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Abstract

The data integration problem is to provide uniform access to multiple
heterogeneous information sources available online (e.g., databases on
the WWW). This problem has recently received considerable attention
from researchers in the �elds of Arti�cial Intelligence and Database
Systems. The data integration problem is complicated by the facts
that (1) sources contain closely related and overlapping data, (2) data
is stored in multiple data models and schemas, and (3) data sources
have di�ering query processing capabilities.

A key element in a data integration system is the language used to
describe the contents and capabilities of the data sources. While such a
language needs to be as expressive as possible, it should also enable to
eÆciently address the main inference problem that arises in this context:
to translate a user query that is formulated over a mediated schema into
a query on the local schemas. This paper describes several lanaguages
for describing contents of data sources, the tradeo�s between them, and
the associated reformulation algorithms.
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1. INTRODUCTION

The goal of a data integration system is to provide a uniform interface
to a multitude of data sources. As an example, consider the task of pro-
viding information about movies from data sources on the World-Wide
Web (WWW). There are numerous sources on the WWW concerning
movies, such as the Internet Movie Database (providing comprehensive
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listings of movies, their casts, directors, genres, etc.), MovieLink (pro-
viding playing times of movies in US cities), and several sites provid-
ing reviews of selected movies. Suppose we want to �nd which movies,
directed by Woody Allen, are playing tonight in Seattle, and their re-
spective reviews. None of these data sources in isolation can answer
this query. However, by combining data from multiple sources, we can
answer queries like this one, and even more complex ones. To answer
our query, we would �rst search the Internet Movie Database for the list
of movies directed by Woody Allen, and then feed the result into the
MovieLink database to check which ones are playing in Seattle. Finally,
we would �nd reviews for the relevant movies using any of the movie
review sites.
The most important advantage of a data integration system is that it

enables users to focus on specifying what they want, rather than thinking
about how to obtain the answers. As a result, it frees the users from the
tedious tasks of �nding the relevant data sources, interacting with each
source in isolation using a particular interface, and combining data from
multiple sources.
The main characteristic distinguishing data integration systems from

distributed and parallel database systems is that the data sources un-
derlying the system are autonomous. In particular, a data integration
system provides access to pre-existing sources, which were created inde-
pendently. Unlike multidatabase systems (see Litwin et al., 1990 for a
survey) a data integration system must deal with a large and constantly
changing set of data sources. These characteristics raise the need for
richer mechanisms for describing our data, and hence the opportunity
to apply techniques from knowledge representation. In particular, a data
integration system requires a exible mechanism for describing contents
of sources that may have overlapping contents, whose contents are de-
scribed by complex constraints, and sources that may be incomplete or
only partially complete.
This paper describes the main languages considered for describing

data sources in data integration systems (Section 4.), which are based on
extensions of database query languages. We then discuss the novel chal-
lenges arising in designing the appropriate reasoning algorithms (Sec-
tion 5.). Finally, we consider the advantages and challenges of accompa-
nying these languages with a richer knowledge representation formalism
based on Description Logics (Section 6.).
This paper is not meant to be a comprehensive survey of the work on

data integration or even on languages for describing source descriptions.
My goal is simply to give a avor of the main issues that arise and of
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the solutions that have been proposed. Pointers to more detailed papers
are provided throughout.

2. NOTATION

Our discussion will use the terminology of relational databases. A
schema is a set of relations. Columns of relations are called attributes,
and their names are part of the schema (traditionally, the type of each
attribute is also part of the schema but we will ignore typing here).
Queries can be speci�ed in a variety of languages. For simplicity,

we consider the language of conjunctive queries (i.e., single Horn rule
queries), and several variants on it. A conjunctive query has the form:

q( �X) :- e1( �X1); : : : ; en( �Xn);

where e1; : : : ; en are database relations, and �X1; : : : ; �Xn are tuples of
variables or constants. The atom q( �X) is the head of the query, and
the result of the query is a set of tuples, each giving a binding for every
variable in �X . We assume the query is safe, i.e., �X � �X1 [ : : : [ �Xn.
Interpreted predicates such as <;�; 6= are sometimes used in the query.
Queries with unions are expressed by multiple rules with the same head
predicate. A view refers to a named query, and it is said to be materi-
alized if its results are stored in the database.
The notions of query containment and query equivalence are impor-

tant in order to enable comparison between di�erent formulations of
queries.

De�nition 1: Query containment and equivalence. A query Q1

is said to be contained in a query Q2, denoted by Q1 v Q2, if for any
database D, Q1(D) � Q2(D). The two queries are said to be equivalent
if Q1 v Q2 and Q2 v Q1.

The problems of query containment and equivalence have been studied
extensively in the literature. Some of the cases which are most relevant
to our discussion include: containment of conjunctive queries and unions
thereof Chandra and Merlin, 1977; Sagiv and Yannakakis, 1981, conjunc-
tive queries with built-in comparison predicates Klug, 1988, and datalog
queries Shmueli, 1993; Sagiv, 1988; Levy and Sagiv, 1993; Chaudhuri
and Vardi, 1993; Chaudhuri and Vardi, 1994.

3. CHALLENGES IN DATA INTEGRATION

As described in the introduction, the task of a data integration system
is to provide a uniform interface to a collection of data sources. The data
sources can either be full-edged database systems (of various avors:
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relational, object-oriented, etc.), legacy systems, or structured �les hid-
den behind some interface program. For the purposes of our discussion
we model data sources as containing relations. In this paper (as in most
of the research) we only consider data integration systems whose goal is
to query the data, and not to perform updates on the sources.
Even though this paper focuses on the problem of modeling data

sources and query reformulation, it is worthwhile to �rst highlight some
of the challenges involved in building data integration systems. To do so,
we briey compare data integration systems with traditional database
management systems.
Figure 1.1 illustrates the di�erent stages in processing a query in a data
integration system.
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Figure 1.1 Prototypical architecture of a data integration system
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Data modeling:. in a traditional database application one begins by
modeling the requirements of the application, and designing a database
schema that appropriately supports the application. As noted earlier,
a data integration application begins from a set of pre-existing data
sources. Hence, the �rst step of the application designer is to develop
a mediated schema (often referred to as a global schema) that describes
the data that exists in the sources, and exposes the aspects of this data
that may be of interest to users. Note that the mediated schema does
not necessarily contain all the relations and attributes modeled in each
of the sources. Users pose queries in terms of the mediated schema,
rather than directly in terms of the source schemas. As such, the me-
diated schema is a set of virtual relations, in the sense that they are
not actually stored anywhere. For example, in the movie domain, the
mediated schema may contain the relation Movie(title, year, di-
rector, genre) describing the di�erent properties of a movie, the
relationMovieActor(title, name), representing the cast of a movie,
MovieReview(title, review) representing reviews of movies, and
American(director) storing which directors are American.
Along with the mediated schema, the application designer needs to

supply descriptions of the data sources. The descriptions specify the
relationship between the relations in the mediated schema and those in
the local schemas at the sources. The description of a data source spec-
i�es its contents (e.g., contains movies), attributes (e.g., genre, cast),
constraints on its contents (e.g., contains only American movies), com-
pleteness and reliability, and �nally, its query processing capabilities
(e.g., can perform selections, or can answer arbitrary SQL queries).
The fact that data sources are pre-existing requires that we be able

to handle the following characteristics in the language for describing the
sources:

1. Overlapping and even contradictory data among di�erent sources.

2. Semantic mismatches among sources: since each of the data sources
has been designed by a di�erent organization for di�erent purposes,
the data is modeled in di�erent ways. For example, one source may
store a relational database in which all the attributes of a particu-
lar movie are stored in one table, while another source may spread
the attributes across several relations. Furthermore, the names of
the attributes and of the tables will be di�erent from one source
to another, as will the choice of what should be a table and what
should be an attribute.

3. Di�erent naming conventions for data values: sources use di�erent
names or formats to refer to the same object. Simple examples in-
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clude various conventions for specifying addresses or dates. Cases
in which persons are named di�erently in the sources are harder
to deal with (e.g., one source contains the full name, while an-
other contains only the initials of the �rst name). A recent elegant
treatment of this problem is presented in Cohen, 1998.

Query reformulation:. a user of a data integration system poses
queries in terms of the mediated schema, rather than directly in the
schema in which the data is stored. As a consequence, a data integra-
tion system must contain a module that uses the source descriptions in
order to reformulate a user query into a query that refers directly to
the schemas of the sources. Such a reformulation step does not exist
in traditional database systems. Clearly, as the language for describing
data sources becomes more expressive, the reformulation step becomes
harder. Clearly, we would like the reformulation to be sound, (i.e., the
answers to the reformulated query should all be correct answers to the
input query), and complete (i.e., all the answers that can be extracted
from the data sources should be in the result of applying the reformu-
lated query). In addition, we want the reformulation to produce an
eÆcient query, e.g., to ensure that we do not access irrelevant sources
(i.e., sources that cannot contribute any answer or partial answer to the
query).

Wrappers:. the other layer of a data integration system that does not
exist in a traditional system is the wrapper layer. Unlike a traditional
query execution engine that communicates with a local storage manager
to fetch the data, the query execution plan in a data integration system
must obtain data from remote sources. A wrapper is a program which
is speci�c to a data source, whose task is to translate data from the
source to a form that is usable by the query processor of the system.
For example, if the data source is a web site, the task of the wrapper
is to translate the query to the source's interface, and when the answer
is returned as an HTML document, it needs to extract a set of tuples
from that document. (Clearly, the emergence of XML as a standard for
data exchange on the WWW will alleviate much of the wrapper building
problem).

Query optimization and execution:. a traditional relational database
system accepts a declarative SQL query. The query is �rst parsed and
then passed to the query optimizer . The role of the optimizer is to pro-
duce an eÆcient query execution plan, which is an imperative program
that speci�es exactly how to evaluate the query. In particular, the plan
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speci�es the order in which to perform the di�erent operations in the
query (join, selection, projection), a speci�c algorithm to use for each
operation (e.g., sort-merge join, hash-join), and the scheduling of the
di�erent operators. Typically, the optimizer selects a query execution
plan by searching a space of possible plans, and comparing their esti-
mated cost. To evaluate the cost of a query execution plan the optimizer
relies on extensive statistics about the underlying data, such as sizes of
relations, sizes of domains and the selectivity of predicates. Finally,
the query execution plan is passed to the query execution engine which
evaluates the query.
The main di�erences between the traditional database context and

that of data integration are the following:

Since the sources are autonomous, the optimizer may have no
statistics about the sources, or unreliable ones. Hence, the opti-
mizer cannot compare between di�erent plans, because their costs
cannot be estimated.

Since the data sources are not necessarily database systems, the
sources may appear to have di�erent processing capabilities. For
example, one data source may be a web interface to a legacy infor-
mation system, while another may be a program that scans data
stored in a structured �le (e.g., bibliography entries). Hence, the
query optimizer needs to consider the possibility of exploiting the
query processing capabilities of a data source. Note that query op-
timizers in distributed database systems also evaluate where parts
of the query should be executed, but in a context where the dif-
ferent processors have identical capabilities.

Finally, in a traditional system, the optimizer can reliably estimate
the time to transfer data from the disc to main memory. But in a
data integration system, data is often transferred over a wide-area
network, and hence delays may occur for a multitude of reasons.
Therefore, even a plan that appears to be the best based on cost
estimates may turn out to be ineÆcient if there are unexpected
delays in transferring data from one of the sources accessed early
on in the plan.

4. MODELING DATA SOURCES AND
QUERY REFORMULATION

As described in the previous section, one of the main di�erences be-
tween a data integration system and a traditional database system is
that users pose queries in terms of a mediated schema. The data, how-
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ever, is stored in the data sources, organized under local schemas. Hence,
in order for the data integration system to answer queries, there must
be some description of the relationship between the source relations and
the mediated schema. The query processor of the integration system
must be able to reformulate a query posed on the mediated schema into
a query against the source schemas.
In principle, one could use arbitrary formulas in �rst-order logic to

describe the data sources. But in such a case, sound and complete re-
formulation would be practically impossible. Hence, several approaches
have been explored in which restricted forms of �rst-order formulas have
been used in source descriptions, and e�ective accompanying reformula-
tion algorithms have been presented. We describe two such approaches:
the Global as view approach (GAV) Garcia-Molina et al., 1997; Pa-
pakonstantinou et al., 1996; Adali et al., 1996; Florescu et al., 1996,
and the Local as view approach (LAV) Levy et al., 1996b; Kwok and
Weld, 1996; Duschka and Genesereth, 1997a; Duschka and Genesereth,
1997b; Friedman and Weld, 1997; Ives et al., 1999.

Global As View:. In the GAV approach, for each relation R in the
mediated schema, we write a query over the source relations specifying
how to obtain R's tuples from the sources.
For example, suppose we have two sources DB1 and DB2 containing

titles, actors and years of movies. We can describe the relationship
between the sources and the mediated schema relationMovieActor as
follows:

DB1(id; title; actor; year) ) MovieActor(title; actor)
DB2(id; title; actor; year) ) MovieActor(title; actor).

If we have a third source that shares movie identi�ers with DB1 and
provides movie reviews, the following sentence describes how to obtain
tuples for the MovieReview relation:

DB1(id; title; actor; year) ^DB3(id; review) )
MovieReview(title; review)

In general, GAV descriptions are Horn rules that have a relation in
the mediated schema in the consequent, and a conjunction of atoms over
the source relations in the antecedent.
Query reformulation in GAV is relatively straightforward. Since the

relations in the mediated schema are de�ned in terms of the source
relations, we need only unfold the de�nitions of the mediated schema
relations. For example, suppose our query is to �nd reviews for movies
starring Marlon Brando:
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q(title; review) : � MovieActor(title,`Brando'),
MovieReview(title, review).

Unfolding the descriptions of MovieActor and MovieReview will
yield the following queries over the source relations: (the second of which
will obviously be deemed redundant)

q(title; review) : � DB1(id; title; `Brando
0; year);DB3(id; review)

q(title; review) : � DB1(id; title; `Brando
0; year);

DB2(id; `Brando
0; year);DB3(id; review)

Local As View:. The LAV approach the descriptions of the sources
are given in the opposite direction. That is, the contents of a data source
are described as a query over the mediated schema relation.
Suppose we have two sources: (1) V1, containing titles, years and di-

rectors of American comedies produced after 1960, and (2) V2 containing
movie reviews produced after 1990. In LAV, we would describe these
sources by the following formulas (variables that appear only on the
right hand sides are assumed to be existentially quanti�ed):

S1 : V1(title; year; director) ) Movie(title,year, director,genre) ^
American(director) ^
year � 1960 ^ genre=Comedy.

S2 : V2(title; review) ) Movie(title, year, director, genre) ^ year � 1990 ^
MovieReview(title, review).

Query reformulation in LAV is more tricky than in GAV, because it
is not possible to simply unfold the de�nitions of the relations in the
mediated schema. For example, suppose our query asks for reviews for
comedies produced after 1950:

q(title; review) : �Movie(title; year; director; Comedy); year � 1950;
MovieReview(title; review).

The reformulated query on the sources would be:

q0(title; review) : �V1(title; year; director); V2(title; review).

Note that in this case, the reformulated query is not equivalent to the
original query, because it only returns movies that were produced after
1990. However, given that we only have the sources S1 and S2, this is
the best reformulation possible. In the next section we de�ne precisely
the reformulation problem in LAV and present several algorithms for
solving it.
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A Comparison of the Approaches:. The main advantage of the
GAV approach is that query reformulation is very simple, because it
reduces to rule unfolding. However, adding sources to the data integra-
tion system is non-trivial. In particular, given a new source, we need
to �gure out all the ways in which it can be used to obtain tuples for
each of the relations in the mediated schema. Therefore, we need to con-
sider the possible interaction of the new source with each of the existing
sources, and this limits the ability of the GAV approach to scale to a
large collection of sources.
In contrast, in the LAV approach each source is described in isolation.

It is the system's task to �gure out (at query time) how the sources
interact and how their data can be combined to answer the query. The
downside, however, is that query reformulation is harder, and sometimes
requires recursive queries over the sources. An additional advantage of
the LAV approach is that it is easier to specify rich constraints on the
contents of a source (simply by specifying more conditions in the source
descriptions). Specifying complex constraints on sources is essential if
the data integration system is to distinguish between sources with closely
related and overlapping data. Finally, Friedman et al., 1999 described
the GLAV language that combines the expressive power of GAV and
LAV, and query reformulation complexity is the same as for LAV.

5. ANSWERING QUERIES USING VIEWS

The reformulation problem for LAV can be intuitively explained as
follows. Because of the form of the LAV descriptions, each of the sources
can be viewed as containing an answer to a query over the mediated
schema (an answer to the query expressed by the right hand side of the
source description). Hence, sources represent materialized answers to
queries over the virtual mediated schema. A user query is also posed
over the mediated schema. The problem is therefore to �nd a way of
answering the user query using only the answers to the queries describing
the sources.
The problem of answering a query using a set of previously ma-

terialized views has received signi�cant attention because of its rele-
vance to other database problems, such as query optimization Chaudhuri
et al., 1995, maintaining physical data independence Yang and Larson,
1987; Tsatalos et al., 1996, and data warehouse design.
Formally, suppose we are given a query Q and a set of view de�nitions

V1; : : : ; Vm. A rewriting of the query using the views is a query expression
Q0 whose subgoals use only view predicates or interpreted predicates. We
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distinguish between two types of query rewritings: equivalent rewritings
and maximally-contained rewritings.

De�nition 2: (Equivalent rewritings). Let Q be a query and V =
V1; : : : ; Vm be a set of view de�nitions. The query Q0 is an equivalent
rewriting of Q using V if:

Q0 refers only to the views in V, and

Q0 is equivalent to Q.

De�nition 3: (Maximally-contained rewritings). Let Q be a query
and V = V1; : : : ; Vm be a set of view de�nitions in a query language L.
The query Q0 is a maximally-contained rewriting of Q using V w.r.t. L
if:

Q0 refers only the views in V,

Q0 is contained in Q, and

there is no rewriting Q1, such that Q0 � Q1 � Q and Q1 is not
equivalent to Q0.

Equivalent rewritings of a query are needed when materialized views
are used for query optimization and physical data independence. In
the data integration context, we usually need to settle for maximally-
contained rewritings, because, as we saw in the previous section, the
sources do not necessarily contain all the information needed to provide
an equivalent answer to the query.
Recent research has considered many variants of the problem of an-

swering queries using views (see Levy, 1999 for a survey). The problem
has been shown to be NP-complete even when the queries describing the
sources and the user query are conjunctive and don't contain interpreted
predicates Levy et al., 1995. In fact, Levy et al., 1995 shows that in the
case of conjunctive queries, we can limit the candidate rewritings that
we consider to those that have at most the number of subgoals in the
query. Importantly, the complexity of the problem is polynomial in the
number of views (i.e., the number of data sources in the context of data
integration).
In what follows we describe two algorithms for answering queries using

views that were developed speci�cally for the context of data integration.
These algorithms are the bucket algorithm developed in the context of
the Information Manifold system Levy et al., 1996b, and the inverse-
rules algorithm Qian, 1996; Duschka and Genesereth, 1997b; Duschka
et al., 1999 which was implemented in the InfoMaster system Duschka
and Genesereth, 1997b.
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5.1 THE BUCKET ALGORITHM

The goal of the bucket algorithm is to reformulate a user query that
is posed on a mediated (virtual) schema into a query that refers di-
rectly to the available data sources. Both the query and the sources are
described by select-project-join queries that may include atoms of arith-
metic comparison predicates (hereafter referred to simply as predicates).
The bucket algorithm returns the maximally contained rewriting of the
query using the views.
The main idea underlying the bucket algorithm is that the (possibly

exponential) number of query rewritings that need to be considered can
be drastically reduced if we �rst consider each subgoal in the query in
isolation, and determine which views may be relevant to each subgoal.
Given a query Q, the bucket algorithm proceeds in two steps. In the �rst
step, the algorithm creates a bucket for each subgoal inQ, containing the
views (i.e., data sources) that are relevant to answering the particular
subgoal. More formally, a view V is put in the bucket of a subgoal g in
the query if the de�nition of V contains a subgoal g1 such that

g and g1 can be uni�ed, and

after applying the uni�er to the query and to the variables of the
view that appear in the head, the predicates in Q and in V are
mutually satis�able.

The actual bucket contains the head of the view V after applying the
uni�er to the head of the view. Note that a subgoal g may unify with
more than one subgoal in a view V , and in that case the bucket of g will
contain multiple occurrences of V .
In the second step, the algorithm considers query rewritings that are

conjunctive queries, each consisting of one conjunct from every bucket.
Speci�cally, for each possible choice of element from each bucket, the
algorithm checks whether the resulting conjunction is contained in the
query Q, or whether it can be made to be contained if additional pred-
icates are added to the rewriting. If so, the rewriting is added to the
answer. Hence, the result of the bucket algorithm is a union of conjunc-
tive rewritings.

Example 5..1: Consider an example including views over the following
schema:

Enrolled(student, dept) Registered(student, course, year)
Course(course, number)

V1(student,number,year) :- Registered(student,course,year),
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Course(course,number),
number�500, year�1992.

V2(student,dept,course) :- Registered(student,course,year),
Enrolled(student,dept)

V3(student,course) :- Registered(student,course,year), year � 1990.
V4(student,course,number) :- Registered(student,course,year),

Course(course,number),
Enrolled(student,dept), number�100

Suppose our query is:

q(S,D) :- Enrolled(S,D), Registered(S,C,Y), Course(C,N), N�300, Y�1995.

In the �rst step of the algorithm we create a bucket for each of the
relational subgoals in the query in turn. The resulting contents of the
buckets are shown in Table 1.1. The bucket of Enrolled(S,D) will include
the views V2 and V4, since the following mapping maps the atom in the
query into the corresponding Enrolled atom in the views:

f S ! student, D ! dept g.

Note that the view head in the bucket only includes the variables in
the domain of the mapping, and fresh variables (primed) for the other
head variables of the view.
The bucket of the subgoal Registered(S,C,Y) will contain the views V1,

V2 and V4 since the following mapping maps the atom in the query into
the corresponding Registered atom in the views:

f S ! student, C ! course, Y ! year g.

Enrolled(S,D) Registered(S,C,Y) Course(C,N)

V2(S,D,C') V1(S,N',Y) V1(S',N,Y')
V4(S,C',N') V2(S,D',C)

V4(S,C,N')

Table 1.1 Contents of the buckets. The primed variables are those that are not in
the domain of the unifying mapping.

The view V3 is not included in the bucket of Registered(S,C,Y) because
the predicates Y � 1995 and year � 1990 are mutually inconsistent. On
the other hand, one may wonder why V4 is included in the bucket, since
the predicates on the course number in the view and in the query are
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mutually inconsistent. However, the point to note is that the mapping
from the query to the view does not map the variable D to the variable
number in V4. Hence, the contradiction does not arise.1

Next, consider the bucket of the subgoal Course(C,N). The view V1
will be included in the bucket because of the mapping

f C ! course, N ! number g.

Note that in this case the view V4 is not included in the bucket because
the uni�er does map N to number, and hence the predicates on the course
number would be mutually inconsistent.
In the second step of the algorithm, we combine elements from the

buckets. In our example, the only combination that would yield a solu-
tion is joining V1 and V2 as follows:

q'(S,D) :- V1(S, N, Y), V2(S,D,C), Y�1995.

The only other option that would not involve a redundant view sub-
goal in the rewriting, would involve a join between V1 and V4 and is
dismissed because the two views contain disjoint numbers of courses
(greater than 500 for V1 and less than 100 for V4). In this case, the
views V1 and V4 are relevant to the query in isolation, but, if joined,
produce the empty answer. Finally, the reader should also note that in
this example, as usually happens in the data integration context, the
algorithm produced a maximally-contained rewriting of the query using
the views, and not an equivalent rewriting.

5.2 THE INVERSE-RULES ALGORITHM

Like the bucket algorithm, the inverse-rules algorithm was also de-
veloped in the context of a data integration system Duschka and Gene-
sereth, 1997b. The key idea underlying the algorithm is to construct a
set of rules that invert the view de�nitions, i.e., rules that show how to
compute tuples for the database relations from tuples of the views. We
illustrate inverse rules with an example.
Suppose we have the following view:

V3(dept, c-name) :- Enrolled(s-name,dept), Registered(s-name,c-name).

We construct one inverse rule for every conjunct in the body of the view:

Enrolled(f1(dept,X), dept) :- V3(dept,X)
Registered(f1(Y, c-name), c-name) :- V3(Y,c-name)

Intuitively, the inverse rules have the following meaning. A tuple of
the form (dept,name) in the extension of the view V3 is a witness of
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tuples in the relations Enrolled and Registered. The witness provides
only partial information, and hides the rest. In particular, it tells us two
things:

the relation Enrolled contains a tuple of the form (Z, dept), for
some value of Z.

the relation Registered contains a tuple of the form (Z, name), for
the same value of Z.

In order to express the information that the unknown value of Z is
the same in the two atoms, we refer to it using the functional term
f1(dept,name). Note that there may be several values of Z in the database
that cause the tuple (dept,name) to be in the join of Enrolled and Regis-
tered, but all that matters is that there exists at least one such value.
In general, we create one function symbol for every existential variable

that appears in the view de�nitions, and these function symbols are used
in the heads of the inverse rules.
The rewriting of a query Q using the set of views V is the datalog

program that includes

the inverse rules for V, and

the query Q.

As shown in Duschka and Genesereth, 1997a, the inverse-rules algo-
rithm returns the maximally contained rewriting of Q using V. In fact,
the algorithm returns the maximally contained query even if Q is an
arbitrary datalog program.

Example 5..2: Suppose our query asks for the departments in which
the students of the \Database" course are enrolled,

q(dept) :- Enrolled(s-name,dept), Registered(s-name, \Database")

and the view V3 includes the tuples:

f (CS, \Database"), (EE, \Database"), (CS, \AI") g

The inverse rules would compute the following tuples:

Registered: f (f1(CS,\Database"), CS), (f1(EE,\Database"), EE),
(f1(CS,\AI"), CS) g

Enrolled: f (f1(CS,\Database"),\Database"),
(f1(EE,\Database"),\Database",), (f1(CS,\AI"),\AI") g

Applying the query to these extensions would yield the answers CS and
EE.
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In this example we showed how functional terms are generated as part
of the evaluation of the inverse rules. However, the resulting rewriting
can actually be rewritten in such a way that no functional terms ap-
pear Duschka and Genesereth, 1997a.

5.3 COMPARISON OF THE ALGORITHMS

There are several interesting similarities and di�erences between the
bucket and inverse rules algorithms that are worth noting. In particular,
the step of computing buckets is similar in spirit to that of computing
the inverse rules, because both of them compute the views that are rele-
vant to single atoms of the database relations. The di�erence is that the
bucket algorithm computes the relevant views by taking into considera-
tion the context in which the atom appears in the query, while the inverse
rules algorithm does not. Hence, if the predicates in a view de�nition
entail that the view cannot provide tuples relevant to a query (because
they are mutually unsatis�able with the predicates in the query), then
the view will not end up in a bucket. In contrast, the query rewriting
obtained by the inverse rules algorithm may result in containing views
that are not relevant to the query. However, the inverse rules can be
computed once, and be applicable to any query. In order to remove
irrelevant views from the rewriting produced by the inverse-rules algo-
rithm we need to apply a subsequent constraint propagation phase (as
in Levy et al., 1997; Srivastava and Ramakrishnan, 1992).
The strength of the bucket algorithm is that it exploits the predicates

in the query to prune signi�cantly the number of candidate conjunctive
rewritings that need to be considered. Checking whether a view should
belong to a bucket can be done in time polynomial in the size of the
query and view de�nitions when the predicates involved are arithmetic
comparisons. Hence, if the data sources (i.e., the views) are indeed dis-
tinguished by having di�erent comparison predicates, then the resulting
buckets will be relatively small. In the second step, the algorithm needs
to perform a query containment test for every candidate rewriting. The
testing problem is �p2-complete, but only in the size of the query and
the view de�nition, and hence quite eÆcient in practice. The bucket al-
gorithm also extends naturally to unions of conjunctive queries, and to
other forms of predicates in the query such as class hierarchies. Finally,
the bucket algorithm also makes it possible to identify opportunities for
interleaving optimization and execution in a data integration system in
cases where one of the buckets contains an especially large number of
views.
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The inverse-rules algorithm has the advantage of being modular. The
inverse rules can be computed ahead of time, independent of a speci�c
query. As shown in Duschka and Genesereth, 1997a; Duschka and Levy,
1997, extending the algorithm to handle functional dependencies on the
database schema, recursive queries or the existence of binding pattern
limitations can be done by adding another set of rules to the resulting
rewriting. Unfortunately, the algorithm does not handle arithmetic com-
parison predicates, and extending it to handle such predicates turns out
to be quite subtle. The algorithm produces the maximally-contained
rewriting in time that is polynomial in the size of the query and the
views (but the complexity of removing irrelevant views has exponential
time complexity Levy et al., 1997).
MiniCon Algorithm Pottinger and Levy, 1999 builds on the ideas of

both the bucket algorithm and the inverse rules algorithm. Extensive
experiments described in Pottinger and Levy, 1999 show that the Mini-
Con algorithm signi�cantly outperforms both of its predecessors, and
scales up gracefully to hundreds and even thousands of views.

5.4 THE NEED FOR RECURSIVE
REWRITINGS

An interesting phenomenon in several variants of LAV descriptions is
that the reformulated query may actually have to be recursive in order
to provide the maximal answer. The most interesting of these variants
is the common case in which data sources can only be accessed with
particular patterns.
Consider the following example, where the �rst source provides papers

(for simplicity, identi�ed by their title) published in AAAI, the second
source records citations among papers, and the third source stores pa-
pers that have won signi�cant awards. The superscripts in the source
descriptions depict the access patterns that are available to the sources.
The superscripts contain strings over the alphabet fb; fg. If a b appears
in the i'th position, then the source requires a binding for the i'th at-
tribute in order to produce provide answers. If an f appears in the i'th
position, then the i'th attribute may be either bound or not. From the
�rst source we can obtain all the AAAI papers (no bindings required);
to obtain data from the second source, we �rst must provide a binding
for a paper and then receive the set of papers that it cites; with the third
source we can only query whether a given paper won an award, but not
ask for all the award winning papers.

AAAIdbf (X)) AAAIPapers(X)
CitationDBbf(X;Y )) Cites(X;Y )
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AwardDBb(X)) AwardPaper(X)

Suppose our query is to �nd all the award winning papers:

Q(X) : �AwardPaper(X)

As the following queries show, there is no �nite number of conjunctive
queries over the sources that is guaranteed to provide all the answers to
the query. In each query, we can start from the AAAI database, follow
citation chains of length n, and feed the results into the award database.
Since we cannot limit the length of a citation chain we need to follow
apriori (without examining the data), we cannot put a bound on the size
of the reformulated query.

Q0(X) : �AAAIdb(X); AwardDB(X)
Q0(X) : �AAAIdb(V ); CitationDB(V;X1); : : : ; CitationDB(Xn;X);

AwardDB(X):

However, if we consider recursive queries over the sources, we can obtain
a �nite concise query that provides all the answers, as follows (note that
the newly invented relation papers is meant to represent the set of all
papers reachable from the AAAI database):

papers(X) : �AAAIdb(X)
papers(X) : �papers(Y ); CitationDB(Y;X)
Q0(X) : �papers(X); AwardDB(X).

Other cases in which recursion may be necessary are in the presence
of functional dependencies on the mediated schema Duschka and Levy,
1997, when the user query is recursive Duschka and Genesereth, 1997a,
and, as we show in the next section, when the descriptions of the sources
are enriched by description logics Beeri et al., 1997.
Finally, it turns out that slight changes to the form of source descrip-

tions in LAV can cause the problem of answering queries to become
NP-hard in the size of the data in the sources Abiteboul and Duschka,
1998. One example of such a case is when the query contains the pred-
icate 6=. Other examples include cases in which the sources are known
to be complete w.r.t. their descriptions (i.e., where the ) in the source
description is replaced by ,).

6. THE USE OF DESCRIPTION LOGICS

Thus far, we have described the mediated schema and the local schemas
as at sets of relations. However, in many applications we would like
to present users with an interface that includes a rich model of the un-
derlying domain, and be able to pose the integration queries over such
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a model. Furthermore, providing the mapping between source relations
and a mediated schema is considerably facilitated when the the mediated
schema is part of a rich domain model. Several works have considered
the use of a richer representation based on description logics in the medi-
ated schema Arens et al., 1996; Catarci and Lenzerini, 1993; Levy et al.,
1996a; Lattes and Rousset, 1998.
Description logics are a family of logics for modeling complex hier-

archical structures. In a description logic it is possible to intensionally
de�ne sets of objects, called concepts, using descriptions built from a
set of constructors. For example, the set Person u (� 3 child) u (8 child
smart) describes the set of objects belonging to the class person who have
at most 3 children, and all of their children belong to the class smart. In
addition to de�ning concepts, it is also possible to state that an object
belongs to a concept. In fact, it is possible to say that Fred belongs
to the above concept, without specifying who his children are, and how
many there are.
As originally suggested in Catarci and Lenzerini, 1993, when the

source descriptions and mediated schema both use description logics,
it is possible to use the reasoning service of the underlying logic to de-
tect when a source is relevant to a query. However, desciption logics
in themselves are not expressive enough to model arbitrary relational
data. In particular, they are unable to express arbitrary joins of rela-
tions. Hence, several hybrid languages combining the expressive power
of Horn rules and description logics have been investigated Levy and
Rousset, 1998; Donini et al., 1991; MacGregor, 1994; Cadoli et al., 1997
with associated reasoning algorithms.
Answering queries using views in the context of these hybrid languages

is still largely an open problem. As the following example shows, in the
presence the rewriting of a query using a set of views may need to be
recursive.

Example 6..1: Consider the following two views:

v1(X;Y ) : �child(X;Y ); child(X;Z); (� 1 child)(Z)
v2(X) : �(� 3 child)(X).

The atom (� 1child)(X) denotes the set of objects that have at most
one child. Similarly, (� 3 child)(X) denotes the objects with 3 children
or more. Suppose the query Q is to �nd all individuals who have at least
2 children, i.e.:

q(X) : �(� 2 child)(X).
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For any n, the following conjunctive query is a rewriting that is contained
in Q:

q0n(X) : � v1(X;Y1); v1(Y1; Y2); v1(Yn; U); v2(U):

To see why, consider the variable Yn. The view v1 entails that it has
one �ller for the role child that has less than one child (the variable Z
in the de�nition of v1) while the view v2 says that its child U has at
least 3 children. Therefore, Yn has at least 2 children. The same line
of reasoning can be used to see that Yn�1 has at least 2 children, and
continuing in the same way, we get that X has at least two children, i.e.,
q(X) holds. The point is that inferring q(X) required a chain of inference
that involved an arbitrary number of constants, and the length of the
chain does not depend on the query or the views. Furthermore, for any
value of n, we can build a database such that the union of q01; : : : ; q

0

n is
not the maximally-contained rewriting, and therefore we cannot �nd a
maximally-contained rewriting that is a union of conjunctive queries.
We can still �nd a maximally-contained rewriting in this example if

we allow the rewriting to be a recursive datalog program. The following
is a maximally-contained rewriting:

q0(X) : �v2(X)
q0(X) : �v1(X;Y ); q0(Y ).

This recursive program essentially mimics the line of reasoning we de-
scribed above.

The problem of answering queries using views in the context of de-
scription logics is further discussed in Beeri et al., 1997; Calvanese et al.,
1999. In Beeri et al., 1997 it is shown that under very tight restrictions, it
is always possible to �nd a maximally-contained rewriting of the query
using a set of views, and otherwise, it may not be possible to �nd a
maximally contained rewriting in datalog.

7. CONCLUDING REMARKS

In this article I touched upon some of the problems of data integration
in which logic-based methods provided useful solutions. In particular, I
showed how semantic relationships between the contents of data sources
and relations in a mediated schema can be speci�ed using limited forms
of logic, and illustrated the associated reasoning algorithms. There are
additional areas in which logic based techniques have been applied, in-
cluding descriptions of source completeness Etzioni et al., 1994; Levy,
1996; Duschka, 1997, and descriptions of query processing capabilities
of data sources Levy et al., 1996c; Vassalos and Papakonstantinou, 1997.
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There are two areas in which I believe signi�cant future research is
required. The �rst area concerns the role of more expressive knowledge
representation languages in data integration. Currently, relatively lit-
tle is known about the query reformulation problem in cases where the
mediated schema and/or the data source schemas are described using a
richer knowledge representation language. In addition, we need to care-
fully study which extensions to the expressive power are really needed
in practice.
The second area, which is of wider applicability than the problem

of data integration, concerns extending logical reasoning techniques to
deal with non-logical extensions that have been needed in database sys-
tems. In order to deal with real world applications, commercial database
systems provide support for dealing with issues such as bag (multiset)
semantics, grouping and aggregation, and nested structures. In order
to deal with many real world domains, we need to develop reasoning
techniques (extensions of query containment algorithms and algorithms
for answering queries using views) to settings where the queries involve
bags, grouping and aggregation, and nested structures (see Cohen et al.,
1999; Levy and Suciu, 1997; Chaudhuri and Vardi, 1993; Srivastava
et al., 1996 for some work in these areas). Another interesting question
is whether some of these features can be incorporated into knowledge
representation languages.

Notes

1. However, if we also knew that the course name functionally determines its number,

then we could prune V4 from this bucket.
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