checking
R,L) and
tes where

(C.1)

States the
E-IMG-EF
r state in

(C.2)

nates suc-
 at line 5).
states and
eed, if this
1d we have
 pointand

e obtained
ere:

}(C3)

tructure in
cer the first

o

TUE.

C.5 Symbolic Model Checking 567

As another example let us check the formula AFgreen. Initially s; is assigned to
the variable NextStates, but at the first iteration prRe-1MG-AF returns the empty set,

then the loop terminates and the algorithm returns False. -

CS Symbolic Model Checking

Most often, realistic models of systems need huge numbers of states. For exam-
ple, an interlocking system may have something like 107%0 states. Symbolic model
checking [99] has been devised to deal with large state spaces. It is a form of
model checking in which propositional formulas are used for the compact rep-
resentation of finite-state models, and transformations over propositional formulas
provide a basis for efficient exploration of the state space. Most often, the use of
symbolic techniques allows for the analysis of large systems, even systems with
1020% states [99]. The fundamental ideas of symbolic model checking are the
following.

&% 1. Model checking is performed by exploring sets of states, rather than single

states.

and the transitions over sets of states are represented by logical formulas.

b
w}dﬁ\ 2. The model checking problem is represented symbolically: the sets of states

In order to represent a model checking problem symbolically, we need to represent
symbolically the sets of states of a Kripke Structure, its transition relation, and the
model checking algorithms.

Symbolic Representation of Sets of States. A vector of distinct propositional
variables x, called state variables, is devoted to the representation of the states of a
Kripke structure. Each of these variables has a direct association with a proposition
symbol of P. Therefore, in the rest of this section we will not distinguish between
a proposition and the corresponding propositional variable. For instance, in the
Kripke structure in Example C.2 (see page 563), x is the vector {green,open).
A state is the set of propositions of P that hold in the state. For each state s,
there is a corresponding assignment of truth values to the state variables in x:
each variable in s is True, and all other variables are False. We represent s with
a propositional formula &(s), whose unique satisfying assignment of truth values
corresponds to 5. For instance, the formula representing state s; in Example C.2 iss
green A —open. This representation naturally extends to any set of states Q € §
as follows:

HOERVAIO)
seq

Appendix C Model Checking

That is, we associate a set of states with the disjunction of the formulas representing
each of the states. The satisfying assignments of £(Q) are exactly the assighments
representing the states of Q. :

A remark is in order. We are using a propositional formula to represent the
set of assignments that satisfy it (and hence to represent the corresponding set of
states), but we do not care about the actual syntax of the formula used, and thus
in the following discussion we will not distinguish among equivalent formulas that
represent the same sets of assignments. Although the actual syntax of the formula
may have a computational impact, in the next section we will show that the use of
formulas for representing sets of states is indeed practical.

The main efficiency of the symbolic representation is that the cardinality of
the represented set is not directly related to the size of the formula. For instance,
£ (27 and & (@) are the formulas True and False, respectively, independent of the
cardinality of P.

As a further advantage, the symbolic representation can provide an easy way to
ignore irrelevant information. For instance, notice that the variable open does not
appear in the formula £ ({0, 52}) = —green. For this reason, a symbolic represen-
tation can have a dramatic improvement over an explicit state representation that
enumerates the states of the Kripke Structure. This is what allows symbolic model

checkers to handle finite-state models that have very large numbers of states {see,
e.g., 1991).

Another advantage of the symbolic representation is the natural encoding of
set-theoretic transformations (e.g., union, intersection, complementation) into
propositional operations, as follows:

E(QU Q) =§(Q) VE(QR)
E(Q N Q) =&{(Q1) AE(Q)
E(S— Q) =§(8) A—E(Q)

Symbolic Representation of Transition Relations. We represent transition rela-
tions through the vector of state variables x = (X1, ..., %,) and a further vector x =
C A A Y] propositional variables, called next-state variables. We write §'(s) for
the representation of the state s in the next-state variables. £'(Q) is the formula
corresponding to the set of states Q. In the following, ®[x < y] is the parallel sub-
stitution in formula @ of the variables in vector x with the corresponding variables
in y. We define the representation of a set of states in the next variables as follows:

£'(s) = &(s)lx <).

We call the operation ®[x « x'] forward shiftingbecause it transfeésthe represen-
tation of a set of current states in the representation of a set of fext states. The dual

operation O < x] is called backward shifting. In the following, we call the vari-
ablesin x the current-state variablesto distinguish them from t}‘$1ext-state variables.

1-

1=

C.5 Symbolic Model Checking 569

For the interlocking example in Figure C.3, the single transition from state s to
state 5 is represented by the formula

E({s0,81)) = &(sp) AE'(51)s
that is,
E({s0,51}) = (—green A —open) A (green’ A —open’)

The transition relation R of a Kripke Structure is a set of transitions and is thus
represented by the formula in the variables of x and of X/,

§R) =\ &),

reR
in which each satisfying assignment represents a possible transition.

Symbolic Representation of Model Checking Algorithms. In order to make
explicit that the formula §(Q) contains the variables x1,...,%, of %, in the fol-
lowing we will use the expression Q(x) to mean £(Q). Similarly, we will use the
expression Q{x’) to mean &'(Q). Let S(x), R(x, x'), and Sp(x) be the formulas repre-
senting the states, the transition relation, and the initial states of a Kripke structure,
respectively.

In the following, we will use quantification in the style of the logic of
Quantified Boolean Formulas (QBFs). QBFs are a definitional extension to
propositional logic, in which propositional variables can be universally and exis-
tentially quantified. If @ is a formula and v; is one of its variables, then the
existential quantification of v; in @, written Jv;. @(vy,...,vs), is equivalent
to ©(1,. .., v,)[v « False] v ®(v,..., v;)[vi < Truel. Analogously, the univer-
sal quantification Vv @(v1,...,) is equivalent to ®(wy,...,v,)[vi « False] A
D(v, ..., v v; < True]. QBFs allow for an exponentially more compact repre-
sentation than propaositional formulas.

The symbolic representation of the image of a set of states Q, L.e., the set of states
reachable from any state in Q with one state transition, is the result of applying the
substitution [x’ < x] to the formula x. (R{x,x") A Q(x)}:

(3x. (R(x,%') A Qx)N[x" « x]

Notice that, with this single operation, we symbolically simulate the transition from
any of the states in Q. The dual backward image is the following:

(3. (R(x,x") A Qx')))

570 Appendix C Model Checking

From the definition of pre-1MG-EF(Q) (see Equation C.2), we have therefore that
E(PRE-IMG-EF(Q)) is:

Ix'. (R(x,x') A Q(x'))
while & (PrE-1MG-AF(Q}) (see Equation C.3) is:
vx' (R(x,x) = Q(x'))

In both cases, the resulting formula is obtained as a one-step computation and can
often describe compactly a large set of states.

Given the basic building blocks just defined, the algorithms presented in the
previous section can be symbolically implemented by replacing, within the same
control structure, each function call with the symbolic counterpart and by casting
the operations on sets into the corresponding operations on propositional formulas.

C6 BDD-Based Symbolic Model Checking

BDDs provide a way to implement the symbolic representation mechanisms pre-
sented in the previous section (e.g., tautology checking, quantification, shifting).

A BDD is a directed acyclic graph (DAG). The terminal nodes are either True or
False (alternatively indicated with 0 and 1, respectively). Each nonterminal node is
associated with a Boolean variable and with two BDDs that are called the left and
right branches. Figure C.5 shows some simple BDDs for the interlocking example.
At each nonterminal node, the right or left branch is depicted as a solid or dashed
line and represents the assignment of the value True or False to the corresponding

variable.
green (3 open)
0. 1 0. 1
// //
S S
o
Signal is green Door is not open Signal is green or Signal is green and

door is open door is not open

Figure C.5 BDDs for the Boolean formulas green, —open, green v open, and green A —open.

at

1€
1€

5.

C.6 BDD-Based Symbolic Model Checking 571

Figure C.6 Two BDDs for the formula (a; < b)) A (@ < b2) A (a3 < B3).

Given a BDD, the value corresponding to a given truth assignment to the variables
is determined by traversing the graph from the root to the leaves, following each
branch indicated by the value assigned to the variables. A path from the root to a leaf
can visit nodes associated with a subset of all the variables of the BDD. The reached
leaf node is labeled with the resulting truth value, If v is a BDD, its size |v| is the
number of its nodes. If # is a node, we use var(n) to denote the variable indexing
node n. BDDs are a canonical representation of Boolean formulas if (1) there is
a total order < over the set of variables used to label nodes, such that for any
node 7 and respective nonterminal child #, their variables must be ordered, i.e.,
var(n) < var(m); and (2) the BDD contains no subgraphs that are isomorphic to
the BDD itself.

The choice of variable ordering may have a draratic impact on the dimension
of a BDD. For example, Figure C.6 depicts two BDDs for the same formula (a; <
b1) A (@ < b)) A (a3 < by) obtained with different variable orderings.

BDDs can be used to compute the results of applying the usual Boolean operators.
Given a BDD that represents a formula, it is possible to transform it to abtain
the BDD representing the negation of the formula. Given twe BDDs representing

T

572 Appendix C Model Checking

two formulas, it is possible to combine them to obtain the BDD representing the
conjunction or the disjunction of the two formulas. For instance, Figure C.5 shows
how the BDD representing the formula green A —open can be obtained from the
BDDs representing the formulas green and —open. Substitution and quantification
on Boolean formulas can alse be performed as BDD transformations.

