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Introduction  

Search Assistant is a small search engine that is written in Java and uses Java 

Server Pages (JSP) to provide a user interface.  Users enter a query as a set of 

keywords and choose an algorithm to use to compute document scores against the 

given query.  The selected algorithm is subsequently run and the relevant documents 

are sorted and returned to the user.  The three algorithms that are implemented in 

Search Assistant are:  Vector Space Model, Authorities/Hubs, and PageRank.  

 



  

Search Assistant runs using a document crawl of a portion of the sites related 

to ASU.  Although, only 7513 documents were indexed, over 9500 were crawled.  

Links were extracted from the latter category.  Therefore, algorithms that use the 

link structure of the web have access to approximately 2000 more documents than 

those that rely upon the inverted index.  The reason that this particular search 

engine is termed small is because of the size of the corpus which therefore 

influenced the complexity of the implementation of the various algorithms. 

After the algorithms were implemented, they were extensively tested for 

correctness using small datasets and they were tested for performance on large 

datasets.  This led to an iterative refinement of the implementation that has proven 

the correctness of the approach as well as the feasibility.  An analysis of each 

method will be hereafter described in detail. 

Due to the ease of comparing the implementations of the various algorithms, 

it is intriguing to analyze their comparative strengths and weaknesses against the 

corpus.  Some tantalizing results were produced by this analysis.  Finally, 

suggestions for future work and directions are made based upon the results of this 

implementation.  



Vector Space Model   

The Vector Space Model is based upon the previous project and a detailed 

analysis of its implementation and analysis has been made.  A brief refresher 

containing the important facts from this analysis will be restated here because the 

vector space model is the foundation of the other two algorithms.  

The Vector Space Model uses the inverted index provided by the Lucene API.  

Documents are represented as vectors in the space of terms.  It uses the cosine 

theta metric to find the similarity between two documents.  Recall that a query can 

be considered to be a document for the purposes of a similarity; therefore, query 

and document will be used interchangeable hereafter.  Thus similarity is defined as: 
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Each term element in the document is computed using tf- idf weights.  N is the 

number of documents in the corpus.  Nt is the number of documents in which term t 

appears.  freq is the frequency of term t in document d.  maxtf is the maximum 

frequency of any term in document d.  We can now define tf- idf. 
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It was also shown that the algorithm for computing vector space similarity 

consisted of two components: an offline component and an online component.  The 

offline component computed document normalization factors and max term 

frequencies.  Previously, this computation was done when the query application was 

started; however, Search Assistant precomputes these values and stores them in a 

file that is then loaded when Search Assistant starts.  The online component ran the 

vector space similarity algorithm and then sorted the results.  It was shown that this 

algorithm runs in O(N log N) time.  This is because the time it takes to sort the 

results is asymptotically larger than the time it takes to determine the similarity of 

each of the documents with the query.  If the sorting is not performed then the time 

complexity is O(QM) where Q is the number of terms in the query and M is the 

average number of documents in which a query term appears. 



 
The results that the vector space model returns make sense because it finds 

documents that are similar to the query.  It has the powerful ability to find important 

words both in the query and in the documents and relate the two together; however, 

one drawback is that it would be easy to manipulate since it relies entirely upon a 

page s descript ion of it self.  The nature of vector space model seems to capture 

relevancy but has a more difficult time capturing importance or value of a document.  

As previously stated, the implementation of the vector space model in Search 

Assistant is identical to the previous implementation except that it does not rerun the 

offline component each time it starts.  

Authorities/Hubs   

The authorities/hubs algorithm uses the link structure of the crawled 

hypertext pages to calculate link based statistics for each page.  The algorithm starts 

by running the vector space algorithm with the given query.  Then the top ten 

documents are chosen as seeds for the root set R.  This value was chosen by 

experiment because it chooses a variety of pages that have a high probability of 

being relevant for the query and because it does not include too many documents in 

the root set.  After the root set is chosen, it is expanded into a base set of 

documents B by the following procedure.  It adds all documents that are linked to by 

at least one page in R and for each page in the R it adds up to fifty pages that link to 

that page.  The reason that this is limited to fifty is that a given page can have a 

very high number of back links and for the given crawl any number of back links 

above fifty will not substantially alter the results because fifty is several standard 

deviations above the mean.  

Now an adjacency matrix A is constructed from the pages in B.  Each element 

of A, ai,j is set to 1 if there exists a link from page i to page j  and 0 if there does not 

exist a link from page i to page j .  Now the authority and hub vectors are initialized 

to |B|x1 vectors with all elements set to 1.  The authority score of a page is the sum 

of the hub scores of the pages that link to it.  The hub score of a page is the sum of 

the authority scores of the pages to which it links.  Therefore, the authority and hub 

scores are then calculated thus: 
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Because ATA and AAT are symmetric and square, the equations converge to 

the normalized principle eigenvalue vectors 1 and 2 respectively.  Thus we can 

describe the converged authorities and hub scores as the following: 
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Note that an eigenvector v of a matrix M is a vector such that: 
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Or in other words, multiply the matrix M by one of its eigenvectors will yield a 

constant multiple of the eigenvector.  Note that we can find the eigenvector by 

iteratively finding ai and hi.  These facts motivate the algorithm that is detailed 

below:  

AuthorityHub(query q) {   

Find similar documents using vector space model   

Keep top k documents in root set R   

Let B = R   

For each page p in R {    

For each forward link from p to q { 

if q is not in B then add q to B and indicate in adjacency 

matrix    

}    

Set x to 0    

While x < 50 and there exists back links to p {     

Select a random link from q to p     

if q is not in B then { 

add q to B  

indicate in adjacency matrix 

set x = x + 1     

}    

}   

}   

Initialize all authority and hub scores to be 1/|B|   

For 50 iterations {    

For each page p in B {     

Set authority score of p to be 0     

For each page q with a link in adjacency matrix to p { 



     
authority score of p += hub score of q     

}    

}    

For each page p in B {     

Set hub score of p to be 0     

For each page q with a link to in adjacency matrix by p {      

hub score of p += authority score of q     

}    

}    

Normalize authority scores    

Normalize hub scores   

}   

Sort the authority and hub scores  

}  

For our analysis, we will assume that we have N documents in the corpus, 

that each document has an average of Lf forward links and Lb back links.  Then it has 

already been shown that the time complexity of running the vector space model is 

O(N log N).  The time necessary for expanding the root set is: 
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Thus the time complexity is linearly bounded by the sum of the number of 

forward links and back links to and from pages in the root set.  The limit is included 

because although a page will not contain a very large number of forward links, this 

could easily happen with back links.  Next, to compute the authority and hub scores 

the following time complexity is introduced: 
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The time complexity to sort the authority and hub scores will be: 
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Therefore, the total time for the algorithm is described below: 
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In a very large corpus where N>>(Lf+Lb) this becomes: 

)log( NNO  

In a small highly connected corpus this becomes: 
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This demonstrates the fact that while the authority/hubs computation is 

intensive, the nature of selecting the root set by picking the top k documents fixes 

the time complexity to some extent.  Therefore, this algorithm scales well.  In fact, 

the algorithm proportionally takes much longer in a small corpus than in a larger 

one.  In a very large corpus the authority/hubs score will be bounded by the time 

taken to run the vector space model prior to the authority/hubs computation.  

The authority/hub computation captures some of the importance of 

documents.  It relies upon the assumption that forward links and back links from 

relevant pages will be relevant as well.  In a normally distributed population where 

the graph of the pages is loosely connected overall this will hold; however, in a small 

strongly connected graph many of the pages which are linked to and linked from the 

root set will not be relevant to the query.  Another problem with the authority/hub 

scores is that they are not stable in a changing corpus.  

PageRank   

PageRank is something of the best of both the vector space model and the 

authority/hub scores.  Note that from the previous two types of query evaluation we 

have seen that vector space model captures relevancy whereas the authority/hub 

scores capture importance.  We have also noted that the two notions are not always 

related and this accounts from the principle weakness of each approach.  PageRank 

addresses these issues.  It scores documents based on a weighted combination of 

their vector space score and their PageRank.  PageRank is essentially the normalized 

probability that a web surfer would be at a particular page and a given instant.  This 

model of PageRank provides the basis for its computation.  It begins by defining a 

large square stochastic matrix where each entry ai,j represents the probability that 

from page j  a surfer will move to page i.  Note that each column must therefore sum 

to 1.  To avoid rank sinks which are pages with back links but no forward links it is 

assumed that the web surfer will not only follow links but also will become bored and 

jump to a new random page at any given time.  Thus the matrix can be modeled 

thus: 
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In this equation, M represents the stochastic matrix where each element m i,j 

is the number of links to page i from page j  divided by the number of forward links 

from page j .  Each column j of matrix Z is set to 0 if page j  has any forward links 

otherwise all elements in that column are set to 1 divided by number of pages.  The 

matrix K has each element set to 1 divided by the number of pages.  Finally,  is 

defined as a number between 0 and 1 inclusively.  It is therefore, the probability that 

a web surfer will follow a link on the current page as opposed to jumping to a new 

page.  Now we define the PageRank of each page to be the corresponding element in 

the principle eigenvector of the M*  matrix.  Note that this can be computed by 

iteratively calculating the PageRank until it converges.  It has been shown that this 

convergence happens quickly.  The total score of a document is a weight 

combination of the PageRank of a page and the vector space score, where the 

weighted coefficients sum to 1.  

Now the algorithm can be defined.  Note that the PageRank algorithm consists 

of two components: an offline component and an online component.  First the 

PageRank of each page is computed offline and stored for query evaluation.  Second, 

queries are evaluated with the vector space model and the weighted combination of 

the vector space score and the PageRank are used to sort the documents.  The input, 

, is used to determine to probability that a user will follow a link on the page rather 

than jumping.  

PageRankCompuation( ) {   

Construct a NxN matrix, M, where N is the number of pages   

Set all elements in M to 0   

For each page p in the corpus {    

if p has no forward links {     

Set all entries in column p of M to 1/|N|    

}    

else {     

For each page q that is linked to from p { 

Set element q, p in M to 1 divided by number of 

forward links from p     

}    

}   

} 



  
For each element in matrix M {    

Set the element to (element) + (1 

 
)(1 / |N|)   

}   

Set PageRank of each page to 1/|N|   

Iterate 20 times {    

Foreach page p {     

Set New PageRank p to 0     

Foreach page q {      

New PageRank p += PageRank q * element q, p     

}    

}    

Normalize PageRank   

}   

Write results  

}  

Therefore, the time complexity is: 
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Even for a crawl of only 7513 pages this represents an enormous cost.  

Fortunately as it has already been noted, the PageRank scores are computed offline.  

The algorithm for computing the weighted combined score is listed below.  The 

inputs are the query and  which is the weight given to the vector score rather than 

the page rank.  

PageRankScore(query q, ) {   

VectorScore of each page = VectorSpaceModel(q)   

For each page p {    

Score of p = (1 - ) (VectorScore of p) +  (PageRank of p)   

}   

Sort pages by score  

}  

Thus, the time complexity can be modeled by: 
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For Search Assistant,  was assigned the value .8 and  was assigned the 

value .9.  This means that for our model a user will follow a link with 80% probability 

and will jump to a random page with 20% probability.  Also the total score is 30% of 



the vector space score and 70% of the page rank score.  Both of these values were 

determined by experimentation.  The values were varied and the precision of the top 

ten results was analyzed and refined.  It should be noted that the PageRank scores 

tend to be an order of magnitude smaller than the vector space score so the large 

difference in percentage contribution helps to balance the scores.  PageRank is a 

powerful concept.  It directly includes the relevancy of the terms and provides a 

powerful model for favoring important documents.    

Conclusion   

In order to compare the three methods of evaluating a query, several queries 

have been selected and the results of each method are listed.  The results from 

these queries are attached to this paper.  From these results an assortment of 

conclusions can be drawn about the data set and the algorithms.  

First, note that the vector space algorithm is fairly accurate; however, it does 

favor shorter more focused documents.  It should also be noted that although this 

algorithm is more easily manipulated than the other two this was not exploited in the 

data set that was given. 

Second, the authority and hubs scores seem to give results that are not very 

accurate.  This is due to the nature of the data set.  Because the authority and hub 

scores are highly dependent on common links between pages in the base set and 

because the data set is a small highly connected graph, most of the common links 

between pages are administrative pages.  In a larger data set the common links 

between relevant pages will more likely be relevant as well.  Of the two metrics, the 

authority score seems to be more reliable but again it favors administrative pages in 

this data set. 

Third, the PageRank scores in general are better than the vector space 

scores.  This is because the PageRank scores tend to weed out pages that are 

relevant but are not the important pages that were desired.  It boosts the scores of 

popular pages; however, PageRank also suffers from a highly connected graph. 
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