Planning through Stochastic Local Search and
Temporal Action Graphs

Alfonso Gerevini and Ivan Serina {GEREVINI,SERINA } QING.UNIBS.IT

Dipartimento di Elettronica per I’Automazione, Universita degli Studi di Brescia
Via Branze 38, 1-25123 Brescia, Italy

Technical Report R.T.2002-05-28
November 2002

Abstract

We present some techniques for planning in domains specified with the recent stan-
dard language PDDL2.1, supporting “durative actions” and numerical quantities. These
techniques are implemented in LPG, a domain-independent system that took part in the
third International Planning Competition (Toulouse 2002). The planner is based on a
stochastic local search method and on a graph-based representation called “Temporal Ac-
tion Graph” (TA-graph). This paper focuses on temporal planning, introducing TA-graphs
and proposing some new techniques to guide the search in LPG using this representation.
The experimental results of the 3rd IPC, as well as further results presented in this paper,
show that our techniques can be very effective, and that often LPG outperforms all other
fully-automated planners of the 3rd IPC.

1. Introduction

While in the last two decades most of the research efforts in domain-independent planning
concentrated on simple STRIPS domains where actions are instantaneous, modeling temporal
and numerical quantities is important for representing real-world domains, where actions
take time, consume resources, and the quality of the solutions should take these aspects
into account. In the '80s and early "90s several expressive, but inefficient, planning systems
handling time have been developed, including (Vere, 1983; Allen, 1991; Penberthy & Weld,
1994; Tsang, 1986). More recently, a number of alternative, interesting approaches to
temporal planning has been proposed, e.g., (Dimopoulos & Gerevini, 2002; Smith & Weld,
1999; Do & Kambhampati, 2001; Haslum & Geffner, 2001). Some of these planners can
compute plans with optimal makespan, but in practice most of them scale up poorly.

Local search is emerging as a powerful method to address fully-automated planning,
though in principle this approach does not guarantee to generate optimal plans. In partic-
ular, two planners that successfully participated in the recent 3rd International Planning
Competition (IPC) are based on local search: FF (Hoffmann & Nebel, 2001) and LPG. In
(Gerevini & Serina, 1999, 2002) we presented a first version of LPG using several tech-
niques for local search in the space of action graphs (A-graphs), particular subgraphs of
the planning graph representation (Blum & Furst, 1997). This version handled only STRIPS
domains, possibly extended with simple costs associated with the actions. In this paper
we present some major improvements that were used in the 3rd IPC to handle domains
specified in the recent PDDL2.1 language (Fox & Long, 2001) supporting “durative actions”
and numerical quantities.

The general search scheme of our planner is Walkplan, a stochastic local search procedure
similar to the well-known Walksat (Selman, Kautz, & Cohen, 1994). Two of the most
important extensions on which we focus in this paper concern the use of temporal action
graphs (TA-graphs), instead of simple A-graphs, and some new techniques to guide the local
search process. In a TA-graph, action nodes are marked with temporal values estimating
the earliest time when the corresponding action terminates. Similarly, a fact node is marked
with a temporal value estimating the earliest time when the corresponding fact becomes
true. A set of ordering constraints is maintained during search to handle mutually exclusive
actions, and to represent the temporal constraints implicit in the “causal” relations between
actions in the current plan.

The new heuristics exploit some reachability information to weight the elements (TA-
graphs) in the search neighborhood that resolve an inconsistency selected from the current
TA-graph. The evaluation of these TA-graphs is based on the estimated number of search
steps required to reach a solution (a valid plan), its estimated makespan, and its estimated
execution cost. LPG is an incremental planner, in the sense that it produces a sequence of
valid plans each of which improves the quality of the previous ones.

In the 3rd IPC, our planner showed excellent performance on a large set of test problems
in terms of both speed to compute the first solution, and quality of the best solution
computed by the incremental process. LPG was the fully-automated planner that solved the
highest number of problems, and the one with the highest success ratio between attempted
and solve problems.

The paper is organized as follows. Section 2 presents the action and plan representation
used in the competition version of LPG. Section 3 describes LPG’s local search neighbor-
hood, some new heuristics for temporal action graphs, and the techniques for computing
the reachability and temporal information used in these heuristics. Section 4 presents the
results of an experimental analysis using the test problems of the 3rd IPC, and illustrating
the efficiency of our approach especially for temporal planning. Section 5 gives conclusions
and mentions further work. Finally, a collection of appendices describe LPG’s algorithm for
computing the mutually relations used during search, and give details about some experi-
mental results presented in Section 5.

2. Action and Plan Representation

In this section we introduce our graph-based representations for STRIPS and temporal plans,
which can be seen as an elaboration of planning graphs (Blum & Furst, 1997).

A planning graph is a directed acyclic levelled graph with two kinds of nodes and three
kinds of edges. The levels alternate between a fact level, containing fact nodes, and an
action level containing action nodes. An action node at level ¢ represents an action (instan-
tiated operator) that can be planned at time step ¢. A fact node represents a proposition
corresponding to a precondition of one or more actions at time step ¢, or to an effect of one
or more actions at time step ¢t — 1. The fact nodes of level 1 represent the positive facts
of the initial state of the planning problem (every fact that is not mentioned in the initial
state is assumed false).

In the following, we indicate with [u] the proposition (action) represented by the fact
node (action node) u. The edges in a planning graph connect action nodes and fact nodes.
In particular, an action node a of level 7 is connected by: precondition edges from the fact
nodes of level i representing the preconditions of [a]; add-edges to the fact nodes of level
i + 1 representing the positive effects of [a]; delete-edges to the fact nodes of level i + 1
representing the negative effects of [a]. Each fact node f at a level [is associated with a
no-op action node at the same level, which represents a dummy action having [f] as its only
precondition and effect.

Two action nodes a and b are marked as mutually exclusive in the graph when one
of the actions deletes a precondition or add-effect of the other (interference), or when a
precondition node of a and a precondition node of b are marked as mutually exclusive
(competing needs).

Two proposition nodes p and ¢ in a proposition level are marked as exclusive if all ways
of making proposition [p] true are exclusive with all ways of making [g] true (each action
node a having an add-edge to p is marked as exclusive of each action node b having an
add-edge to g). When two fact or action nodes are marked as mutually exclusive, we say
that there is a mutez relation between them.

Given a planning problem II, the corresponding planning graph G can be incrementally
constructed level by level starting from level 1 using a polynomial algorithm (Blum & Furst,
1997). The last level of the graph is a propositional level where the goal nodes are present,
and there is no mutex relation between them.! The mutex relations in the planning graph

1. In some cases, when the problem is not solvable, the algorithm identifies that there is no level satisfying
these conditions, and hence it detects that the problem is unsolvable.

monotonically decrease with the increase of the levels: a mutex relation holding at a certain
level may not hold at the next levels, but it’s guaranteed that it holds at all previous levels.
The mutex relations of the last level of the graph are called global mutex relations, because
they hold at every level of the graph.

Without loss of generality, we can assume that the goal nodes of the last level represent
the preconditions of the special action [a,yg4], which is the last action in any valid plan, while
the fact nodes of the first level represent the effects of the special action [assqr¢], Which is
the first action in any valid plan.

Our approach to planning uses particular subgraphs if G, called action graphs, which
represent partial plans.

Definition 1 An action graph (A-graph) for G is a subgraph A of G containing aeng and
such that, if a is an action node of G in A, then also the fact nodes of G corresponding
to the preconditions and positive effects of [a] are in A, together with the edges connecting
them to a.

Notice that an action graph can represent an invalid plan for the problem under consid-
eration, since it may contain some inconsistencies, i.e., an action with precondition nodes
that are not supported, or a pair of action nodes involved in a mutex relation. In general,
a precondition node ¢ of level i is supported in an action graph A of G if either (i) in A
there is an action node at level ¢ — 1 representing an action with (positive) effect [g¢], or (ii)
i =1 (i.e., [q] is a proposition of the initial state). An action graph without inconsistencies
represents a valid plan and is called solution graph.

Definition 2 A solution graph for G is an action graph As of G such that all precondition
nodes of the actions in As are supported, and there is no mutez relation between action nodes

of As.

For large planning problems the construction of the planning graph can be computa-
tionally very expensive, especially because of the high number of mutex relations. For this
reason our planner considers only pairs of actions that are globally mutex, derived using
a dedicated algorithm given in Appendix A. An experimental comparison with the IPP’s
implementation of the planning graph construction (Koehler, Nebel, Hoffmann, & Dimopou-
los, 1997) showed that in practice our method for deriving mutex relations is considerably
more efficient than the “traditional” method for deriving the mutex relations in the last
level of graph. Moreover, these relations were not more than the relations computed by
our method (however, of course, IPP can derive mutex relations at earlier levels than our
method cannot compute).

The definition of action graph and the notion of supported fact can be made stronger
by observing that the effects of an action node can be automatically propagated to the next
levels of the graph through the corresponding no-ops, until there is an interfering action
blocking the propagation (if any), or we reach the last level of the graph. The use of the
no-op propagation, which we presented in (Gerevini & Serina, 2002), leads to a smaller
search space and can be incorporated into the definition of action graph.

Definition 3 An action graph with propagation is an action graph A such that if a
is an action node of A at level 1, then, for any positive effect [e] of [a] and any level I' > |

4

of A, the no-op of e at level I' is in A, unless there is another action node at a level 1"
(1 <" <1') which is mutex with the no-op.

Since in the rest of this paper we consider only action graphs with propagation, we will
abbreviate their name simply to action graphs (leaving implicit that they include the no-op
propagation).

In most of the existing planners based on planning graphs, when the search for a solution
graph fails, G is iteratively expanded by adding an extra level and performing a new search
using the resultant graph. In systematic planners like GRAPHPLAN (Blum & Furst, 1997),
STAN (Fox & Long, 1998b) and 1pP (Koehler et al., 1997) the search fails when there exists
no solution graph, while in planners that use local search like BLACKBOX (Kautz & Selman,
1999) or GrG (Gerevini & Serina, 1999) the search fails when a certain search limit is
exceeded. As we will show, in LPG there is no need to explicitly treat this kind of search
failure, since the size of the graph is incrementally increased during search (i.e, the graph
extension can be part of a search step).

The first version of LPG (Gerevini & Serina, 2002) was based on action graphs where
each level may contain an arbitrary number of action nodes, like in the usual definition of
planning graph. The newer version of the system that participated in the 3rd IPC uses a
restricted class of actions graphs, called linear action graphs, combined with some additional
data structures supporting a more expressive action and plan representation. In particular,
the new system can handle actions having temporal durations and preconditions/effects
involving numerical quantities specified in PDDL2.1 (Fox & Long, 2001). In this paper
we focus mainly on planning for temporal domains, where LPG showed particularly good
performance with respect to the other participants of the 3rd IPC.

In order to keep the presentation simple, we describe our techniques considering mainly
preconditions of type “over all” (i.e., preconditions that must hold during the whole action
execution) and effects of type “at end” (i.e., effects that hold at the end of the action
execution).? In the second part of Section 3.3 we discuss how we handled the other types
of preconditions and effects in the test domains of the 3rd IPC.

Definition 4 A linear action graph (LA-graph) of G is an A-graph of G in which each
level of actions contains at most one action node representing a domain action and any
number of no-ops.

It is important to note that having only one action in each level of a LA-graph does
not prevent the generation of parallel (partially ordered) plans. In fact, from any LA-graph
we can easily extract a partially ordered plan where the ordering constraints are those
implicit in the causal structure of the represented plan: an action [a] is ordered before
an action [b] only if @ has an effect node that is used (possibly through the no-ops) to
support a precondition node of b. These causal relations between actions producing an
effect and actions consuming it are similar to the causal links in partial-order planning,
e.g., (McAllester & D., 1991; Penberthy & Weld, 1992; Nguyen & Kambhampati, 2001).
LPG keeps track of these relationships during search and uses them to derive some heuristic

2. The current version of LPG supports all types of preconditions and effects that can be expressed in
pDDL2.1.

information useful for guiding the search (more details on this in the next section), as well
as to extract parallel plans from the solution graph in STRIPS domains.

Moreover, for temporal domains where actions have durations and plan quality mainly
depends on the makespan, rather than on the number of actions or graph levels, the dis-
tinction between one action or more actions per level is scarcely relevant. The order of the
graph levels should not imply by itself any ordering between actions (e.g., an action at a
certain level could terminate before the end of an action at the next level).

A major advantage of using LA-graphs, instead of the more general class of A-graphs,
is that the simple structure of LA-graph supports a faster computation of the heuristic
information and data structures used by the local search algorithm presented in the next
section. This is partly related to the fact that in LA-graphs the unsupported preconditions
are the only type of inconsistencies that the search process needs to handle explicitly.
Clearly, under the STRIPS assumption that actions are instantaneous, the fact that each
action belongs to a different level of the graph prevents the presence of interference and
competing needs in any LA-graph. Mutex relations involving a no-op can be used during
search to efficiently determine which supported preconditions become unsupported as a
consequence of adding a certain action node to the current LA-graph (because these relations
block the no-op propagation of the relevant no-ops.)

In general, a clear disadvantage of LA-graphs with respect to A-graphs is the size of the
representation, since the number of levels in a LA-graph can be significantly larger than the
number levels in the corresponding A-graph. Hence, for some domains A-graphs might be
more suitable than LA-graphs, although in all planning problems that we tested the size of
LA-graphs was never a problem.

For pDDL2.1 domains involving durative actions, our planner represents temporal in-
formation by an assignment of real values to the action and fact nodes of the LA-graph,
and by a set Q of ordering constraints between action nodes. The value associated with a
fact node f represents the (estimated) earliest time at which [f] becomes true, while the
value associated with an action node a represents the (estimated) earliest time when the
execution of [a] can terminate. These estimates are derived from the duration of the actions
in the LA-graph and the ordering constraints between them that are stated in €.

Definition 5 A temporal action graph (TA-graph) of G is a triple (A, T,Q) where
o A is a linear action graph;
e T is an assignment of real values to the fact and action nodes of A;

e () is a set of ordering constraints between action nodes of A.

The ordering constraints in a TA-graph are of two types: constraints between actions
that are implicitly ordered by the causal structure of the plan (<¢-constraints), and con-
straints that are imposed by the planner to deal with mutually exclusive actions (<g-
constraints). a <c b belongs to Q if and only if a is used to achieve a precondition node of
bin A, while a <g b (or b <g a) belongs to Q only if a and b are mutually exclusive in A.
In the next section we will discuss how ordering constraints are stated by LPG during the
search. Given our assumption on the types of action preconditions and effects in temporal
domains, an ordering constraint a < b (where “<” stands for <¢ or <g) states that the

(s e g

f :
2 ™ (120) 1
o 5 |
[70] I
i f 12

EN 1 % [)
| =1 |
0) Rl 0) | / @20)
3 : * :) [100]
| IV T P T VP
@1 f5 ;\f5/(0) s s s s 55

Q= {a1 <c as; a2 <¢ a3; a1 <E a2; a2 <E a4}

Figure 1: An example of TA-graph. Dashed edges form chains of no-ops that are blocked by
mutex actions. Round brackets contain temporal values assigned by 7 to the fact
nodes (circles) and the action nodes (squares). The numbers in square brackets
represent action durations. “(—)” indicates that the corresponding fact node is
not supported.

end of [a] is before the start of [b]. The temporal value assigned by 7 to a node z will be
denoted with Time(z), and it is derived as follows. If a fact node f of the action graph is
unsupported, then Time(f) is undefined, otherwise it is the minimum over the temporal
values assigned to the actions supporting it. If the temporal value of every precondition
nodes of an action node a are undefined, and there is no action node with a temporal value
that must precede a according to €2, then Time(a) is set to the duration of a; otherwise
Time(a) is the sum of the duration of a and the maximum over the temporal values of its
precondition nodes and the temporal values of the actions nodes that must precede a.
Figure 1 gives an example of TA-graph containing four action nodes (a;. 4) and several
fact nodes representing thirteen facts. Since a; supports a precondition node of a4, a1 <¢ a4
belongs to Q (similarly for ay <¢ a3). a1 <g az belongs to Q because a; and ay are mutex
(similarly for as <g a4). The temporal value assigned to the facts fi._5 at the first level is
zero, because they belong to the initial state. a; has all its preconditions supported at time
zero, and hence T'ime(a;) is the duration of a;. Since a1 < a2 € Q, Time(az) is given by
the sum of the duration of as and the maximum over the temporal values of its precondition
nodes (zero) and Time(a;). Time(as) is the sum of its duration and the time assigned to
fo at level 3, which is the only supported precondition node of as. Since fg at level 3 is

supported only by as, and this is the only supported precondition node of a3, Time(as) is
the sum of Time(fy) and the duration of a3. Since ay must precede a4 (while there is no
ordering constraint between ay and ag), Time(ay) is the maximum over Time(as) and the
temporal values of its supported precondition nodes, plus the duration of a4. Finally, note
that fio at the last level is supported both by a4 and as. Since Time(as) > Time(as), we
have that Time(f12) at this level is equal to Time(as).

Definition 6 A temporal solution graph for G is a TA-graph (A, T,Q) such that A is
a solution LA-graph of G, T is consistent with Q and the duration of the actions in A, Q is
consistent, and for each pair (a,b) of mutez actions in A, either Q| =a <bor QE=b< a.

While obviously the levels in a TA-graph do not correspond to real time values, they
represent a topological order for the <¢-constraints in the TA-graph (i.e., the actions of
the TA-graph ordered according to their relative levels form a linear plan satisfying all <¢-
constraints). This topological sort can be a valid total order for the <g-constraints of the
TA-graph as well, provided that these constraints are appropriately stated during search,
i.e., that if @ and b are exclusive, the planner appropriately imposes either a <g bor b <g a.
LPG chooses a <g b if the level of a precedes the level of b, b <g a otherwise. Under this
assumption on the “direction” in which <g-constraints are imposed, it is easy to see that
the levels of a TA-graph correspond to a topological order of the actions in the represented
plan satisfying every ordering constraint in €.

For planning domains requiring to minimize the plan makespan (like the “Timed”,
“SimpleTime’, “Complex”, and some of the “Numeric” and “HardNumeric” domain sets of
the 3rd IPC) each element of LPG’s search space is a TA-graph. For domains where time
is irrelevant (like the “Strips” domain sets of the 3rd IPC) the search space is formed by
LA-graphs.?

In the last part of this section we briefly comment the representation of action du-
rations and action costs in LPG. In accordance with PDDL2.1, our planner handles both
static durations and dynamic durations, i.e., durations depending on the state in which the
action is applied. Static durations are either explicitly given as numbers specified in the
field “:duration” of operator description, or they are implicitly specified by an expression
involving some static quantities specified in the initial state of the planning problem. An
example of implicit static duration is the duration of the Drive actions in the Depots-Time
domain of the 3rd IPC: the Drive operator defines their duration as the distance between
the source and the destination of the travel (two parameters of the operator), divided by
the speed of the driven vehicle (another operator parameter).

Typically, dynamic durations depend on some numeric quantities that may vary from
one state to another state reached by the actions in the plan. An example is the energy
of a rover in the domain Rovers-Time of the 3rd TPC, where the duration specified in the
recharge operator is

(/ (- 80 (energy 7?x)) (recharge-rate 7x))).

This expression depends on the current value of energy for the rover ?x and on its static
recharging rate (recharge-rate) specified in the initial state. Our planner handles the

3. We use LA-graphs instead of A-graphs because an experimental analysis showed that the techniques for
LA-graphs are more powerful than the techniques for A-graphs presented in (Gerevini & Serina, 2002).

dynamic duration of an action by computing and maintaining during search an estimate of
the value of the numerical quantities in the state where the action is applied. However, in
this paper we will not describe their treatment in detail. Without loss of generality for the
techniques presented in the next section, we can assume that action durations are static.

Each action of a plan can be associated with a cost that may affect the plan quality.
Like action durations, in general these costs could be either static or dynamic, though the
current version of LPG handles only static ones. LPG precomputes the action costs using the
plan metric specified in the problem description using the PDDL2.1 field “:metric”.* For
instance, a plan metric used for a problem in the ZenoTravel-Numeric domain of the 3rd
IPC is

(:metric minimize (+ (* 4 (total-time)) (* 5 (total-fuel-used)))),

i.e., it is the sum of four times the plan makespan and five times the total amount of the fuel
used by the actions in the plan. The cost of an action a is derived by evaluating the metric
expression before and after the application of a. The difference of the resultant values is the
cost of a. The values assigned to the numeric variables of the expression in the evaluation
before the application of a are those specified in the initial state, while their values in
the evaluation after the application of the action are those determined by the effects of a.
Notice that in these evaluations of the metric expression the temporal value total-time is
not considered (if present), because the temporal aspect of the plan quality is already taken
into account by the action durations. In the previous example, the metric subexpression
used to derive the action costs is (¥ 5 (total-fuel-used))). Thus, for instance, the cost
of the ZenoTravel action (f1y planel city0 cityl) in problem pfilel of the 3rd IPC is
13560 because the effects of this action increase total-fuel-used of the following quantity

(* (distance cityO cityl) (slow-burn planel))) = 678 * 4 = 2712,
which increases the metric value of the plan of 5 * 2712 = 13560.

3. Local Search in the Space of Temporal Action Graphs

In this section we present some search techniques used in the version of our planner that
took part in the 3rd IPC. We start with a description of the general local search scheme
in the space of action graphs. Then we concentrate on temporal action graphs. In order
to simplify the notation, instead of using a and [a] to indicate an action node and the
action represented by this node respectively, we will use a to indicate both of them (the
appropriate interpretation will be clear from the context).

3.1 Basic Search Procedure: Walkplan

Given a planning graph G, the local search process of LPG starts from an initial A-graph of
G (i.e., a partial plan), and transforms it into a solution graph (i.e., a valid plan) through
the iterative application of some graph modifications improving the current partial plan.
The two basic modifications consist of an extension of the A-graph to include a new action

4. For simple STRIPS domains, where there is no metric expression to minimize, the cost of each action is
set to one, and LPG minimizes the number of actions in the plan.

node, or a reduction of the A-graph to remove an action node (and the relevant edges).> At
any step of the search process, which produces a new A-graph, the set of actions that can
be added or removed is determined by the inconsistencies that are present in the current
A-graph.

The general scheme for searching a solution graph (a final state of the search) consists
of two main steps. The first step is an initialization of the search in which we construct
an initial A-graph. The second step is a local search process in the space of all A-graphs,
starting from the initial A-graph. We can generate an initial A-graph in several ways. Four
possibilities that can be performed in polynomial time, and that we have implemented are:
an empty A-graph (i.e., containing only the no-ops of the facts in the initial state, and the
special action nodes as¢qrt and aeng); a randomly generated A-graph; an A-graph where all
precondition facts are supported, but in which there may be some violated mutex relations;
and an A-graph obtained from an existing plan given in input to the process. The last
option is particularly useful in the plan optimization phase, as well as for solving plan
adaptation problems (Gerevini & Serina, 2000). In the current version of LPG, the default
initialization strategy is the empty action graph. Further details on the initialization step
can be found in (Gerevini & Serina, 1999, 2000).

Once we have computed an initial A-graph, each basic search step selects an inconsis-
tency in the current A-graph. If this is an unsupported fact node, then in order to resolve
(eliminate) it, we can either add an action node that supports it, or we can remove an
action node which is connected to that fact node by a precondition edge. If the chosen
inconsistency is a mutex relation, then we can remove one of the action nodes of the mutex
relation. Note that the elimination of an action node can remove several inconsistencies
(e.g., all those corresponding to the unsupported preconditions of the action removed). On
the other hand, obviously the addition of an action node can introduce several new incon-
sistencies. The strategy for selecting the next inconsistency to handle may have an impact
on the overall performance. Our planner includes some strategies that we are currently
testing. The default strategy that we have used in all experiments presented in Section 4
prefers inconsistencies appearing at the earliest level of the graph.

Given an action graph A and an inconsistency o in A, the neighborhood N (o, A) of o
in A is the set of A-graphs obtained from A by applying a graph modification that resolves
o. At each step of the local search scheme, the elements of the neighborhood are weighted
according to a function estimating their quality, and an element with the best quality is
then chosen as the next possible A-graph (search state). The quality of an A-graph depends
on a number of factors, such as the number of inconsistencies and the estimated number of
search steps required to resolve them, the overall cost of the actions in the represented plan
and its makespan.b

In (Gerevini & Serina, 1999) we proposed three general strategies for guiding the local
search: Walkplan, Tabuplan and T-Walkplan. In this paper we focus on Walkplan, which is the

5. Another possible modification that is analyzed in (Gerevini & Serina, 2002), but that will not be con-
sidered in this paper, is action ordering, i.e., moving forward or backward one of two exclusive action
nodes.

6. For simple STRIPS domain the execution cost of the plan is measured in terms of the number of actions
(i-e., each action has cost 1), while plan makespan is ignored, or it can be modeled as number of parallel
time steps (Gerevini & Serina, 2002).

10

Walkplan(I1, maz_steps, maz_restarts, p)

Input: A planning problem II, the maximum number of search steps mazx_steps,
the maximum number of search restarts maz_restarts, a noise factor p (0 < p < 1).
Output: A solution graph representing a plan solving IT or fail.

1. for i<+ 1 to maz_restarts do

2 A < an initial A-graph derived from the planning graph of II;

3 for j < 1 to maz_steps do

4 if A is a solution graph then

5. return A

6 o < an inconsistency in A;

7 N(o, A) + neighborhood of A for o;

8 if 3A' € N(0,.A) such that the quality of A’ is no worse than the quality of A
9. then A « A’ (if there is more than one A’-graphs, choose randomly one)
10. else if random < p then

11. A < an element of N (o, A) randomly chosen

12. else A < best element in N(o,.A);

13. return fail.

Figure 2: General scheme of Walkplan with restarts. random is a randomly chosen value
between 0 and 1. The quality of an action graph in the neighborhood is measured
using an evaluation function estimating the cost of the graph modification used
to generate it from the current action graph.

strategy used by LPG in the 3rd IPC, as well as in the experimental tests presented in Section
4. Walkplan is similar to Walksat, a stochastic local search method for solving propositional
satisfiability problems (Selman et al., 1994; Kautz & Selman, 1996). In Walkplan the best
element in the neighborhood is the A-graph which has the lowest decrease of quality with
respect to the current A-graph, i.e., it does not consider possible improvements. Like
Walksat, our strategy uses a noise parameter p. Given an A-graph A and an inconsistency o,
if there is a modification for o that does not decrease the quality of A, then this modification
is performed, and the resulting A-graph is chosen as the next A-graph; otherwise, with
probability p one of the graphs in N(o,.A) is chosen randomly, and with probability 1 — p
the next A-graph is chosen according to the minimum value of the evaluation function. If a
solution graph is not reached after a certain number of search steps (maz_steps), the current
A-graph and maz_steps are reinitialized, and the search is repeated up to an user-defined
maximum number of times (maz_restarts). Figure 2 gives a formal description of Walkplan
with restarts.

In (Gerevini & Serina, 2002) we proposed some heuristic functions for evaluating the
search neighborhood of A-graphs with action costs. In the next section we present addi-
tional, more powerful heuristic functions for LA-graphs and TA-graphs. These techniques
are implemented in the newer version of our planner and were used in the 3rd IPC.

11

3.2 Neighborhood and Heuristics for Temporal Action Graphs

The search neighborhood for an inconsistency ¢ in a LA-graphs A is the set of LA-graphs
that can be derived from A by adding an action node supporting ¢, or removing the action
with precondition o (in linear graphs the only type of inconsistencies are unsupported
preconditions). An action a supporting o can be added to A at any level | preceding the
level of o, and such that the desired effect of a is not blocked before or at the level of o
(assuming that the underlying planning graph contains a at level [). The neighborhood for
o contains an action graph for each of these possibilities.

Since at any level of a LA-graph there can be at most one action node (plus any number
of no-ops), when we remove an action node from .4, the corresponding action level becomes
“empty” (it contains only no-ops). When we add an action node to a level [, if [is not empty,
then the LA-graph is extended of one level, all action nodes from [are shifted forward of one
level, and the new action is inserted at level [(Figure 8 in section 3.3 gives an example).”
Moreover, when we remove an action node ¢ from the current LA-graph, we can remove
also each action node supporting only the preconditions of a. Similarly, we can remove the
actions supporting only the preconditions of other removed action, and so on. While these
induced pruning is not necessary, an experimental analysis showed that it tends to produce
plans of better quality more quickly.

The elements of the neighborhood are evaluated according to an action evaluation func-
tion E estimating the cost of adding (E(a)?) or removing an action node a (E(a)"). In
general, E consists of three weighted terms evaluating three aspects of the quality of the
current plan that are affected by the addition/removal of a:

E(a)! = a - Exzecution_cost(a)' + 3 - Temporal _cost(a)’ + vy - Search_cost(a)
E(a) =
E(a)" = a - Ezecution_cost(a)" + 8 - Temporal_cost(a)” + - Search_cost(a)"

The first term of E estimates the increase of the plan execution cost (Ezecution_cost),
the second estimates the end time of a (T'emporal_cost), and third estimates the increase of
the number of the search steps needed to reach a solution graph (Search_cost). The coef-
ficients of these terms are used to normalize them, and to weight their relative importance
(more on this in Section 3.4).

In the computation of the terms of F there is an important tradeoff to consider. On
one hand, an accurate evaluation of the elements in the search neighborhood could lead to
valid plans of good quality within few search steps. On the other hand, the computation
of E should be fast “enough”, because the neighborhood could contain many elements, and
an accurate evaluation of its elements could slow down the search excessively. First we give
a brief intuitive illustration of how these terms are evaluated by LPG, and then we give a
more detailed, formal description.

Suppose we are evaluating the addition of a at level [of the current action graph A.
The three terms of E are heuristically estimated by computing a relaxed plan 7, containing

7. Note that the empty levels can be ignored during the extraction of the plan from the (temporal) solution
graph. They could also be removed during search, if the graph becomes too large. Finally, if the LA-
graph contains adjacent empty levels, and in order to resolve the selected inconsistency a certain action
node can be added at any of these levels, then the corresponding neighborhood contains only one of the
resultant graphs.

12

a minimal set of actions for achieving (1) the unsupported preconditions of a and (2) the
set X of preconditions of other actions in the A-graph that would become unsupported by
adding a (because it would block the no-op propagation currently used to support such
preconditions). This plan is relaxed in the sense that it does not consider the delete-effects
of the actions. The derivation of 7, takes into account the actions already in the current
partial plan (the plan represented by .A). In particular, the actions in the current plan
are used to define an initial state for the problem of achieving the preconditions of a and
those in ¥. The relaxed subplan for the preconditions of a is computed from the state
INIT,; obtained by applying the actions in A up to level [— 1, ordered according to their
corresponding levels. Notice that, as we pointed out in the previous section, the levels
in a TA-graph correspond to a total order of the actions of the represented partial-order
plan that is consistent with the ordering constraints in Q (though, of course, this is not
necessarily the only valid total order). The relaxed subplan for achieving ¥ is computed
from INIT; modified by the effects of a, and it can reuse actions in the relaxed subplan
previously computed for the preconditions of a.

The number of actions in the combined relaxed subplans (7,) is used to define a heuristic
estimate of the additional search cost that would be introduced by the new action a. This
estimate takes into account also the number of supported preconditions that would become
unsupported by adding the actions in 7, to A. We indicate these subverted preconditions
with Threats(a). Using the causal-link notation of partial-order planners (e.g., (McAllester
& D., 1991; Penberthy & Weld, 1992; Nguyen & Kambhampati, 2001)), Threats(a) can be
formally defined in the following way

Threats(a) = {f | no-op(f) and a are mutex, 3b,c € A such that b EN c}.

Note that, according to our representation, b ENP implies Level(b) < Level(a) < Level(c),
where Level(z) denotes the level of z in A.

Temporal_cost(a) is an estimation of the earliest time when the new action would termi-
nate given the actions in 7.8 Execution_cost(a) is an estimation of the additional execution
cost that would be required to satisfy the preconditions of a, and is derived by summing
the cost of each action o’ in 7, (Cost(a')). The terms of E(a)" are estimated in a similar
way. More formally, F is defined as follows:

(Execution_cost(a)! = ¥ ,¢ Aset(EvalAdd(a)) C0st(a’)

E(a)'{ Temporal_cost(a)’ = End_time(EvalAdd(a))
{ Search_cost(a)! = |Aset(EvalAdd(a))| + Yo a'e Aset(Evaladd(a)) | T hreats(a’)|

[Execution_cost(a)” = Y ¢ Aset(EvalDel(a)) C0st(a’) — Cost(a)
E(a)" ¢ Temporal_cost(a)” = End_time(EvalDel(a))
| Search_cost(a)” = |Aset(EvalDel(a))| + >y c aset(EvaiDei(a)) | T hreats(a’)].

8. The makespan of 7, is not a lower bound for Temporal_cost(a), because the possible parallelization of
7 with the actions already in A is not considered.

13

EvalAdd(a)

Input: An action node g that does not belong to the current TA-graph.
Output: A pair formed by a set of actions and a temporal value t.

1. INIT; < Supported_facts(Level(a));

2. Rplan + RelaxedPlan(Pre(a), INIT},();

3. t1+ MAX{0,MAX{Time(da') | Q2 E=d <a}};

4. to « M AX{t:, End_time(Rplan)};

5. A« Aset(Rplan) U {a};

6. Rplan < RelaxedPlan(Threats(a), INIT, — Threats(a), A);
7. return (Aset(Rplan),t2 + Duration(a)).

EvalDel(a)

Input: An action node a that belongs to the current TA-graph.
Output: A pair formed by a set of actions and a temporal value t.

1. INIT; < Supported_facts(Level(a));
2. Rplan < RelaxedPlan(Unsup_facts(a), INIT), ().
3. return Rplan.

Figure 3: Algorithms for estimating the search, execution and temporal costs for the inser-
tion (EvalAdd) and removal (EvalDel) of an action node a.

EvalAdd(a) is a function returning two values (see Figure 3): the set of actions in =,
(Aset) and an estimation of the earliest time when the new action a would terminate.
Similarly for EvalDel(a), which returns a minimal set of actions required to achieve the
preconditions that would become unsupported if a were removed from A, together with
an estimation of the earliest time when all these preconditions would become supported.
The relaxed subplans used in EvalAdd(a) and EvalDel(a) are computed by RelaxedPlan, a
recursive algorithm formally described in Figure 4. Given a set G of goal facts and an
initial state INIT;, RelaxedPlan computes a set of actions forming a relaxed plan (ACTS)
for achieving G from INIT;, and a temporal value (t) estimating the earliest time when all
facts in G are achieved. In EvalAdd and EvalDel these two values returned by RelaxedPlan
are indicated with Aset(Rplan) and End_time(Rplan), respectively.

Supported_facts(l) denotes the set of positive facts that are true after executing the
actions at levels preceding [(ordered by their level); Duration(a) the duration of a; Pre(a)
the precondition nodes of a; Add(a) the (positive) effect nodes of a; Num_acts(p,l) an
estimated minimum number of actions required to reach p from Supported_facts(l) (if p is
not reachable, Num_acts(p,l) is set to a negative number). The techniques for computing
Num_acts and updating T¥me are described in the next subsection, where we also propose a
method for assigning a temporal value to unsupported fact nodes improving the estimation
of the earliest end time for an action with unsupported preconditions.

14

RelaxedPlan(G,INIT;, A)

Input: A set of goal facts (G), the set of facts that are true after executing the actions of
the current TA-graph up to level [(INIT}), a possibly empty set of actions (A);

Output: A set of actions and a real number estimating a minimal set of actions required
to achieve G and the earliest time when all facts in G can be achieved, respectively.

t+— MAX Time(g);
geGNINIT;
G < G —INIT;; ACTS < A; F < Ugecacts Add(a);
t+ MAX {t,MAX T(g)};
geGNF

forall g € G such that g ¢ F = Uycacrs Add(a)

Ll o

bestaction + ARGMIN MAX Num_acts(p,l) + \Threats(a')|} ;
{a’€Ay} pEePre(a’)—F

Rplan < RelaxedPlan(Pre(bestaction), INIT;, ACTS);
forall f € Add(bestaction) — F

T(f) < End_time(Rplan) + Duration(bestaction);
ACT'S «+ Aset(Rplan) U {bestaction};
10. t < MAX{t, End_time(Rplan) + Duration(bestaction)};
11. return (ACTS,t).

L XN o

Figure 4: Algorithm for computing a relaxed plan achieving a set of action preconditions
from the state INIT].

After having computed the state INIT; using Supported_facts(l), in step 2 EvalAdd
uses RelaxedPlan to compute a relaxed subplan (Rplan) for achieving the preconditions of
the new action a from INIT;. Steps 3-4 compute an estimation of the earliest time when
a can be executed as the maximum of the end times of all actions preceding a in A (1)
and End_time(Rplan) (t2). Steps 5-6 compute a relaxed plan for Threats(a) taking into
account a and the actions in the first relaxed subplan.

EvalDel is simpler than EvalAdd, because the only new inconsistencies that can be gener-
ated by removing a are the precondition nodes supported by a (possibly through the no-op
propagation of its effects) that would become unsupported. Unsup_facts(a) denotes the
set of these nodes.

The pair (ACTS,t) returned by RelaxedPlan is derived by computing a relaxed plan
(Rplan) for G starting from a possibly non-empty input set of actions A that can be “reused”
to achieve an action precondition or goal of the relaxed problem. A is not empty whenever
RelaxedPlan is recursively executed, and when it is used to estimate the minimum number of
actions required to achieve Threats(a) (step 6 of EvalAdd(a)). RelaxedPlan constructs Rplan
through a backward process where the action chosen to achieve a (sub)goal g (bestaction) is
an action a’ such that: (1) g is an effect of a’; (2) all preconditions of a’ are reachable from
INITy; (3) reachability of the preconditions of a’ require a minimum number of actions,

15

Fact Num_acts @

Y41 2
b3 2
P4 1 Level I +1 @ Unsupported
Ps 6 precondmon , ;\
bs 2 : : mutex N
Di2 1 a: \
LRSS ;
P14 2 i o
2 : | |
P15 ar ag!
bis 9 P Ps . ~
o s i] /N
Fact Time TN ; N N /,\ .
P 220 S AN e
o \ ; K4
i S
p7 e . N
P9 50 ar as a3’ az 'a 2 Ly
,,,,,, : L 2 | L 3 | : : 5 : L § |
P1o 30 N P PR N R R :
170 , \ v / N VARRAN .
p11 '~
D13 30 { : "/:3 /\pe\/ /\p7\/ /\PS\/ \p13\,
Action | Duration \1. \ !
a 30 S \\
o 70 ag \ o |
a4 100 ""4’\" : : :
as 30 T T T *****f**—————77777777,,,,,,,ji
i | 0 D@ @ m O

Figure 5: An example illustrating EvalAdd.

estimated as the maximum of the heuristic minimum number of actions required to support
each precondition p of @' from INIT, (Num_acts(p,l)); (4) a’ subverts the minimum number
of supported precondition nodes in A (Threats(a’)). More formally, bestaction is an action
satisfying
ARGMIN { MAX Num_acts(p,l) + \Threats(a')|})
{a’€A4} pEPre(a’)—F

where Ay = {a € O|a € Add(a), O is the set of all actions, Vp € Pre(a) Num_acts(p) > 0},
and F is the set of positive effects of the actions currently in ACTS.?

Steps 1, 3 and 7 estimate the earliest time required to achieve all goals in G. This is
recursively defined as the maximum of (a) the times assigned to the facts in G that are
already true in the state INIT; (step 1), (b) the estimated earliest time T'(g) required to
achieve every fact ¢ in G that is an effect of an action currently in ACTS (step 3), and
(c) the estimated earliest time required to achieve the preconditions of the action chosen

9. The set O does not contain operator instances with mutually exclusive preconditions. In principle A,
can be empty because g might not be reachable from INIT; (i.e., bestaction = 0). RelaxedPlan treats
this special case by forcing its termination and returning a set of actions including a special action with
very high cost, leading E to consider the element of the neighborhood under evaluation a bad possible
next search state. For clarity we omit these details from the formal description of the algorithm.

16

to achieve the remaining facts in G (step 10). The T-times of (b) are computed by steps
7-8 from the relaxed subplan derived to achieve them. Clearly the algorithm terminates,
because either every (sub)goal p is reachable from INIT; (i.e., Num_acts(p,l) > 0), or at
some point bestaction = () holds, forcing immediate termination (see previous footnote).

Now we illustrate EvalAdd and RelaxedPlan with a worked example (see Figure 5). Sup-
pose we are evaluating the addition of a to the current TA-graph A. For each fact that is
used in the example, the tables of Figure 5 give the relative Num_acts-value or the temporal
value (Num_acts for the unsupported facts, Time for the other nodes). The Num_acts-
value for a fact belonging to INITj is zero. The duration of the actions used in the example
are indicated in the corresponding table of Figure 5. Solid nodes represent elements in A,
while dotted and dashed nodes represent actions and preconditions considered during the
evaluation process. Dotted nodes indicate the actions and the relative preconditions that
are selected by RelaxedPlan.

First we describe the derivation of the action set Aset(Rplan) in steps 2 and 6 of
EvalAdd(a), and then the derivation of the temporal values ¢; and ¢ in steps 3—4. Pre(a)
is {p1,p2,p3} but, since py € INIT}, in the first execution of RelaxedPlan step 2 removes po
from G, and so only p; and p3 are the goals of the relaxed problem. Suppose that in order
to achieve p; we can use a1, as or a3 (forming the set A, of step 5). Each of these actions
is evaluated by step 5, which assigns aq to bestaction. In the recursive call of RelaxedPlan
applied to the preconditions of a1, ps is not considered because it already belongs to INIT.
Regarding the other precondition of a; (p4), suppose that a4 is the only action achieving it.
Then this action is chosen to achieve p4, and since its preconditions belong to INIT;, they
are not evaluated (the new recursive call of RelaxedPlan returns an empty action set).

Regarding the precondition ps of a, assume that it can be achieved only by a5 and ag.
These actions have a common precondition (pi12) that is an effect of a4, an action belonging
to ACTS (because already selected by RelaxedPlan(Pre(a1), INIT;,()). The other precon-
ditions of these actions belong to INIT). Since |Threats(as)| = 0 and |Threats(ag)| = 1,
step 5 of RelaxedPlan selects as. Consequently, at the end of the execution of step 2 in
EvalAdd(a) we have Aset(Rplan) = {a1,a4, a5}

Concerning the execution of RelaxedPlan for Threats(a) = {q} in step 6 of EvalAdd(a),
suppose that the only actions for achieving ¢ are a7 and ag. Since the precondition pi4 of
a7 is an effect of a5, which is an action in the input set A (it belongs to the relaxed subplan
computed for the preconditions of a), and Threats(a7) is empty, the best action chosen by
RelaxedPlan to support p14 is a7. It follows that the set of actions returned by RelaxedPlan
in step 6 of EvalAdd(a) is {a1, a4, as,a7}.

We now describe the derivation of ¢5 in EvalAdd(a), which is an estimation of the earliest
start time of a. Consider the execution of RelaxedPlan at step 2. According to the temporal
values specified in the table of Figure 5, the value of ¢ at step 1 is Time(p2) = 220. As
illustrated above, RelaxedPlan is recursively executed to evaluate the preconditions of aq
(the action chosen to achieve pi) and then of a4 (the action chosen to achieve p4). In
the evaluation of the preconditions of a4, at step 1 of RelaxedPlan ¢ is set to 50, i.e., the
maximum between Time(py) and Time(p1o), steps 7-8 set T (p12) to 50+ 100 (the duration
of a4), and RelaxedPlan returns ((), 50). In the evaluation of the preconditions of ay, at step
1 of RelaxedPlan ¢ is set to Time(ps) = 170, and at step 10 it is set to M AX{170,50+ 100}.
Hence, the recursive execution of RelaxedPlan applied to the preconditions of a1 returns

17

({a4},170), and at step 10 of RelaxedPlan(Pre(a), INIT;, () ¢ is set to M AX{220,170 +
70} = 240. The recursive execution of RelaxedPlan applied to the preconditions of a5 (the
action chosen to achieve ps) returns ({a1,a4, a5}, 200). In fact, the only precondition of as
that is not in INIT; (pi2) is achieved by an action already in ACTS (a4). Moreover, since
T (p12) = 150 and Time(p11) = 170, the estimated end time of a5 is 170+ 30 = 200. At step
10 of RelaxedPlan(Pre(a), INIT;,0) t is then set to M AX {240,200}, and the pair assigned
to Rplan at step 2 of EvalAdd(a) is ({a1, a4, a5}, 240).

At step 3 of EvalAdd(a) suppose that ¢; is set to 230 (i.e., that the highest temporal value
assigned to the actions in the TA-graph that must precede a is 230). At step 4 ¢5 is set to
M AX{230,240}, and the execution of RelaxedPlan at step 6 returns ({a1,a4,as,a,ar},ts),
where t; is a temporal value that is ignored in the rest of the algorithm, because it does not
affect the estimated end time of a. Thus, the output of EvalAdd(a) is ({a1, a4, a5, a, ar}, 240+
30).

3.3 Computing Reachability and Temporal Information

The techniques described in the previous subsection for computing the action evaluation
function use heuristic reachability information about the minimum number of actions re-
quired to achieve a fact f from INIT, (Num_acts(f,l)), and earliest times for actions and
preconditions. LPG precomputes Num._acts(f,l) for [=1 and any fact f, i.e., it estimates
the minimum number of actions required to achieve f from the initial state I of the plan-
ning problem before starting the search. For [> 1, Num_acts(f,l) can be computed only
during search because it depends on which are the actions nodes in the current TA-graph
(at levels preceding). Since during search many action nodes can be added and removed,
it is important that the computation of Num_acts(f,1) is fast.

Figure 6 gives ComputeReachabilitylnformation, the algorithm used by LPG for comput-
ing Num_acts(f, 1) trying to take account of the tradeoff between quality of the estimation
and computational effort to derive it. The same algorithm could be used for (re)computing
Num_acts(f,l) after an action insertion/removal for any [> 1 (when [> 1, instead of I,
in input the algorithm has Supported_facts(l)).!® In addition to Num_acts(f,1), Com-
puteReachabilitylnformation derives heuristic information about the possible earliest time of
every fact f reachable from I (Time_fact(f,1)). LPG can use Time_fact(f,1) to assign an
initial temporal value to any unsupported fact node representing f, instead of leaving it
undefined as said in Section 2. This can give a more informative estimation of the earliest
start time of an action with unsupported preconditions, which is defined as the maximum
of the times assigned to its preconditions.

For clarity we first describe the steps of the algorithm considering only Num_acts, and
then we comment the computation of Time_fact. In steps 1-4 the algorithm initializes
Num_acts(f,1) to 0, if f € I, and to -1 otherwise (indicating that f is not reachable).
Then in steps 5-19 it iteratively constructs the set F' of facts that are reachable from I,
starting with F' = I, and terminating when F' cannot be further extended. In this forward
process each action is applied at most once, and when its preconditions are contained in the

10. In order to obtain better performance, for [> 1 LPG uses an incremental version of ComputeReachabil-
itylnformation updating Num_acts(f,) after each action insertion/removal. We omit the details of this
version of the algorithm.

18

ComputeReachabilitylnformation(I, O)

Input: The initial state of the planning problem under consideration (I) and all ground

instances of the operators (O);

Output: An estimate of the number of actions (Num_acts) and of the earliest time

© XN W

e
= O

e e e = T e)
© 00 ~J O O i W N

(Time_fact) required to achieve each each fact from 7.

forall facts f /* the set of all facts is precomputed by the operator instatiation phase */
if f € I then
Num_acts(f,1) < 0; Time_fact(f,1) < 0; Action(f) < astart;
else Num_acts(f,1) + —1;
F I Fpew 1I; A+ O;
while Fep # 0
F<—FUFnew; Frew —0
while A’ = {a € A| Pre(a) C F} is not empty
a < an action in A’;
ra < RequiredActions(I, Pre(a));

MAX Time_ 1);
t(—fEP're(a,) ime_fact(f,1);

forall f € Add(a)
if f € F U Fpey or Time_fact(f,1) > (t + Duration(a)) then
Time_fact(f,1) < t + Duration(a);
if f ¢ FUFyep or Num_acts(f,1) > (ra+ 1) then
Num_acts(f,1) < ra+1;
Action(f) + a;
Frew 4 Frew U Add(a) — I;
A+ A—{a};

RequiredActions(I, G)

Input: A set of facts I and a set action preconditions G;

Output: An estimate of the minimum number of actions required to achieve all facts in G

P NSO W

from I (ACTS).

ACTS « 0;
G+ G-I
while G #0
g < an element of G;
a « Action(g);
ACTS + ACTS U{a};
G < G U Pre(a) — I —Upeacrs Add(b);
return(|ACTS]).

Figure 6: Algorithms for computing heuristic information about the reachability of each

fact.

19

current F. The set A of the available actions is initialized to the set of all possible actions
(step 5), and it is reduced after each action application (step 19). The internal loop (steps
8-19) applies the actions in A to the current F', possibly deriving a new set of facts F,ey in
step 18. If F, e, is not empty, F' is extended with F,,.,, and the internal loop is repeated.
Since F monotonically increases and the number of facts is finite, termination is guaranteed.
When an action a in A’ (the subset of actions currently in A that are applicable to F) is
applied, the reachability information for its effects are revised as follows. First we estimate
the minimum number ra of actions required to achieve Pre(a) from I using the subroutine
RequiredActions (step 10). Then we use ra to possibly update Num_acts(f,1) for any effect
f of a (steps 12-17). If the application of a leads to a lower estimation for f, i.e., if ra + 1
is less than the current value of Num_acts(f,1), then Num_acts(f,1) is set to ra + 1. In
addition, a flag indicating the current best action to achieve f (Action(f)) is set to a.'!

For any fact f in the initial state, the value of Action(f) is astert (step 3). RequiredActions
uses this flag to derive ra through a backward process starting from the input set of action
preconditions (G), and ending when G C I. The subroutine incrementally constructs a set
of actions (ACTS) achieving the facts in G and the preconditions of the actions already
selected (using the flag Action). At each iteration the set G is revised by adding the
preconditions of the last action selected, and removing the facts belonging to I or to the
effects of actions already selected (step 7). Termination of RequiredActions is guaranteed
because every element of G is reachable from I.

Time_fact(f,1) is computed in a way similar to Num_acts(f,1). Step 3 of Comput-
eReachabilitylnformation initializes it to 0, for any fact f in the initial state. Then, at every
application of an action a in the forward process described above, we estimate the earliest
possible time ¢ for applying a as the maximum of the times currently assigned to its pre-
conditions (step 11). For any effect f of a that has not been considered yet (i.e., that is not
in F), or that has a temporal value higher than ¢ plus the duration of a, Time_fact(f,1) is
set to this lower value (because we have found a shorter relaxed plan to achieve f from I).

Figure 7 illustrates the algorithm with an example. Suppose that the facts in the initial
state I are fi.g, and that the actions in O are ay..7, where the subscript of the actions
correspond to the order in which they are applied by the algorithm. The first actions that
are applied are a1, ag and as, because their preconditions are in F', which is initially set
to I. The Nwum_acts-value of these facts is set to zero, because RequiredActions applied
to them returns zero. In the internal for-loop of the algorithm we update the reachability
information for each effect of these actions. In particular, consider the effects f; and fy of
a1. Since fi is not a new fact (it belongs to I) and its Num_acts and Time_fact values are
set to the minimum (initial) values, steps 14 and 16 do not revise them. Since fy is a new
fact, step 14 sets Time_fact(fy) to 10, and step 16 sets Num_acts(fg) to 1 (ra is zero).
Moreover, the flag Action(fy) is set a1. The effects of az and a3 are handled similarly.

At this point, since there is no other action that is applicable in F', the internal while-
loop terminates, F is set to FU{fo, f10, f11, f12}, and Fey is set to (). The set A’ of actions
in A that are applicable is {a4,as,a6}. Consider the application of ay. We have that ra

11. In actual algorithm implemented LPG, when we set Action(f) we consider also the case in which
Num_acts(f,1) is equal to ra + 1; if the execution cost of a is lower than that cost of the current
Action(f), or they have the same cost but the duration of a is lower, then Action(f) is revised to a. For
clarity these details are omitted from the formal description of the algorithm.

20

Actions ra Duration
a1 0 10
as 0 30
as 0 50
a4 2 50
as 2 70
ag 1 30
ar 5 20
Facts | Num_acts | Time_fact
o 1 10
fio 1 30
fu 1 30
fi2 1 50
f13 3 80
fia 3 120
fis 2 80
fi6 2 80
fiz 7 140

Figure 7: An example illustrating ComputeReachabilitylnformation. The numbers in paren-
thesis are Num_acts-values.

at step 10 is set to 2, because RequiredActions(I, Pre(as)) sets ACTS to {a1, a2} (note that
f1 € I, Action(f9) = a1, Action(f10) = a2, and all preconditions of these actions are in T).
Thus, Time_fact(f13) is set to 80, and Num_acts(fi3) to 3. The effects of the actions aj
and ag are handled in a similar way. However, it is worth noting that Num_acts(f15) is first
set to 3, when we examine as, and then revised to 2, when we examine ag. Analogously,
Time_fact(f15) is first set to 120, and then revised to 80, while Action(fi3) is first set to
as and then to ag.

Consider now the preconditions of the last applicable action a7;. RequiredActions ap-
plied to Pre(ar) returns 6, because the set ACTS of actions selected by the subrou-
tine is {a4,a1,a2,as5,a3,a6}. Steps 11 of the ComputeReachabilitylnformation sets ¢ to
Time_fact(fi5) = 120, and hence the Time_fact-value for the new effect fi7 is set to
120420, while its Num_acts-value is set to 6+1.

The complexity of ComputeReachabilitylnformation is polynomial in the number of facts
and actions in the problem/domain under consideration. Step 10, the most expensive step of
the algorithm, is executed O(Q) times. It is easy to see that the worst-case time complexity
of RequiredActions is O(O). It follows that the time complexity of ComputeReachabilitylnfor-
mation is O(O?). However, we have experimenally observed that very often RequiredActions
terminates returning numbers much smaller than |O| (i.e, that the number of iterations
that the algorithm performs is well below |O|).

Concerning the ordering constraints in €2, if during search the planner adds an action
node a to A for supporting a precondition of another action node b, then a <¢ b is added

21

i Level 1 Level 2 ! Level 3 ! Level 4 ! f (=) Level 5 !

! I I I]1 I
©): | | | b0

; /\60) LY i i (50) i

fo T e e R 3

3 i Jo -\ Js as i3
| N (50) ey e e o 270)

i i ' Lo 40

| | Wi /7 fr Sz

| | as (|

| j | 120, (120)
i fa “‘ = fs !

: : 220) : (220)
| fi2 = <:an A fi2
l (220) . 220
| 5 ()15 ()

Q= {a1 <¢ as4; a2 <¢ az;a2 <¢ as;a5 < a4; a1 <E a2; G2 <E G4}

Figure 8: Update of the TA-graph of Figure 1 after the addition of action node as to
support the precondition node f7 of a4. Dashed edges form chains of no-ops that
are blocked by mutex actions. Round brackets contain temporal values assigned
by T to the fact nodes (circles) and the action nodes (squares). The numbers in
square brackets represent action durations. “(-)” indicates that the corresponding
fact node is not supported.

to Q. Moreover, for each action ¢ in A that is mutex with a, if Level(a) < Level(c), then
a <pg cis added to Q, otherwise (Level(c) < Level(a)) ¢ <g a is added to 2. If the planner
removes a from A, then any ordering constraint involving a is removed from 2.

The addition/removal of an action node a determines also a possible revision of Time(z)
for any fact and action z that is (directly or indirectly) connected to z through the ordering
constraints in). Essentially, the algorithm for revising the temporal values assigned to
the nodes of A performs a simple forward propagation starting from the effects of a, and
updating level by level the times of the actions (together with the relative precondition and
effect nodes) that are constrained by Q to start after the end of a. When an action node o' is
considered for possible temporal revision, Time(a’) becomes the maximum temporal values
assigned to its precondition nodes plus the duration of a’. The times assigned to the effect
nodes of a are revised accordingly. If a' is the only action node supporting an effect f of
a, or its temporal value is lower than the value assigned the other action nodes supporting
it, then Time(f) is set to Time(a’). For instance, suppose that in order to support the
precondition node f7 of a4 in the TA-graph in Figure 1 we insert the action node a5 at level
4, which has duration 110 and precondition node fs (see Figure 8). Since Time(fs) = 120,

22

Time(f7) becomes 230, which is propagated to a4 and its effects. Time(aq) becomes 270,
Time(f12) is revised to 220 (T'imne(as)), while Timne(fs) remains 120 (Time(ag)).

Some operators in the domains used for the 3rd IPC contain (pre)conditions of type
“at end” or effects of type “at start” (Fox & Long, 2001), i.e., preconditions that must hold
at the end of the action and effects that are true at the beginning of the action, respectively.
In the last part of this section we revise the definition of Time that we have given in the
previous section to consider actions involving these types of precondition/effect. When an
action node a has a precondition node p of type at end, in the derivation of Time(a) there
are two cases to consider, depending on whether p is also an effect node of a or not. In the
first case, Time(p) is not considered in the definition of Tme(a); in the second case, when
we consider the maximum temporal value among all the preconditions of a, instead of using
Time(p), we use Time(p) — Duration(a).

If an action node a has an effect node e of type at start, when we estimate Time(e),
instead of using the Time(a) + Duration(a), we use the minimum over (1) Time(a’), for
any action node a' supporting e, and (2) Time(a) + Duration(a) (because e is supported
by a at the start time of this action). Furthermore, if e is also a precondition node of a
of type over all, then Time(e) is not considered in the derivation of Time(a) because the
action itself makes this precondition true (unless e is also a precondition node of a of type
at start).

When preconditions of type different from over all and effects of type different from
at end are present in the domain specification, in some cases two exclusive actions can
overlap.'? The version of LPG that took part in the 3rd IPC did not handle these possible
overlappings, and any pair of mutex actions was treated by always imposing an ordering
constraint between the end of an action and the start of the other one. However, in all
domains of the 3rd IPC partial overlapping of mutex actions was not possible, and so this
assumption was harmless. Recently, we have extended the treatment of mutex actions,
distinguishing various types interferences and competing needs that can be handled by
ordering constraints between different endpoints of the involved actions, which permits
some cases of “overlapping exclusive actions”.

3.4 Incremental Plan Quality

As we have seen our approach can model different criteria of plan quality determined by
action costs and action durations. In the current version of LPG the coefficients «, 8 and
v of the action evaluation function F are used to weight the relative importance of the
execution and temporal costs of F, as well as to normalize them with respect to the search
cost. Specifically, LPG uses the following function for evaluating the insertion of an action
node a (the evaluation function E(a)" for removing an action node is analogous):

E(a)! = a2 -Ea:ecutz'on_cost(a)i—FL-Temporal_cost(a)i+ -Search_cost(a)’,

MaTET MaTET mazxrs

12. For example, is f is a precondition at start of @ and —f is an effect at end of b, although a and b are
mutex, a can overlap b (e.g., a can start after the start time of b and terminate before the end time of
b). If a is at a level preceding the level of b, the only ordering constraint that should be imposed is that
the start of a is before the end of b, and similarly if b is at a level preceding the level of a.

23

where pup and pur are non-negative coefficients that weight the relative importance of the
execution and temporal costs, respectively. Their values can be set by the user, or they can
be automatically derived from the expression defining the plan metrics in the formalization
of the problem. The factors 1/mazgr and 1/mazg are used to normalize the terms of E to
a value less than or equal to 1. The value of mazgr is defined as pug - mazxg + ur - mazr,
where maxg (mazr) is the maximum value of the first (second) term of E over all TA-
graphs in the neighborhood, multiplied by the number x of inconsistencies in the current
action graph; mazg is defined as the maximum value of Search_cost over all possible action
insertions/removals that eliminate the inconsistency under consideration. The role of « is to
decrease the importance of the first two optimization terms when the current plan contains
many inconsistencies, and to increase it when the search approaches a valid plan. Ie., E(a)
can be rewritten as

E(a)' = ! 3 - (g - Ezecution_cost(a)! + pr - Temporal _cost(a)t) +

k-(uE-mazg+pr-macr

+ —L_ . Search_cost(a)".

maxg

Without this normalization the first two terms of £ could be much higher than the value
of the third term. This would guide the search towards good quality plans without paying
sufficient attention to their validity. On the contrary, especially when the current partial
plan contains many inconsistencies, we would like that the search give more importance to
reduce the search cost, rather than on optimizing the quality of a plan.

Our planner can produce a succession of valid plans where each plan is an improvement
of the previous ones in terms of its quality. The first plan generated is used to initialize a new
search for a second plan of better quality, and so on. This is a process that incrementally
improves the quality of the plans, and that can be stopped at any time to give the best
plan computed so far. Each time we start a new search, some inconsistencies are forced
in the TA-graph representing the previous plan, and the resultant TA-graph is used to
initialize the search. Similarly, during search some random inconsistencies are forced in the
current TA-graph when a valid plan that does not improve the plan of the previous search
is reached. This is done by choosing a small set R of action nodes that are removed from
the action graph together with (1) the action nodes supporting their preconditions and (2)
the action nodes with a precondition supported by an action in R. The elements of R are
chosen taking account of the values of ug and pur. If ug > pr, we randomly remove action
nodes giving higher probability to those representing actions with higher costs, otherwise
preference is given to the action nodes having a higher impact on the plan makespan.!?

4. Experimental Results

All our techniques are implemented in LPG. The system is written in C and is available
at http://prometeo.ing.unibs.it/lpg. In this section we present some experimental
results illustrating the efficiency of LPG using the test problems of the 3rd IPC. These
problems belong to several domains, most of which have some variants containing different

13. In the version of LPG that took part in the 3rd IPC this second preference was based on an simple
estimation of the temporal impact of each action node. We are currently testing a newer version that
selects such actions more accurately by using the critical path in the graph of the ordering constraints
in the TA-graph.

24

Planner | Solved | Attempted | Success ratio
LPG 442 468 94%
FF 237 284 83%
Simplanner 91 122 75%
Sapa, 80 122 66%
MIPS 331 508 65%
VHPOP 122 224 54%
Stella 50 102 49%
TP4 26 204 13%
TPSYS 14 120 12%
SemSyn 11 144 8%

Table 1: Number of problems attempted and solved by the planners that took part in the
3rd IPC ordered by their success ratio. The data from the planners compared with
LPG are from the official web site of the 3rd IPC.

features of PDDL2.1. The variants are named “Strips”, “SimpleTime”, “Time”, “Complex”,
“Numeric” and “HardNumeric”, and are all handled by our planner. For a description of
the domains and of the relative variants the reader may see the official web site of the 3rd
IPC (www.dur.ac.uk/d.p.long/competition.html).

All tests were conducted on the official machine of the competition, an AMD Athlon(tm)
MP 1800+ (1500MHz) with 1 Gbytes of RAM. The results for LPG correspond to median
values over five runs of LPG for each problem considered. The CPU-time limit for each
run was 5 minutes, after which termination was forced.'* Notice that the results that we
present here are not exactly the same as the official results of the competition, where for
lack of time we were not able to run our system a sufficient number of times to obtain
meaningful statistical data. However, in general the new results are very similar to those
of the competition, with some considerable improvement in Satellite Complex and in the
Rovers domains, where many problems could not be solved due to a bug in the parser of
our planner that was easily fixed right after the competition.

Overall, the number of problems attempted in the new tests by our planner was 468
(over a total of 508 problems), and the success ratio was 94.4% (the problems attempted
by LPG in the competition were 428 and the success ratio 87%). Figure 1 gives these data
for every fully-automated planner that took part in the competition. The success ratio of
LPG is the highest one over all competing planners.

The version of LPG that we used in the competition is integrated with an alternative
search method that can be activated when the local search is not effective. This method is
based on the best-first search technique implemented in FF (Hoffmann & Nebel, 2001). The
only domain were we used best-first search instead of local search is FreeCells. The 40
problems that were not attempted by our planner are the 20 problems in Settlers Numeric
and the 20 problems in Satellite Hardnumeric. The first domain contains operators

14. When the CPU-time limit was exceeded in 3 or 4 runs, instead of the median value, we considered the
worst of the remaining, successful runs. This happened in 15 of the 424 problems solved using Walkplan.

25

with universally quantified effects, which are not handled in the current version of LPG.
The plan metrics of the problems in the second domain require to maximize a certain
expression, which is another feature of PDDL2.1 that currently LPG does not handle properly
(in principle, many of these problems could be solved by the empty plan, but we do not
consider this an interesting valid solution).

We ran LPG with the same default settings for every problem attempted (maximum
numbers of search steps and restarts for each run, inconsistency selection strategy, and
noise factor), that can be modified by the user.!® The parameters ur and ur of the action
evaluation function were automatically set using the (linear) plan metric specified in the
problem formalization. In particular, yr was set to 1, while ur was set to the coefficient
weighting the total-time variable in the expression specifying the plan metric.!® If no
plan metric is specified, then yg was set to 0.5 and ur to 0.

The performance of LPG was tested in terms of both CPU-time required to find a solution
(LPG-speed) and quality of the best plan computed (LPG-quality), using at most 5 CPU-
minutes. In all plots, on the x-axis we have the problem names (simplified with numbers).
On the y-axis, in the plots regarding LPG-speed we have CPU-milliseconds (logarithmic
scale), while in the plots regarding LPG-quality we have the quality of the plans computed
measured using the plan metric specified for the corresponding problem.

Figure 9 shows the performance of LPG-speed compared to the other competitors in some
variants of four domains. Complete results for all other domains and variants are available
on-line appendix at http://prometeo.ing.unibs.it/lpg/test-results. In DrivelLog
Strips FF is on average the fastest planner, but LPG solved more problems, and it scales up
somewhat better. In ZenoTravel SimpleTime LPG outperforms the other competitors in
terms of both number of problems solved and CPU-time (our planner is about one order of
magnitude faster). In Satellite Complex the excellent performance of LPG is even more
evident especially for the largest problems. Finally, in Rovers Numeric FF and LPG performs
similarly, but our planner solves a larger number of problems. The plots concerning the
performance of LPG-quality are given in Appendix B. These results show that the solution
computed by our planner was always similar to or better than the solution derived by
any other planners. The most interesting differences are in Satellite Complex, where
LPG-quality produced solutions of higher quality for almost every problem.

In order to derive some general results about the performance of our approach with
respect to all other planners of the competition, we have compared LPG with the best
result over all the other planners. We will indicate these results as if they were produced
by an hypothetical “SuperPlanner”. Clearly, if LPG performs generally better than the
SuperPlanner in a certain domain, then in that domain it performs better than any other
real planner that we considered. On the other hand, if it performs worse, this does not
necessarily imply that there is a single real planner that generally performs better than LPG.
The plots of Figures 10 and 11 give complete results for Satellite, one of the domains where

15. The default initial value of the noise p is 0.1. Note that this is a dynamic value that is automatically
increased/decreased by the planner during search, depending on the variance of the number of inconsis-
tency in the last n search steps. In all our tests p was automatically increased if the variance did not
change significantly in the last 50 search steps; it was set to the initial default value otherwise.

16. For instance, in the example of plan metric given at the end of Section 2, the coefficient weighting
total-time is 4, and so for that problem pur was set to 4.

26

100000 |~

Milliseconds DriverLog-Strips Milliseconds ZenoTravel-SimpleTime
1e+06 T T 1e+07 T T

T T T

—+— LPG (Speed) (20 solved)

-~ FF (Speed) (15 solved)
--- MIPS (15 solved)

MIPS (Plan) (15 solved)

SemSyn (1 solved) *

Simplanner (11 solved) i

-- Stella (10 solved)

- VHPOP (14 solved)

T T T
—+— LPG (Speed) (19 solved)
* IxTeT (8 solved)

MIPS (14 solved)

MIPS (Plan) (16 solved) X

TP4 (5 solved) 4
--+-- TPSYS (2 solved)

---+-- VHPOP (13 solved) *

1 1e+06
10000 100000
10000 |-

1000 <

100 1000 |-

1 10
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Milliseconds Satellite-Complex Milliseconds Rovers-Numeric
1e+07 T T 100000 T

——"LPG (Speed) (20 solved) ——"LPG (Speed) (17 solved)

MIPS (8 solved) -~ FF (Speed) (9 solved)

MIPS (Plan) (10 solved) ---e--- MIPS (8 solved)

Sapa (16 solved) £ MIPS (Plan) (8 solved)
16406 |- @~ TP4 (3 solved) A - P

10000 F
100000 |- o i B
10000 F 1000
1000

100

100

Figure 9: CPU-time and number of problems solved by the planners of the 3rdIPC for
the domains DriverLog Strips, ZenoTravel SimpleTime, Satellite Complex,
Depots Time and Rovers Numeric.

our planner performed paticularly well in the temporal and Complex variants. The results
in these and in the following plots are mostly self explanatory. In the temporal and complex
variants LPG-speed is one or more orders of magnitude faster than the SuperPlanner. In
the Strips variant the SuperPlanner is faster for the smallest problems, but it is generally
slower for the largest ones. the Numeric variant the SuperPlanner is faster, but our planner
produces solutions of better quality. In general, regarding LPG-quality, in all variants except
Satellite Strips our planner performed always much better than the SuperPlanner. In
the Strips variant the quality of the plans produced by our planner are approximately the
same as those of the SuperPlanner.

Since our main focus in this paper is temporal planning, it is interesting to compare
LPG and the SuperPlanner in the Time variant of all competition domains. The detailed
results of this comparison are given in Appendix C. As shown by the plots in this appendix,
LPG-speed is usually faster than the SuperPlanner, and it always solves a larger number

27

z:aum_‘o.m_mnm mm~m__m.m~:um
T T T 110 T T

——"LPG (Speed) (20 solved) —— 'LPG (Quality) (20 solved) '
---@--- Super planner (Speed) (20 solved) 100 ---@--- Super planner (Quality) (20 solved)

9 | g
10000 | 4

q 8ol
70}

60

1000 |
50 -

40

30

iseconds

te-SimpleTime
——"LPG (Speed) (20 solved) ' ' 3 —+— LPG (Quality) (20 solved)
---@--- Super planner (Speed) (19 solved) ,., ---@--- Super planner (Quality) (19 solved)

ity Satellite-SimpleTime
T T T

10000

1000 |

L L L L L L L L 20 L L L L L L L L L

econds Satellite-Time
500
——"LPG (Speed) (20 solved) ' ' —+— LPG (Quality) (20 solved) ' '
---@--- Super planner (Speed) (20 solved) ---@--- Super planner (Quality) (20 solved)
100000 |-
10000 |-
1000 -
100 -
10

Figure 10: Performance of LpPG-speed (left plots) and LPG-quality (right plots) compared
with the SuperPlanner in Satellite Strips, SimpleTime and Time.

28

Milliseconds Satellite-Complex Quality Satellite-Complex
1e+07 T T T 700 T T T

——"LPG (Speed) (20 solved) —— 'LPG (Quality) (20 solved)
---@--- Super planner (Speed) (17 solved) ---@--- Super planner (Quality) (17 solved) °

1e+06 - [2R S
; 500 [P
100000 i 1 i

10000

1000

100

Milliseconds Satellite-Numeric Quality Satellite-Numeric
1e+06 T T 900 T T

—— PG (Qualty) (12 solved)
---@--- Super planner (Quality) (14 solved)

800 ? B

—— (PG (Speed) (12 solved)
---@--- Super planner (Speed) (14 solved)

100000 |- FAE 170k [|
600 - | |

10000 - g
500 @ |

400 | 1
1000

300 | . B

100 200 |

100 | @7

10 5 L L L L L L L L 0 L
0 2 4 6 8 10 12 14 16 18 0 2

Figure 11: Performance of LPG-speed (left plots) and LPG-quality (right plots) compared
with the SuperPlanner in Satellite Complex and Numeric.

of problems, except in ZenoTravel, where our planner solves one problem less than the
SuperPlanner. This problem was solved by MIPs, another planner of the 3rd IPC that in
general performed well in the temporal domains (Edelkamp, 2002). The percentage of the
problems solved by LPG-speed is 95.1%, while those solved by the SuperPlanner is 77.5%.
The percentage of the problems in which our planner is faster is 81.4%, the percentage in
which it is slower is 13.7%.

Concerning LPG-quality, generally in these domains the quality of the best plans pro-
duced by our planner is similar to the quality of the plans generated by the SuperPlanner,
with some significant differences in ZenoTravel, where in a few problems the SuperPlanner
performs better, and in Satellite, where our planner performs always better. Overall, in
the Time variant of all the domains the percentages of the problems in which our planner
produces a solution of better/worse quality are the same as the percentages of the problems
in which LPG-speed is faster/slower.

29

Milliseconds

100000

10000

1000

100

Rovers-SimpleTime-HandCoded

Quality

Rovers-SimpleTime-HandCoded

T T T
—+— LPG (Speed) (20 solved)
--6-— SHOP2 (20 solved)
---e-- TALPlanner (20 solved)
--@-- TLPlan (20 solved)

as

350

300

250

200

150

100

T T T
—+— LPG (Quality) (20 solved)
--¢-- SHOP2 (20 solved)
---e-- TALPlanner (20 solved)
---@-- TLPlan (20 solved)

Milliseconds

1e+06

100000

Rovers-Time-HandCoded

20

50

Quality

12 14 16 18 20

Rovers-Time-HandCoded

T T T
—+— LPG (Speed) (18 solved)
---6-— SHOP2 (20 solved)

---e-- TALPlanner (20 solved)
--@-- TLPlan (20 solved)

700

600

T T T
—+— LPG (Quality) (18 solved)
---6-— SHOP2 (20 solved)
---e-- TALPlanner (20 solved)
--@-- TLPlan (20 solved)

500

400 |

10000

oY e 200 b

)
"]

1000

100

100 L L L L L L L L L 0 L L L L L L L L L

Figure 12: Performance of LPG in two temporal domains designed for hand-coded planners
competing at the 3rd IPC.

We have analyzed the performance of LPG with respect to the SuperPlanner also for
all other domains and problems attempted. Appendices D.1-2 give summary results. As
for the Time-problems, in the SimpleTime problems LPG solves more problems than the
SuperPlanner, and the percentages of problems in which LPG-speed and LPG-quality perform
better than SuperPlanner are even higher than the corresponding percentages for the Time
variants. In the Numeric and Strips problems, on average LPG-speed is less efficient than the
SuperPlanner. This is mainly due to the general good performance of FF in these domains.
However, note that LPG-quality on average is better than the SuperPlanner in every domain,
including the Numeric and Strips variants.

Overall, considering all problems attempted, LPG-speed performs better/worse than the
SuperPlanner in 55.8/38.11% of the problems, while LPG-quality performs better/worse in
71/11.6% of the problems.

30

Finally, we ran our planner on some of the large problems that were used to test the
hand-coded planners in the 3rd IPC. In this experiment LPG was tested using a PC Pentium
II1, 500 MHz, with 1 Gbyte of RAM, which is more than two times slower than the machine
used for testing the hand-coded planners. Of course, we did not expect to solve these
problems more efficiently than the hand-coded planners. This experiment was aimed at
testing how far we are from planners exploiting domain knowledge. Figure 12 shows plots
comparing the performance of LPG and the competing hand-coded planners for the two
temporal variants of Rovers. LPG solved 38 of the 40 problems attempted. In terms of plan
quality, very often LPG-quality generates plans that are nearly as good as those computed
by the hand-coded planners, especially in Rovers-SimpleTime-HandCoded. Interestingly, in
this domain LPG-speed performs generally slightly better than sHOP2 (Nau, Munoz-Avila,
Cao, Lotem, & Mitchell, 2001). In Rovers-Time-HandCoded LPG-speed can solve most of
the problems, but it does not perform so well. It remains an open question whether further
research can reduce this gap significantly, but we feel somewhat optimistic about this.

5. Conclusions and Future Work

We have presented some new techniques for temporal planning that are implemented in LPG,
a planner awarded for “distinguished performance of the first order” at the last international
planning competition. Although for simplicity we assumed operator preconditions of type
over all and effects of type at end, our current planner can handle all types of preconditions
and effects that can be specified using PDDL2.1.

Further related techniques that are implemented in LPG, but that we have not described
in this paper concern: the restriction of the search neighborhood when it contains many
elements and their evaluation can slow down the search excessively; different strategies to
choose the inconsistency to handle at each search step; the treatment of numerical quantities
in the action preconditions and effects, as well as the problem goals.

We have already mentioned a few directions that we are undertaking to improve our
system. In addition, we intend to test other local search strategies based on the use of
a “tabu list” similar to those presented in (Gerevini & Serina, 1999), as well as further
types of graph modifications, some of which were implemented in the previous version of
LPG (Gerevini & Serina, 2002). This might be especially important for improving the
incremental plan-quality process. Another possible improvement of this process that is
worth investigating is the use of dynamic coefficients to weight the terms of the action
evaluation function. When we start a new search for a plan of better quality, the weights of
the terms representing the execution and temporal costs could be increased with respect to
the term representing the search cost. This could guide the search towards plans better than
those already derived, which is purpose of the incremental process. Moreover, we intend to
extend the current version of the planner to handle plan metrics requiring to maximize the
expression defining the plan quality.

Finally, a more general direction for future work concerns the treatment of a reacher
temporal representation to handle upper and lower bounds on the possible action durations,
as well as the integration of temporal reasoning techniques to deal with temporal constraints
between similar actions to those that can be stated using Allen’s Interval Algebra (Allen,
1983) or STP-constraints (Dechter, Meiri, & Pearl, 1991).

31

Acknowledgments

The development of LPG has been carried out with the valuable contributions of several un-
dergraduate students. Their help in the implementation and test of LPG, before and during
the competition in Toulouse, was very important. We would like to thank especially Marco
Lazzaroni, Alessandro Saetti and Sergio Spinoni. Thanks also to Fabrizio Morbini, Valerio
Lorini, and Stefano Orlandi for their support during the competition, and to all students
of the AI class at the University of Brescia who gave some contribution to this project.
Finally, thanks to Maria Fox who Derek Long for their hard work in the organization of the
3rd IPC, and to Jorg Hoffman who made the source code of FF available. The parser and
some data structures of LPG are based on an extension of Jorg’s code. The best-first search
technique integrated into LPG is based on the same code developed for FF.

32

Appendix A: Mutex Relations in LPG

LPG precomputes a set of mutex relations for the input planning problem using the two al-
gorithms given in Figure 13, where Add(a) denotes the set of the positive effects of a, Del(a)
the set of its negative effects, and Pre(a) the set of its preconditions. ComputeMutexFacts
derives a set of mutex relations between facts, that are used by ComputeMutexActions to
derive a set of relations between actions. The correctness of this second algorithm is obvious
since it just applies the basic original definition of mutex relation (Blum & Furst, 1997).

ComputeMutexFacts iteratively constructs a set M of potential mutex relations and the
set F' of all possible facts for the planning problem under consideration. At each iteration
we consider every possible action a (step 5) to possibly generate a set of new potential mutex
relations (steps 7-11), and to possibly invalidate other potential mutex relations that have
already been formulated (steps 12-18). The algorithm terminates when all possible facts
have been considered (F* = F'), and no new potential mutex relation can be generated
(M* = M). When the algorithm terminates M contains a set of global mutex relations
between facts. A mutex relation m in M is global if there is no state that can be reached
from the initial state of the problem, using the operators of the domain under consideration,
in which the facts of m are both true.

Given an action a, two facts f; and fy form a potential mutex relation m if (1) one of
them is a positive effect of a and the other is a negative effect (steps 7-9), or (2) one of them
is a positive effect of a and the other is (potentially) mutually exclusive with a precondition
of a (steps 7, 10-11). (1) is a natural way of hypothesizing mutex relations that is used also
in (Gerevini & Schubert, 1998). (2) is based on the observation that, if f; is an effect of a,
p € Pre(a), fo ¢ Add(a), and f, is mutually exclusive with p, then in any state resultant
from the application of a to a reachable state, fo and fi; cannot be both true.

A potential mutex relation m € M between f; and fo becomes invalid if (1) there exists
an action containing the two facts of m among its positive effects (steps 13-14), or fi (f2)
is an add-effect of an action a, fo (f1) is not deleted by a, and fo (f1) is (potentially)
mutually exclusive with no precondition of a. The first case if obvious, while the second
can be explained as follows. If f; is a positive effect of a, and we cannot exclude that fo
is true in a state where a can be applied, then fo could persist from this state to the state
produced by a (similarly if fo is a positive effect of a).

Note that LPG handles negative preconditions as proposed in (Koehler et al., 1997). Le.,
no explicit atomic negation is available in LPG’s language, instead we model atomic negation
by introducing an additional predicate not-p(z) if —=p(z) is needed and by formulating Add
and Delete effects correspondingly (this guarantees than not-p(z) and p(z) are mutex).

The next theorem states the correctness of our algorithms.

Theorem ComputeMutexFacts and ComputeMutexActions correctly compute a set of mutu-
ally exclusive relations between facts and actions respectively.

Proof. Correctness of ComputeMutexActions is obvious, since it is a direct consequence of
the definition of mutually exclusive actions. Correctness of ComputeMutexFacts follows from
the two conditions under which a potential mutex relation is made invalid by the algorithm,
and it can be proved by an inductive argument on the number & of actions applied to reach
a state S from the initial state.

33

ComputeMutexFacts(I, O)

Input: An initial state (I) and all ground operator instances (O);
Output: A set of mutex relations between facts (M).

1 F* « I, F « 0

2. M « 0; M* « 0; A « 0;

3. while F* £ FV M* 4 M

4 F+— F*5 M+ M*

5. forall a € O such that Pre(a) C F* and —(3p, q € Pre(a) A (p, q) € M*)
6 New(a) < Add(a) — F*;

7 forall f € New(a)

8 forall h € Del(a)

9 M* «— M*U{(f, h),(h, f)}; /* Potential mutex relation */

10. forall (p, g) € M* such that p € Pre(a) and g ¢ Del(a)

11. M* «— M*U{(f, q9),(q, f)}; /* Potential mutex relation */
12. if a ¢ A then

13. forall p, g € Add(a) such that (p, q) € M*

14. M* «— M*—{(p, q),(q, p)}; /* Invalid mutex relation */
15. L + Add(a) — New(a);

16. forall (i, q) € M* such that i € L

17. if g ¢ Del(a) AN —=(3p € Pre(a) A (p, q) € M*) then

18. M* — M*—-{(i, q9),(g,%)}; /* Invalid mutex relation */
19. F* + F*U New(a);

20. A+ AU{a};

21. return M.

ComputeMutexActions(M, O)

Input: A set of mutex relations between facts (M) and all ground operator instances (O);
Output: A set of mutex relations between actions (N).

1. N < 0; O* < O extended with the no-op of every fact;
2. forall (p,q) e M

3 forall a € O* such that p € Pre(a)

4 forall b € O* such that ¢ € Pre(b)

5. N < N U{(a, b), (b, a)}; /* Competing needs */
6. forall a € O*

7 forall p € Pre(a)

8 forall b € O such that p € Del(b)

9. N < N U{(a, b), (b, a)}; /* Interference */

10. forall p € Add(a)

11. forall b € O such that p € Del(b)
12. N < NU{(a, b), (b, s)}; /* Inconsistent effects */
13. return N.

Figure 13: LPG’s algorithm for computing the mutex relations.
34

Induction base (k =0). It is easy to see that each element m in the output set M is a valid
mutex relation for the initial state (S = I), because the algorithm cannot formulate mutex
relations involving two facts that are both true in the initial state.

Induction hypothesis (k = n). Suppose that any element m in the output set M is a valid
mutex relation in any state reached by the application of n actions (n > 1).

Induction step (k = n + 1). Assume that there exists an element m in the output set M
that is not a valid mutex relation in a state S reachable by applying a sequence of n + 1
actions (because the two facts f1 and fo of m are both true in S), and let a, 11 be the last
action in this sequence. By the inductive assumption this can happen only if (i) f; and fo
are both positive effects of a,,11, or (ii) f1 (f2) is an add-effect of a, 41, fo (f1) is not deleted
by an11, and fo (f1) is true in the state S’ where a,1 is applied. Case (i) is ruled out by
steps 13-14 of ComputeMutexActions. Regarding case (ii), since we are assuming that S’ is
a reachable (consistent) state where fo (f1) is true and a,41 can be applied, it must exist no
precondition p of a,41 that is mutex with fo (f1). Moreover, by the inductive assumption
(p, f2) ((p, f1)) cannot belong to the output M-set — if some iteration of the algorithm adds
the potential mutex relation between p and fo (f1) to M, then it must be the case that it is
then removed from M. It follows that, if some iteration adds (f1, f2) to M, steps 16-18 will
then remove it from M, contrary to our assumption that m belongs to the output M-set.

Termination of the two algorithms is guaranteed because there is always a finite maxi-
mum number of different facts, actions and potential mutex relations. O

Bonet and Geffner (2001) proposed a method for deriving a set of mutex relations
between facts that has some similarities with ours. Both methods are based on hypothesizing
a set of pairs of mutex facts that are then possibly eliminated from the set according to
certain conditions on the preconditions and effects of the actions. However, there are also
some significant differences. While Bonet and Geffner compute an initial large set M, of
candidate mutex pairs, and then prune it, ComputeMutexFacts incrementally constructs and
verifies the set M through a forward process. The conditions under which a pair of facts is
in My are different from the conditions used by ComputeMutexFacts to create M (especially
the condition in step 10). Moreover, our algorithm generates and tests the pairs of M
considering only applicable actions (i.e., actions with all preconditions in F* and with non-
mutex preconditions), while Bonet and Geffner derive M, using every operator instance.
Finally, their paper does not contain algorithmic details about the identification of “bad
pairs” in My, and there is no formal proof of correctness.

For problems involving a very high number of actions, precomputing mutex relations
could be computationally very expensive. In order to cope with these cases, the user of LPG
can set an option of the planner (lowmemory) for computing the mutex relations between
actions at search time (while those between facts and between actions and no-ops are still
precomputed). Preprocessing with lowmemory on becomes faster and requires much less
memory, but each search step become slower. For this reason in the current version of
LPG this option is recommended only when the precomputation of mutex relations between
actions is prohibitive. This was never the case for the test problems of the 3rd IPC designed
for the fully-automated planners, but for some of the problems designed for the hand-
coded planners, like those of the domain Satellite Hand-Coded, the use of this option is
necessary. Currently we are studying an alternative method for computing mutex relations

35

during search based on the use of state invariants computed by existing domain analysis
tools, such as D1SCOPLAN (Gerevini & Schubert, 2000) or Tim (Fox & Long, 1998a).

Finally, for domains involving numerical preconditions and effects, the set of mutex
relations between actions computed by the algorithms of Figure 13 is extended using the
definition of mutex relations for numeric domains given in (Fox & Long, 2001).

36

Appendix B: LPG-quality compared

with all competitors in some

.
domains
Number of steps DriverLog-Strips ZenoTravel-SimpleTime
900
'LPG (Quality) (20 solved) | ' ' y) (19 solved) ' '
FF (Speed) (15 solved) IxTeT (8 solved)
800 - FF (Quality) (15 solved) 1 4000 MIPS (14 solved) |
- MIPS (15 ‘solved) MIPS (Plan) (16 solved)
MIPS (Plan) (15 solved) - TP4 (5 solved)
SemSyn (1 solved) TPSYS (2 solved)
700 ---v--- Simplanner (11 solved) ~ 3500 [~ ---*-- VHPOP (13 solved) ~
----4--- Stella (10 solved)
---e-- VHPOP (14 solved)
600 3000 q
500 -~ 2500 - T
400 2000 B
300 1500 - B
200 1000 - B
100 - 500 B
0 0
0 0 2 4 6 8 10 12 14 16 18 20
Quality Satellite-Complex Quality Rovers-Numeric
700 9
——'LPG (Quality) (20 solved) ' ' —— LPG (Qualtty) (17 solved) '
MIPS (8 solved) --e-- FF (Speed) (9 solved)
MIPS (Plan) (10 solved) gl - MIPS (8 solved) |
600 | =~ Sapa (16 solved) i ---%--- MIPS (Plan) (8 solved)
-0~ TP4 (3 solved)
7L 4
500
400 L 4
300 [N
200
100
0 0 . .
0 2 4 6 8 10 12 14 16 18 20 0 6 18 20

37

Appendix C: LPG and the SuperPlanner in the Time variant of the

competition domains

econds Depots-Time Quality Depots-Time
2500
—— LPG (Speed) (20 solved) —— LPG (Quality) (20 solved) |
- Super planner (Speed) (11 solved) - Super planner (Quality) (11 solved)
100000 |- - 2000 - T
10000 |- - 1500 - T
L)
1000 - - 1000 - B
100 - 4 500 - q
10 L 0 L
0 20 25 0 20 25
onds DriverLog-Time Quality DriverLog-Time
2500
——'LPG (Speed) (18 solved) ' ' ——'LPG (Quality) (18 solved) | ' '
- Super planner (Speed) (16 solved) - Super planner (Quality) (16 solved)
e
100000 | - 2000 - B
°
10000 - - 1500 - B
1000 - - 1000 - ° B
100 4 500 S ee B
10 0 I
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Milliseconds Rovers-Time Quality Rovers-Time
16+06 T T T T T 1000 T T T T
—+— LPG (Speed) (20 solved) —+— LPG (Quality) (20 solved)
---@--- Super planner (Speed) (12 solved) ---@--- Super planner (Quality) (12 solved)
100000 |
10000 -
1000 -
100 -
10 0

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8

38

10 12 14 16 18 20

Milliseconds ZenoTravel-Time Quality ZenoTravel-Time
1e+06 T T T T T T 900 T T T T T T
—+— LPG (Speed) (19 solved) —+— LPG (Quality) (19 solved)
@--- Super planner (Speed) (20 solved) - Super planner (Quality) (20 solved)
=1 800
100000 1 700 L 1
600 .
10000 - Bl :
500 - T
400 B
1000 - B
300 B
100 L | 200 - B
100 B
10 0
0 2 4 6 8 10 12 14 16 18 20 0 20
Milliseconds Satellite-Time Quality
16+06 T T T T T 500 T T T T
—+— LPG (Speed) (20 solved) —+— LPG (Quality) (20 solved)
@--- Super planner (Speed) (20 solved) - Super planner (Quality) (20 solved)
100000 |
10000 -
1000 -
100 -
10

39

Appendix D.1: Comparison of LPG-speed and the SuperPlanner

The following table shows the performance of LPG-speed and the SuperPlanner in every vari-
ant of every domain tested using our local search techniques. The two systems are compared
in terms of: number of problems solved (2nd and 3rd columns); number of problems in which
LPG-speed is faster/slower than the SuperPlanner (4th/6th columns); number of problems
in which LPG-speed is much faster/slower than the SuperPlanner (5th/7th columns). A
system was considered much faster than the other one when the CPU-time required by the
first was at least one order of magnitude lower than the second.

Problems Problems LPG LPG much | LPG time LPG much
Domain solved solved by better then | better then | worse than | worse than
by the Super- | the Super- the Super- the Super- | the Super-
LPG Planner Planner Planner Planner Planner
Strips
Depots 22 (100%) 22 (100%) 6 (27.3%) 0 (0%) 16 (72.7%) | 5 (22.7%)
DriverLog 20 (100%) | 15 (75%) 7 (35%) 5 (25%) 12 (60%) 1 (5%)
Rovers 20 (100%) 20 (100%) 4 (20%) 0 (0%) 14 (70%) 3 (15%)
Satellite 20 (100%) 20 (100%) 6 (30%) 1 (5%) 14 (70%) 2 (10%)
ZenoTravel 19 (95%) 20 (100%) 0 (0%) 0 (0%) 20 (100%) 12 (60%)
Total 99% 95.1% 22.5% 5.9% 74.5% 22.5%
Simple-time
Depots 21 (95.5%) | 11 (50%) 18 (81.8%) 14 (63.6%) | 3 (13.6%) 0 (0%)
DriverLog 18 (90%) 16 (80%) 15 (75%) 6 (30%) 3 (15%) 2 (10%)
Rovers 20 (100%) 10 (50%) 17 (85%) 12 (60%) 1 (5%) 1 (5%)
Satellite 20 (100%) | 19 (95%) 18 (90%) 12 (60%) 1 (5%) 1 (5%)
ZenoTravel 19 (95%) 16 (80%) 18 (90%) 9 (45%) 1 (5%) 0 (0%)
Total 96% 70.6% 83.4% 51.9% 8.8% 3.9%
Time
Depots 20 (90.9%) | 11 (50%) 14 (63.6%) 12 (54.5%) | 6 (27.3%) 2 (9.1%)
DriverLog 18 (90%) 16 (80%) 17 (85%) 6 (30%) 0 (0%) 0 (0%)
Rovers 20 (100%) 12 (60%) 18 (90%) 13 (65%) 2 (10%) 1 (5%)
Satellite 20 (100%) 20 (100%) 19 (95%) 12 (60%) 1 (5%) 0 (0%)
ZenoTravel 19 (95%) 20 (100%) 15 (75%) 0 (0%) 5 (25%) 1 (5%)
Total 95.1% 77.5% 81.4% 42.1% 13.7% 3.9%
Numeric
Depots 21 (95.5%) | 20 (90.9%) | 8 (36.4%) 2 (9.1%) 12 (54.5%) | 2 (9.1%)
DriverLog 18 (90%) 16 (80%) 7 (35%) 3 (15%) 10 (50%) 3 (15%)
Rovers 17 (85%) 9 (45%) 10 (50%) 8 (40%) 7 (35%) 3 (15%)
Satellite 12 (60%) 14 (70%) | 2 (10%) 2 (10%) 14 (70%) 5 (25%)
ZenoTravel 20 (100%) | 20 (100%) | 0 (0%) 0 (0%) 20 (100%) | 5 (25%)
Total 83.6% 77.4% 26.4% 14.7% 61.8% 17.6%
Complex
Satellite 20 (100%) | 17 (85%) 19 (95%) 14 (70%) 1 (5%) 1 (5%)
Hard-numeric
DriverLog 20 (100%) | 16 (80%) 12 (60%) 5 (25%) 8 (40%) 2 (10%)
[Total | 94.6% | 80.3% [55.8% [30.3% [38.1% [11.6% |

40

Appendix D.2: Comparison of LPG-quality and the SuperPlanner

The following table shows the performance of LPG-quality and the SuperPlanner in every
variant of every domain tested using our local search techniques. The two systems are
compared in terms of: number of problems solved (2nd and 3rd columns); number of
problems in which the quality of the solution computed by LPG is better/worse than the
solution computed by the SuperPlanner (4th/6th columns); number of problems in which
the solution of LPG-quality is much better/worse than the solution of the SuperPlanner
(5th/7th columns). A solution 7 derived by a system is considered much better than the
solution 7’ for the same problem derived by the other system if the quality of 7 is at least
twice as good as the quality of 7', or if 7 exists and 7’ does not exist (because the system
could not solve the corresponding problem). The quality of a plan is measured using the
plan metric indicated in the problem specification, except for the Strips problem, where
plan quality is defined as the number of actions. In all problems considered, the lower is
the value of the metric expression, the better is the plan.

Problems Problems LPG LPG much LPG quality | LPG much
Domain solved solved by better than | better than | worse than worse than
by the Super- | the Super- the Super- the Super- the Super-
LPG Planner Planner Planner Planner Planner
STRIPS
Depots 22 (100%) 22 (100%) 12 (54.5%) 0 (0%) 4 (18.2%) 0 (0%)
DriverLog 20 (100%) 15 (75%) 14 (70%) 5 (25%) 0 (0%) 0 (0%)
Rovers 20 (100%) 20 (100%) 9 (45%) 0 (0%) 1 (5%) 0 (0%)
Satellite 20 (100%) 20 (100%) 13 (65%) 0 (0%) 0 (0%) 0 (0%)
ZenoTravel 19 (95%) 20 (100%) 3 (15%) 0 (0%) 9 (45%) 1 (5%)
Total 99% 95.1% 50% 4.9% 13.7% 0.9%
Simple-time
Depots 21 (95.5%) | 11 (50%) 19 (86.4%) 11 (50%) 1 (4.5%) 0 (0%)
DriverLog 18 (90%) 16 (80%) 17 (85%) 3 (15%) 1 (5%) 0 (0%)
Rovers 20 (100%) 10 (50%) 20 (100%) 10 (50%) 0 (0%) 0 (0%)
Satellite 20 (100%) 19 (95%) 20 (100%) 7 (35%) 0 (0%) 0 (0%)
ZenoTravel 19 (95%) 16 (80%) 17 (85%) 3 (15%) 2 (10%) 0 (0%)
Total 96% 70.6% 91.2% 33.3% 3.9% 0%
Time
Depots 20 (90.9%) | 11 (50%) 17 (77.3%) 9 (40.9%) 2 (9.1%) 0 (0%)
DriverLog 18 (90%) 16 (80%) 17 (85%) 4 (20%) 1 (5%) 0 (0%)
Rovers 20 (100%) 12 (60%) 18 (90%) 8 (40%) 2 (10%) 0 (0%)
Satellite 20 (100%) 20 (100%) 20 (100%) 5 (25%) 0 (0%) 0 (0%)
ZenoTravel 19 (95%) 20 (100%) | 11 (55%) 0 (0%) 9 (45%) 3 (15%)
Total 95.1% 77.4% 81.4% 25.5% 13.7% 2.9%
Numeric
Depots 21 (95.5%) | 20 (90.9%) | 10 (45.5%) 1 (4.5%) 8 (36.4%) 1 (4.5%)
DriverLog 18 (90%) 16 (80%) 15 (75%) 2 (10%) 0 (0%) 0 (0%)
Rovers 17 (85%) 9 (45%) 8 (40%) 8 (40%) 0 (0%) 0 (0%)
Satellite 12 (60%) 14 (70%) 12 (60%) 7 (35%) 4 (20%) 4 (20%)
ZenoTravel 20 (100%) | 20 (100%) | 9 (45%) 1 (5%) 6 (30%) 3 (15%)
Total 86.3% 77.4% 52.9% 18.6% 17.6% 7.8%
Complex
Satellite 20 (100%) 17 (85%) 19 (95%) 9 (45%) 1 (5%) 0 (0%)
Hard-numeric
DriverLog 20 (100%) 16 (80%) 18 (90%) 5 (25%) 1 (5%) 0 (0%)
[Total [94.6% [80.3% [1% [21.9% [11.6% [2.7%

41

References

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communication of the
ACM, 26(1), 832-843.

Allen, J. (1991). Temporal reasoning and planning. In Reasoning about Plans, pp. 1-68.
Morgan Kaufmann, San Mateo, CA.

Blum, A., & Furst, M. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90, 281-300.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1-
2), 5-33.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelli-
gence, 49, 61-95.

Dimopoulos, Y., & Gerevini, A. (2002). Temporal planning through mixed integer program-
ming: a preliminary report. In Proceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming (CP-02).

Do, M. B., & Kambhampati, S. (2001). Sapa: A domain-independent heuristic metric
temporal planner. In Proceedings of the Sizth European Conference on Planning (ECP-
01) Toledo, Spain. Springer Verlag.

Edelkamp, S. (2002). Mixed propositional and numerical planning in the model checking
integrated planning system. In The International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-02), Workshop on Temporal Planning.

Fox, M., & Long, D. (1998a). The automatic inference of state invariants in TIM. In Journal
of Artificial Intelligence Research (JAIR), Vol. 9, pp. 367-421. AT Access Foundation
and Moorgan Kaufmann.

Fox, M., & Long, D. (1998b). Efficient implementation of the Plan Graph in STAN. Journal
of Artificial Intelligence Research (JAIR), 10, 87-115.

Fox, M., & Long, D. (2001). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Tech. rep., Department of Computer Science, University of Durham
(UK), available from http://www.dur.ac.uk/d.p.long/competition.html.

Gerevini, A., & Schubert, L. (1998). Inferring state constraints for domain-independent
planning. In Proceedings of the 15th National Conference of the American Association
for Artificial Intelligence (AAAI-98), pp. 905-912. AAAI Press/The MIT press.

Gerevini, A., & Schubert, L. (2000). Inferring state constraints in DISCOPLAN: Some new

results. In Proceedings of the 17th National Conference of the American Association
for Artificial Intelligence (AAAI-00), pp. 761-767. AAAI press / The MIT Press.

Gerevini, A., & Serina, I. (1999). Fast planning through greedy action graphs. In Proceedings
of the 16th National Conference of the American Association for Artificial Intelligence
(AAAI-99), pp. 503-510. AAAT Press / MIT Pres.

42

Gerevini, A., & Serina, I. (2000). Fast plan adaptation through planning graphs: Local and
systematic search techniques. In Proceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS-00), pp. 112-121. AAAT Press
/ MIT Press.

Gerevini, A., & Serina, I. (2002). LPG: A planner based on local search for planning graphs
with action costs. In Proceedings of the 6th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS-02), pp. 281-290. AAAI Press / MIT
Press, forthcoming.

Haslum, P., & GefIner, H. (2001). Heuristic planning with time and resources. In Proceedings
of the Sizth European Conference on Planning (ECP-01) Toledo, Spain. Springer
Verlag.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research (JAIR), 14, 253-302.

Kautz, H., & Selman, B. (1999). Unifying SAT-based and graph-based planning. In Proceed-
ings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
pp. 318-325.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and
stochastic search. In Shrobe, H., & Senator, T. (Eds.), Proceedings of the Thirteenth
National Conference of the American Association for Artificial Intelligence (AAAI-
96), pp. 1194-1201. AAAT Press.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extending planning graphs
to an ADL subset. Tech. rep. 88, Institut fiir Informatik, Freiburg, Germany.

McAllester, D., & D., R. (1991). Systematic nonlinear planning. In Proceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-91), pp. 634-639.

Nau, D., Munoz-Avila, H., Cao, Y., Lotem, A., & Mitchell, S. (2001). Total-order plan-
ning with partially ordered subtasks.. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI-01), pp. 425-430 Seattle, USA.

Nguyen, X., & Kambhampati, S. (2001). Reviving partial order planning. In Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01), pp.
459-466.

Penberthy, J., & Weld, D. (1992). UCPOP: A sound, complete, partial order planner
for ADL. In Nebel, B., Rich, C., & Swartout, W. (Eds.), Proceedings of the Third
International Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pp. 103-114 Boston, MA. Morgan Kaufmann.

Penberthy, J., & Weld, D. (1994). Temporal planning with continuous change. In Proceed-
ings of the Twelfth National Conference of the American Association for Artificial
Intelligence (AAAI-94), pp. 1010-1015 Seattle, WA. Morgan Kaufmann.

43

Selman, B., Kautz, H., & Cohen, B. (1994). Noise strategies for improving local search.
In Proceedings of the Twelfth National Conference of the American Association for
Artificial Intelligence (AAAI-94), pp. 337-343 Seattle, WA. Morgan Kaufmann.

Smith, D., & Weld, D. (1999). Temporal planning with mutual exclusive reasoning. In
Proceedings of the 16th Joint Conference on Artificial Intelligence (IJCAI-99), pp.
326-337.

Tsang, E. (1986). Plan generation in a temporal frame. In Seventh European Conference
on Artificial Intelligence (ECAI), pp. 479-493.

Vere, S. A. (1983). Planning in time: Windows and durations for activities and goals. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5(3), 246—267.

44

