying

ARGMIN
{a′∈Ag}

{

MAX
p∈Pre(a′)−F

Num acts(p, l) + |Threats(a′)|

}

,

where Ag = {a ∈ O | a ∈ Add(a); O is the set of all
actions; ∀p ∈ Pre(a) Num acts(p) ≥ 0}, and F is the set
of positive effects of the actions currently in ACTS.7

Steps 1, 3 and 7 estimate the earliest time required to
achieve all goals in G. This is recursively defined as the
maximum of (a) the times assigned to the facts in G that
are already true in the state INITl (step 1), (b) the estimated
earliest time T (g) required to achieve every fact g in G that
is an effect of an action currently in ACTS (step 3), and (c)
the estimated earliest time required to achieve the precondi-
tions of the action chosen to achieve the remaining facts in
G (step 10). The T -times of (b) are computed by steps 7–8

7The set O does not contain operator instances with mutually
exclusive preconditions. In principle Ag can be empty because g
might not be reachable from INITl (i.e., bestact = ∅). Relaxed-
Plan treats this special case by forcing its termination and return-
ing a set of actions including a special action with very high cost,
leading E to consider the element of the neighborhood under eval-
uation a bad possible next search state. For clarity we omit these
details from the formal description of the algorithm.

precondition
Unsupported

mutex

mutex

PSfrag replacements

INITl

a

b

c

a1 a2 a3

a4

a5 a6

a7 a8

p

q

q

q

q

p1 p2

p2

p3

p4 p5

p5

p6 p7

p7

p8

p9 p10

p11

p11

p12 p13

p13

p14 p15 p16

Level l + 1

Fact p1 p3 p4 p6 p8 p12 p14 p15 p16

Num acts 2 2 1 6 2 1 2 2 9

Fact p2 p5 p7 p9 p10 p11 p13

Time 220 170 300 50 30 170 30

Action a a1 a4 a5 a7

Duration 30 70 100 30 90

Figure 4: An example illustrating EvalAdd.

from the relaxed subplan derived to achieve them. Clearly
the algorithm terminates, because either every (sub)goal p is
reachable from INITl (i.e., Num acts(p, l) ≥ 0), or at some
point bestact = ∅ holds, forcing immediate termination (see
previous footnote).

Figure 4 illustrates EvalAdd and RelaxedPlan with an ex-
ample. Suppose we are evaluating the addition of a to the
current TA-graph A. For each fact that is used in the exam-
ple, the tables of Figure 4 give the relative Num acts-value
or the temporal value (Num acts for the unsupported facts,
Time for the other nodes). The Num acts-value for a fact
belonging to INITl is zero. The duration of the actions used
in the example are indicated in the corresponding table of
Figure 4. Solid nodes represent elements in A, while dotted
and dashed nodes represent actions and preconditions con-
sidered during the evaluation process. Dotted nodes indicate
the actions and the relative preconditions that are selected by
RelaxedPlan.

First we describe the derivation of the action set
Aset(Rplan) in steps 2 and 6 of EvalAdd(a), and then the
derivation of the temporal values t1 and t2 in steps 3–4.
Pre(a) is {p1, p2, p3} but, since p2 ∈ INITl, in the first ex-
ecution of RelaxedPlan only p1 and p3 are the goals of the
relaxed problem. Suppose that in order to achieve p1 we can
use a1, a2 or a3 (forming the set Ag of step 5). Each of these
actions is evaluated by step 5, which assigns a1 to bestact.
In the recursive call of RelaxedPlan applied to the precondi-
tions of a1, p5 is not considered because it already belongs
to INITl. Regarding the other precondition of a1 (p4), sup-

pose that a4 is the only action achieving it. Then this action
is chosen to achieve p4, and since its preconditions belong
to INITl, they are not evaluated (the new recursive call of
RelaxedPlan returns an empty action set).

Regarding the precondition p3 of a, assume that it can
be achieved only by a5 and a6. These actions have a
common precondition (p12) that is an effect of a4, an
action belonging to ACTS (because already selected by
RelaxedPlan(Pre(a1), INITl, ∅)). The other preconditions
of these actions belong to INITl. Since |Threats(a5)| = 0
and |Threats(a6)| = 1, step 5 of RelaxedPlan selects a5.
Consequently, at the end of the execution of step 2 in Eval-
Add(a) we have Aset(Rplan) = {a1, a4, a5}.

Concerning the execution of RelaxedPlan for Threats(a)
= {q} in step 6 of EvalAdd(a), suppose that the only actions
for achieving q are a7 and a8. Since the precondition p14

of a7 is an effect of a5, which is an action in the input set
A (it belongs to the relaxed subplan computed for the pre-
conditions of a), and Threats(a7) is empty, the best action
chosen by RelaxedPlan to support p14 is a7. It follows that
the set of actions returned by RelaxedPlan in step 6 of Eval-
Add(a) is {a1, a4, a5, a7}.

We now describe the derivation of t2 in EvalAdd(a), which
is an estimation of the earliest start time of a. Consider
the execution of RelaxedPlan(Pre(a), INITl, ∅) at step 2.
According to the temporal values specified in the table of
Figure 4, the value of t at step 1 is Time(p2) = 220.
As illustrated above, RelaxedPlan is recursively executed
to evaluate the preconditions of a1 (the action chosen to
achieve p1) and then of a4 (the action chosen to achieve
p4). In the evaluation of the preconditions of a4 (step 1
of RelaxedPlan(Pre(a4), INITl, ∅)) t is set to 50, i.e., the
maximum between Time(p9) and Time(p10), steps 7–8
set T (p12) to 50+100 (the duration of a4), and so Relaxed-
Plan returns 〈∅, 50〉. In the evaluation of the preconditions
of a1 (step 1 of RelaxedPlan(Pre(a1), INITl, ∅)) t is set to
Time(p5) = 170, and at step 10 it is set to MAX{170, 50+
100}. Hence, the recursive execution of RelaxedPlan ap-
plied to the preconditions of a1 returns 〈{a4}, 170〉, and
at step 10 of RelaxedPlan(Pre(a), INITl, ∅) t is set to
MAX{220, 170 + 70} = 240. The recursive execution of
RelaxedPlan(Pre(a5), INITl, {a1, a4}) applied to the pre-
conditions of a5 (the action chosen to achieve p3) returns
〈{a1, a4}, 170〉. In fact, the only precondition of a5 that
is not true in INITl is achieved by an action already in
ACTS (a4). Moreover, since T (p12) = 150 and Time(p11)
= 170, the estimated end time of a5 is 170+30=200. At
step 10 of RelaxedPlan(Pre(a), INITl, ∅) t is then set to
MAX{240, 200}, and the pair assigned to Rplan at step
2 of EvalAdd(a) is 〈{a1, a4, a5}, 240〉.

Suppose that step 3 of EvalAdd(a) sets t1 to 230 (i.e.,
that the highest temporal value assigned to the actions
in the TA-graph that must precede a is 230). Step
4 sets t2 to MAX{230, 240}, and the execution of
RelaxedPlan({q}, INITl − {q}, {a1, a4, a5, a}) at step 6 re-
turns 〈{a1, a4, a5, a, a7}, tx〉, where tx is a temporal value
that is ignored in the rest of the algorithm, because it does
not affect the estimated end time of a. Thus, the output of
EvalAdd(a) is 〈{a1, a4, a5, a, a7}, 240 + 30〉.

ComputeReachabilityInformation(I,O)
Input: the initial state of the planning problem under considera-

tion (I) and all ground instances of the operators in the underly-
ing planning graph (O);

Output: an estimation of the number of actions (Num acts) and
the earliest time (T ime fact) required to achieve each action
precondition of the planning problem from I .

1. forall facts f
2. if f ∈ I then
3. Num acts(f, 1)← 0; T ime fact(f, 1)← 0;

Action(f)← astart;
4. else Num acts(f, 1)← −1;8

5. F ← I; Fnew ← I; A← O;
6. while Fnew 6= ∅
7. F ← F ∪ Fnew; Fnew ← ∅
8. while A′ = {a ∈ A | Pre(a) ⊆ F} is not empty
9. a← an action in A′;
10. ra← RequiredActions(I, Pre(a));
11. t← MAX

f∈Pre(a)
T ime fact(f, 1);

12. forall f ∈ Add(a)
13. if f 6∈ F ∪ Fnew or

T ime fact(f, 1) > (t + Duration(a)) then
14. T ime fact(f, 1)← t + Duration(a);
15. if f 6∈ F ∪ Fnew or Num acts(f, 1) > (ra + 1) then
16. Num acts(f, 1)← ra + 1;
17. Action(f)← a;
18. Fnew ← Fnew ∪Add(a)− I;
19. A← A− {a};

RequiredActions(I, G)
Input: A set of facts I and a set action preconditions G;
Output: an estimate of the number of the minimum number of

actions required to achieve all facts in G from I (ACTS).

1. ACTS ← ∅;
2. G← G− I;
3. while G 6= ∅
4. g ← an element of G;
5. a← Action(g);
6. ACTS ← ACTS ∪ {a};
7. G← G ∪ Pre(a)− I −

⋃

b∈ACTS
Add(b);

8. return(|ACTS|).

Figure 5: Algorithms for computing heuristic information
about the reachability of each possible action precondition.

Computing Reachability & Temporal Information

The techniques described in the previous subsection for
computing the action evaluation function use heuris-
tic reachability information about the minimum num-
ber of actions required to achieve a fact f from INITl

(Num acts(f, l)), and earliest times for actions and pre-
conditions. LPG precomputes Num acts(f, l) for l = 1
and any fact f , i.e., it estimates the minimum number of ac-
tions required to achieve f from the initial state I of the
planning problem before starting the search. For l > 1,
Num acts(f, l) can be computed only during search be-
cause it depends on which are the actions nodes in the cur-
rent TA-graph (at levels preceding l). Since during search
many action nodes can be added and removed, it is impor-

8The parser of the planner precomputes all facts of the prob-
lem/domain during the phase instantiating the operators.

tant that the computation of Num acts(f, l) is fast.
Figure 5 gives ComputeReachabilityInformation, the algo-

rithm used by LPG for computing Num acts(f, 1) trying to
take account of the tradeoff between quality of the estima-
tion and computational effort to derive it. The same algo-
rithm can be used for (re)computing Num acts(f, l) after
an action insertion/removal for any l > 1 (when l > 1, in-
stead of I , in input the algorithm has Supported facts(l)).9

In addition to Num acts(f, 1), ComputeReachabilityInfor-
mation derives heuristic information about the possible earli-
est time of every fact f reachable from I (Time fact(f, 1)).
LPG can use Time fact(f, 1) to assign an initial temporal
value to any unsupported fact node representing f , instead
of leaving it undefined as indicated above. This can give a
more informative estimation of the earliest start time of an
action with unsupported preconditions, which is defined as
the maximum of the times assigned to its preconditions.

For clarity we first describe the steps of the algorithm con-
sidering only Num acts, and then we comment the compu-
tation of Time fact. In steps 1–4 the algorithm initializes
Num acts(f, 1) to 0, if f ∈ I , and to -1 otherwise (indicat-
ing that f is not reachable). Then in steps 5–19 it iteratively
constructs the set F of facts that are reachable from I , start-
ing with F = I , and terminating when F cannot be further
extended. In this forward process each action is applied at
most once, and when its preconditions are contained in the
current F . In step 5 the set A of the available actions is ini-
tialized to the set of all possible actions, and in step 19 it
is reduced after each action application. The internal loop
(steps 8–17) applies the actions in A to the current F , pos-
sibly deriving a new set of facts Fnew in step 18. If Fnew is
not empty, F is extended with Fnew and the internal loop is
repeated. Since F monotonically increases and the number
of facts is finite, termination is guaranteed. When an action
a in A′ (the subset of actions currently in A that are appli-
cable to F) is applied, the reachability information for its
effects are revised as follows. First we estimate the mini-
mum number ra of actions required to achieve Pre(a) from
I using the subroutine RequiredActions (step 10). Then we
use ra to possibly update Num acts(f, 1) for any effect f
of a (steps 12–17). If the application of a leads to a lower es-
timation for f , i.e., if ra + 1 is less than the current value of
Num acts(f, 1), then Num acts(f, 1) is set to ra + 1. In
addition, a flag indicating the current best action to achieve f
(Action(f)) is set to a. For any fact f in the initial state, the
value of Action(f) is astart (step 3). RequiredActions uses
this flag to derive ra through a backward process starting
from the input set of action preconditions (G), and ending
when G ⊆ I . The subroutine incrementally constructs a set
of actions (ACTS) achieving the facts in G and the precondi-
tions of the actions already selected (using the flag Action).
Termination of RequiredActions is guaranteed because every
element of G is reachable from I .

Time fact(f, 1) is computed in a way similar to
Num acts(f, 1). Step 4 initializes it to 0, for any fact f
in the initial state. Then, at every application of an action a

9In order to obtain better performance, for l > 1 LPG uses an
incremental version of ComputeReachabilityInformation updat-
ing Num acts(f, l) after each action insertion/removal. We omit
the details of this version of the algorithm.

in the forward process described above, we estimate the ear-
liest possible time t for applying a as the maximum of the
times currently assigned to its preconditions (step 11). For
any effect f of a that has not been considered yet (i.e., that
is not in F), or that has a temporal value higher than t plus
the duration of a, Time fact(f, 1) is set to this lower value
(because we have found a shorter relaxed plan to achieve f
from I).

ComputeReachabilityInformation requires polynomial
time in the number of facts and actions in the prob-
lem/domain under consideration.

Concerning the ordering constraints in Ω, if during search
the planner adds an action node a to A for supporting a pre-
condition of another action node b, then a ≺C b is added to
Ω. Moreover, for each action c in A that is mutex with a, if
Level(a) < Level(c), then a ≺E c is added to Ω, otherwise
(Level(c) < Level(a)) c ≺E a is added to Ω. If the planner
removes a from A, then any ordering constraint involving a
is removed from Ω.

The addition/removal of an action node a determines also
a possible revision of Time(x) for any fact and action x that
is (directly or indirectly) connected to x through the order-
ing constraints in Ω. Essentially, the algorithm for revising
the temporal values assigned to the nodes of A performs a
simple forward propagation starting from the effects of a,
and updating level by level the times of the actions (together
with the relative precondition and effect nodes) that are con-
strained by Ω to start after the end of a. When an action node
a′ is considered for possible temporal revision, Time(a′)
becomes the maximum temporal values assigned to its pre-
condition nodes plus the duration of a′. The times assigned
to the effect nodes of a are revised accordingly. If a′ is the
only action node supporting an effect f of a, or its temporal
value is lower than the value assigned the other action nodes
supporting it, then Time(f) is set to Time(a′).

Incremental Plan Quality
Our approach can model different criteria of plan quality de-
termined by action costs and action durations. In the current
version of LPG the coefficients α, β and γ of the action eval-
uation function E are used to weight the relative importance
of the execution and temporal costs of E, as well as to nor-
malize them with respect to the search cost. Specifically,
LPG uses the following function for evaluating the insertion
of an action node a (the evaluation function E(a)r for re-
moving an action node is analogous):
E(a)i =

µE

maxET

· Execution cost(a)i+

+
µT

maxET

· Temporal cost(a)i +
1

maxS

· Search cost(a)i
,

where µE and µT are non-negative coefficients that weight
the relative importance of the execution and temporal costs,
respectively. Their values can be set by the user, or they can
be automatically derived from the expression defining the
plan metrics in the formalization of the problem. The factors
1/maxET and 1/maxS are used to normalize the terms of
E to a value less than or equal to 1. The value of maxET is
defined as µE ·maxE + µT ·maxT , where maxE (maxT)
is the maximum value of the first (second) term of E over
all TA-graphs in the neighborhood, multiplied by the num-
ber κ of inconsistencies in the current action graph; maxS

Planner Solved Attempted Success ratio
LPG 442 468 94.4%
FF 237 284 83%

Simplanner 91 122 75%
Sapa 80 122 66%
MIPS 331 508 65%

VHPOP 122 224 54%
Stella 50 102 49%
TP4 26 204 13%

TPSYS 14 120 12%
SemSyn 11 144 8%

Table 1: Number of problems attempted and solved by the plan-
ners that took part in the 3rd IPC.

is defined as the maximum value of Search cost over all
possible action insertions/removals that eliminate the incon-
sistency under consideration.10

Without this normalization the first two terms of E could
be much higher than the value of the third term. This would
guide the search towards good quality plans without paying
sufficient attention to their validity.

Our planner can produce a succession of valid plans
where each plan is an improvement of the previous ones in
terms of its quality. The first plan generated is used to initial-
ize a new search for a second plan of better quality, and so
on. This is a process that incrementally improves the quality
of the plans, and that can be stopped at any time to give the
best plan computed so far. Each time we start a new search,
some inconsistencies are forced in the TA-graph represent-
ing the previous plan, and the resultant TA-graph is used
to initialize the search. Similarly, during search some ran-
dom inconsistencies are forced in the current when a valid
plan that does not improve the plan of the previous search is
reached. For lack of space we omit the details of this pro-
cess.

Experimental Results
In this section we present some experimental results
illustrating the efficiency of LPG using the test prob-
lems of the 3rd IPC. These problems belong to several
domains (including Depots, DriveLog, Rovers,
Satellite and Zenotravel), and each domain has
some variants containing different features of PDDL2.1.
These variants are named “Strips”, “SimpleTime”,
“Time”, “Complex”, “Numeric” and “HardNumeric”,
which are all handled by our planner. For a descrip-
tion of these domains and of the relative variants the
reader may see the official web site of the 3rd IPC
(www.dur.ac.uk/d.p.long/competition.html).

All tests were conducted on the official machine of the
competition, an AMD Athlon(tm) MP 1800+ (1500Mhz)
with 1 Gbytes of RAM. The results for LPG correspond to
median values over five runs of LPG for each problem con-
sidered. The CPU-time limit for each run was 5 minutes,
after which termination was forced. Notice that the results
that we present here are not exactly the same as the official
results of the competition, where for lack of time we were
not able to run our system a sufficient number of times to
obtain meaningful statistical data. However, in general the
new results are very similar to those of the competition, with

10The role of κ is to decrease the importance of the first two
optimization terms when the current plan contains many inconsis-
tencies, and to increase it when the search approaches a valid plan.

Domain Problems LPG-s LPG-q LPG-s LPG-q
solved better better worse worse

Simple-time
Depots 21 (11) 18 (81.8%) 19 (86.4%) 3 (13.6%) 1 (4.5%)
DriverLog 18 (16) 15 (75%) 17 (85%) 3 (15%) 1 (5%)
Rovers 20 (10) 17 (85%) 20 (100%) 1 (5%) 0 (0%)
Satellite 20 (19) 18 (90%) 20 (100%) 1 (5%) 0 (0%)
ZenoTravel 19 (16) 18 (90%) 17 (85%) 1 (5%) 2 (10%)
Total 96(70.6)% 83.4% 91.2% 8.8% 3.9%

Time
Depots 20 (11) 14 (63.6%) 17 (77.3%) 6 (27.3%) 2 (9.1%)
DriverLog 18 (16) 17 (85%) 17 (85%) 0 (0%) 1 (5%)
Rovers 20 (12) 18 (90%) 18 (90%) 2 (10%) 2 (10%)
Satellite 20 (20) 19 (95%) 20 (100%) 1 (5%) 0 (0%)
ZenoTravel 19 (20) 15 (75%) 11 (55%) 5 (25%) 9 (45%)
Total 95(77.5)% 81.4% 81.4% 13.7% 13.7%

Complex
Satellite 20 (17) 19 (95%) 19 (95%) 1 (5%) 1 (5%)

Total 96(75)% 83.9% 87.1% 10.7% 8.5%

Table 2: Summary of the comparison of LPG and the SuperPlan-
ner in terms of: number of problems solved by LPG and the Su-
perPlanner (in brackets); problems in which LPG-speed (LPG-s)
is faster/slower (3rd/5th columns); problems in which LPG-quality
(LPG-q) computes better/worse solutions (4th/6th columns).

some considerable improvement in Satellite Complex
and in the Rovers domains, where many problems could
not be solved due to a bug in the parser of the planner that
was fixed after the competition.

Overall, the number of problems attempted in the new
tests by our planner was 468 (over a total of 508 problems),
and the success ratio was 94.4% (the problems attempted by
LPG in the competition were 372 and the success ratio 87%).
Figure 1 gives these data for every fully-automated planner
that took part in the competition. The success ratio of LPG
is by far the highest one over all competing planners.

The 40 problems that were not attempted by our plan-
ner are the 20 problems in Settlers Numeric and the
20 problems in Satellite Hardnumeric. The first do-
main contains operators with universally quantified effects,
which are not handled in the current version of LPG; the
plan metrics of the problems in the second domain require
to maximize a certain expression, which is another feature
of PDDL2.1 that currently LPG does not handle properly (in
principle, many of these problems could be solved by the
empty plan, by we do not consider this an interesting valid
solution).

We ran LPG with the same default settings for every
problem attempted (maximum numbers of search steps and
restarts for each run, and inconsistency selection strategy).
The parameters µE and µT of the action evaluation function
were automatically set using the (linear) plan metrics speci-
fied in the problem formalizations.

In order to derive some general results about the perfor-
mance of our planner with respect to all the other planners of
the competition, we have compared LPG with the best result
over all the other planners. We will indicate these results
as if they were produced by an hypothetical “SuperPlanner”
(note, however, that such a planner does not exist). Since
our main focus in this paper is temporal planning, it is inter-
esting to compare LPG and the SuperPlanner in the tempo-
ral variants of the competition domains. The results of this
comparison are given in Figure 6 contains detailed results
from this comparison on three domains, while Table 2 con-
tains summary results for the SimpleTime, Time and Com-

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

DriverLog-TimeMilliseconds

LPG (Speed) (18 solved)
Super planner (Speed) (16 solved)

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

Rovers-TimeMilliseconds

LPG (Speed) (20 solved)
Super planner (Speed) (12 solved)

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

Satellite-TimeMilliseconds

LPG (Speed) (20 solved)
Super planner (Speed) (20 solved)

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

DriverLog-TimeQuality

LPG (Quality) (18 solved)
Super planner (Quality) (16 solved)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16 18 20

Rovers-TimeQuality

LPG (Quality) (20 solved)
Super planner (Quality) (12 solved)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16 18 20

Satellite-TimeQuality

LPG (Quality) (20 solved)
Super planner (Quality) (20 solved)

Figure 6: Performance of LPG-speed (left plots) and LPG-quality (right plots) compared with the SuperPlanner in DriverLog, Rovers
and Satellite Time. On the x-axis we have the problem names simplifies with numbers. On the y-axis, we have CPU-time (log scale) for
the plots of LPG-speed, or the quality of the plans measured using the metric specified in problem formalizations for the plots of LPG-quality.

plex variants.11 The performance of LPG was tested in terms
of both CPU-time required to find a solution (LPG-speed)
and quality of the best plan computed, using at most 5 min-
utes of CPU-time (LPG-quality). LPG-speed is usually faster
than the SuperPlanner, and it always solves a larger num-
ber of problems, except in ZenoTravel, where our plan-
ner solves one problem less than the SuperPlanner. Overall,
the percentage of the problems solved by LPG-speed is 96%,
while those solved by the SuperPlanner is 75%. The percent-
age of the problems in which our planner is faster is 83.9%,
the pecentage of the problems in which it is slower is 10.7%.

Concerning LPG-quality, generally in these domains the
quality of the best plans produced by our planner is similar
to the quality of the plans generated by the SuperPlanner,
with some significant differences in ZenoTravel, where
in a few problems the SuperPlanner performs better, and
in Satellite, where our planner performs always better.
Overall, the percentage of the problems in which our plan-
ner produced a solution of better quality is 87.1%, while for
the SuperPlanner this percentage is only 8.5%.

Conclusions

We have presented some new techniques for temporal plan-
ning that are implemented in LPG, a planner that was
awarded for “distinguished performance of the first order”.
at the last planning competition. Although we limited our
presentation to preconditions of type over all and effects
of type at end, our planner can handle all types of precon-
ditions and effects that can be specified using PDDL2.1.

11Complete results for all domains and planners are available
on-line at http://prometeo.ing.unibs.it/lpg/test-results

Further techniques implemented in LPG concern the re-
striction of the search neighborhood when it contains many
elements, and their evaluation slow down the search exces-
sively; the choice of the inconsistency to handle at each
search step; the treatment of numerical quantities in the ac-
tion preconditions and effects.

Current and future work includes further experiments to
test other local search schemes and types of graph mod-
ifications that we presented in (Gerevini & Serina 1999;
2002), as well as to evaluate the relative impact on perfor-
mance of the various techniques used by our planner.

References
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.
Fox, M., and Long, D. 2001. PDDL2.1: An exten-
sion to PDDL for expressing temporal planning domains.
http://www.dur.ac.uk/d.p.long/competition.html.
Gerevini, A., and Serina, I. 1999. Fast planning through greedy
action graphs. In Proc. of AAAI-99.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on local
search for planning graphs with action costs. In Proc. of AIPS-02.
Gerevini, A., and Serina, I. 2003. Planning through Stochastic
Local Search and Temporal Action Graphs. In JAIR (to appear).
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Kautz, H., and Selman, B. 1996. Pushing the envelope: Planning,
propositional logic, and stochastic search. Proc. of AAAI-96.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial order
planning. In Proc. of IJCAI-01.
Penberthy, J., and Weld, D. 1992. UCPOP: A sound, complete,
partial order planner for ADL. Proc. of KR’92.
Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise strategies for
improving local search. In Proc. of AAAI-94.

