CSE 574: Planning and Learning Midterm Examination

October 25th, 2004. Time: 3:15—4:30

Name:___

[image: image1]Student ID: ___

A planner is doing regression search on a planning problem. The domain has two actions: A1 which gives r and ~p and A2 which gives S. The initial state of the problem is {p,q,r,s}. The current regression state is {p,q}. Show how the regression search expands this state.

One of the differences between progression planners and Graphplan is that Graphplan can generate parallel plans while progression planners do not (they generate sequential plans). Here is an idea for using progression to generate parallel plans: Given a state S, expand S by adding all actions that are applicable to S, such that none of the actions are pair-wise interfering (where interference is defined in the usual Graphplan sense). Explain how such a progression planner will compare to Graphplan in terms of its ability to produce parallel plans.

Consider an action A which has a single existential precondition “Exists x Q(x)” and a single existential effect “Exists y P(y)”. The action has no other effects. There are no additional preconditions or effects for A. Can A be compiled down into a set of STRIPS actions? Show how.
this

As you know, FF severely reduces the branching factor of the progression search from a state S by considering only the actions that appear in the first level of the relaxed plan for solving the problem from S. This idea is clearly incomplete. Here is an alternative: Since all relaxed plans must take actions from the first level of the planning graph starting at S, consider just the full set of actions at the first level (rather than a subset as FF does). Discuss the completeness and efficiency of this idea.

Consider the “set-level” heuristic discussed in the class (which considers the cost of a set of literals to be the index of the first level proposition list at which they all appear with no subset of them being marked impossible). Explain how each of the following changes affect the admissibility and informedness of the heuristic:
1. We randomly miss putting some of the actions into the planning graph

2. We randomly miss marking mutexes that should have been marked.

In a planning domain, there are 10 actions that each have 0.4 units of cost. We are interested in finding the least costly plan for solving any given planning problem. Suppose we are using Graphplan as our default planner. Does the planner give least cost plans? If not, is there any way you can make it give minimal cost plans?

`

Graphplanplan’s backward search searches through the planning graph by going leve-by-level. Since all we need is a subgraph of the planning graph that is “valid” (in that it has no action interferences, and it achieves all goals), there is no real reason why we should search the planning graph backward, level-by-level fashion. Do you know any planning technique that in effect allows you to search planning graph without the level-by-level restriction?

[4]Consider the candidate sets of the following plans. Mark any subsumption relations among the plans (a plan P1 subsumes P2 if the candidate set of P1 is a superset of the candidate set of P2).

Here is a simple domain with just two actions, A and B.

A has a single conditional effect if P then Q.

B has two unconditional effects, ~P, R and one conditional effect if J then ~Q.

The initial state of the problem has P true (and everything else fale). The goal is to make Q and R true.

Part 1. Show how a regression planner solves this problem?

Part II. Show how a plan-space (Partial order) planner solves this problem.

You need only show the single successful branch. Please make text annotations to explain

Consider a planning domain with four primitive actions: A1, A2 and B1, B2.
A1 takes l gives p,
A2 takes p and gives q.
B1 takes m gives p

B2 takes p and gives q.
There is a single non-primitive task: get-q, which promises q.
There are two “reduction methods” for get-q.

Method 1: get-q is reduced to the plan fragment A1 < A2.
Method 2: get-q is reduced to the plan fragment B1 < B2.

Suppose we have a problem: I:{l} G:{q}
Part 1. Show how an HTN planner will solve the problem of achieving the goal q.
Part 2. Consider the action sequence “A1-B2”. Is this sequence a solution to the problem? Will HTN planner find this solution? If yes, show a “parse” of this solution in terms of the reduction methods. If not, explain how this affects the completeness of the HTN planning.

`

Consider the following problem, where there are two actions A1 and A2. A1 has no preconditions, but has effects p,~q. A2 has a precondition, q and effect r. The initial state of the problem has q true. The goals are to get p and r true. I have gone ahead and drawn the planning graph upto 1 level (but without marking the mutexes).

[image: image2.wmf]

Part 1. Mark mutexes on the graph.

Part 2. Convert the resultant graph into a SAT encoding (recall that our goal is to get p and r true). Does the SAT encoding have a solution? If so what is it?

Part 3. Extend the graph to the second level (you can draw next to the figure above), and mark mutexes. Using your head, show a valid subgraph of the 2-level planning graph that corresponds to a solution.
