
Articles

58 AI MAGAZINE

Our preferences guide our choices. Hence an understand-
ing of the various aspects of preference handling should be of
great relevance to anyone attempting to build systems that act
on behalf of users or simply support their decisions. This could
be a shopping site that attempts to help us identify the most
preferred item, an information search and retrieval engine that
attempts to provide us with the most preferred pieces of infor-
mation, or more sophisticated embedded agents such as robots,
personal assistants, and so on. Each of these applications strives
to take actions that lead to a more preferred state for us: better
product, most appropriate articles, best behavior, and so on.

Early work in AI focused on the notion of a goal—an explicit
target that must be achieved—and this paradigm is still domi-
nant in AI problem solving. But as application domains become
more complex and realistic, it is apparent that the dichotomic
notion of a goal, while adequate for certain puzzles, is too crude
in general. The problem is that in many contemporary applica-
tion domains, for example, information retrieval from large
databases or the web, or planning in complex domains, the user
has little knowledge about the set of possible solutions or feasi-
ble items, and what she or he typically seeks is the best that’s
out there. But since the user does not know what is the best
achievable plan or the best available document or product, he
or she typically cannot characterize it or its properties specifi-
cally. As a result, the user will end up either asking for an
unachievable goal, getting no solution in response, or asking for
too little, obtaining a solution that can be substantially
improved. Of course, the user can gradually adjust the stated
goals. This, however, is not a very appealing mode of interaction
because the space of alternative solutions in such applications
can be combinatorially huge, or even infinite. Moreover, such
incremental goal refinement is simply infeasible when the goal
must be supplied offline, as in the case of autonomous agents
(whether on the web or on Mars). Hence, what we really want
is for the system to understand our preferences over alternative

Copyright © 2009, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Preference Handling—
An Introductory Tutorial

Ronen I. Brafman
and Carmel Domshlak

n We present a tutorial introduction to the
area of preference handling—one of the core
issues in the design of any system that auto-
mates or supports decision making. The
main goal of this tutorial is to provide a
framework, or perspective, within which cur-
rent work on preference handling—represen-
tation, reasoning, and elicitation—can be
understood. Our intention is not to provide a
technical description of the diverse methods
used but rather to provide a general perspec-
tive on the problem and its varied solutions
and to highlight central ideas and tech-
niques.

Articles

SPRING 2009 59

choices (that is, plans, documents, products, and
so on), and home in on the best achievable choic-
es for us.

But what are preferences? Semantically, the
answer is simple. Preferences over some domain of
possible choices order these choices so that a more
desirable choice precedes a less desirable one. We
shall use the term outcome to refer to the elements
in this set of choices.1 Naturally, the set of out-
comes changes from one domain to another.
Examples of sets of possible outcomes could be
possible flights, vacation packages, cameras, end
results of some robotic application (such as pic-
tures sent from Mars, time taken to complete the
DARPA Grand Challenge, and so on). Orderings
can have slightly different properties; they can be
total (that is, making any pair of outcomes compa-
rable) or partial, strict (that is, no two outcomes are
equally preferred) or weak—the basic definitions
follow—but that is about it. One can find various
discussions in the literature as to when and
whether total or weak orderings are appropriate
(for an entry point, see, for example, (Hansson
2001b)), but this debate is mostly inconsequential
from our perspective, and we make no commit-
ment to one or the other.

Definition 1. A preference relation over a set Ω is a
transitive binary relation over Ω. If for every o, o′
∈ Ω either o o′ or o′ o then is a total order.
Otherwise, it is a partial order (that is, some out-
comes are not comparable). A preference relation is
strong if it is antisymmetric (that is, if o o′ then o′
 o), otherwise it is weak.

Given a weak ordering , we can define the
induced strong orderings as follows: o o′ IFF o
 o′, but o′ o. Finally, if o o′ and o′ o then o ∼
o′, that is, o and o′ are equally preferred.

Unfortunately, while the semantics of prefer-
ence relations is pretty clear, working with prefer-
ences can be quite difficult, and there are a num-
ber of reasons for that. The most obvious issue is
the cognitive difficulty of specifying a preference
relation. Cognitive effort is not an issue when all
we care about is a single, naturally ordered attrib-
ute. For instance, when one shops for a particular
iPhone model, all the shopper cares about might
be the price of the phone. When one drives to
work, all the driver cares about the choice of route
might be the driving time. However, typically our
preferences are more complicated, and even in
these two examples often we care about the war-
ranty, shipping time, scenery, smoothness of driv-
ing, and so on. Once multiple aspects of an out-
come matter to us, ordering even two outcomes
can be cognitively difficult because of the need to
consider trade-offs and interdependencies between
various attributes, as many readers surely know
from their own experience. As the size of the out-
come spaces increases, our cognitive burden
increases, and additional computational and rep-

resentational issues come in. How do we order a
large set of outcomes? How can the user effective-
ly and efficiently communicate such an ordering
to the application at hand? How do we store and
reason with this ordering efficiently?

Work in preference handling attempts to
address these issues in order to supply tools that
help us design systems acting well on our behalf, or
help us act well. Preference elicitation methods aim
at easing the cognitive burden of ordering a set of
outcomes, or finding an optimal item. These meth-
ods include convenient languages for expressing
preferences, questioning strategies based on simple
questions, and more. Preference representation
methods seek ways of efficiently representing pref-
erence information. The two are closely related
because a compact representation requires less
information to be specified, making its elicitation
easier. Preference handling algorithms attempt to
provide efficient means of answering common
queries on preference models.

For the remainder of this article, we consider the
overall process of preference handling, focusing on
the basic questions involved and the key concepts.
A number of basic concepts play a central role in
our discussion, and these are models, queries, lan-
guages, interpretation, representation, and model selec-
tion. Two other central concepts are structure and
independence. These concepts will be introduced
gradually through concrete examples. They are by
no means new or specific to the area of preference
handling, but using them properly is crucial for a
good understanding and a useful discourse. The
choice of examples is admittedly somewhat biased
to our own, but we believe that these choices serve
the purpose of this tutorial well.

When evaluating the ideas described in this
tutorial, the reader should bear in mind that there
are many types of decision contexts in which pref-
erence handling is required. Each such context
brings different demands, and one solution may be
great for one context but less so in another. We
believe preference-handling settings can be, very
roughly, divided into three classes. The first
involves online applications with lay users, best
exemplified by various online product selecting
problems. Here users are reluctant to provide much
information, time, and effort; there is no room for
user “training”; information is typically qualita-
tive, and no technical knowledge should be
expected of the user. Preference-handling tech-
niques in this area must make the most of natural
languagelike statements, and be very wise in their
selection of questions. The second involves system
configuration and design. In these applications
preferences drive the behavior of some system the
user cares about. In these applications we can
expect more effort from the user, and the input
language may be a bit more technical. Preference-

handling techniques for such problems can be
more sophisticated but must still focus on enabling
the user to naturally express his domain knowl-
edge. Finally, there are complex real-world deci-
sion problems that require the assistance of a deci-
sion analyst. Here, we require tools such as
probabilistic modeling and utility functions. Pref-
erence-handling techniques should provide the
analyst tools that will make it easier for him or her
to elicit these complex inputs and efficiently work
with them.

Structurally, this tutorial is divided into two
parts. The first and central part focuses on prefer-
ence representation methods. It considers different
complete preference models, languages that
describe them, and some representational issues.
In many application, however, we either don’t
need or won’t get a complete preference model
from the user. Thus, the second part deals with the
question of what to do when the system is given
only partial information about the preference
model, and how to obtain as much of the most
important parts of the model from the user. At the
end of each subsection we provide both biblio-
graphic notes on the material described in it, as
well as pointers to related topics.

Further Reading
Work on preference models, algorithms, and repre-
sentation appears in many areas. Discussion of pref-
erence models are abundant in the philosophical
literature (Hansson 2001a, Krantz et al. 1971, von
Wright 1963, Hallden 1957), in economics and
game theory (Arrow and Raynaud 1986, Debreu
1954, von Neumann and Morgenstern 1947, Fish-
burn 1969), in mathematics (Birkhoff 1948, Davey
and Priestley 2002), in operations research and
decision analysis (Fishburn 1974, Wald 1950,
Bouyssou et al. 2006), in psychology (Tversky 1967,
1969; Kahneman and Tversky 1979, 1984), and in
various disciplines of compute science: AI (Doyle
and Thomason 1999, Doyle 2004), databases
(Agrawal and Wimmers 2000, Kießling 2002,
Chomicki 2002), HCI (Gajos and Weld 2005, Chen
and Pu 2007), electronic commerce (Sandholm and
Boutilier 2006), and more.

Of particular interest to AI researchers are the
fields of decision analysis and multicriteria deci-
sion making. Practitioners in these areas face
diverse problems, often of great complexity, which
call for a wide range of tools for modeling prefer-
ences, classifying, and sorting options. Some of
their applications call for more esoteric mathemat-
ical models of preference that differ from the tran-
sitive binary relations we focus on here. See, for
example, Fishburn (1999), and Oztürk, Tsoukiàs,
and Vincke (2005).

Modeling Preferences
Two key questions arise when one approaches a
modeling task, namely (1) what is the model? and
(2) what questions or queries do we want to ask
about this model? To achieve clarity and proper
focus, these questions should be answered early on.

A model is a mathematical structure that
attempts to capture the properties of the physical,
mental, or cognitive paradigm in question. The
purpose of the model is to provide a concrete
proxy to the, sometimes abstract, paradigm of
interest. As such, the model must have intuitive
appeal, because it lends meaning to the query
answers we compute. Returning to the topic of our
discussion, a natural model for preferences is pret-
ty clear—it is an ordering over the set of possible
outcomes, Ω. The answer to the second question
varies with our application. Typical examples for
queries of interest are finding the optimal out-
come, finding an optimal outcome satisfying cer-
tain constraints, comparing between two out-
comes, ordering the set of outcomes, aggregating
preferences of multiple users, finding a preferred
allocation of goods, and so on. Once we have a
model and a query, we need algorithms that com-
pute an answer to the query given the model. In
our tutorial, algorithms will take the back seat, but
of course, as computer scientists, we realize that
ultimately we must provide them.

The key point is that a preference model must
be specified for each new user or each new appli-
cation (that is, a new set of possible outcomes).
Obtaining, or eliciting, the information specifying
the model is thus one of the major issues in the
process of preference handling. One simple, but
ineffective, approach to preference elicitation is to
ask the user to explicitly describe the model, that
is, an ordering. Clearly, this is impractical unless Ω
is very small, and thus we must find an alternative
tool that implicitly specifies the model in a com-
pact way.2 This tool is the language—a collection
of possible statements that, hopefully, make it easy
to describe common, or natural models. To give
meaning to these statements we need an interpre-
tation function mapping sets of such statements to
models.

Putting things together, we now have the five
basic elements of our metamodel: the model, which
describes the structure we really care about; the
queries, which are questions about the model we
need to answer; the algorithms to compute answers
to these queries; the language, which lets us implic-
itly specify models; and an interpretation function
that maps expressions in the language into mod-
els. These concepts are depicted and interconnect-
ed graphically in figure 1 in which the semantics of
the directed arcs is “choice dependence.” For
instance, as we discuss later, the choice of language
depends big time on our assumptions about the

Articles

60 AI MAGAZINE

Articles

SPRING 2009 61

preference models of the users. Similarly, the algo-
rithms developed for handling queries about the
preferences are typically tailored down to the
specifics of the language in use. In what follows,
we discuss a few concrete instances of this meta-
model. This discussion comes to relate the meta-
model to some specific approaches to preference
handling, and, synergetically, relate different
approaches to each other.

Value Functions, Structure,
and Independence
Let us start with the simplest concretization of the
metamodel in which the model is a weak total
order , and the language is simply the model
itself. On the positive side, the model is nice
because it is always possible to answer common
questions such as “what is the optimal outcome?”
or “which of two outcomes is better?” In addition,
this combination of model and language makes
the choice of interpretation entirely trivial as it
should simply be set to the identity function. On
the negative side, however, the choice of language
here is obviously poor. For instance, imagine hav-
ing to order hundreds of digital cameras accessible
through some online electronics store with their
multitude of attributes.

So we are going to gradually try to improve the
language. First, rather than specify an explicit
ordering of the outcomes, we can ask the user to
associate a real value with each outcome. In other
words, the language now takes the form of a value
function V : Ω → �, the interpretation function is
still simple, notably o o′ ⇔ V (o) ≥ V (o′), and the
overall concretization of the metamodel this way is
depicted in figure 2. At first, this appears an ill-

motivated choice. Indeed, having to associate a real
value with each outcome seems hardly easier than
ordering the outcomes. In fact, while sometimes
one may find it more convenient to, for example,
assign a monetary value to each outcome rather
than order Ω explicitly, most people will probably
consider “outcome quantification” to be a more
difficult task. However, the main utility of this
move is conceptual, as it gives us a clue as to how
things might be really improved: While the value
function V can always be specified explicitly in the
form of a table, there may be more convenient,
compact forms for V. If such a compact form exists,
and this form is intuitive to the user, then the com-
plexity pitfall of eliciting user preferences on an
outcome-by-outcome basis can be eliminated.

But why would V have a compact and intuitive
form? Of course, if we treat outcomes as mono-
lithic objects, for example, camera23, camera75,
and so on, then such a compact form of V is not
something we would expect. However, as the digi-
tal camera example suggests, outcomes of typical-
ly have some inherent structure, and this structure
is given by a set of attributes. For example, flights
have departure and arrival times, airline, cost,
number of stopovers, and so on. When we pur-
chase a flight ticket, what we care about are the val-
ues of these attributes. In the remainder of this
tutorial, unless stated otherwise, we assume that
we are working with such outcomes. That is, each
outcome has some set of attributes, and our choice
among these outcomes is driven by the value of
these attributes. Formally, we assume the existence
and common knowledge of a set of attributes X =
X1, …, Xn such that Ω = X = ×n

i=1Dom(Xi), where
Dom(Xi) is the domain of attribute Xi. The domains
of the attributes are assumed to be finite, although

Model Language Algorithms

Queries

Find optimal outcome
Find optimal feasible outcome
Order a set of outcomes
...

Outcome X is preferred to outcome Y
Outcome Z is good
Value of outcome W is 52
...

Total strict order of outcomes
Total weak order of outcomes
Partial strict order of outcomes
Partial weak order of outcomes

Figure 1. The Metamodel.

handling infinite yet naturally ordered domains is
typically very much similar.

Preferential Independence. Although the ability
to describe an outcome by means of some prefer-
ence-affecting attributes X is a necessary condition
for a value function to be compactly representable,
in itself it is not enough. An additional working
assumption we need is that typical user preferences

exhibit much regularity with respect to the given
attributes X. The informal notion of “preference
regularity” is formally captured by the notion of
preferential independence.

Let Y, Z be a partition of X, that is, Y and Z are
disjoint subsets of attributes whose union is X. We
say that Y is preferentially independent of Z if for
all y1, y2 ∈ Dom(Y) and for every z ∈ Dom(Z),

Articles

62 AI MAGAZINE

Figure 2. Weak Total Order.

Language Algorithms

Queries

Models

Interpretation

Total weak order
of outcomes

o � o′ ⇔ V(o) > V (o′)

V(o) = 0.5

V(o′) = 1.7

V(o) = 100

V(o) = 92

V(o) = 91

Articles

SPRING 2009 63

y1z y2z implies that for all z′ ∈ Dom(Z): y1z′
y2z′.

Intuitively, this means that preferences over Y-val-
ues do not depend on the value of Z, as long as that
value is fixed. That is, if, when we fix Z to z, I weak-
ly prefer y1z to y2z, then when we fix Z to some
other value z′, I still weakly prefer y1z′ to y2z′. For
example, if my preference for a car’s color is the
same regardless of the brand, for example, I always
prefer blue to red to white, then we can say that the
color of the car is preferentially independent from
its brand. (Here we assumed that color and brand
are the only two preference-affecting attributes.)
Similarly, for most people, price is preferentially
independent of all other attributes. That is, given
two outcomes that are similar, except for their
price, most people would prefer the cheaper one,
no matter what fixed concrete value the other pref-
erence-affecting attributes take in these outcomes.
Importantly, note that when Y is preferentially
independent of Z we can meaningfully talk about
the projection of to Y. Even more importantly,
preferential independence of Y from Z allows the
user to express his or her preferences between many
pairs of outcomes in Ω in terms of Y only. For
example, if my preference for a car’s color is the
same regardless of the brand, preference of blue to
red implies preference of blue Toyota to red Toyota,
blue BMW to red BMW, and so on.

Unlike probabilistic independence, preferential
independence is a directional notion. If Y is pref-
erentially independent of Z it does not follow that
Z is preferentially independent of Y. To see this,
suppose that cars have two attributes: price (cheap
or expensive) and brand (BMW or Toyota). I
always prefer a cheaper car to an expensive one for
any fixed brand; that is, I prefer a cheap Toyota to
an expensive Toyota, and a cheap BMW to an
expensive BMW. However, among cheap cars, I
prefer Toyotas, whereas among expensive cars, I
prefer BMW. In this case, the ordering modeling
my preferences is

(cheap Toyota) (cheap BMW) (expensive BMW)
(expensive Toyota).

While here price is preferentially independent of
brand, brand is not preferentially independent of
price.

A weaker notion of independence is that of con-
ditional preferential independence. Let Y, Z, C be a
partition of X. We say that Y is conditionally pref-
erentially independent of Z given C = c if, when we
project the ordering to outcomes in which C = c,
we have that Y is preferentially independent of Z.
More explicitly, for all y1, y2 ∈ Dom(Y) and for
every z ∈ Dom(Z)

y1zc y2zc implies that for all z′ ∈ Dom(Z): y1z′c
y2z′c.

We say that Y is preferentially independent of Z

given C if for every c ∈ Dom(C) we have that Y is
preferentially independent of Z given C = c. Thus,
in the case of conditional preferential independ-
ence, our preference over Y values does not depend
on Z values for any fixed value of C. Note that the
preference ordering over Y values can be different
given different values of C, but for any choice of C
value, the ordering is independent of the value of
Z. As an example, suppose that Y, Z, C are, respec-
tively, brand (BMW or Toyota), mileage (low or
high), and mechanical inspection report (good or
bad). Given a good inspection report, I prefer BMW
to Toyota, regardless of the mileage, perhaps
because I generally like BMWs, but feel there is no
point in a BMW whose mechanical condition is
not good. Thus, I have (BMW,low,good)
(Toyota,low,good), and (BMW,high,good) (Toy-
ota,high,good). On the other hand, given a bad
mechanical inspection report, I prefer Toyota to
BMW, as they are cheaper to fix, and more reliable.
Thus, (Toyota,low,bad) (BMW,low,bad), and (Toy-
ota,high,bad) (BMW,high,bad). We see that once
the value of the mechanical inspection report is
fixed, my preference for brand is independent of
mileage, yet the actual preference may change
depending on the value of the mechanical inspec-
tion report.

Compact Value Functions and Additivity.The
strong intuition obtained from the examples in the
previous section is that user preferences in many
domains exhibit much preferential independence
of this or another kind. The question now is how
can we leverage such structure. In what follows
we’ll see at least two answers to this question, and
here we’d like to focus on the effect of preferential
independence on the structure of the value func-
tion.

First, given an attributed representation of the
outcome space Ω = ×i=1,…,nDom(Xi), we can focus
on value functions V : ×i=1,…,nDom(Xi) → R. As we
noted earlier, this in itself buys us a language for
specifying V, but not the compactness—the size of
an explicit tabular representation of V would still
be ∏i=1…n |Dom(Xi)|. However, depending on the
actual preference ordering of the user, more com-
pact forms of V are possible. Probably the best-
known such form is that of a sum of functions over
single attributes, that is,

Functions V that have this form are said to be addi-
tively independent. Intuitively, it seems that such
factored form corresponds to some form of inde-
pendence. Indeed, suppose that we know that a
user preference ordering is captured by
V(Color,Brand) = V1(Color) + V2(Brand). Clearly, for
any fixed value of color, the preference of the user
over brands is identical, because the choice of col-

V X X V Xn i i
i

n

1
1

, ,…()= ()
=
∑

or simply fixes V1. Thus, brand is preferentially
independent of color, and similarly, color is pref-
erentially independent of brand. In fact, if

then for any attribute subset Y of X, Y is preferen-
tially independent of X \ Y. This strong form of
independence within X is called mutual independ-
ence.

Value functions in a “factored” form offer one
major advantage: they are much easier to specify,
and thus much easier to elicit from the users. To
see the potentially huge benefit here, note that, if
V is known to be additively independent over n
Boolean attributes, its specification requires 2n val-
ues only, as opposed to 2n values for a tabular,
unstructured representation. Some forms of rea-
soning, too, are much simpler. For instance, find-
ing the optimal outcome with respect to an addi-
tively independent V can be done in time O(n) by
independently maximizing each of the subfunc-
tions of V. In contrast, the same task with respect
to the same function but in an unstructured, tabu-
lar form requires exhaustive search in time O(2n).
But an additive independent form is very limiting,
too. Basically, it implies that our preferences are
unconditional, that is, the preference ordering
over attribute values is identical no matter what
values the other attributes have. Thus, if you pre-
fer your coffee with milk, then you must prefer
your tea with milk, too. Or, if you like a manual
transmission in your sports car, you must like it in
your minivan, too. Even worse, the strength of
preference over attribute values is also fixed—
informally, if the added value of milk in your cof-
fee (as opposed to none) is greater than the added
value of sugar (as opposed to none), then the same
goes for tea.

Generalized Additivity. While additively inde-
pendent value functions seem a limiting choice of
language for preference specification, it does seem
that our preferences satisfy many independence
properties. For example, the only attributes that
affect whether I prefer an aisle seat to a window
seat on the plane are the duration of the flight and
the route. Or, the only attribute that affects how
much milk I want in my hot drink is the type of
drink, not the amount of sugar, the glass, and so
on. To capture such (weaker than additive) forms
of independence, we have to shift our language to
more expressive functional forms of value func-
tions.

A more general form of additive independence
that allows us to be as general as we wish, but not
more than that, is that of generalized additive
independence (GAI). The generalized additive
form of a value function V is

V x x V xn i n i i1 1, , , ,…()= ()= …∑ where Z1, …, Zk ⊆ X is a cover of the preference-
affecting attributes X. In other words, V is a sum of
k additive factors, Vi, where each factor depends on
some subset of the attributes X, and the attribute
subsets associated with different factors need not
be disjoint. By allowing for factors containing
more than one attribute we enable capturing pref-
erentially-dependent attributes. By allowing fac-
tors to be nondisjoint we might substantially
reduce factor sizes by enabling different factors to
be influenced by the same variable, without having
to combine their associated variables into a single,
larger factor. For example, the value of a vacation
may depend on the quality of facilities and the
location. How I assess each may depend on the sea-
son—in the summer I prefer a place near the
beach, while in the winter I prefer a major city; in
the summer I want large outdoor pools and ter-
races, while in the winter I prefer indoor pools,
saunas, and large interiors. By using the language
of GAI value functions, V(Location,Facilities,Season)
can now be given in the form V1(Location,Season) +
V2(Facilities,Season).

Note that, in contrast to the language of addi-
tively independent functions, the language of GAI
functions is fully general. If we choose k = 1 and Z1
= X, we can represent any value function. In the
other extreme, if we choose k = n and Zi = {Xi}, we
obtain the language of additively independent val-
ue functions. Considering the user efforts required
at the stage of preference elicitation, the useful
trade-off between expressiveness and compactness
seems to lie somewhere in between, with factor
size (that is, |Zi|) being relatively small and the
number of factors, k, being also not too large. How-
ever, even with this sublanguage of GAI value
functions, answering queries may become much
harder than with the language of fully additive val-
ue functions. This issue brings us to introducing
the final component of our metamodel, namely
the representation of the user-provided informa-
tion.

The representation is a structure that captures all
the information in the the model and is intended
to be used directly by our query-answering algo-
rithms. A natural choice for representation is the
language itself—after all, the language is designed
to facilitate efficient, concise characterization of
the model. Indeed, in many cases, the language is
used as the representation, and the algorithms
operate on it. Much work in knowledge represen-
tation and reasoning in AI seeks to find various
classes of languages for which efficient inference or
optimization algorithms exist. Naturally, these
classes cannot describe every model concisely, but
often they can describe some important, or natural

V X X Vn i i
i

k

1
1

, ,…()= ()
=
∑

Articles

64 AI MAGAZINE

Articles

SPRING 2009 65

models concisely. Sometimes, however, it is useful
to take the input expression and slightly transform
or augment it to obtain a representation that pro-
vides more intuitive means for analyzing the com-
plexity of query answering and developing effi-
cient query-answering algorithms. Taking a look
across various reasoning tasks in AI, typically such
a representation comes in a form of an annotated
graph, describing dependencies between different
components of the problem. Indeed, graphical rep-
resentations have been found useful for various
preference models as well. These representations
are compiled from the language (or in some cases,
they augment the language as input devices), and
inference and optimization algorithms make
strong use of the properties of these graphical
structures. In particular, the complexity of the
algorithms can often be bounded by some graph-
topological parameters of these graphs.

GAI value functions V provide us with the first
example of this type. The language in this case is a
set of tables describing the subfunctions of V.
Using these tables, that is, using the language as
the actual representation manipulated by the algo-
rithms, it is easy to compute the value of any out-
come and thus, to compare any two outcomes
with respect to the preferences of the user. Howev-
er, computing the optimal outcome, that is, find-
ing the value of X that maximizes V is more diffi-
cult. To deal with such queries, it is useful to
maintain a GAI-network (Gonzales and Perny
2004). A GAI-network is an annotated graph whose
nodes correspond to the attributes in X. An edge
connects the nodes corresponding to a pair of
attributes Xi, Xj ∈ X if Xi and Xj occur jointly in
some factor, that is, {Xi, Xj} ⊆ Zl for some l ∈ {1, …,
k}. Assuming no redundant factors, each of the

cliques in this graph corresponds to a factor in V,
and it is annotated with a table describing the val-
ues of different instantiations of this factor. An
example of the graphical core of a GAI-network
appears in figure 3.

On the left side of figure 3 we see a GAI value
function, and on the right hand side, we see the
corresponding GAI-network. In the constraint
optimization literature, this structure is called a
cost network (Dechter 2003), and the problem of
finding an assignment with maximal cost for such
a network is well studied. Importantly, the algo-
rithms used to solve this problem utilize the graph-
ical structure of the network. This problem is
equivalent to that of computing an optimal assign-
ment to X with respect to a GAI value function.
Consequently, the same algorithms can be used
here, and they benefit from a representation of the
value function in the form of a cost, or GAI, net-
work. Putting things together, in the case of GAI
value functions, we see that it is better to store the
input in an intermediate representation as a cost
or GAI network. The updated metamodel with the
components associated with GAI value functions
is depicted in figure 4.

Further Reading
Value functions originate in the decision theory lit-
erature, for example, Wald (1950). The notion of
preferential independence is discussed in depth by
Keeney and Raiffa (1976) who also consider their
relation to additive forms. Generalized additive
independence was introduced by Fishburn (1969)
and was later made popular in the AI community
by Bacchus and Grove (1995). GAI value functions
are essentially identical to weighted CSPs (Dechter
2003), that is, CSPs in which a value is associated

V (X1,..., X6) = g1(X1, X2, X3) +
 g2(X2, X4, X5) +
 g3(X5, X6)

X1

X2 X4

X5X3 X6

Figure 3. Example of a GAI Value Function and the Induced GAI-Network.

with each possible assignment to a constrained set
of variables. In fact, the optimization problem of
finding the optimal assignment to a GAI value
function/cost network/weighted CSP is identical to
that of finding most probable explanation (MPE)
in graphical probabilistic models such as Bayes
nets or join-trees (Pearl 1988, Lauritzen and
Spiegelhalter 1988). Indeed, there is, in general,
close correspondence between probabilistic rea-
soning and preferences. Technically, a joint proba-
bility distribution over random variables x1, …, xn
also describes an ordering over the set of possible
assignments. While the joint probability form is
multiplicative, the logarithm is additive and looks
much like an additive value function. Value (and
utility) functions can be normalized to look like
probabilities, but there are no natural correspon-
ding notions of marginal probability and condi-
tional probability in the case of preferences
(although see Shoham [1997] for a slightly differ-
ent perspective).

Value functions map tuples to integers, or reals.
More generally, mappings to other structures can
be defined, as has been done in the framework of
soft constraints (Bistarelli, Montanari, and Rossi
1997; Bistarelli et al. 1999). This formalism can be
viewed as generalizing the notion of GAI, as it
allows for both new ranges for the function and
aggregation and comparison operators other than
addition and maximization.

Value functions over the Cartesian product of a
set of attribute domains are one way of combining
preference for different aspects of the problem.
One can think of each factor in a value function as
representing one criterion for selecting elements.
Alternatively, one way to induce attributes on an
object is to rate it according to multiple criteria.
Multicriteria decision making is an important field
of operations research and decision analysis that is
concerned with the question of how to work with
multiple, possibly conflicting criteria without nec-
essarily combining them into a single value func-
tion (or more generally, a total order). See Bouys-
sou et al. (2006) for a detailed description of
techniques in this area.

Partial Orders and Qualitative Languages
The language provided by GAI value functions for
describing total orders is clearly much more con-
venient than an explicit ordering of the set of out-
comes. However, the effort required to specify
them is still too large for many applications, and
the quantitative information the users are required
to provide is typically not very intuitive for them.
Therefore, while system designers may be willing
to spend the time and effort required to specify a
value function, casual, lay users, such as shoppers
at online stores, are highly unlikely to do so.

So what properties would we like a language to
have so that lay users will feel comfortable express-

Articles

66 AI MAGAZINE

Language Algorithms

Queries

Models

Interpretation

Total weak order
of outcomes Factor values

Representation
Cost networks

o � o′ ⇔ f (g1(o[Y1]), ...) > f (g1(o′[Y1]), ...)

Figure 4. Metamodel for GAI Value Functions.

Articles

SPRING 2009 67

ing their preferences or answering preference
queries?3 First, such a language must be based
upon information that users find cognitively easy
to reflect upon and express. Second, the informa-
tion communicated in such language should be
reasonably easy to interpret. Third, the language
should allow a quick (and therefore, compact)
specification of “natural” preference orderings.
Finally, it should be possible to efficiently answer
queries about the user preferences. Considering
this list of expectations, it appears unavoidable
that such a language be based on pieces of qualita-
tive information about the model. Indeed, while
quantitative information appears much harder to
introspect upon, natural language statements,
such as “I prefer SUVs to minivans,” or “I like
vanilla,” appear quite often in our daily conversa-
tions (as opposed, say, to the “vanilla is worth $5.2
to me”).

So what types of qualitative statements of pref-
erence can we expect users to provide? One simple
class of statements corresponds to explicit com-
parison between alternatives, such as “I like this
car more than that one,” or “I prefer this flight to
that flight.” Similar statements are example-cri-
tiquing statements of the form “I want a car like
this, but in blue.” These statements are very easy to
interpret, in part because they indicate an ordering
relation between two alternative, completely spec-
ified outcomes. However, because these statements
are very specific, they provide only a small amount
of information about the preference model of the
user. Another class of qualitative preference state-
ments are generalizing statements, such as “In a
minivan I prefer automatic transmission to manu-
al transmission,” or perhaps a more extreme “I pre-
fer any red car to any blue car.” Such statements
are as natural in our daily speech as the more con-
crete comparison statements, yet they provide
much more information because a single general-
izing statement implicitly encodes many compar-
isons between concrete outcomes. Syntactically,
generalizing preference expressions take the form

where each si = ϕi Ri ψi is a single preference state-
ment, with ψi, ϕi being some logical formulas over
X; Ri ∈ {, , ∼}; and , , and ∼ have the standard
semantics of strong preference, weak preference,
and preferential equivalence, respectively.

For an illustration, the statements
s1 “SUV is at least as good as a minivan”

and
s2 “In a minivan, I prefer automatic transmission to
manual transmission”

can be written as
(Xtype = SUV) (Xtype = minivan)

and

S s sm m m m= …{ }= …{ }1 1 1 1, , , , ,ϕ ψ ϕ ψR R

(Xtype = minivan ∧ Xtrans = automatic) (Xtype = mini-
van ∧ Xtrans = manual).

By adding such generalizing statements into our
language, we facilitate more compact communica-
tion of the preference model. This benefit, howev-
er, can come with a price at the level of language
interpretation because the precise meaning that a
user puts into generalizing statements is not
always clear. While the statement “I prefer any veg-
etarian dish to any meat dish” is easy to interpret,
the statement “In a minivan I prefer automatic
transmission to manual transmission” can be
understood in numerous ways. For instance, under
what is called the totalitarian semantics, this state-
ment gets interpreted as “I always prefer a minivan
with an automatic transmission to one with a
manual transmission” (that is, regardless of the
other properties the two cars may have). While
sometimes reasonable, in general it assumes too
much about the information communicated by
the statement. Another possible interpretation is “I
prefer a typical/normal minivan with automatic
transmission to a typical/normal minivan with a
manual transmission.” Of course, we now have to
define “typical” and “normal,” a thorny issue by
itself. Yet another possible interpretation, under
what is called ceteris paribus (“all else being equal”)
semantics, is “I prefer a minivan with automatic
transmission to one with a manual transmission,
provided all other properties are the same.” This is
probably the most conservative natural interpreta-
tion of such generalizing statements, and as such,
it is also the weakest. That is, it provides the weak-
est constraints on the user’s preference model. But
because it is conservative, it is also unlikely to
reach unwarranted conclusions, which makes it
probably the most agreed-upon general scheme for
statement interpretation. However, the list of alter-
native interpretations that has been suggested in
the literature on preferences and in the area of
nonmonotonic reasoning is much longer, and the
only solid conclusion we can probably draw from
this situation is that the role of the interpretation
function becomes very important in metamodels
relying on qualitative statements of preference.

With this picture in mind, in the remainder of
this section we consider a specific instance of a
complete metamodel in which a qualitative lan-
guage is used. Specifically, we consider the lan-
guage of statements of preference on the values of
single attributes. This specific language underlies
the preference specification approach called CP-
networks (Boutilier et al. 2004a), and the compo-
nents of this metamodel instance are described in
figure 5.

The model of user preferences assumed in the
CP-networks approach is that of partial orders over
outcomes. The reason is practical. Total orders are
difficult to specify. Ultimately, to specify a total

order, we need information that allows us to com-
pare any two outcomes. That is quite a lot of infor-
mation, and generally it is unlikely that casual
users will be ready to provide it. In addition, in
practice we often don’t need to compare every pair
of outcomes. For instance, this information might
not be essential for the tasks of identifying the
most preferred outcomes, ordering reasonably well
a given set of outcomes, and so on.

The language employed in the CP-networks
approach is the language of (possibly conditioned)
preference statements on the values of single
attributes. For instance, in the statement “I prefer
black sports cars to red sports cars,” the preference
is expressed over attribute Ext-Color, with the value
of Category conditioning the applicability of the
statement only to pairs of sports cars. Formally, the
language of CP-networks consists of preferences
expressions of the form

Note that Y can be any subset of attributes
excluding the referent attribute X, and each state-
ment y ∧ xi y ∧ xj in the expression says that, in
some context captured by assigning y to Y, the val-
ue xi is preferred to xj for X.

The interpretation function used in CP-net-
works corresponds to the ceteris paribus interpre-
tation of individual statements, and then transitive

S
x x X X

x x Dom X Dom
i j

i j

⊆
∧ ∧ ∈ ⊆ { }
∈ () ∈ ()

⎧
⎨
⎪y y X Y X

y Y

 , \ ,

, ,
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

closure of the preference orderings induced by
these statements. Specifically, a statement y ∧ xi
y ∧ xj is interpreted as communicating a preference
ordering in which outcome o is preferred to out-
come o′ whenever o and o agree on all attributes in
X \ {X}, they both assign the value y to Y, and o
assigns xi to X while o′ assigns xj to X. For example,
consider the statement s1 in figure 6, which can be
written as: Xcategory = minivan ∧ Xext-color = red Xcat-

egory = minivan ∧ Xext-color = white. s1 induces the fol-
lowing preference ordering on the tuples in the
table on the top right: t1 t3 and t2 t4. These rela-
tionships follow from the ceteris paribus semantics
because both t1, t3 and t2, t4 are minivans and they
both assign the same value to all other attributes
(Int-Color in this case). However, t1’s Ext-Color is
preferred to t3’s. In contrast, t1 t4 does not follow
from s1 because t1 and t4 assign different values to
Int-Color. Considering now a set of statements as a
single coherent preference expression, the inter-
pretation function in the CP-networks approach
takes the transitive closure of the orderings
induced by each of the statements si. For example,
we saw that s1 induces t2 t4. From s4 we can sim-
ilarly deduce t1 t2 because these are two red cars
whose other attributes (Category in this case) are
the same. Thus, the preference ordering induced
by the overall expression provides us with t1 t4.

The last conceptual component of the meta-
model is the representation of the input informa-
tion. In the CP-networks approach, the preference

Articles

68 AI MAGAZINE

Language Algorithms

Queries

Models

Interpretation

Partial strict / weak order
of outcomes

Sets of statements
of (conditional) preference

over single attributes

Ceteris Paribus

Representation
CP-nets

Figure 5. Metamodel for CP-Nets.

Articles

SPRING 2009 69

expression is represented using an annotated
digraph (that gives the name to the approach). In
this digraph, nodes correspond to outcome attrib-
utes, and edges capture the conditioning structure
of the preference statements. Specifically, for each
statement y ∧ xi y ∧ xj we add an edge from each
node representing an attribute Y′ ∈ Y to the node
representing attribute X, because our preference
for X values depends on the value of Y′. Finally,
each node is annotated with all statements that
describe preferences for its value. Figure 6 depicts
the CP-network induced by statements {s1, …, s5}.
For example, because of statement s1 in which the
preference for exterior color depends on category,
Category is a parent of Ext-Color in the network. In
that figure we can also see the relevant preference
statements in the table of each node. On the low-
er right side of this figure we see the induced pref-
erence relation. Note that for clarity we introduced
only the ordering relations that follow directly
from the statements and just a few of the relations
obtained by transitive closure.

Recall that earlier we emphasized the notion of
independence. How does it come into play in CP-
networks? The answer is that it is a by-product of

the interpretation semantics. Notice how the
ceteris paribus semantics and the notion of condi-
tional preferential independence are closely relat-
ed. In both some context is fixed, and then the
order over values of some attribute set is identical
regardless of the (fixed) value of the remaining
attributes. In CP-networks, the ceteris paribus
interpretation forces the attribute associated with a
node to be preferentially independent of all other
attributes, given the value of the parent attributes.

But what does the graphical structure of CP-net-
works really buy us? While users need not be aware
of this structure, it was shown to play an impor-
tant role in computational analysis of various
queries about the preference model. First, the
graph structure helps us ensure statement consis-
tency. In general, a preference statement is incon-
sistent if it induces a cycle of strict preferences in
the preference ordering. In that case, we can prove
that o o for some outcome o. In the case of CP-
networks, we know that if the CP-net is acyclic,
then the preference statement it represents must
be consistent. Note that the acyclicity of the net-
work can be recognized in time linear in |X|—this

 category ext-color int-color
 minivan red bright
 minivan red dark
 minivan white bright
 minivan white dark
 SUV red bright
 SUV red dark
 SUV white bright
 SUV white dark

Outcome SpacePreference Expression

Preference OrderCP-net

s1 I prefer red minivans to white minivans.
s2 I prefer white SUVs to red SUVs.
s3 In white cars I prefer a dark interior.
s4 In red cars I prefer a bright interior.
s5 I prefer minivans to SUVs.

t1
t2
t3
t4
t5
t6
t7
t8

Cmv � Csuv
Er � Ew
Ew � Er

Cmv
Csuv

Ib � Id
Id � Ib

Er
Ew

category ext - color int - color

t1

t2

t3 t7 t5

t6t4 t8

Figure 6. CP-Net Example: Statements, CP-Net, Induced Preference Relation.

is probably the simplest example of a query that
can be efficiently answered by using the graphical
representation of the input expression. Second,
when the network is acyclic, we can topologically
sort its nodes. This topological ordering is a stan-
dard subroutine in various algorithms that operate
on CP-networks. For instance, this ordering can be
used to find an optimal outcome in time linear in
|X|.4 Third, it can be shown that the complexity of
comparison queries, that is, answering the query
“does o o′ hold,” varies depending on the struc-
ture of the network from polynomial time to
PSPACE-complete.

Finally, given the complexity of comparisons, it
appears that finding a preferentially consistent
total order of a given set of outcomes would be dif-
ficult as well. By a consistent total order we mean
a total order such that if o o′ holds then o will
appear before o′ in that order. Surprisingly, per-
haps, this is not the case, and we can consistently
order a set of outcomes quickly. The reason for this
is that we have more flexibility in doing this. For
two given outcomes, o, o′, a comparison query asks
whether o o′ holds. In contrast, an “ordering
query” asks for a consistent ordering of o, o′. To
order o before o′, we need only know that o o′,
which is easier to check. In fact, an ordering query
needs only establish that one of o o′ or o′ o
holds. When the CP-network is acyclic we can do
this in time linear in |X|. Of course, it is not obvi-
ous that, given that ordering two outcomes is easy,
so is ordering an arbitrary number of outcomes, as
there may be some global rather than local con-
straints involved. But fortunately, the same ideas
apply, and we can order a set of N items in O(N
log(N)|X|) time.

Altogether, we see that the graphical representa-
tion in CP-nets holds much useful information
about the induced preference order. This example
provides good evidence that representation
deserve careful attention as an important compo-
nent of the preference handling metamodel.

Further Reading
CP-nets were introduced in Boutilier et al. (2004a,
2004b) and have generated various extensions,
enhancements, and analysis, such as Wilson
(2004); Rossi, Venable, and Walsh (2004); Gold-
smith et al. (2005); and Brafman, Domshlak, and
Shimony (2006). Preference languages and logics
have been discussed by philosophers (Hansson
2001a) and AI researchers (Brewka, Niemela, and
Truszczynski 2003; Tan and Pearl 1994; Doyle and
Wellman 1994; Boutilier 1994). In fact, the best
known interpretation for nonmonotonic logics is
known as the preference semantics (Shoham
1987), and thus most nonmonotonic logics, such
as Kraus, Lehmann, and Magidor (1990);
McCarthy (1980); and Reiter (1980), can be viewed

as expressing preference statements, usually asso-
ciated with aggressive interpretations that attempt
to deduce as much information as possible.

Graphical models play an important role in
many areas of AI, most notably probabilistic rea-
soning (Pearl 1988) and constraint satisfaction
(Dechter 2003). An early use in preference model-
ing appeared in (Bacchus and Grove 1995), where
it was used to model independence in utility func-
tions. More recent models include expected-utility
networks (La Mura and Shoham 1999), which pro-
vide a model that combines preference and proba-
bilities combined, GAI-networks, which model
GAI utility functions (Gonzales and Perny 2004),
UCP-net (Boutilier, Bacchus, and Brafman 2001),
which provide a directed graphical model for val-
ue and utility functions, and CUI networks, which
build on the notion of conditional utility inde-
pendence to provide more compact representa-
tions for certain utility functions (Engel and Well-
man 2006).

Preference Compilation
So far, we have seen two general approaches to
preference specification. The more quantitative
value function-based specifications are very simple
to interpret and support efficient comparison and
ordering operations. However, they are based on
an input language that few users will find natural.
The qualitative models that utilize generalizing
statements attempt to provide users with intuitive
input expressions; however, it is not always clear
how to interpret these statements (for example, “I
like Chinese restaurants”), comparisons may be
difficult, and depending on the class of input state-
ments, ordering may be difficult too. Things can
become particularly hairy if we want to allow
diverse types of input statements. On the one
hand, this is clearly desirable, as it gives more flex-
ibility to the users. On the other hand, the inter-
pretation and interaction between heterogeneous
statements may not be easy to specify. Likewise,
developing efficient query-answering algorithms
for such heterogeneous expressions becomes much
more problematic.

Preference compilation techniques attempt to
make the best of both worlds by mapping diverse
statements into a single, well-understood repre-
sentation, notably that of compact value func-
tions. As outlined in figure 7, this mapping trans-
lates qualitative statements into constraints on the
space of possible value function. As a simple exam-
ple, if I say “car A is preferred to car B,” then this
puts a constraint on V in the form of V(A) > V(B).
Typically these constraints are consistent with
multiple value functions, and depending on the
method, we then answer queries by using one of
the consistent value functions. Note that by work-
ing with one specific consistent value function, we

Articles

70 AI MAGAZINE

Articles

SPRING 2009 71

are committing to one of many total orders that
extend the partial order described by the input;
that is, we are making additional, not necessarily
warranted, assumptions about the user’s prefer-
ence. Depending on the application and the types
of queries we want to answer, this may or may not
be appropriate. We return to this issue later in this
tutorial.

In what follows we describe two classes of tech-
niques for value function compilation. One is
more canonical, following the classical works on
conjoint measurement, whereas the other is based
on more novel ideas, as well as on some computa-
tional techniques used extensively in the area of
discriminative machine learning.

Structure-Based Compilation. One of the advan-
tages of generalizing statements is that a single
statement can express much information. Thus,
with a compact structure, such as a CP-network, we
can express much information about the ordering
of outcomes. If we were to compile a set of such
statements into an arbitrary value function, we
would lose this conciseness—we might get a struc-
ture that is exponentially large in |X|, and there-
fore expensive to store and work with. Structure-
based compilation attempts to maintain the
beneficial compact structure of input statements in
the resulting value function so that time and space
complexity remains low. Another reason for main-
taining a compact target function is that it pos-

sesses many independence properties. These prop-
erties seem desirable, as they are usually implicitly
implied by the input statements.

The general paradigm of structure-based compi-
lation works as follows. We would like to show that
some class of statements can be mapped into some
class of value functions and that this mapping can
be done efficiently. Let’s consider a very simple
example to illustrate this idea. For that, we restrict
ourselves to a simple language of unconditional
preference statements over single attributes such as
“I prefer red cars to blue cars.” Next, we specify a
target class of value functions, and in our case this
will be the class of additively independent value
functions. Note that this class of functions satisfies
the desired goal of mapping into compact value
functions—each additively independent value
function requires only O(n) space as we need to
associate a numeric value with (and only with)
every attribute value. For example, if we have an
attribute Color with values blue, red, and black, we
will have a function Vcolor associated with this
attribute and we must specify Vcolor(blue), Vcolor(red),
Vcolor(black). Finally, we must specify a mapping
from our preference expressions to the selected tar-
get class of functions. The mapping usually corre-
sponds to mapping each statement to a set of con-
straints on the value function. For example, “I
prefer red cars to blue cars” maps into Vcolor(blue) <
Vcolor(red). Once we generate the entire set of con-

Language Algorithms

Queries

Models

Interpretation

Partial strict / weak order
of outcomes

Sets of qualitative
preference statements

Representation
Compact value

functions

Compilation

Figure 7. Preference Compilation.

straints, any values for the parameters that satisfy
these constraints is a valid value function. For
example Vcolor(blue) = 10; Vcolor(red) = 15 is a valid
value function with respect to the sole statement,
as noted.

At this point we want to show that this mapping
works in general. That is, if we have a consistent
set of statements S in the given language, then
there exists an assignment to the appropriate set of
parameters that yields a value function V repre-
senting the preference order induced by S.5 For
instance, in this particular case, it is trivial to show
that given consistent orderings over the values of
individual attributes, we can come up with an
additively independent value function that is con-
sistent with these orderings. In general, represen-
tation theorems of interest usually (1) define a con-
crete class of input statements; (2) define the
structure of the resulting value function (as a func-
tion of some properties of the input statements),
and show that it is not too large; (3) prove that, for
consistent input expressions in the chosen class,
there exist value functions consistent with these
expressions and obeying the selected structure.
Finally, we also need a compilation theorem, that
is, a theorem that shows that this mapping process
can be performed efficiently.

Naturally, there are more interesting results than
the very simple example considered here. For
example, Brafman and Domshlak (2008) show that
it is possible to compile to compact GAI value
functions rather complicated, heterogeneous
expressions consisting of (1) conditional prefer-
ence statements over single attributes, for example,
“In sports car from model year 2008 and beyond, I
prefer the color red to blue,” (2) conditional state-
ments of attribute importance, for example, “Giv-
en that I’m flying in business class at night, the air-
line choice is more important than the seating
assignment,” and (3) pairwise comparisons of con-
crete outcomes, for example, “Your car is better
than mine.” The compilation scheme for this lan-
guage is already much more involved and thus we
won’t get into its detailed discussion. In general,
however, the area of structure-based preference
compilation is still largely unexplored, and we
believe that many interesting results in this direc-
tion are still to be discovered.

Structure-Free Compilation. While the amount
of concrete results on structure-based preference
compilation is still limited, it appears that the
structure-based approach has two important limi-
tations in general. The first is that a particular tar-
get structure for the value function is assumed. As
we know, such structure is intimately tied with the
notion of independence. Thus, in essence, the
structure-based approach attempts to augment the
user expression with additional independence
assumptions. These assumptions may not be valid.

They may even be inconsistent with the user’s
statements. The second limitation is that our abil-
ity to provably model heterogeneous types of state-
ments is limited. That is, the languages for which
we have representation and compilation theorems
are limited.

The two assumptions are closely related.
Because we insist on a special structure with its
related independence assumptions, we lose our
modeling flexibility, and consequently the expres-
sive power of input statements we can handle.
However, we insisted on such structure for a rea-
son—we wanted a compactly representable value
function. The structure-free compilation approach
removes the inherent independence assumptions
of the structure-based approach while maintain-
ing our ability to efficiently compute the value of
each outcome. It does this by utilizing kernel-
based methods, popular in machine learning
(Muller et al. 2001). Of course, there is no entirely
free lunch, and some other assumptions are hid-
den behind these technique—and we will try to
understand them later on.

The basic idea behind structure-free compilation
is as follows: starting with the original n attributes
X, we schematically define a much larger (expo-
nential in n) space of new attributes. These attrib-
utes, called features in what follows, correspond to
all possible combinations of attribute values. The
key property of the high-dimensional space
defined by these features is that any value function
defined in terms of the original set of attributes has
an additively independent decomposition over the
new features. The value of an outcome corresponds
to the dot product between a vector of weights,
one associated with each feature, and the vector of
feature values provided by the outcome. Comput-
ing this dot product explicitly is infeasible, as these
vectors’ length is exponential in n. However, under
certain conditions, dot products can be computed
efficiently using kernal functions, and this is exact-
ly what is exploited here. We now provide a more
detailed explanation.

The structure-free approach works by taking a
first step that is rather unintuitive—it maps the
original problem where we work with n given
attributes into a problem in which we have exp(n)
attributes. Assuming here that the attributes X are
all binary valued, the outcomes Ω described in
terms of X are schematically mapped into a space
F = R4n using a certain mapping Φ : Ω F. The
mapping Φ relates the attributes X and dimensions
of F as follows. Let F = {f1, … f4n} be a labeling of
the dimensions of F, and D = ∪i=1…n Dom(Xi) = {x1,
x1
—, … xn, xn

—}; be the union of attribute domains in
X. Let val : F → 2D be a bijective mapping from the
dimensions of F onto the power set of D, unique-
ly associating each dimension fi with a subset
val(fi) ⊆ D, and vice versa. Let Var(fi) ⊆ X denote

Articles

72 AI MAGAZINE

Articles

SPRING 2009 73

the subset of attributes “instantiated” by val(fi). For
example, if val(fi) = {x2, x3,

— x17}, then Var(fi) = {X2,
X3, X17}. Given that, for each x ∈ X and fi ∈ F,

That is, geometrically, Φ maps each n-dimen-
sional vector x ∈ X describing an outcome to the
4n-dimensional vector in F that uniquely encodes
the set of all projections of x onto the subspaces of
X. For example, suppose that we have three attrib-
utes describing cars: Color (red, blue), Category
(sedan, minivan), New (new, used). In this case, the
features fi will correspond to red, red ∧ new, sedan ∧
used, and so on, and we would map a car (red, used,
sedan) into a truth assignment to features that
assigns true to the features associated with {red},
{used}, {sedan}, {red, used}, {red, sedan}, {used, sedan},
{red, used, sedan}.

Let us now consider the compilation of prefer-
ence expressions in terms of constraints on addi-
tively independent value functions in the new
space F. Assuming here that the referents of the
statements in S correspond to propositional logic
formulas over X, consider an arbitrary comparative
statement ϕ ψ. Let Xϕ ⊆ X (and similarly Xψ) be
the variables involved in ϕ, and M(ϕ) ⊆ Dom(Xϕ)
be the set of all ϕ’s models in the subspace of Ω
defined by Xϕ. For instance, if X = {X1, …, X10}, and
ϕ = X1 ∨ X2, then Xϕ = {X1, X2}, and M(ϕ) = {x1x2, x1

—

x2, x1 x2
—}. Given that, each statement ϕ ψ is com-

piled into a set of |M(ϕ)| × |M(ψ)| linear constraints

where 2m denotes the set of all nonempty value
subsets of the local model m. For example, state-
ment (X1 ∨ X2) (¬X3) (for example, “It is more
important that the car is powerful or fast than not
having had an accident”) is compiled into

Putting together such constraints resulting from
compiling all the individual preference statements
in the expression, we obtain a constraint system C
corresponding to the entire expression S. At first
view, solving C poses numerous complexity issues.
First, though this constraint system is linear, it is
linear in the exponential space R4n. Second, the
description size of C, and, in fact, of each individ-
ual constraint in C, can be exponential in n. Inter-
estingly, it turns out that these complexity issues
can be overcome by using some duality techniques

w w w w

w w w w

w w w

x x x x x

x x x x x

x x x x

1 2 1 2 3

1 2 1 2 3

1 2 1 2

+ + >

+ + >

+ + >>w
x3

∀ ∈ () ∀ ∈ ()

>
()∈ (
∑

m m

m

ϕ ψϕ ψ

ϕ

M M

w wi j

i i j j

, .

: :f f f fval val2))∈
∑

2mψ

Φ x
x()[]= ()≠ ∧ ()⊆⎧

⎨
⎪⎪⎪

⎩
⎪

i i i1
0
,
,

val val

otherwise

f fθ

⎪⎪⎪

from optimization theory (Bertsekas, Nedic, and
Ozdaglar 2003) and reproducing kernel Hilbert
spaces (RKHS) (Kimeldorf and Wahba 1971). The
bottom line is that these techniques allow for com-
puting a solution for C (corresponding to the
desired value function V : F R), and subse-
quently computing the values of V on the out-
comes Ω, without requiring any explicit computa-
tion in R4n.6

Further Reading
The idea of finding factored value functions that
represent some preference relation is discussed at
length in Keeney and Raiffa (1976). Conjoint
measurement theory (Green and Rao 1971; Green,
Krieger, and Wind 2001) specifically considers the
problem of generating a value function describing
a user (or a population) preference based on
answers to preference queries. Most of this work
seeks an additive independent model, though
some extensions exist (Bouyssou and Pirlot 2005).
Compilation methods were investigated in AI by
McGeachie and Doyle (2004), Domshlak and
Joachims (2007), and Brafman and Domshlak
(2008). Much recent work in the machine-learning
community is devoted to rank learning problems,
where we attempt to learn a ranking function on
some input based on examples. See for example
Crammer and Singer (2003), Radlinski and
Joachims (2007), and Burges et al. (2005).

Uncertainty and Utility Functions
In our discussion so far, we assumed that our pref-
erences were over outcomes that we can obtain
with certainty. For example, when we ordered dig-
ital cameras (for example, based on their zoom,
number of mega-pixels, and cost) our implicit
assumption was that we actually have a choice
among concrete cameras. This may sound com-
pletely obvious, but consider the following situa-
tion. My company offers a new perk—each week it
will buy me a lottery ticket, but I have to choose
which lottery to participate in (for example, Cali-
fornia Lottery, Nevada, British Columbia, Upper
Saxon, and so on). So I’m faced with the following
decision problem: determine the most desirable
lottery from a set of possible lotteries. Each lottery
offers a certain set of possible prizes, and to make
things simple, we assume that the odds for each
prize are known. Alternatively, suppose that I’m
spending the weekend in Las Vegas, and I love
playing roulette-style games. I know that different
hotels have different such games with different
prizes and different odds, and I want to choose the
best place to gamble.

Gambling and lotteries may sound like insignifi-
cant applications of preference theories. It turns
out, however, that the concept of a lottery, or a
gamble, is far more general than “real” lotteries.

Basically, a lottery represents a (possibly available
to us) choice that can lead to various concrete out-
comes, but where we do not know ahead of time
which outcome will prevail. For example, consider
the problem of selecting a digital camera. If the
attributes we care about are indeed, megapixels,
zoom, and cost, then no lottery is involved
because we can directly obtain the outcome we
select. But what if we also care about reliability,
defined as length of time until the camera starts to
malfunction? Needless to say that we cannot real-
ly select the value of this attribute. Instead, we
might be able to associate with this attribute a
probability distribution over its values. Similarly,
what if what we care about in a flight is its actual
(in contrast to the published!) arrival time. Again,
we cannot select a concrete arrival time simply
because we don’t control it. What we could do is,
for example, choose the airline based on its past
record. Thus, a flight is a lottery over arrival times
(among other things), and by selecting different
flights we are selecting different lotteries. Similar-
ly, consider an actuation command sent to one of
NASA’s rovers on Mars. We don’t really know
ahead of time how it will affect the rover. This
depends on the complex dynamics of the rover
itself, the terrain, and the current weather condi-
tions on Mars. None of these parameters are
known precisely. Hence, when we choose to send
this command, we’re actually choosing a lottery
over various concrete changes of the rover’s state.

Thus, lotteries over concrete outcomes are a gen-
eral model of choice under uncertainty, that is, the
problem of choosing among actions with uncer-
tain outcomes. But this begs the question: how can
we work with preferences over such choices? Clear-
ly, if we’re able to order the set of possible lotteries,
we’re done. However, it’s really unclear how even
to approach this problem. This is where von Neu-
mann and Morgenstern’s theory of utilities (von
Neumann and Morgenstern 1947) comes in. This
seminal theory explains how we can associate a
real value with each concrete outcome—its utili-
ty—such that one lottery is preferred to another if
and only if the expected utility of its outcomes is
greater than that of the other.

This result seems magical, and in some sense it
is, but does come with a price. First, note that sim-
ply ordering the outcomes is not going to be
enough. We will have to work harder and come up
with something like a value function. However,
whereas in a value function we really care only
about the relative ordering of outcomes’ values, in
a utility function the actual value plays a signifi-
cant role. In addition, the whole technique works
only when the target ordering over lotteries satis-
fies certain properties. On the positive side, these
properties make a lot of sense; that is, you would
expect a “reasonable” decision maker to satisfy

these postulates. On the negative side, it is well
known that peoples’ orderings often do not satisfy
these properties, and a lot depends on framing
issues. There’s been a lot of work on this topic,
especially by economists, who have attempted to
come up with weaker or simply different proper-
ties (and there’s a very nice and accessible textbook
on this topic (Kreps 1988)). Here, however, we’ll
stick to the classical result.

Formally, our model here has the following ele-
ments:

Ω—Set of possible concrete outcomes

L = Π(Ω)—Set of possible lotteries (that is, probabil-
ity distributions) over Ω

L ⊆ L—Set of available lotteries over Ω (that is, pos-
sible choices or actions)

If l ∈ L and o ∈ Ω, we use l(o) to denote the proba-
bility that lottery l will result in outcome o. Our
first step will be to assume that we seek an order-
ing over the entire family Π(Ω). This makes things
simpler mathematically. The actual elicitation
technique is affected by the size of Ω only.

Our second step is to define the notion of a com-
plex lottery. Imagine that my employer has now
added a new metalottery to its list of offered lot-
teries. In this lottery, we win lottery tickets. Say,
with probability 0.4 we get a California lottery tick-
et denoted c, and with probability 0.6 we get a
Nevada lottery ticket denoted n. A fundamental
assumption we’re going to make is that this new
complex lottery, denoted 0.4c + 0.6n, is equivalent
to a simple lottery. For example, suppose the Cali-
fornia lottery gives out $1,000,000 with probabili-
ty 0.1, and nothing otherwise, while the Nevada
lottery gives out $2,000,000 with probability 0.05,
and nothing otherwise. We can transform the new
complex lottery into a simple lottery by looking at
the joint distribution. Thus, the probability that
we get $1,000,000 is 0.1 * 0.4 = 0.04; the probabil-
ity that we get $2,000,000 is 0.05 * 0.6 = 0.03 and
the probability that we get nothing is 0.93. Next,
we present the three properties that preference
over lotteries must satisfy for the von Neumann
Morgenstern theorem to hold:

Axiom 1. Order. is a Total Weak Order. For every
l, l′ ∈ L at least one of l l′ or l′ l holds.

Axiom 2. Independence/Substitution. For every
lottery p, q, r and every a ∈ [0, 1] if p q then ap +
(1 – a)r aq + (1 – a)r.

Axiom 3. Archimedean/Continuity. If p, q, r are
lotteries s.t. p q r then ∃a, b ∈ (0, 1) such that ap
+ (1 – a)r q bp + (1 – b)r.

Let’s take a closer look at each one of these
axioms. The first is pretty straightforward: We
must agree that, in principle, any two lotteries are
comparable. The second axiom is a bit harder to
parse, yet it formalizes a very intuitive assumption
about preferences over lotteries. Basically, the sec-

Articles

74 AI MAGAZINE

Articles

SPRING 2009 75

ond axiom says that if you prefer oranges at least
as much as apples then, no matter how you feel
about carrots, you’ll like a lottery that gives you an
orange with probability p and a carrot with proba-
bility 1 – p at least as much as a lottery that gives
you an apple with probability p and a carrot with
probability 1 – p. Thus, in both lotteries we get a
carrot with the same probability, but with the
remaining probability, the first lottery gives us a
more preferred outcome, and so we like it better.

To understand the third axiom imagine that you
strictly prefer oranges to apples and apples to car-
rots. Imagine that we slightly “dilute” your oranges
by making a lottery that gives you oranges with
probability 1 – a and carrots with probability a. The
axiom says that there is always (possibly very
small, but still positive) such a dilution for which
you still prefer this lottery to getting apples for
sure. It is not surprising that this is called the con-
tinuity axiom. Similarly, if we take the carrots and
only slightly improve them by giving you some
chance of getting an orange, there is always such a
prospect that is still worse than getting apples for
sure. Intuitively, this axiom is implying that noth-
ing can be too bad (for example, hell) or too good
(for example, heaven) so that just a little bit of it
could transform a good thing into an arbitrarily
bad one, or a bad thing into an arbitrarily good
one.

It turns out that these three axioms together buy
us a lot. Specifically, the von Neumann Morgen-
stern theorem states that a binary relation over L
satisfies axioms 1–3 if and only if there exists a
function U : Ω → R such that

Moreover, U is unique up to affine (= linear) trans-
formations.

U is called a utility function, and the aforemen-
tioned condition says that a lottery p is at least as
preferred as a lottery q, iff the expected utility of
the possible outcomes associated with p is as high
as the expected utility of the outcomes associated
with q.

Once again, the metamodel instantiated for the
setup of preferences over lotteries is depicted in fig-
ure 8. Note that, in practice, the existence of the
utility function should be somehow translated to a
method for obtaining that function. One way to
do that is as follows. First, we order the set of con-
crete outcomes. Because utilities are unique up to
affine transformations, we can fix an arbitrary val-
ue for the best and worst outcomes. We’ll use 1 for
the best and 0 for the worst. Next, we need to
assign a value to every other outcome. Let ob
denote the best outcome and ow denote the worst
outcome. Consider an arbitrary outcome o. The
utility of o is given by the value p determined in

p q U o p o U o q o
o o

 ⇔ () ()≥ () ()
∈ ∈
∑ ∑
Ω Ω

response to the following question: For what value
p is it the case that you are indifferent between get-
ting o for sure and a lottery in which you obtain ob
with probability p and ow with probability 1 – p.

For example, suppose that we’re ordering food.
Restaurants are characterized by two attributes:
whether they sell junk food or healthy food, and
whether the food is spicy or not. Here are the steps
we take to generate the utility function:

Step One: Order outcomes best to worst:
(unspicy, healthy) (spicy, junk food) (spicy,
healthy) (unspicy, junk food)

Step Two: Assign utility to best and worst out-
comes: U(unspicy, healty) : = 1, U(unspicy, junk
food) : = 0,

Step Three: Ask for values p and q such that (a)
(spicy, healthy) ∼ p(unspicy, healthy) + (1 –
p)(unspicy, junk food) and (b) (spicy, junk food) ∼
q(unspicy, healthy) + (1 – q)(unspicy, junk food) 4.
Assign: U(spicy, healthy) : = p, U(spicy, junk food) :
= q.

Although we see that there is a clear methodol-
ogy for assigning utilities to outcomes, it is appar-
ent that we can’t expect lay users to be able to
come up with these answers without much help.
Indeed, specifying a utility function is much hard-
er, cognitively, than specifying an ordering, and
direct utility elicitation is not likely to be very use-
ful in online setting. Current research in the area
attempts to cope with this limitation in at least
three different ways. First, it is possible to use here,
as well, the structural assumptions such as gener-
alized additive independence to decompose the
specification of complex utility functions. Second,
by using data from previous users, one can learn
about typical utility functions and later calibrate
them using information about the current user.
Finally, one can exploit knowledge about the cur-
rent decision problem to characterize only the
information about the user’s utility function
required to address the current decision problem.
We shall consider some of these issues in the next
section.

Further Reading
The theory of expected utility appeared in Jon von
Neumann and Oscar Morgenstern’s seminal book
Theory of Games and Economic Behavior (1947).
Since then, many economists have tried to provide
similar axiomatizations of choice behavior and
this topic is discussed by Kreps (1988) and Fish-
burn (1982). One of the most beautiful results in
this area is presented in Leonard Savage’s The Foun-
dation of Statistics (1972). Axiomatizations are
important because they expose the basic assump-
tions of a model. We can also check the validity of
a model by verifying, directly or indirectly,
whether a user’s preferences satisfy the relevant set
of axioms. In particular, experiments conducted by

behavioral economists show that people’s behav-
ior often violates the von Neumann and Morgen-
stern axioms (Kahneman and Tversky 1979).

Preference Elicitation
Our discussion so far has focused on models and
languages for representing preferences. Some of
the languages discussed were motivated by the
need to make the preference specification process
more rapid and more accessible to lay users. How-
ever, in many problem domains we can’t expect to
obtain perfect information about the user’s prefer-
ences because of the time and effort involved.
Thus, the first question that arises is what can we
do with partial information. Next, given that we
can expect only partial information, we would like
to obtain the most useful information possible giv-
en the user’s time and effort limitations. Thus, the
second question is how to make the elicitation
process effective.

Working with Partial Specifications
The abstract problem of working with a partial
specification has close similarities to the basic
problem of statistical machine learning, in partic-

ular to classification. In classification problems, we
must classify objects based on partial knowledge of
the true model underlying the classification. In the
standard setting of the classification problem, this
partial knowledge corresponds to a set of properly
classified objects from the space of all possible
objects. Given such partial knowledge, the process
of classification typically boils down to inferring
either a single classification model, or a (possibly
weighted) set of such models, from the space of all
models in the chosen model class. The latter set of
possible models is called a hypothesis space. Our sit-
uation is somewhat similar—our hypothesis space
corresponds to the set of all possible preference
model instances. For example, if our models are
total orders, then these would be all possible total
orders over the relevant set of outcomes. Or if our
model is some GAI value function with a particu-
lar set of factors, then the hypothesis space
includes all possible factor values. We, too, are giv-
en only partial information, and have to make
decisions based on this information only. Howev-
er, our situation with respect to the partial infor-
mation is not exactly the same as in the standard
setting of statistical machine learning. The main
difference stems from the form in which the partial

Articles

76 AI MAGAZINE

Language Algorithms

Queries

Models

Interpretation

Total weak order
over lotteries

Find optimal lottery
Order a set of lotteries
...

Representation
Utility function
U : Ω→ R

Utility function
U : Ω→ R

p � q ⇔ Σ U (o)p(o) ≥ Σ U (o)q(o)
o∈Ω o∈Ω

Figure 8. Metamodel for Utility Functions.

Articles

SPRING 2009 77

Language Algorithms

Queries

Models

Interpretation

Hypotheses
space

Hypothesis
Encoding

Decoding

Figure 9. Model Selection Process.

knowledge is obtained. In statistical machine
learning the partial knowledge is given by the
examples of the concept to be learned, and the
examples are assumed to be sampled from inde-
pendent and identically-distributed random vari-
ables reflecting the topology of the object space. In
contrast, our partial knowledge is typically given
by a set of more global constraints on the original
hypothesis space, with the constraints correspon-
ding to some restrictions on values, some relation-
ships between attractiveness of outcomes, general-
izing statements, and so on. In that sense, while
being very similar to the inference process in sta-
tistical machine learning, our inference process is
closer to more general settings of inference via con-
straint optimization such as, for example, infer-
ence about probability distributions in Shore and
Johnson (1980).

Figure 9 relates this discussion and the concepts
involved to our metamodel. When we have a com-
plete specification, the inference process leaves us
with a single model, as shown in figure 10. How-
ever, in most practical situations, multiple models
are consistent with the data, and we must specify
how information is mapped into the model space.
One of the basic choices we must make is whether
a prior distribution is defined over the hypothesis
space or not.

The Maximum-Likelihood Approach. Suppose
we have a prior distribution over models. In many
situations, this is quite natural. Consider, for exam-
ple an e-commerce site visited by many con-
sumers. As data from multiple users accumulates,
the site can form a reasonable probabilistic model
of user preferences. This distribution can be used as
a prior over the hypothesis space. Now, two stan-
dard models for selecting model parameters can be
used. In the maximum-likelihood method, we start
with a prior distribution over the preference mod-
els and update this distribution using the user
statements. Typically, the user statements simply
rule out certain models, and the probability mass is
divided among the remaining models. At this
point, the most likely model consistent with the
user statements is selected and used for the deci-
sion process.

For example, suppose that we are helping the
user select a digital camera and the user cares only
about two features: number of megapixels M, and
its weight W. Suppose that our hypothesis class
contains only additive value functions of the form
cm · M + cw · W. We have a prior distribution pm,w
over cm and cw. Suppose that all we know is that the
user prefers some camera with parameters (m1, w1)
to another camera with (m2, w2). From this we can
conclude that cmm1 + cww1 > cmm2 + cww2, that is,

cm(m1 – m2) > cw(w2 — w1). The value function
selected according to the maximum-likelihood
principle will have the coefficients cm, cw such that:

Let’s consider some of the models we discussed
earlier in light of the maximum-likelihood
approach, starting with CP-nets. One of the special
features of CP-nets is that there is always a default
model—namely, the model that satisfies all and
only the preference relations derived from the
input statements. Thus, in CP-nets, the prior dis-
tribution could be any distribution, while the pos-
terior distribution over partial orders is

Evidently, this is not a very interesting application
of the maximum-likelihood principle.

Next, consider the structured value function
compilation. Suppose that p(V) is our prior distri-
bution over value functions. Then, the posterior
distribution is obtained by removing elements that
are inconsistent with the constraints and renor-
malizing (that is, doing standard probabilistic con-

p

∼()
1,

assumes all and only

all the information in

otherwise

N

0,

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

c c

p c c

c m m

c

m w c c

m w m w

mm w

* *
,

,

,

, :

()=
()(
−()>()argmax 1 2

ww w w2 1−())

ditioning). The situation with the structureless val-
ue compilation approach is the same, except that
it requires a concrete prior

where w is the vector of coefficients of a high-
dimensional linear value function. The picture we
have in both of the compilation approaches can be
illustrated in figure 11. That is, we start with a large
weighted hypothesis space (that is, a prior distribu-
tion over models), obtain information from the
user that usually rules out some of the models, end-
ing up with a subset of the original hypothesis
space, from which we need to select a single mod-
el—the model with highest weight, possibly requir-
ing some other selection criteria to break ties.

The Bayesian Approach. The Bayesian approach
is identical to the maximum-likelihood approach,
except that instead of selecting the most probable
model and answering queries using it, this method
maintains the entire posterior probability distribu-
tion and uses all models to answer a query, weight-
ed by their respective probability. Thus, consider-
ing the picture above, we work with the entire
intermediate purple set, but giving different weight
to different elements.

As a simple example, let O be a set of total
orders—our hypothesis space—and let p : O → [0,
1] be the posterior distribution over O obtained
after updating our prior with the user’s input. Sup-

p eV wv() −∼
2

Articles

78 AI MAGAZINE

Utility function

Total orderings
over outcomes

Single ordering

Total orderings
over lotteries

Value function

Single ordering

Figure 10. Selection With Full Information.

Articles

SPRING 2009 79

pose that we want to answer the query “o1 ≺ o2?”
We answer positively if p({≺ ∈ O : o1 ≺ o2}) >
p({≺ ∈ O : o1 o2}). That is, we check whether p
places more weight on models in which o1 is less
preferred than o2 than on models in which this is
not the case.

Although conceptually elegant, the Bayesian
approach often requires the specification of anoth-
er element to answer queries. The problem is that
it is not always clear how to use the posterior prob-
ability to answer queries. For example, suppose we
seek an optimal outcome. One approach we might
take would be to assign to each outcome the sum
of probabilities of all models in which this out-
come is ranked highest, and return the outcome
with the highest score. Thus, intuitively, the total
value associated with an outcome is the probabili-
ty that it is the best one.

Now, imagine that we have n possible outcomes,
and our posterior model puts all of its weight on n
– 1 equally likely different orderings. The top ele-
ment in each of these orderings is different, but the
second element is always the same outcome o.
Thus, o’s weight in this case would be 0, but intu-
itively it appears to be the best choice. To address
this problem we can add a scoring function. The
scoring function assigns a score to each possible
answer within each model. The best answer is then
the one with the highest expected score. In this
example, we implicitly used a score of 1 for an the

outcome ranked highest and 0 for all other out-
comes. We could have used a different score, such
assigning n – j + 1 to the outcome ranked jth,
obtaining a different result.

Let’s consider the earlier example of the pur-
chase of a digital camera. Recall, we have a distri-
bution pm,w over cm and cw, and a constraint due to
our single observation that cm(m1 – m2) > cw(w2 –
w1). Let’s use mC and wC to denote the number of
megapixels and the weight of some camera C. The
score associated with camera C in a particular mod-
el with coefficients cm, cw is cmmC + cwwC. Thus, the
expected score of a camera is

where α is some normalizing constant. Thus, the
best camera is the one that maximizes this value,
that is,

A natural scoring function when our hypothesis
class if utility functions is the utility of an out-
come. Consider the case of a probability distribu-
tion over utility functions, and suppose we seek
the optimal choice. Each choice is associated with

α p c c

c m c

m w m w
c c c m m c w w

m C w

m w m w
,

, :
,()

+

−()> −(){ }∫ 1 2 2 1

ww dc dcC m w() ,

arg max ,,
, :

c m w m w
c c c m m c

p c c
m w m

is a camera ()
−()>1 2 ww w w

m C w C m wc m c w dc dc
2 1−(){ }∫

+() .

V

S = {s1, . . . ,sm}

Possible Models

Interpretation

Representation

Figure 11. Model Selection in Value Function Compilation.

a value in each model—its expected utility within
that model. But we also have a distribution over
models; thus, we can use the expected expected
utility, that is, replacing

with

Regret-Based Scores. Although prior distributions
over preference models are natural in some cases,
they are difficult to obtain in others. Without
them, we need to replace the notion of the “most
probable model” by some notion of “best” model.
One attractive way to do this is using the concept
of regret.

Again, suppose that our target class is the class of
value or utility functions. We have a set of possible
candidates, as in the structure-based compilation
approach, and we need to select one. Suppose the
the user’s true (and unknown) value function is V,
and suppose that we select some function V*. How
bad can this be? This depends on V, V*, and the
query we are trying to answer. Suppose that we are
trying to find the most preferred outcome. If both
V and V* have the same most preferred outcome,
then we’re very happy. But suppose that o is the
most preferred outcome according to V, and o* is
the most preferred outcome according to V*. In
that case, we’re going to recommend o* to the user,
instead of o. How unhappy would this make the
user? Well, the user values o at V(o) and o* at V(o*),
so we could quantify the user’s regret at getting o*
instead of o by V(o) – V(o*). Thus, we can also view

p q U o p o U o q o
o o

 ⇔ () ()≥ () ()
∈ ∈
∑ ∑
Ω Ω

p q p U U o p o

p U U o q o
U o

U o

 ⇔ () () ()

≥ () () ()

∑ ∑

∑ ∑
∈

∈

Ω

Ω

.

this as the regret associated with selecting V*
instead of V.

As an example, consider table 1 of value func-
tions for a domain with four possible outcomes.
Suppose that V1 is the true value function, but we
select V2. V2 assigns the highest value to o1. The
true value of o1 is 1. The true optimal value is 4,
assigned to o4. Our regret is thus 4 – 1 = 3.

When we select V* as the value function, we
don’t know what the true value function V is, so
we can’t compute V (o) - V (o*). A cautious estimate
would consider the worst case scenario. This is
called the maximal regret. More formally, if V is the
set of candidate value functions, then

Regret(V*|V) = maxV∈V(V(argmaxo V(o)) – V(argmaxo′
V*(o′))),

that is, the worst case across all choices of V of the
difference between the value according to V of the
best V outcome and the best V* outcome. For
instance, considering our example above we see
that our maximal regret at having chosen V2
would be if the true value function is V1. Given the
notion of regret, an obvious choice of a value func-
tion among the set of alternative possible values
functions is the one that minimizes regret. Specifi-
cally, the minmax regret value function Vmr satis-
fies

Vmr = argminV∈V Regret(V|V).

In our example, V3 and V4 minimize max regret
because we can see that the maximal regret associ-
ated with V1, V2, V3, V4 is 3, 3, 2, 2, respectively.
Thus, V4 would be a choice that minimizes regret.
Notice that in our case, this is equivallent to saying
that selecting outcome o3 is the choice that mini-
mizes regret. Indeed, rather than talk about the
regret associated with a value function, we can
simply (and more generally) talk about the regret
associated with a particular answer to the query at
hand. This regret is a function of the set of candi-
date value functions.

Regret-based criteria can be used in different
contexts. When a probability distribution over
possible models is not given, we can use minmax
regret to select a single model or select an optimal
answer. When a probability distribution over mod-
els is available, we still need to associate a score
with each possible answer to a query. The maximal
regret can be used to score an answer in a model,
and expected regret can be used to rate different
answers. Thus, in our above example, if we associ-
ate a distribution of (0.5, 0.1, 0.1, 0.3) with {V1, V2,
V3, V4}, we can compute the expected regret asso-
ciated with each outcome. For example, the regret
associated with the choice o1 is 3, 0, 2, 2. Taking
expectation, we obtain 2.3.

Finally, a word of caution. Although minmax
regret is an intuitive choice criterion, its semantics
is problematic, as there is no clear meaning associ-
ated with measures of difference in value or utility,

Articles

80 AI MAGAZINE

V1 V2 V3 V4

o1 1 4 2 2
o2 2 3 4 3
o3 3 3 3 4
o4 4 1 1 3

Table 1. Four Feasible Value Functions over Four Outcomes.

Articles

SPRING 2009 81

except for special cases of what are known as meas-
urable value functions (Krantz et al. 1971). Thus, it
is best thought of as an intuitive heuristic method.

Preference Elicitation
Our discussion so far on preference specification
took a user-driven perspective—the information
flow was considered to be unidirectional: from the
user to the system. Under the assumption of even-
tual acquisition of the complete model of user pref-
erences there is no real difference between purely
user-driven and mixed-initiative preference speci-
fication. This is not the case, however, with partial
model acquisition, and in what follows we consid-
er preference specification in that setting more
closely.

Clearly, if we can get only part of the model,
then which part we get is quite important. In fact,
to answer certain queries accurately, a partial mod-
el suffices, provided it has the right information.
Preference elicitation is a process driven by the sys-
tem that aims at improving the quality of the
information it has about the user’s preferences
while decreasing the user’s cognitive burden as
much as possible.

The main benefit of the system-driven setting is
that questions can be asked sequentially and con-
ditionally. The questions we ask at each point take
into account the answers we received earlier, as
well as the query. There are a number of ways to
approach this problem. When, as often is the case,
the task is to recognize an optimal outcome of
interest, k-item queries are often used. In this case,
the user is shown k alternative choices and is asked
either to select the best one among them or to rank
them. When the user selects an item out of k, he or
she is basically giving an answer to k – 1 explicit
comparisons (that is, telling us that the chosen
outcome is at least as preferred as the k – 1 other
outcomes). Each such answer eliminates all order-
ings inconsistent with these answers.

A simple way of implementing this approach is
by considering all possible total orders as possible
hypotheses, and then ruling them out as informa-
tion is obtained. For example, if the choice is
among five items o1, …, o5 and k = 2, we simply ask
the user to compare pairs of items. If, for example,
the user indicates that o2 o3 and o1 o4, order-
ings of the form …, o4, …, o1, …. and …, o3, …, o2
…. are eliminated.

However, this is a slow process that is likely to
require many iterations. A more efficient process
utilizes a smaller hypothesis space, for example,
one that is based on some GAI-decomposition. In
that case, each query farther constrains the possi-
ble values of the value function factors, and some
generalization is taking place; that is, one can rule
out additional orderings. For example, suppose
that a vacation choice depends on two attributes,

location and facility, and I learned that the user
prefers a spa in Barcelona to a spa in Madrid. With-
out farther assumptions, only orderings that are
inconsistent with this choice can be ruled out.
However, if we assume that the value function is
additive, or if we assume preferential independ-
ence, then we can also rule out orderings in which
a rented apartment in Madrid is preferred to an
otherwise similar apartment in Barcelona.

The aforementioned process appears somewhat
ad hoc, and a more principled approach is desir-
able. In particular, even if we decide to use k-item
queries, it is not clear how to select which query to
ask. This problem can be approached from a deci-
sion-theoretic perspective. As we noted earlier,
preference elicitation is a sequential process. We
start with some target query and (possibly empty)
knowledge of the agent’s preferences and we can
ask the user various questions. Typically, we don’t
know ahead of time how many questions the users
will agree to answer, and so we must have a
response to the original query at each point.

To have a well-posed sequential decision prob-
lem we need to model the state of the system and
to have a valuation for alternative states as a start.
The most natural way to model the system’s state
is in terms of some beliefs over a set of possible
preference ordering. This takes us back to issues we
considered in the context of partial models. In that
setting, too, we needed to represent a set of possi-
ble models, possibly with some probability distri-
bution defined over them, and to assign a valua-
tion to each such set. The same answers we gave
there can be used here, too. Thus, the system’s state
could be modeled as a set of possible orderings or
value functions. We can farther refine this model
by introducing a distribution over preference mod-
els to capture our uncertainty. The value of a mod-
el depends on the query at hand, but again, con-
sidering the problem of optimal choice, we can use
measures such as expected utility loss or maximal
regret.

At this point, we can start using standard ideas
from decision theory to analyze the problem of
preference elicitation. Let’s start with a context in
which we can pose a single preference query. What
is the most appropriate query? This problem is
analogous to the problem of selecting an observa-
tion in a decision context. That is, we have some
beliefs about the current state of the world and we
need to make a decision. The value of this decision
depends on the actual state of the world, yet before
we make the decision, we can observe the value of
some feature of the current state. Which feature
should we observe?

The answer given in decision theory is that we
should compute the value of information associat-
ed with each feature we could observe, and observe
the feature with maximal value of information.

The value of information of a feature is a measure
of how much “happier” we would be if we learned
the value of this feature. Considering a setting
where our beliefs are captured using a distribution
p over the state of the world, the value of informa-
tion of feature f is computed as follows: Let s
denote some state of the world, and let V(s, a)
denote the value of doing a at state s. Recall that
for us s would denote some preference model, and
a would be a possible query, such as “what is the
best item?” Given the distribution p, V(p, a) is the
expected value of a according to p, that is, Ep[V(s,
a)]. Let ap denote the action with the highest
expected value, that is, ap = argmaxa Ep[V(s, a)].
Now we can define the value of query q given belief
state p. Suppose that q has k possible answers, r1,
…, rk. Let pi denote the probability p conditioned
on ri. Let ai denote the best action according to pi.
The value of information of query q is

VI(q) = Σi p(ri)V(pi, ai) – V(p, a).

Thus, the value of a query is some aggregate of the
value of the world after we get an answer to that
query. The value of the world, in our case, would
be how happy we would be making the best deci-
sion in that world. For example, when we assume
a probability distribution over possible preference
models, and we evaluate such a distribution in
terms of its minmax regret value, then the best
query is the one that will minimize the expected
minmax regret value of the resulting state.

We illustrate these ideas using the example we
used earlier. Consider the four possible value func-
tions over four objects as in table 1. Our current
beliefs are: pr(V1) = 0.5, pr(V2) = 0.1, pr(V3) = 0.1,
pr(V4) = 0.3. The score we give each outcome in
each state is simply its value. In our current state
(as captured by our current beliefs) the outcomes
have the following expected values: 1.7, 2.3, 3.3,
3.1. Thus, the best choice is o3 with value 3.3. Sup-
pose that we can ask a query of the form: “what is
the value of outcome o?” and let’s see what is the
value of asking: “what is v(o4).” There are 3 possi-
ble answers, with the following probabilities
according to our current beliefs: 4 with probability
0.5, 1 with probability 0.2, and 3 with probability
0.3. If we get the answer “v(o4) = 4” then we con-
clude that V1 is the only possible value function.
The best action at that point (that is, the best
answer to the query) would be to choose o4 with a
value of 4. If we learn that “v(o4) = 1” then our pos-
terior belief will assign V2 and V3 probability of 0.5
each. At this point, the best action or answer
would be o2 with expected value of 3.5. Finally, if
we learn that “v(o4) = 3” we conclude that the val-
ue function is V4 and choose o3 and obtain a value
of 4. We can now compute the expected value of
our state following the observation of v(o4), that is,
0.5 ⋅ 4 + 0.2 ⋅ 3.5 + 0.3 ⋅ 4 = 3.9. Thus the value of
query “what is v(o4)” is 3.9 – 3.3 = 0.6. You can ver-

ify for yourself that this query has the highest val-
ue of information (among queries of this struc-
ture).

In the aforementioned example we assumed a
distribution over possible models. However, simi-
lar ideas (though perhaps less well founded) can be
applied when do not use a prior. In that case, a nat-
ural metric is minimal regret loss. Asking, as above,
for the value of o4, if we learn that it is 4 or that it
is 3, we know the precise value function. In that
case, our regret is 0. If we learn that v(o4) = 1, then
both V2 and V3 are possible. In that case, our min-
imal regret is 1 (obtained by suggesting item o2).
Thus, recalling from an earlier discussion that our
minimal regret when all four value functions were
possible was 2, the minimal regret loss associated
with the question “what is v(o4)” is 2 – 1 = 1.

Using the idea of value of information, we can
decide which query to asks, but this answer has
two weaknesses. It deals with a single query, rather
than a sequence of queries, and it ignores the cog-
nitive effort required to answer this query. For both
problems we can use well-known solutions from
decision theory. The second problem is relatively
easy to deal with, provided we have some way of
assigning cost to each query. Then, rather than talk
about value of information, we can talk about net
value of information (NVI), where

NVI(q) = VI(q) – Cost(q).

For the first problem there are two standard solu-
tions. The first is to act greedily, or myopically, and
always pose the query with maximal NVI. This
myopic behavior might not lead to an optimal
sequence. For example, suppose we have two
queries to ask. There may be one query that has
large VI, say 1, and high cost, say 0.4, but follow-
ing which, most queries have little value, almost 0.
On the other hand, there is a query with moderate
VI, say 0.5, but no cost, following which we can
pose another similar query. However, it is compu-
tationally relatively cheap to compute the myopic
selection. The other option is to try to compute the
optimal sequential choice. Typically, this requires
knowing the number of queries ahead of time
(although this can be overcome) and while an opti-
mal querying strategy results, the computational
costs are exponential in the number of steps.

Finally, there is a very elegant model that cap-
tures all the above considerations nicely, although
it comes with a heavy computational price tag.
According to this model, the problem of preference
elicitation is best modeled using a partially observ-
able Markov decision process (POMDP). A POMDP
has four key elements: a set S of possible states of
the world, a set A of possible actions, a set Ω of pos-
sible observations, and a reward function R. Intu-
itively, we are modeling a decision maker that at
each decision point can select an action from A.
This action affects the state of the world, but that

Articles

82 AI MAGAZINE

Articles

SPRING 2009 83

state is not directly observable to the agent.
Instead, the agent can observe an element in Ω,
which is a possibly noisy feature of the current
state. Actions can have cost or generate rewards,
and that cost or reward may depend on the state of
the world in which they are executed. Because the
agent cannot directly observe the state of the
world, what it does observe induces a distribution
over the state of the world, called its belief state.

The POMDP framework is really perfect for mod-
eling the intricacies of the elicitation process. The
possible states of the world correspond to possible
preference models in our hypothesis space, for
example, value functions, or value functions with
a particular factorization. The actions can be divid-
ed into two types: queries, which model the
queries we can ask the agent, and actions, which
can be used to model the actions we will eventual-
ly take on behalf of that agent. These actions could
model a final selection of an item of choice, or they
could model more intricate choices that the system
might face whose evaluation requires knowledge
of the agent’s value function. The observations cor-
respond to responses the user might make to the
system’s queries. Finally, the reward function mod-
els the cost of some of the queries (capturing their
cognitive cost, for example) and the possible value
to the agent of actions such as selecting one par-
ticular item. Naturally, the value of an item
depends on the agent’s preferences, that is, on the
current state of the world. We can also model the
probability that the agent will no longer agree to
answer questions by adjusting the state space.
Once a POMDP model is formulated, there are
standard techniques for solving it. However, exact
solution methods are impractical, and approxi-
mate solution methods work well for only moder-
ately large state spaces. Thus, to apply this idea, we
will have to limit ourselves to a few hundreds of
possible preference models, at least if we are to rely
on the current state of the art.

Starting with an initial belief state, that is, a dis-
tribution over the preference models, the policy
generated by solving the POMDP will tell us what
query to ask next. In some precise sense, this is the
best query we could ask at this point taking all
issues into consideration. Once the agent responds
to this query, our distribution over models will be
updated, and again, we can use the model to
decide on our next query.

A good preference elicitation strategy balances
the expected effort required by the user with the
expected quality of the final choice made by the
system based on the user’s responses. The POMDP
model is the theoretically best motivated, but the
other options can also lead to good strategies. Mak-
ing these approaches practical is an ongoing
research issue that involves many aspects of the
problem. These start with modeling the initial

belief state. This initial distribution is often
obtained by learning the preferences of a large
population of users. Next, there is the problem of
representing this distribution compactly. In gener-
al, the number of possible preference models is
very large, thus, some parametric model is desir-
able. Next, there is an issue of modeling the cogni-
tive burden of each query. Finally, computational
techniques for obtaining approximately optimal
elicitation strategies are needed. For example, the
preference elicitation POMDP has special structure
and properties that could be exploited by the solu-
tion algorithm.

Further Reading
Preference elicitation and value of information
have been first studied in the areas of decision
analysis and psychology, where they remain a top-
ic of great importance (Tversky 1972, Keeney and
Raiffa 1976, Howard and Matheson 1984, French
1986). This line of research has been extended in
artificial intelligence, with a focus on automating
the process of preference elicitation (Ha and Had-
dawy 1997, 1999; Torrens, Faltings, and Pu 2002;
Pu and Faltings 2004; Faltings, Torrens, and Pu
2004; Braziunas and Boutilier 2005; Payne,
Bettman, and Johnson 1993; Smith and McGinty
2003). Casting preference elicitation for policy
optimization as a properly defined decision process
was first suggested in the papers by Chajewska,
Koller, and Parr (2000); Chajewska et al. (1998),
and then extended in Boutilier (2002), which sug-
gested the POMDP-based formulation. Preference
elicitation under the minmax-regret model selec-
tion criterion has been studied in Boutilier et al.
(2006) and Braziunas and Boutilier (2007). Note
that here our discussion is focused on handling
user preferences in “single-agent” settings; for an
overview of recent works on preference elicitation
in multiagent settings such as in (combinatorial)
auctions see Sandholm and Boutilier (2006).

Conclusion
The importance of preference handling techniques
for many areas of artificial intelligence and deci-
sion support systems is apparent. This area poses
conceptual challenges, cognitive challenges, com-
putational challenges, and representational chal-
lenges. A large body of work on this topic has accu-
mulated. But there is ample room for additional
ideas and techniques. Indeed, aside from the clas-
sical work of von Neuman and Morgenstern and
techniques in the area of conjoint measurement
theory, which basically deal with eliciting the val-
ue of additive value functions, most of the ideas
described in this tutorial have yet to filter to real-
world applications.

In this context, it is important to recall our three

rough categories of applications. In the case of the
online consumer world, we believe the technology
for more sophisticated online sales assistants is
ripe. Although it may perhaps not be universally
applicable, we believe that there are markets in
which more sophisticated online assistants would
be highly appreciated. Naturally, many issues
affect their acceptance beyond the sheer power of
the preference elicitation technology they provide.
In the case of application design, we believe that
more work on tools and much education are
required for ideas to filter through. Finally, in the
area of decision analysis, some techniques for bet-
ter elicitation of GAI utility functions, a well as
qualitative techniques for preparatory analysis,
could play an important role.

Acknowledgements
We would like to thank Alexis Tsoukiàs for useful
discussions and detailed comments. Partial support
for Ronen Brafman was provided by the Paul
Ivanier Center for Robotics Research and Produc-
tion Management, by the Lynn and William
Frankel Center for Computer Science. Partial sup-
port for Carmel Domshlak was provided by BSF
Award 2004216 of United States–Israel Binational
Science Foundation. Both authors are supported by
COST Action IC0602.

Notes
1. For readers familiar with decision theory, this term
comes with some baggage, and so we will note that at this
stage, we focus on choice under certainty.

2. One possibility is to elicit only a partial model and use
it to answer queries. See Working with Partial Specifica-
tions.

3. Note that the term preference query denotes queries
made to users regarding their preferences, while just
queries denote the questions we wish to answer using the
preference model.

4. When the CP-net is fully specified, that is, an ordering
over the domain of each attribute is specified for every
possible assignment to the parents, we know that a sin-
gle most preferred assignment exists. When the CP-net is
not fully specified, or when we have additional hard con-
straints limiting the feasible assignments, then a number
of Pareto-optimal assignments may exist—that is, assign-
ments o such that for o o′ for any other feasible o′.
5. Note that, technically, a concrete representation theo-
rem would require some definition of consistency at the
level of the input statements.

6. Presenting the computational machinery here is sim-
ply infeasible, and thus the reader is referred to Domsh-
lak and Joachims (2007).

References
Agrawal, R., and Wimmers, E. L. 2000. A Framework for
Expressing and Combining Preferences. In Proceedings of
the ACM SIGMOD International Conference on Management
of Data, 297–306. New York: Association for Computing
Machinery.

Arrow, K. J., and Raynaud, H. 1986. Social Choice and Mul-
ticriterion Decision Making. Cambridge, MA: The MIT
Press.

Bacchus, F., and Grove, A. 1995. Graphical Models for
Preference and Utility. In Proceedings of the Eleventh Annu-
al Conference on Uncertainty in Artificial Intelligence, 3–10.
San Francisco: Morgan Kaufmann Publishers.

Bertsekas, D.; Nedic, A.; and Ozdaglar, A. 2003. Convex
Analysis and Optimization. Nashua, NH: Athena Scientific.

Birkhoff, G. 1948. Lattice Theory, volume 25. Providence,
RI: American Mathematical Society.

Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; and Verfaillie, G. 1999. Semiring-Based CSPs and Val-
ued CSPs: Frameworks, Properties, and Comparison. Con-
straints 4(3): 275–316.

Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
Based Constraint Solving and Optimization. Journal of the
ACM 44(2): 201–236.

Boutilier, C. 1994. Toward a Logic for Qualitative Deci-
sion Theory. In Proceedings of the Third Conference on
Knowledge Representation (KR–94), 75–86. San Francisco:
Morgan Kaufmann Publishers.

Boutilier, C. 2002. A POMDP Formulation of Preference
Elicitation Problems. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence, 239–246.
Menlo Park, CA: AAAI Press.

Boutilier, C.; Bacchus, F.; and Brafman, R. 2001. UCP-Net-
works: A Directed Graphical Representation of Condi-
tional Utilities. In Proceedings of the 17th Annual Confer-
ence on Uncertainty in Artificial Intelligence, 56–64. San
Francisco: Morgan Kaufmann Publishers.

Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004a. CP-nets: A Tool for Representing and
Reasoning about Conditional Ceteris Paribus Preference
Statements. Journal of Artificial Intelligence Research 21:
135–191.

Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004b. Preference-Based Constrained Opti-
mization with Cp-Nets. Computational Intelligence (Special
Issue on Preferences in AI and CP) 20(2): 137–157.

Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans,
D. 2006. Constraint-Based Optimization and Utility Elic-
itation Using the Minimax Decision Criterion. Artificial
Intelligence 170(8–9): 686–713.

Bouyssou, D., and Pirlot, M. 2005. Following the Traces:
An Introduction to Conjoint Measurement without Tran-
sitivity and Additivity. European Journal of Operational
Research 163(2): 287–337.

Bouyssou, D.; Marchant, T.; Pirlot, M.; Tsoukias, A.; and
Vincke, P. 2006. Evaluation and Decision Models with Mul-
tiple Criteria: Stepping Stones for the Analyst. Berlin:
Springer.

Brafman, R. I., and Domshlak, C. 2008. Graphically Struc-
tured Value-Function Compilation. Artificial Intelligence
172(2–3).

Brafman, R. I.; Domshlak, C.; and Shimony, S. E. 2006.
On Graphical Modeling of Preference and Importance.
Journal of Artificial Intelligence Research 25: 389–424.

Braziunas, D., and Boutilier, C. 2005. Local Utility Elici-
tation in GAI Models. In Proceedings of the Twenty-first
Conference on Uncertainty in Artificial Intelligence, 42–49.
Arlington, VA: AUAI Press.

Articles

84 AI MAGAZINE

Articles

SPRING 2009 85

Braziunas, D., and Boutilier, C. 2007. Minimax Regret
Based Elicitation of Generalized Additive Utilities. In Pro-
ceedings of the Twenty-third Conference on Uncertainty in
Artificial Intelligence, 25–32. Arlington, VA: AUAI Press.

Brewka, G.; Niemela, I.; and Truszczynski, M. 2003.
Answer Set Optimization. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence. San
Francisco: Morgan Kaufmann Publishers.

Burges, C. J. C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds,
M.; Hamilton, N.; and Hullender, G. N. 2005. Learning to
Rank Using Gradient Descent. In Proceedings of the Inter-
national Conference on Machine Learning, 89–96. New York:
Association for Computing Machinery.

Chajewska, U.; Getoor, L.; Norman, J.; and Shahar, Y.
1998. Utility Elicitation As A Classification Problem. In
Proceedings of the Fourteenth Annual Conference on Uncer-
tainty in Artificial Intelligence, 79–88. San Francisco: Mor-
gan Kaufmann Publishers.

Chajewska, U.; Koller, D.; and Parr, R. 2000. Making
Rational Decisions Using Adaptive Utility Elicitation. In
Proceedings of the Seventeenth National Conference on Artifi-
cial Intelligence, 363–369. Menlo Park, CA: AAAI Press.

Chen, L., and Pu, P. 2007. Preference-Based Organization
Interface: Aiding User Critiques in Recommender Sys-
tems. In Proceedings of the Eleventh International Conference
on User Modeling, 77–86. Berlin: Springer-Verlag.

Chomicki, J. 2002. Querying with Preferences Intristic. In
Proceedings of the Eighth International Conference on Extend-
ing Database Technology, 34–51, LNCS 2287. Berlin:
Springer.

Crammer, K., and Singer, Y. 2003. A Family of Additive
Online Algorithms for Category Ranking. Journal of
Machine Learning Research 3: 1025–1058.

Davey, B. A., and Priestley, H. A. 2002. Introduction to Lat-
tices and Order. Cambridge, UK: Cambridge University
Press.

Debreu, G. 1954. Representation of a Preference Order-
ing By A Numerical Function. In Decision Processes, ed. R.
Thrall, C. Coombs, and R. Davis, 159–166. New York:
John Wiley.

Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.

Domshlak, C., and Joachims, T. 2007. Efficient and Non-
parametric Reasoning Over User Preferences. User Model-
ing and User-Adapted Interaction (Special issue on Statisti-
cal and Probabilistic Methods for User Modeling).17(1-2):
41–69.

Doyle, J. 2004. Prospects for Preferences. Computational
Intelligence 20(2): 111–136.

Doyle, J., and Thomason, R. H. 1999. Background to
Qualitative Decision Theory. AI Magazine 20(2): 55–68.

Doyle, J., and Wellman, M. 1994. Representing Prefer-
ences as Ceteris Paribus Comparatives. In Decision-The-
oretic Planning: Papers from the AAAI Spring Sympo-
sium, 69–75, AAAI Technical Report SS-94-06. Menlo
Park, CA: AAAI Press.

Engel, Y., and Wellman, M. P. 2006. CUI Networks: A
Graphical Representation for Conditional Utility Inde-
pendence. In Proceedings of the Twenty-First National Confer-
ence on Artificial Intelligence. Menlo Park, CA: AAAI Press.

Faltings, B.; Torrens, M.; and Pu, P. 2004. Solution Gen-
eration with Qualitative Models of Preferences. Interna-

tional Journal of Computational Intelligence and Applications
7(2): 246–264.

Fishburn, P. C. 1969. Utility Theory for Decision Making.
New York: John Wiley & Sons.

Fishburn, P. 1974. Lexicographic Orders, Utilities, and
Decision Rules: A Survey. Management Science 20(11):
1442–1471.

Fishburn, P. C. 1982. The Foundations of Expected Utility.
Dordrecht, Holland: Reidel.

Fishburn, P. 1999. Preference Structures and Their
Numerical Representations. Theoretical Computer Science
217(2): 359–383.

French, S. 1986. Decision Theory. New York: Halsted Press.

Gajos, K., and Weld, D. 2005. Preference Elicitation for
Interface Optimization. In Proceedings of the Eighteenth
Annual ACM Symposium on User Interface Software and
Technology (UIST). New York: Association for Computing
Machinery.

Goldsmith, J.; Lang, J.; Truszczynski, M.; and Wilson, N.
2005. The Computational Complexity of Dominance
and Consistency In CP-nets. In Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence,
144–149. Menlo Park, CA: AAAI Press.

Gonzales, C., and Perny, P. 2004. GAI Networks for Utili-
ty Elicitation. In Proceedings of the Ninth International Con-
ference on the Principles of Knowledge Representation and
Reasoning, 224–234. Menlo Park, CA: AAAI Press.

Green, P. E., and Rao, V. R. 1971. Conjoint Measurement
for Quantifying Judgmental Data. Journal of Marketing
Research 8: 355–363.

Green, P. E.; Krieger, A. M.; and Wind, Y. 2001. Thirty
Years of Conjoint Analysis: Reflections and Prospects.
Interfaces 31(3): 56–73.

Ha, V., and Haddawy, P. 1997. Problem-Focused Incre-
mental Elicitation of Multiattribute Utility Models. In
Proceedings of the Thirteenth Annual Conference on Uncer-
tainty in Artificial Intelligence, Providence, Rhode Island,
215–222. San Francisco: Morgan Kaufmann Publishers.

Ha, V., and Haddawy, P. 1999. A Hybrid Approach to Rea-
soning with Partially Elicited Preference Models. In Pro-
ceedings of the Fifteenth Annual Conference on Uncertainty
in Artificial Intelligence, Stockholm, Sweden. San Francis-
co: Morgan Kaufmann Publishers.

Hallden, S. 1957. On the Logic of Better. Lund, Sweden:
Gleerup.

Hansson, S. O. 2001a. Preference Logic. In Handbook of
Philosophical Logic, volume 4, ed. D. M. Gabbay and F.
Guenthner, second edition. 319–394. Dortrecht, Holland:
Kluwer

Hansson, S. O. 2001b. The Structure of Values and Norms.
Cambridge, UK: Cambridge University Press.

Howard, R. A., and Matheson, J. E. 1984. Readings on the
Principles and Applications of Decision Analysis. Menlo
Park, CA: Strategic Decision Group.

Kahneman, D., and Tversky, A. 1979. Prospect Theory:
An Analysis of Decisions Under Risk. Econometrica 47(2):
313–327.

Kahneman, D., and Tversky, A. 1984. Choices, Values,
and Frames. American Psychologist 39: 341–350.

Keeney, R. L., and Raiffa, H. 1976. Decision with Multiple
Objectives: Preferences and Value Tradeoffs. New York:
Wiley.

Kießling, W. 2002. Foundations of Preferences In Data-
base Systems. In Proceedings of 28th International Confer-
ence on Very Large Data Bases (VLDB). San Francisco: Mor-
gan Kaufmann Publishers.

Kimeldorf, G., and Wahba, G. 1971. Some Results on
Tchebycheffian Spline Functions. Journal of Mathematical
Analysis and Applications 33: 82–95.

Krantz, D. H.; Luce, R. D.; Suppes, P.; and Tversky, A.
1971. Foundations of Measurement. New York: Academic
Press.

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmo-
notonic Reasoning, Preferential Models, and Cumulative
Logics. Artificial Intelligence 44: 167–207.

Kreps, D. M. 1988. Notes on the Theory of Choice. Boulder,
CO: Westview Press.

La Mura, P., and Shoham, Y. 1999. Expected Utility Net-
works. In Proceedings of the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence, Stockholm, Sweden,
367–373. San Francisco: Morgan Kaufmann Publishers.

Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local Com-
putations with Probabilities on Graphical Structures and
Their Application to Expert Systems (with Discussion).
Journal of Royal Statistical Society, Series B 50.

McCarthy, J. 1980. Circumscription: A Form of Nonmo-
notonic Reasoning. Artificial Inteligence 13(1-2): 27–39.

McGeachie, M., and Doyle, J. 2004. Utility Functions for
Ceteris Paribus Preferences. Computational Intelligence
20(2): 158–217. (Special Issue on Preferences in AI).

Muller, K. R.; Mika, S.; Ratsch, G.; Tsuda, K.; and Scholkopf,
B. 2001. An Introduction to Kernel-Based Learning Algo-
rithms. IEEE Neural Networks 12(2): 181–201.

Oztürk, M.; Tsoukiàs, A.; and Vincke, P. 2005. Preference
Modeling. In Multiple Criteria Decision Analysis: State of the
Art Surveys, ed. J. Figueira, S. Greco, and M. Ehrgott, 27–
72. Berlin: Springer Verlag.

Payne, J.; Bettman, J.; and Johnson, E. 1993. The Adaptive
Decision Maker. Cambridge, UK: Cambridge University
Press.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. San Mateo, CA: Morgan
Kaufmann.

Pu, P., and Faltings, B. 2004. Decision Tradeoff Using
Example Critiquing and Constraint Programming. Con-
straints: An International Journal 9(4): 289–310.

Radlinski, F., and Joachims, T. 2007. Active Exploration
for Learning Rankings From Clickthrough Data. In Pro-
ceedings of the Thirteenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 570–579.
New York: Association for Computing Machinery.

Reiter, R. 1980. A Logic for Default Reasoning. Artificial
Inteligence 13: 81–132.

Rossi, F.; Venable, K. B.; and Walsh, T. 2004. mCP Nets:
Representing and Reasoning with Preferences of Multiple
Agents. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence, 729–734. Menlo Park, CA: AAAI
Press.

Sandholm, T., and Boutilier, C. 2006. Preference Elicita-
tion in Combinatorial Auctions. In Combinatorial Auc-
tions, ed. P. Cramton, Y. Shoham, and R. Steinberg, chap-
ter 10, 233–264. Cambridge, MA: MIT Press.

Savage, L. 1972. The Foundations of Statistics, 2nd ed. New
York: Dover.

Shoham, Y. 1987. A Semantics Approach to Nonmonot-
onic Logics. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, 388–392. Los Altos,
CA: William Kaufmann, Inc.

Shoham, Y. 1997. A Symmetric View of Probabilities and
Utilities. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, 1324–1329.

Shore, J. E., and Johnson, R. W. 1980. Axiomatic Deriva-
tion of the Principle of Maximum Entropy and the Prin-
ciple of Minimum Crossentropy. IEEE Transactions on
Information Theory 26(1): 26–37.

Smith, B., and McGinty, L. 2003. The Power of Sugges-
tion. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, 127–132. San Francis-
co: Morgan Kaufmann Publishers.

Tan, S. W., and Pearl, J. 1994. Qualitative Decision Theo-
ry. In Proceedings of the Twelfth National Conference on Arti-
ficial Intelligence, 928–933. Menlo Park, CA: AAAI Press.

Torrens, M.; Faltings, B.; and Pu, P. 2002. SmartClients:
Constraint Satisfaction as a Paradigm for Scaleable Intel-
ligent Information Systems. Constraints 7(1): 49–69.

Tversky, A. 1967. A General Theory of Polynomial Con-
joint Measurement. Journal of Mathematical Psychology
4(1): 1–20.

Tversky, A. 1969. Intransitivity of Preferences. Psycholog-
ical Review 76: 31–48.

Tversky, A. 1972. Elimination by Aspects: A Theory of
Choice. Psychological Review 79: 281–299.

von Neumann, J., and Morgenstern, O. 1947. Theory of
Games and Economic Behavior, 2nd ed.. Princeton, NJ:
Princeton University Press.

von Wright, G. H. 1963. The Logic of Preference: An Essay.
Edinburgh, Scotland: Edinburg University Press.

Wald, A. 1950. Statistical Decision Functions. New York:
John Wiley.

Wilson, N. 2004. Extending CP-Nets with Stronger Con-
ditional Preference Statements. In Proceedings of the Nine-
teenth National Conference on Artificial Intelligence, 735–
741. Menlo Park, CA: AAAI Press.

Ronen Brafman is an associate professor at the Depart-
ment of Computer Science at Ben-Gurion University in
Israel. He received his Ph.D. in computer science from
Stanford University in 1996 and was a postdoctoral fel-
low at the University of British Columbia. His research
work focuses on various aspects of decision making and
decision support, including preference handling, classi-
cal and decision theoretic planning, and reinforcement
learning. He serves as an associate editor for the Journal of
AI Research and is a member of the editorial board of the
Artificial Intelligence Journal.

Carmel Domshlak is a senior lecturer at the Faculty of
Industrial Engineering and Management in Technion.
His research interests are in modeling and reasoning
about preferences, automated planning and reasoning
about action, and knowledge-base information systems.
He received his Ph.D. in computer science from Ben-
Gurion University in 2002 for his work on preference rep-
resentation models and was a postpdoctoral fellow at the
Intelligent Information Systems Institute at Cornell Uni-
versity. He is a member of the editorial board of the Jour-
nal of AI Research.

Articles

86 AI MAGAZINE

