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Introduction 

In project C we implement several different clustering methods on the query results given 
by pageRank algorithms. The clustering methods implemented are: k-means algorithm 
and two of the extended k-means algorithms (asynchronous update of the centroids and 
the multiple k-means method), Hierarchical agglomerative clustering algorithm, bisecting 
k-means algorithm and buckshot clustering algorithm. 

In this report, each of the above algorithm and the implementation is discussed. Also we 
will analyze and compare the performance of the different algorithms. Then some of the 
observations during the implementation are analyzed. At last the GUI implemented is 
briefly introduced. The source code is attached and some of the testing results are 
included.  

Algorithms and implementation 

1. k-Means 

Algorithm 

The basic idea of k-Means algorithm is to do a local optimization on a given number of 
clusters. Specifically, first we need to randomly pick up k documents from the entire 
collection and make them as the initial centroids of the desired k clusters. Then for each 
document in the collection find the nearest centroid and put this document into the 
corresponding cluster. After each document is assigned to one of the cluster, recompute 
the centroids and repeat the computation. This method iteratively optimize the clusters 
until the computation converge when the clusters do not change anymore and the 
clustering quality achieved a local maximum. The advantage of the k-means is that its 
complexity is very low and is very easy to implementation. But it also has the problem of 
instability: the final result will change dramatically if the initial centroids change, and it 
is very sensitive to the outliers because the way of its clustering is exhaustive. 

Implementation 

The implementation of the k-means algorithm is very straightforward. First we represent 
the entire collection of the documents as a vector of term vectors, and then randomly pick 
up k of the documents to be the initial seeds of the k clusters. A predicate function is 
defined to check whether the computation is converged at the end of each iteration.  

Performance 

During the testing we find that k-means works reasonably well given its low cost. The 
quality of the clustering seems to be influenced by the initial collection of the documents. 
Although it does not always give very good clusters, for some particular document sets, 
the clustering more or less reflect some of the natural clustering. For example for the 
page collection returned by pageRank algorithm for query “Computer Science”, if we 



want to have 3 clusters, k-means method usually give the 3 clusters similar to the 
following: one of them is more relevant to “women in computer science organization”; 
another of them is more about the general information of computer science department 
and yet another is more likely to be about the computer science courses.  

And we also noticed that the k-means is very sensitive to the choice of the initial seeds. In 
the implementation the seeds are randomly picked and we found that when we run k-
means on the same collection for multiple times the result changes dramatically 
sometimes.  

2. extended K-Means 

Algorithm  

The extended K-Means algorithm has the same basic idea of the k-means method. The 
only difference is that instead of update the centroids of the clusters at the end of each 
iteration, we update them more frequently. Specifically, each time after several 
documents are assigned to the clusters, we immediately recomputed the centroids 
according to the assigned documents and use them to cluster the rest documents. 

Implementation 

The implementation is straightforward. We just need to have a counter to count the 
number of changes we’ve made and update the centroids each time the counter gets to 
some small integer.  

Performance 

As for the quality of the clustering, according to the testing, it seems that this kind of 
extension of k-means method does not noticeably improve the quality. But we can notice 
that it will make the convergence of the computation faster. In the experiments, it almost 
always needs less iteration to converge. For example for the given query “Computer 
Science” and number of clusters as 3, it usually takes regular k-Means 7~9 iterations to 
converge, but it only take 3 or 4 iterations for the extended k-Means to converge.  

3. Multiple k-Means 

Algorithm 

This is another extension of the regular k-means method. The basic idea is just to run the 
k-means for several times and pick the best clustering we get as the final result. 

Implementation 

The implementation only has one issue to be solved, which is how to find the “best” 
clustering got from the multiple running of k-Means method on a same collection of 
documents. In my implementation we use the average pair-wise similarity in a cluster as 
the measure of the quality of the cluster, and use the average quality measure of all the 
clusters as the measure of the quality of the entire clustering. Then we just run k-means 
several times using different randomly picked seeds and keep the clustering with the best 
quality measure as the final results. 



A very small issue in the implementation is that the average similarity of a cluster is just 
the square of the magnitude of the centroid. But this holds only if all the documents are 
originally normalized to be unit vectors, otherwise we can not directly use this fact to 
simplify the computation. 

Performance 

The quality of the clustering got by multiple k-Means is more satisfactory. Actually 
during the testing we noticed that the multiple k-Means method almost always out 
performs the regular k-means. The reason is obvious. A more interesting issue is to find 
out what is a better way to measure the quality of the clustering, specifically, how to 
combine inter-cluster quality measure and intro-cluster quality measure together.  

4. HAC(Hierarchical Agglomerative  Cluster) 

Algorithm 

The basic idea of HAC if to start from many clusters and keep merging the closest cluster 
pairs until we get desired number of clusters. The result of the clustering will be a 
hierarchical structure. To do this the important issue is to find a way to measure the 
distance between two clusters. 

Implementation 

The implementation of the HAC is, first we put every document in the collection into a 
singleton cluster which contains just one document. Then we keep finding the closest 
cluster and merge them, and use the merged one as a new cluster. To do this a merge 
function is implemented, and a function to measure the distance of two clusters is 
implemented. In my implementation, the group average distance is used, which is the 
average distance of all pairs of documents with one from each cluster. 

Performance 

The quality of clustering got from HAC is satisfactory. It is usually better then regular k-
means. But the computation of HAC is costly and if the initial document collection is 
large the computation could be very time consuming. In the experiment if we have 100 
documents as the initial collection, the computation will take a couple of minutes, much 
longer than other algorithms.  

5. buckshot Algorithm 

Algorithm 

The buckshot algorithm tries to achieve good quality of clustering as HAC without as 
much cost. It is actually a hybrid method using the features of both HAC and k-Means. 
Basically it first randomly pick sqrt(n) documents from the entire collection and run HAC 
on them. Then use the results as the initial seeds for the k-Means algorithm. This method 
avoids using HAC on the entire set, and also finds possibly better seeds for the k-Means. 

Implementation 



The implementation of this algorithm is very simple, given the fact that we’ve already 
implement k-Means and HAC.  

Performance 

In the testing we found that the quality of the clustering is good, compared to k-means 
and extened k-means. Also the time consumed is much less that the HAC. But we also 
noticed that this method is also not so stable: if we run it several times, for some 
document collection the result could be quite different. The reason is that although the 
HAC stage might find better seeds for k-Means, the subset to be used in HAC is still 
randomly chosen. And in out experiment setting the size of the initial collection is small 
which makes it more sensitive to the randomness.   

6. Bisecting k-Means 

Algorithm 

The bisecting k-Means looks like the opposite of HAC, because it starts from just one 
cluster with all the documents inside, ant then in each iteration, find one of the leaf 
clusters and split it into two smaller clusters. This keeps going until the desired number of 
clusters is achieved. To find the leaf cluster to be split, it could be as simple as just 
finding the largest one, or to get better results, finding the cluster with worst cluster 
quality. To split the cluster, we can run k-means on it for multiple times and use the best 
result among them. 

Implementation 

The implementation of the bisecting k-Means is straightforward, because we already have 
the cluster quality measure function to find the leaf cluster to be split, and we also have 
implemented multiple k-Means which is used to actually split the selected leaf nodes. 

Performance 

The Bisecting k-Means method has low cost, compared to HAC, yet its quality of 
clustering is very satisfactory. In the experiment it almost always gets at least as good 
quality as HAC, and it is also more stable than buckshot in our setting. The reason is that 
during the split, we used multiple k-means which tends to find a better clustering among 
several candidate and this reduce the effect of the randomness. In my experiment this 
method seems to be more stable than buchshot method, i.e. the result of the clustering 
does not change dramatically when we run it on same document set for several times.  

Important observations 

The effect of changing the number of clusters 

During the experiment we noticed that when we increase the number of the clusters, the 
result of the clustering tends to less likely to be corresponding to any natural clustering. 
One reason is that the documents to be clustered are returned by the pageRank method 
which combines the document vector similarity and pageRank value. Thus unlike a 
random collection of documents, these documents are naturally sharing more common 



features and are likely to be close to each other; Another reason is that the size of the 
collection we used in the clustering is small, thus if there are too many clusters the 
documents are intentionally separated although they actually are not so far away from 
each other, and as a result, this kind of clustering is more sensitive to those random 
factors and is less likely to reflect any natural clusters. 

The effect of changing the size of the collection 

During the experiment several different sizes of the collection (50, 70, 100) are tested and 
we found that for a fixed number of clusters, when the size of the collection is larger, the 
quality of the clustering is usually better. The possible reason is that in our setting we 
only show top 3 documents of each of the cluster instead of the entire cluster, and it is 
actually straightforward that it is more likely to find documents close to each other in a 
large set other than a small set. In this case, although the overall quality of each cluster 
(for example, average similarity from the centroid) might not be better, for the top 3 
documents, it will be easier to find some of them very close to each other given the larger 
document collection.  

The implementation of the GUI 

The GUI used in the project is implemented by using Java Servlet. It has very simple 
interface for user to specify query, and choose the ranking method to be used (Vector 
Similarity, A/H Ranking, or pageRank). Also the user can specify the weight of 
pageRank value if pagRank is used in ranking. 

After the query result is shown to the user, if the user chose pageRank, then the GUI will 
allow the user to choose a clustering method (k-Means, extended k-Means, multiple k-
Means, bisecting k-Means, HAC, buckshot) and specify the number of clusters desired. 
Then the GUI will show the clusters (only show the top 3 documents in each Cluster). 

The following is the screen shot of the GUI: 
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