
Dyer 1

Wes Dyer

CSE 494

Project C

April 21, 2004

Analysis of Clustering Algorithms in a Small Hypertext Search Engine

Introduction

Search Assistant is a small hypertext search engine that can use various search

algorithms including: pure vector space, authorities/hubs, and PageRank. An analysis of

the implementation of the vector space algorithm for this search engine is found in [1]

and the other two algorithms are found in [2]. Recently, Search Assistant has been

augmented by two document clustering algorithms. This paper analyzes the algorithms

and compares their effectiveness.

Figure 1: Homepage of Search Assistant

Dyer 2

Figure 2: Screenshot of query results for a typical query in Search Assistant

Clustering Overview

The basic problem of data clustering is to assign each data point to one of k

clusters such that the intra-cluster similarity of the data points is maximized and the inter-

cluster similarity of the data points is minimized. Clustering text documents in a search

engine assists users by putting a document in a group of related documents. Once a user

locates a cluster of interest, the cluster should have better precision and recall than

documents that are not clustered. Throughout this paper, cluster metrics will rely upon

Dyer 3

the centroid of a cluster. This has been shown to provide reliable metrics [3]. Recall that

the centroid c of a cluster is:

Sd

d
S

c
1

Also note that the intra-cluster similarity Sa or cohesiveness of a cluster is:

2
cSa

Finally, the inter-cluster similarity Se of a cluster is the average of the similarity of

each centroid with all the other centroids.

K-Means Algorithm

The k-means algorithm is a basic clustering algorithm which assigns data to k

clusters. It begins by randomly selecting k data points as the initial centroids and then

assigning each data point to the closest centroids. This creates k initial clusters. The

algorithm then computes the centroid of each cluster and reassigns the data points to the

closest centroid. This process repeats until no data points change which cluster they are

assigned to during a single iteration.

K-Means(data points, k) returns clusters {

create k clusters

for i = 1 to k {

do {

Randomly select a data point

} while the data point has already been selected

cluster[i].centroid = data point

}

Dyer 4

AssignClusters(clusters, data points)

do {

ComputeCentroids(clusters)

set change = AssignClusters(clusters, data points)

} while change = true

return clusters

}

AssignClusters(clusters, data points) returns boolean {

for each data point in data points {

set newcluster = Nil

for each cluster in clusters {

if newcluster = Nil

then newcluster = cluster

else if sim(cluster.centroid, data point) >

sim(newcluster.centroid, data point

then newcluster = cluster

}

Assign data point to newcluster

}

}

ComputeCentroids(clusters) {

For each cluster in clusters {

Set cluster.centroid = 0

Dyer 5

For each data point in cluster {

cluster.centroid += data point

}

cluster.centroid /= number_of(data points)

}

}

Let k, d, n, and l be the number of clusters, the number of data points, the number

of dimensions describing a data point, and the number of iterations respectively. Then

the running time of AssignClusters is:

)(dknO

Also, the running time of the ComputeCentroids algorithm is:

)(dnO

Finally, the time complexity of k-means is:

)())((ldknOdndknldknkO

Therefore, the algorithm is linear. One weakness of the basic k-means approach

is that it is sensitive to the initial centroids that are chosen. Data points can easily be

caught in local minima thereby providing a suboptimal clustering. Various modifications

and extensions have been made to the k-means algorithm to choose better initial

centroids. One such algorithm is described hereafter.

Buckshot Algorithm

The Buckshot algorithm is a hybrid algorithm that combines the k-means

algorithm with hierarchical agglomerative clustering (HAC) techniques to choose better

initial centroids than k-means. Therefore, the algorithm is exactly the same except for the

Dyer 6

select of initial centroids. Thus, analysis will of this algorithm will concentrate on the

HAC algorithm and use the results provided in the previous section.

HAC works by considering each data point as a separate cluster. The

algorithm then compares each of these clusters with each other to find the greatest pair

wise similarity between their centroids. The pair that has the greatest similarity is then

combined and the new cluster replaces the original two in the list. This continues until

there are only k clusters. Finally, the centroids of the clusters are used as the initial

centroids for the k-means algorithm.

HAC(data points) returns clusters {

Create list

for i = 1 to SquareRoot(number_of(data points)) {

create a cluster

set the cluster s stamp to number_of(data points)

add cluster to list

}

While list.size > k {

Set cluster1 to Nil

Set cluster2 to Nil

For i = 1 to list.size {

For j = i + 1 to list.size {

if cluster1 is Nil

then cluster1 = list[i] and cluster2 = list[j]

else if sim(list[i], list[j]) >

Dyer 7

sim(cluster1, cluster2)

then cluster1 = list[i] and cluster2 = list[j]

}

Create cluster from cluster1 and cluster2

Remove cluster1 from list

Remove cluster2 from list

Add cluster to list

}

Return clusters in list

}

}

Let n and d be the number of data points and the number of dimensions describing

those data points respectively. The time complexity of HAC is:

)())((2

3
2

dnOndknnO

It should be noted that many implementations of HAC do not perform a complete

pair wise comparison before combining clusters. Often, then randomly select one cluster

to combine next. This would then have O(dn) time complexity. The pair wise

comparison provides a more optimal HAC result and therefore better initial centroids so

the increased time complexity is warranted in Search Assistant. It is important to note

that n has an upper bound of 100 in Search Assistant so the time difference with such a

small n is negligible.

Finally, the time complexity of the buckshot algorithm can be determined.

)(2

3

ldkndnO

Dyer 8

Comparison of Algorithms using Similarity Measures

To evaluate the relative effectiveness of the basic k-means algorithm and the buck

shot algorithm and the effect of varying k, a program was designed that ran five queries

using both algorithms, with k values that ranged between 3 and 20, and with 20 trials.

The average intra-cluster similarity and the average inter-cluster similarity for each

configuration were recorded (see Appendix A).

Query - "Information Retrieval"

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
tr

a-
C

lu
st

er
 S

im
il

ar
it

y

K-Means

Buckshot

Figure 3: Intra-cluster similarity metrics using both algorithms for information retrieval query

Dyer 9

Query - "Information Retrieval"

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
te

r-
C

lu
st

er
 S

im
il

ar
it

y

K-Means

Buckshot

Figure 4: Inter-cluster similarity metrics using both algorithms for information retrieval query

Figures 3 and 4 show two of the graphs that were generated for the data set.

Figure 3 shows that the buckshot algorithm had a consistently higher intra-cluster

similarity than the basic k-means algorithm. Figure 3 shows that the buckshot algorithm

had a consistently lower intra-cluster similarity. In each figure, the trend of both the

buckshot algorithm and the basic k-means algorithm seems to be the same with only a

constant differentiating the two. Note also that as k increases, the intra-cluster similarity

will increase and the inter-cluster similarity will decrease. This is because as the number

of clusters increases, the average number of document in a cluster will decrease. As the

average number of documents in a cluster approaches 1, the intra-cluster similarity will

approach 1 and the inter-cluster similarity will approach the inter-document similarity.

Therefore, the rate of change and the offset determine to what degree a clustering

algorithm is effective.

Dyer 10

Query - "Parking Decal"

0

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
tr

a-
C

lu
st

er
 S

im
il

ar
it

y

K-Means

Buckshot

Figure 5: Intra-cluster similarity using both algorithms for parking decal query

Query - "Parking

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
te

r-
C

lu
st

er
 S

im
il

ar
it

y`
`

K-Means

Buckshot

Figure 6: Inter-cluster similarity using both algorithms for parking decal query

Figures 5 and 6 show another set of graphs for a different query that has the same

general results. In fact, each query had essentially the same results. The only interesting

difference appears in figure 5. Figure 5 shows that although the buckshot algorithm

Dyer 11

generally performs better than the basic k-means algorithm the difference between them

is small. Perhaps, this is due to the fact that figure 3 represented a query with a small

number of relevant documents and figure 5 represents a query with a larger number of

documents. The graphs for the remaining three queries seemed to correlate with this

hypothesis.

After analyzing the individual graphs, averages were computed for each algorithm

and graphs were generated for the averages.

Average

0

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
tr

a-
C

lu
st

er
 S

im
il

ar
it

y

K-Means

Buckshot

Figure 7: The average intra-cluster similarity for both algorithms

Dyer 12

Average

0

0.02

0.04

0.06

0.08

0.1

0.12

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
te

r-
C

lu
st

er
 S

im
il

ar
it

y

K-Means

Buckshot

Figure 8: The average inter-cluster similarity for both algorithms

Figures 7 and 8 show the graphs of the average intra-cluster and inter-cluster

similarities. These figures also demonstrate that the buckshot algorithm had a higher

intra-cluster similarity and a lower inter-cluster similarity for all values of k.

Analysis of Algorithms using Similarity Measures

After the data and the averages were compared then regression analysis was used

to find functions describing the observed behavior. It was found that the intra-cluster

similarity and inter-cluster similarity of the k-means algorithm correspond to the

following functions:

kkSak 151.159.

k
kSek

246.
0264.

The intra-cluster similarity and inter-cluster similarity of the buckshot algorithm

can be expressed as:

Dyer 13

kkSab 147.117.

k

kSeb

153.
0138.

The ordered and fitted residual plots as well as the normal probability plot of the

residuals all showed that the equations were correct. Also, the R2-adj was at least .98 for

each of the equations. So it can be concluded that these do indeed capture the similarities

as a function of k.

Figures 9 through 12 show the actual versus predicted similarities for both

algorithms. Note that the predicted values describe the observed results well.

K-Means

0

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
tr

a-
C

lu
st

er
 S

im
il

ar
it

y

Actual

Predicted

Figure 9: Actual versus predicted values for average intra-cluster similarity using the k-means

algorithm

Dyer 14

K-Means

0

0.02

0.04

0.06

0.08

0.1

0.12

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
te

r-
C

lu
st

er
 S

im
il

ar
it

y

Actual

Predicted

Figure 10: Actual versus predicted values for average inter-cluster similarity using the basic k-

means algorithm

Buckshot

0

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
tr

a-
C

lu
st

er
 S

im
il

ar
it

y

Actual

Predicted

Figure 11: Actual versus predicted values for average intra-cluster similarity using the buckshot

algorithm

Dyer 15

Buckshot

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
te

r-
C

lu
st

er
 S

im
il

ar
it

y

Actual

Predicted

Figure 12: Actual versus predicted values for average inter-cluster similarity using the basic k-

means algorithm

Finally, the equations were graphed together to compare the predicted difference

between the two algorithms. This is shown in figures 13 and 14.

Predicted

0

0.1

0.2

0.3

0.4

0.5

0.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
tr

a-
C

lu
st

er
 S

im
il

ar
it

y

K-Means

Buckshot

Dyer 16

Figure 13: Predicted intra-cluster similarity for both algorithms

Predicted

0

0.02

0.04

0.06

0.08

0.1

0.12

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

In
te

r-
C

lu
st

er
 S

im
il

ar
it

y

K-Means

Buckshot

Figure 14: Predicted inter-cluster similarity for both algorithms

It is interesting that although the equations that describe the intra-cluster

similarity for the two algorithms vary only by the coefficients, the equations for the inter-

cluster similarity differ by the order of the polynomial that is used to express them. Also,

by solving the equations to find when k-means algorithm is predicted to perform inferior

to the buckshot algorithm, it is discovered that for all k < 110 the buckshot algorithm will

outperform the basic k-means algorithm in both measures. Since Search Assistant only

clusters the top 100 documents then it can be concluded that the buckshot algorithm will

have a higher intra-cluster similarity and a lower inter-cluster similarity for the average

query.

Another interesting result is that both of the intra-cluster similarity functions are

strictly increasing for k > 0 and k 100 and both of the inter-cluster similarity functions

are strictly decreasing on the same interval. It might be tempting to conclude that as

Dyer 17

large of a value of k as possible should be picked; however, this is not the case because

the goal of clustering is to provide a manageably small number of clusters to aid users in

finding relevant documents while avoiding irrelevant documents. Therefore, the smallest

value of k should be picked that provides maximal intra-cluster similarity and minimum

inter-cluster similarity. Note that there are diminishing returns as k increases. Therefore,

a value of k could be picked that captures some percentage of the change in similarity

over an interval.

First, the point at which 90% of the change over the interval from 3 to 100 using

the Sek equation is found.

622.23

0104.
246.

0368.
246.

0264.

0368.

3

246.
0264.

3

246.
0264.

100

246.
0264.9.

331009.)(

k
k

k

kS

kS

SSSkS

ek

ek

ekekekek

So, 24 clusters are required before 90% of the change is realized on the interval

from 3 to 100 using the basic k-means algorithm. It can now be shown when the

buckshot algorithm reaches the same similarity (not the same percentage of change).

14285.9

0237.3

3307.
1

0368.
153.

0138.

0368.

31009.

k

k

k

k

kS

kSSSkS

eb

ekekekeb

Dyer 18

Therefore, it only requires 10 clusters in the buckshot algorithm to reach the same

level of inter-cluster similarity. A similar process will show that the k-means algorithm

will reach 90% of the change for the intra-cluster similarity when k is 85. The buckshot

algorithm requires that k is 84 for the same result. Note more constant rate of change for

the intra-cluster similarity and the small difference between the algorithms when the

change percentage is 90%. In general, for intra-cluster similarity it requires one less

cluster for buckshot to achieve the same level of intra-cluster similarity. This is not true

for inter-cluster similarity. In fact, the difference between the algorithms for inter-cluster

similarity increases as k increases.

Comparison of Algorithms using Categories

Another way to gauge the effectiveness of a clustering algorithm is to determine

whether the clusters that are produced correspond to natural categories or not. This

measure certainly is more subjective than the other two measures that have been

previously used. In order to validate that the clusters correspond to natural categories, a

group of three users were selected and each was asked to name the various clusters that

were generated. Each user rated the clusters on a scale from zero to five where five is the

highest. The rating was based on how unique the category was, how much it

corresponded to a nameable category, and how much the category made sense. The

process was repeated for various values of k and using both algorithms. The results from

the three users were averaged and recorded (see Appendix B) and the graph in figure 15

was produced.

Dyer 19

Clusters as Categories

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 4 5 7 10

K

A
ve

ra
g

e
C

lu
st

er
 R

at
in

g

K-Means

Buckshot

Figure 15: Average user rating for clusters of various sizes for both algorithms

Clusters as Categories

0

0.2

0.4

0.6

0.8

1

1.2

3 4 5 7 10

K

P
er

ce
n

ta
g

e
o

f
N

am
ea

b
le

 C
at

eg
o

ri
es

K-Means

Buckshot

Figure 16: Percentage of clusters that users could name as distinct categories

Clearly, the buckshot algorithm outperformed the k-means algorithm at every

value of k. However, it should be noted that it seems that the two algorithms scores will

converge as k increases beyond values of 10. Figure 16 depicts the percentage of clusters

Dyer 20

for which the users could find distinct and descriptive names. Again, the buckshot

algorithm is superior to the k-means algorithm and it also seems that the two percentages

are converging. It is possible that this is due to the increasing number of clusters. As the

number of clusters increases then it may be increasing difficult for users to differentiate

the clusters from each other.

Conclusion

The user study and the similarity measures show that the buckshot algorithm

performs better than the basic k-means algorithm for every value of k. Although initially

glancing at search results for the two algorithms does not lead to this conclusion, the

result is expected since the buckshot algorithm chooses better centroids and then follows

the same process as the basic k-means algorithm. The experimental results show that it is

an improvement on the basic k-means algorithm. Also, the analysis has shown that the

clustering algorithms are sufficiently good to use in the search engine.

Dyer 21

Works Cited

1. Dyer, Wes. An Implementation of Vector Space Model with the Lucene API.

March 21, 2004.

2. Dyer, Wes. Analysis of a Small Search Engine. April 2004.

3. Michael Steinbach, George Karypis, and Vipin Kumar. A Comparison of

Document Clustering Techniques.

Dyer 22

Appendix A

Query Algorithm K Intra-cluster Inter-cluster
Information Retrieval kmeans 3

0.126895049

0.065859313

Information Retrieval kmeans 4

0.188018703

0.047250882

Information Retrieval kmeans 5

0.208092477

0.046714421

Information Retrieval kmeans 6

0.268327714

0.032501347

Information Retrieval kmeans 7

0.290416691

0.029473463

Information Retrieval kmeans 8

0.340676688

0.02507525

Information Retrieval kmeans 9

0.361019258

0.022683083

Information Retrieval kmeans 10

0.383804

0.022908427

Information Retrieval kmeans 11

0.426080222

0.02029967

Information Retrieval kmeans 12

0.461102866

0.01838545

Information Retrieval kmeans 13

0.479643389

0.018587612

Information Retrieval kmeans 14

0.522756746

0.016828432

Information Retrieval kmeans 15

0.52266996

0.016981662

Information Retrieval kmeans 16

0.548301763

0.015302295

Information Retrieval kmeans 17

0.5740487

0.016449952

Information Retrieval kmeans 18

0.597815206

0.014181438

Information Retrieval kmeans 19

0.609143397

0.016113071

Information Retrieval kmeans 20

0.645521988

0.014406246

Information Retrieval buckshot 3

0.239942593

0.035895404

Information Retrieval buckshot 4

0.281567533

0.029295029

Information Retrieval buckshot 5

0.346153677

0.021410849

Information Retrieval buckshot 6

0.368830957

0.017729792

Information Retrieval buckshot 7

0.4154496

0.015765645

Information Retrieval buckshot 8

0.484065071

0.012436063

Information Retrieval buckshot 9

0.511337486

0.011437154

Information Retrieval buckshot 10

0.528025017

0.010646563

Information Retrieval buckshot 11

0.545955405

0.010263832

Information Retrieval buckshot 12

0.571089364

0.009349891

Information Retrieval buckshot 13

0.562486391

0.00996499

Information Retrieval buckshot 14

0.606422276

0.008734009

Information Retrieval buckshot 15

0.647630794

0.00790283

Information Retrieval buckshot 16

0.694130073

0.007613983

Information Retrieval buckshot 17

0.699088637

0.007343093

Information Retrieval buckshot 18

0.718752166

0.00704089

Information Retrieval buckshot 19

0.737338601

0.006890936

Information Retrieval buckshot 20

0.769250972

0.00665565

Computer Science kmeans 3

0.104184173

0.080055986

Computer Science kmeans 4

0.155244874

0.07478292

Computer Science kmeans 5

0.176244086

0.058595689

Computer Science kmeans 6

0.227181646

0.053137667

Computer Science kmeans 7

0.243053945

0.046801485

Computer Science kmeans 8

0.277944063

0.044764426

Computer Science kmeans 9

0.309409274

0.041765833

Computer Science kmeans 10

0.335511146

0.037580013

Computer Science kmeans 11

0.346629615

0.037912816

Dyer 23

Computer Science kmeans 12

0.382875063

0.037850483

Computer Science kmeans 13

0.423088476

0.039061135

Computer Science kmeans 14

0.434023179

0.032375321

Computer Science kmeans 15

0.427486139

0.037831822

Computer Science kmeans 16

0.465960506

0.034667074

Computer Science kmeans 17

0.494469656

0.03397981

Computer Science kmeans 18

0.508450321

0.030338929

Computer Science kmeans 19

0.521334476

0.030113411

Computer Science kmeans 20

0.547553059

0.035746403

Computer Science buckshot 3

0.148017833

0.047163521

Computer Science buckshot 4

0.164962623

0.05003088

Computer Science buckshot 5

0.195625892

0.039659101

Computer Science buckshot 6

0.19393985

0.035904985

Computer Science buckshot 7

0.241907854

0.031100877

Computer Science buckshot 8

0.277452323

0.030625807

Computer Science buckshot 9

0.298335524

0.027920399

Computer Science buckshot 10

0.296627696

0.028020856

Computer Science buckshot 11

0.336991865

0.024522771

Computer Science buckshot 12

0.375339183

0.022868826

Computer Science buckshot 13

0.396238074

0.021468583

Computer Science buckshot 14

0.430707369

0.019961226

Computer Science buckshot 15

0.43616306

0.018828166

Computer Science buckshot 16

0.436385853

0.018802539

Computer Science buckshot 17

0.45764885

0.01868742

Computer Science buckshot 18

0.486111437

0.016400311

Computer Science buckshot 19

0.484334919

0.016669157

Computer Science buckshot 20

0.510121881

0.01618469

Multimedia Database kmeans 3

0.063365742

0.106159129

Multimedia Database kmeans 4

0.090578843

0.079377791

Multimedia Database kmeans 5

0.12146068

0.062794753

Multimedia Database kmeans 6

0.137336404

0.055861023

Multimedia Database kmeans 7

0.176699231

0.047756034

Multimedia Database kmeans 8

0.183370234

0.042952012

Multimedia Database kmeans 9

0.201051369

0.036385103

Multimedia Database kmeans 10

0.215093703

0.03595474

Multimedia Database kmeans 11

0.234390607

0.033837044

Multimedia Database kmeans 12

0.273948161

0.03075323

Multimedia Database kmeans 13

0.280573892

0.029791184

Multimedia Database kmeans 14

0.278150363

0.029341718

Multimedia Database kmeans 15

0.323254647

0.024899285

Multimedia Database kmeans 16

0.32404667

0.025819797

Multimedia Database kmeans 17

0.353356311

0.023677651

Multimedia Database kmeans 18

0.371845234

0.023166923

Multimedia Database kmeans 19

0.386112594

0.021295114

Multimedia Database kmeans 20

0.400086562

0.020967098

Multimedia Database buckshot 3

0.103166357

0.058756045

Multimedia Database buckshot 4

0.141584193

0.044444886

Multimedia Database buckshot 5

0.146180037

0.046816551

Dyer 24

Multimedia Database buckshot 6

0.178122635

0.036469611

Multimedia Database buckshot 7

0.180647839

0.0360094

Multimedia Database buckshot 8

0.225780343

0.028816655

Multimedia Database buckshot 9

0.249318774

0.026653139

Multimedia Database buckshot 10

0.262048419

0.02403192

Multimedia Database buckshot 11

0.282280656

0.023087414

Multimedia Database buckshot 12

0.286650572

0.021269459

Multimedia Database buckshot 13

0.313962132

0.020141669

Multimedia Database buckshot 14

0.324798481

0.018635096

Multimedia Database buckshot 15

0.344719252

0.017970208

Multimedia Database buckshot 16

0.355139533

0.016746197

Multimedia Database buckshot 17

0.379336928

0.015758784

Multimedia Database buckshot 18

0.391163011

0.015797745

Multimedia Database buckshot 19

0.41791312

0.014116583

Multimedia Database buckshot 20

0.431750259

0.013825877

Software Engineering kmeans 3

0.082697982

0.122103826

Software Engineering kmeans 4

0.104449688

0.091838249

Software Engineering kmeans 5

0.127381453

0.08109389

Software Engineering kmeans 6

0.162191439

0.064070565

Software Engineering kmeans 7

0.198561414

0.054363453

Software Engineering kmeans 8

0.205975853

0.051851955

Software Engineering kmeans 9

0.221853122

0.04788921

Software Engineering kmeans 10

0.263162671

0.040926231

Software Engineering kmeans 11

0.27950921

0.039605424

Software Engineering kmeans 12

0.295003235

0.040144066

Software Engineering kmeans 13

0.334557718

0.037233524

Software Engineering kmeans 14

0.339770586

0.03395572

Software Engineering kmeans 15

0.352013088

0.036030108

Software Engineering kmeans 16

0.410635903

0.031496925

Software Engineering kmeans 17

0.421644056

0.0323243

Software Engineering kmeans 18

0.414989775

0.029096202

Software Engineering kmeans 19

0.452049146

0.03004354

Software Engineering kmeans 20

0.487314326

0.027533927

Software Engineering buckshot 3

0.118065011

0.086082548

Software Engineering buckshot 4

0.134651003

0.069770841

Software Engineering buckshot 5

0.149196013

0.061758706

Software Engineering buckshot 6

0.15403538

0.055626534

Software Engineering buckshot 7

0.197160571

0.046312307

Software Engineering buckshot 8

0.209064016

0.04026252

Software Engineering buckshot 9

0.25191877

0.036245597

Software Engineering buckshot 10

0.275324855

0.031825641

Software Engineering buckshot 11

0.303798835

0.029627109

Software Engineering buckshot 12

0.329868362

0.027663581

Software Engineering buckshot 13

0.339549947

0.025643422

Software Engineering buckshot 14

0.36989783

0.024056276

Software Engineering buckshot 15

0.389654744

0.022586128

Software Engineering buckshot 16

0.407023227

0.021811004

Software Engineering buckshot 17

0.422449166

0.020130702

Dyer 25

Software Engineering buckshot 18

0.451003114

0.018823251

Software Engineering buckshot 19

0.439614085

0.019353625

Software Engineering buckshot 20

0.468331153

0.018449561

Parking Decal kmeans 3

0.150501206

0.156590524

Parking Decal kmeans 4

0.191126599

0.153675355

Parking Decal kmeans 5

0.211650958

0.13752367

Parking Decal kmeans 6

0.275798823

0.141292963

Parking Decal kmeans 7

0.300637214

0.13137641

Parking Decal kmeans 8

0.315630355

0.121798382

Parking Decal kmeans 9

0.344289153

0.110910809

Parking Decal kmeans 10

0.39188546

0.114357903

Parking Decal kmeans 11

0.37710006

0.103420407

Parking Decal kmeans 12

0.410871123

0.102625159

Parking Decal kmeans 13

0.434821192

0.099595029

Parking Decal kmeans 14

0.429744606

0.108125148

Parking Decal kmeans 15

0.448002737

0.106956998

Parking Decal kmeans 16

0.463360118

0.107198019

Parking Decal kmeans 17

0.486493203

0.100451986

Parking Decal kmeans 18

0.515285527

0.093424894

Parking Decal kmeans 19

0.513005571

0.094313568

Parking Decal kmeans 20

0.513381745

0.100158425

Parking Decal buckshot 3

0.182999385

0.123920206

Parking Decal buckshot 4

0.175878455

0.119213774

Parking Decal buckshot 5

0.198186645

0.124836621

Parking Decal buckshot 6

0.252003593

0.111457138

Parking Decal buckshot 7

0.254079282

0.102762842

Parking Decal buckshot 8

0.274766987

0.094977761

Parking Decal buckshot 9

0.302742889

0.086533944

Parking Decal buckshot 10

0.341490007

0.070597482

Parking Decal buckshot 11

0.36872349

0.068039585

Parking Decal buckshot 12

0.379253646

0.07071564

Parking Decal buckshot 13

0.414563051

0.059955854

Parking Decal buckshot 14

0.430690043

0.062866675

Parking Decal buckshot 15

0.444896205

0.060275807

Parking Decal buckshot 16

0.456404584

0.057234862

Parking Decal buckshot 17

0.495643096

0.049171587

Parking Decal buckshot 18

0.512201342

0.049159548

Parking Decal buckshot 19

0.522390358

0.049779434

Parking Decal buckshot 20

0.539075822

0.050746038

Average kmeans 3

0.105528831

0.106153756

Average kmeans 4

0.145883741

0.089385039

Average kmeans 5

0.168965931

0.077344485

Average kmeans 6

0.214167205

0.069372713

Average kmeans 7

0.241873699

0.061954169

Average kmeans 8

0.264719439

0.057288405

Average kmeans 9

0.287524435

0.051926808

Average kmeans 10

0.317891396

0.050345463

Average kmeans 11

0.332741943

0.047015072

Dyer 26

Average kmeans 12

0.36476009

0.045951678

Average kmeans 13

0.390536933

0.044853697

Average kmeans 14

0.400889096

0.044125268

Average kmeans 15

0.414685314

0.044539975

Average kmeans 16

0.442460992

0.042896822

Average kmeans 17

0.466002385

0.04137674

Average kmeans 18

0.481677213

0.038041677

Average kmeans 19

0.496329037

0.038375741

Average kmeans 20

0.518771536

0.03976242

Average buckshot 3

0.158438236

0.070363545

Average buckshot 4

0.179728761

0.062551082

Average buckshot 5

0.207068453

0.058896365

Average buckshot 6

0.229386483

0.051437612

Average buckshot 7

0.257849029

0.046390214

Average buckshot 8

0.294225748

0.041423761

Average buckshot 9

0.322730689

0.037758047

Average buckshot 10

0.340703199

0.033024492

Average buckshot 11

0.36755005

0.031108142

Average buckshot 12

0.388440225

0.030373479

Average buckshot 13

0.405359919

0.027434904

Average buckshot 14

0.4325032

0.026850656

Average buckshot 15

0.452612811

0.025512628

Average buckshot 16

0.469816654

0.024441717

Average buckshot 17

0.490833336

0.022218317

Average buckshot 18

0.511846214

0.021444349

Average buckshot 19

0.520318217

0.021361947

Average buckshot 20

0.543706018

0.021172363

Predicted kmeans 3

0.102539672

0.1084

Predicted kmeans 4

0.143

0.0879

Predicted kmeans 5

0.178646265

0.0756

Predicted kmeans 6

0.210872951

0.0674

Predicted kmeans 7

0.240508448

0.061542857

Predicted kmeans 8

0.268092496

0.05715

Predicted kmeans 9

0.294

0.053733333

Predicted kmeans 10

0.318503927

0.051

Predicted kmeans 11

0.341810343

0.048763636

Predicted kmeans 12

0.364079344

0.0469

Predicted kmeans 13

0.385438243

0.045323077

Predicted kmeans 14

0.405990265

0.043971429

Predicted kmeans 15

0.425820485

0.0428

Predicted kmeans 16

0.445

0.041775

Predicted kmeans 17

0.463588949

0.040870588

Predicted kmeans 18

0.481638744

0.040066667

Predicted kmeans 19

0.49919374

0.039347368

Predicted kmeans 20

0.516292529

0.0387

Predicted buckshot 3

0.137611469

0.074534591

Predicted buckshot 4

0.177

0.0627

Predicted buckshot 5

0.211701993

0.05462368

Dyer 27

Predicted buckshot 6

0.243074992

0.048661988

Predicted buckshot 7

0.271925443

0.044028564

Predicted buckshot 8

0.298778787

0.040293669

Predicted buckshot 9

0.324

0.0372

Predicted buckshot 10

0.347854816

0.034582848

Predicted buckshot 11

0.370543844

0.032331236

Predicted buckshot 12

0.392222937

0.030367296

Predicted buckshot 13

0.413016037

0.028634565

Predicted buckshot 14

0.433023636

0.02709097

Predicted buckshot 15

0.452328552

0.02570443

Predicted buckshot 16

0.471

0.02445

Predicted buckshot 17

0.489096527

0.023307951

Predicted buckshot 18

0.506668181

0.022262446

Predicted buckshot 19

0.523758145

0.021300607

Predicted buckshot 20

0.540403985

0.02041184

Appendix B

Query Algorithm K Avg Ratio Avg Score
parking decal kmeans 3

0.55555556

2.1111111

parking decal kmeans 5

0.6

2.7333333

parking decal kmeans 7

0.57142857

2.4761905

computer science kmeans 4

0.58333333

2.75

computer science kmeans 7

0.66666667

2.4761905

computer science kmeans 10

0.76666667

3.1666667

parking decal buckshot 3

1

3.7777778

parking decal buckshot 5

0.93333333

4.1333333

parking decal buckshot 7

0.95238095

3.952381

computer science buckshot 4

1

3.6666667

computer science buckshot 7

0.85714286

3.4285714

computer science buckshot 10

0.86666667

3.2666667

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

