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Although the interest of a Web page is strictly related to its content and to the subjective readers’
cultural background, a measure of the page authority can be provided that only depends on the
topological structure of the Web. PageRank is a noticeable way to attach a score to Web pages on the
basis of the Web connectivity. In this article, we look inside PageRank to disclose its fundamental
properties concerning stability, complexity of computational scheme, and critical role of parameters
involved in the computation. Moreover, we introduce a circuit analysis that allows us to understand
the distribution of the page score, the way different Web communities interact each other, the role
of dangling pages (pages with no outlinks), and the secrets for promotion of Web pages.
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1. INTRODUCTION

Most commonly used scoring algorithms on the Web, directly derived from Infor-
mation Retrieval (IR), employ similarity measures, based on a flat, vector-space
model of each page. Unfortunately, those methods have some limitations and
drawbacks when applied to searching the Web, since they only take into account
the page content and neglect the graphical structure of the Web. Moreover, these
approaches are prone to be cheated, so that pages can be highly ranked if they
contain irrelevant but popular words, appropriately located in the page (e.g., in
the title). This phenomenon is usually referred to as search engine persuasion
or Web spamming [Marchiori 1997; Pringle et al. 1998].

This research was partially supported by the Italian Ministry of Education under grant COFIN
2000.
Authors’ address: Dipartimento di Ingegneria dell’Informazione, University of Siena, Via Roma,
56 – 53100, Siena, Italy; email: {monica,marco,franco}@ing.unisi.it. Marco Gori is the corresponding
author.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1533-5399/05/0200-0092 $5.00

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005, Pages 92–128.



Inside PageRank • 93

Some authors have recently concentrated their efforts on how to exploit the
topological structure of large hypertextual systems (see, e.g., Brin and Page
[1998], Kleinberg [1999], Cohn and Chang [2000], Borodin et al. [2001], and
Henzinger [2001]). PageRank [Brin and Page 1998] relies on the “democratic
nature of the Web” by using its topology as an indicator of the score to be at-
tached to any page. The model underlying PageRank is tightly related to the
citation indexes used in the scientific literature in order to evaluate the impor-
tance of publications. More generally, the same idea is found for the estimation
of qualifications in self-evaluating groups [Bomze and Gutjahr 1994, 1995].
Here, each member of a group or an institution produces a judgment for all the
other members of the same group.

PageRank is used by Google together with a number of different factors, in-
cluding standard IR measures, proximity, and anchor text (text of links pointing
to Web pages) in order to find most relevant answers to a given query. Unfortu-
nately, neither the way these factors are computed nor how they are combined
with PageRank are public domain.

In spite of its relevance, the theoretical properties of PageRank are only par-
tially understood. In order to explain the computational properties of the algo-
rithm, most of the authors [Ng et al. 2001b; Zhang and Dong 2000; Brin et al.
1999] cite the general theory of Markov chains [Motwani and Raghavan 1995;
Seneta 1981]. However, such a theory can be applied to PageRank only under
the assumption that the Web does not contain dangling pages.1 A related popu-
lar ranking algorithm, proposed in Kleinberg [1999] and called HITS, computes
two values for each page: the degree of authority and the degree of outdegree.
Whereas the authority is a measure of the importance of the page, the outde-
gree is a measure of the usefulness of the page to act as a starting point for
a surfer who wants to find important documents. PageRank and HITS belong
to a large class of ranking algorithms, where the scores can be computed as
a fixed point of a linear equation [Diligenti et al. 2002]. A completely differ-
ent approach, rooted to statistics, was proposed in Cohn and Chang [2000] and
Cohn and Hofmann [2001]. Starting from PageRank and HITS, some exten-
sions have been proposed by hybrid solutions [Zhang and Dong 2000; Bharat
and Henzinger 1998; Diligenti et al. 2002; Richardson and Domingos 2002;
Haveliwala 2002; Borodin et al. 2001].

In this article, we look inside PageRank to disclose its fundamental prop-
erties concerning the score distribution in the Web and the critical role of pa-
rameters involved in the computation. The role of the graphical structure of
the Web is thoroughly investigated and some theoretical results which high-
light a number of interesting properties of PageRank are established. We in-
troduce the notion of energy, which simply represents the sum of the PageRank
for all the pages of a given community,2 and propose a general circuit anal-
ysis which allows us to understand the distribution of PageRank. In addi-
tion, the derived energy balance equations make it possible to understand

1Dangling pages are pages that do not contain hyperlinks.
2A Web community is a subset of related pages. The relation among pages should be based on
content similarity and/or on shared location.
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the way different Web communities interact each other and to disclose some
secrets for promotion of Web pages. In particular, it is pointed out that the
energy of a given target community can be driven by a “promoting com-
munity” so as to grow linearly with the number of its pages. This property
holds regardless of the structure of the promoting community, which makes
it very hard its detection. In the next section, PageRank is briefly reviewed,
while in Section 1.2 the most important results established in the article are
summarized.

1.1 PageRank

The basic idea of PageRank is that of introducing a notion of page authority,
which is independent of the page content. Such an authority measure only
emerges from the topological structure of the Web. In PageRank, the authority
reminds the notion of citation in the scientific literature. In particular, the
authority of a page p depends on the number of incoming hyperlinks (number
of citations) and on the authority of the page q which cites p with a forward
link. Moreover, selective citations from q to p are assumed to provide more
contribution to the score of p than uniform citations. Hence, PageRank xp of
p is computed by taking into account the set of pages pa[p] pointing to p.
According to Brin and Page [1998]:

xp = d
∑

q∈pa[p]

xq

hq
+ (1 − d ) . (1)

Here d ∈ (0, 1) is a DUMPING FACTOR and hq is the OUTDEGREE of q, that is the
number of hyperlinks outcoming from q. When stacking all the xp into a vector
x , we get

x = dWx + (1 − d )1IN , (2)

where 1IN = [1, . . . , 1]′ and W = {wi, j }—the TRANSITION MATRIX—is such that
wi, j = 1/h j if there is a hyperlink from j to i and wi, j = 0, otherwise. Thus, W
is a nonnull matrix, where each column either sums to 1 or to 0. More precisely,
the j th column W j is null if page j does not contain hyperlinks. Otherwise, W j
can be constructed by the normalization of the j th row of the Web adjacency
matrix.

Brin and Page [1998] report a simple iterative algorithm based on Eq. (1).
They introduce the PageRank dynamics

x (t) = dWx (t − 1) + (1 − d )1IN . (3)

It can easily be proven (see Section 2.2) that the system is stable and that the
sequence {x (t)} always converges to the stationary solution of the linear sys-
tem (2), provided that d < 1. Actually, the method used by Google and defined
by Eq. (3) is just the Jacobi algorithm for solving linear systems (see Golub and
Van Loan [1993, pp. 506–509]).
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A slightly different approach to the computation of PageRank was proposed
in Brin et al. [1998, 1999]. In that case, the following equation

x (t) = dWx (t − 1) + α(t − 1)
N

1IN , (4)

is assumed, where, for each t, α(t − 1) = ‖x (t − 1)‖ − ‖dWx (t − 1)‖ in order
to force the condition ‖x(t)‖1 = 1. System (4) produces a normalized version
of PageRank, and converges to x ∗

‖x ∗‖1
, where x ∗ is the solution of Eq. (2). This

results is proven in Section 2.2, where there is also a further discussion on
related models.

1.2 Main Results

This article presents an in-depth analysis of PageRank by discussing important
issues concerning the interaction amongst communities and their promotion.
Moreover, the article addresses important complexity issues of the PageRank
computation. The most significant results disclosed in the article can be sum-
marized as follows:

(1) WEB COMMUNITIES AND THEIR INTERACTIONS: ENERGY BALANCE. We define the
notion of COMMUNITY with the associated ENERGY. A community is any sub-
graph GI of the Web and its energy is the sum EI = ∑

p∈I x∗
i of the PageRank

of all its pages. A community could be a set of pages on a given topic, the
researchers’ home pages or a Website; the corresponding energy is a mea-
sure of its authority. A community is connected to the rest of the Web by
a set of internal pages out(I ) that point to other communities/pages and
by a set of external pages in(I ) that point to GI . In our analysis, an im-
portant role is also played by the set dp(I ), which collects the pages that
do not contain hyperlinks (e.g., full text documents). Finally, a community
isolated from the rest of the Web (i.e., out(I ) = in(I ) = ∅) is referred to as an
ISLAND.

In Section 4, a theoretical result (Theorem 4.2) is given, which states that
the total energy of GI depends on four components, as follows:

EI = |I | + Ein
I − Eout

I − Edp
I . (5)

Here, |I | denotes the number of pages of GI and represents the “default
energy” of the community. The component Ein

I is the energy that comes
from the other communities pointing to GI . The presence of Ein

I in Eq. (5) is
coherent with the fact that communities with many references have a high
authority. The term Eout

I is the energy spread over the Web by the pages
in out(I ). The presence of Eout

I suggests that having hyperlinks outside GI

leads to decrease the energy. Finally, Edp
I is the energy lost in the dangling

pages. In fact, the presence of pages without hyperlinks yields a loss of
energy. Section 4 provides details on the computation of the above energies,
and on how they are involved in the interaction among communities. In
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Fig. 1. Some communities and the effect on the energies Ein
I , Eout

I , and Edp
I .

particular, Theorem 4.2 states that

Ein
I = d

1 − d

∑
i∈in(I )

fix∗
i , (6)

Eout
I = d

1 − d

∑
i∈out(I )

(1 − fi)x∗
i , (7)

Edp
I = d

1 − d

∑
i∈dp(I )

x∗
i , (8)

where fi is the fraction of the hyperlinks of page i that point to pages in GI
with respect to the total number of hyperlinks outgoing from i. Equations (5)
through (8) provide useful information on the way the score migrates in
the Web. From Eq. (5) we conclude that, in order to maximize the energy,
one should not only pay attention to the references received from other
communities, but also to the dangling pages, and to the external hyperlinks.
Whereas the received references increase the energy, the dangling pages
and the hyperlinks pointing outside GI waste energy, thus reducing the
score inside GI .

Example 1.1. Let us consider the simple community of two pages rep-
resented in Figure 1(a). It has no dangling page, no incoming hyperlink,
and no outcoming hyperlink. Hence, the related energies are zero, that is,
Eout

Ia
= 0, Ein

Ia
= 0, Edp

Ia
= 0. From Eq. (5) the energy of the community equals

the number of pages, that is EIa = |I |. In fact, it can easily be verified that
the PageRanks are x∗

1 = x∗
2 = 1 and EIa = 2. In Figure 1(b), a hyperlink was

removed, thus transforming page 2 into a dangling page which, according
to Eq. (5), causes a loss of energy. We have x∗

1 = 1 − d and x∗
2 = 1 − d2.

Hence, from Eq. (8), it follows that Edp
Ib

= d + d2 and, consequently,

EIb = 2 − d − d2,

which expresses clearly the loss of energy. Moreover, if we extend the com-
munity with a hyperlink pointing to an external page, the energy becomes
even smaller due to the loss Eout

I . In fact, in Figure 1(c), we have x∗
1 = 1 − d
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and x∗
2 = 1 − d + d (1 − d )/2, f1 = 1/2. Hence, Edp

Ic
= d + d2/2, Eout

Ic
= d/2

and, as a consequence,

EIc = 2 − 3d/2 − d2/2.

On the contrary, if we extend Figure 1(b) with a page that points to the
community, as in Figure 1(d), the energy will grow because of the presence
of the term Ein

I . In such a case, x∗
1 = 1 − d + d (1 − d ), x∗

2 = 1 − d + d [(1 −
d ) + d (1 − d )], and x3 = 1 − d . Then Ein

Id
= d , Edp

Id
= d + d2 + d3 and

EId = 2 − d2 − d3.

Finally, we can easily check that

EIa > EId > EIb > EIc .

Equation (7) shows that the loss of energy due to each page i ∈ out(I )
depends also on fi. In particular, it turns out that in order to minimize Eout

I ,
the hyperlinks to outside GI should be in pages with a small PageRank and
that have many internal hyperlinks.

Example 1.2. Let us consider the community of Figure 1(e). It is the
same as the one in Figure 1(c), but, there are two links from page 1 to page 2.
The new hyperlink modifies the factor fi, which becomes 2/3. Consequently,
Eout

Ie
is smaller than Eout

Ic
. In particular we find x1 = 1 − d and

Eout
Ie

= d/3.

Likewise, similar considerations hold for Edp
I . In fact, Corollary 4.1 proves

that

Edp
I = d |dp (I )| + d2

1 − d

∑
i∈ps[I ]

gix∗
i , (9)

where gi is the fraction of the hyperlinks of page i that point to pages in
dp(I ), with respect to the total number of hyperlinks outgoing from i, and
ps[I ] is the set of the pages with at least a hyperlink to a dangling page.

From our discussion, it turns out that an appropriate organization of a
community must avoid energy loss and give rise to a useful distribution of
the available energy among the pages. However, Eq. (5) also clarifies that
the energy of a community is bounded, that is

EI ≤ |I | + Ein
I . (10)

This is a nice property that makes PageRank a robust measure of the
page authority. Small communities with few references cannot have pages
with high score.

Moreover, Eqs. (7)–(8) points out also that, when d approaches 1 (d =
0.85 in Brin et al. [1999]), Eout

I and Edp
I waste most of the available energy.

The case d ≈ 1 is discussed in Section 2.3. It is proved that the energy can
even become null. For instance, in all the cases of Figure 1, the energy EI
approaches 0 as d approaches 1. This can easily be verified looking at the
equations in the above examples.
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Fig. 2. A pictorial view of some of PageRank’s golden rules: (a) Splitting the information into
three nodes increases the PageRank; (b) Dangling pages should be avoided or carefully limited;
(c) According to rule (c), the hyperlink departing from node “1” is preferable with respect to the
hyperlink departing from node “2”.

Finally, notice that Eqs. (5)–(10) are all derived in the hypothesis that a
homogeneous default contribution is assigned to the rank of each page. The
constant vector 1IN can be replaced with any vector EN , which corresponds
to attaching different “importance” to the pages. All the above results can
be straightforwardly extended to this case.

(2) PAGE PROMOTION. Web visibility can be promoted working on both page con-
tent and pattern of connections. The circuit analysis carried out in this
article provides some indications on the optimization of PageRank. In par-
ticular, for a given target community, the energy balance Eqs. (5)–(9) make
it possible to derive the following rules which only take into account the
topological structure of the community.

(a) The same content divided into many small pages yields a higher score
than the same content into a single large page. This is a straightfor-
ward consequence of energy balance in Eq. (5), which states that the
community has a “default energy” |I |. In Figure 2(a), the default energy
goes from 1 to 3.

(b) Dangling pages give rise to a loss of energy in the community they
belong to (Figure 2(b)). The lost energy is small provided that the pages
that point to dangling pages have a small score and many hyperlinks
pointing to pages of the community. This can be seen from the energy
balance in Eq. (5) and from Eq. (8).

(c) Hyperlinks that point outside the community originate a loss of energy,
which is high when the hyperlinks belong to pages with high PageRank.
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The lost energy depends also on the fraction of all the links which
point outside the community. Hence, this energy is small whenever the
pages pointing outside have many hyperlinks to pages of the commu-
nity (Figure 2(c)). This can be obtained again from the energy balance
equation (5) and from Eq. (7), which makes it possible to determine the
energy that is lost because of outlinks.

On the other hand, one can promote a target page (site) not only relying
on the topological structure of the given community, but also by exploiting
external links coming from another community. In this article, we give gen-
eral indications on the distribution of PageRank and on its migration among
communities. In particular, we prove that PageRank is highly affected by
the degree of regularity of the pattern of connections. Let us consider a
regular graph of degree k, that is, a graph where each node has exactly
k incoming and k outgoing hyperlinks. If a community is an island and
its connectivity is represented by a regular graph, then it is easy to see
that the PageRank of all the pages is 1. On the other hand, when the con-
nectivity becomes more and more irregular, then the score of some pages
increases, whereas the score of others decreases. The limit case is depicted
in Figure 7(a), where all the hyperlinks point to a single page. In such a
situation, it is proved that the pointed page gets the maximum PageRank
1 + (N − 1)d for an island with N pages (see Theorem 5.1). Of course, such
pattern of connections can be maliciously used for the artificial promotion
of a Web page. Even if a similar spamming technique could be easily de-
tected, we prove (see Theorem 5.2) that the same growing mechanism of the
energy for a given target page (community) can be obtained by using any
“promoting community”, regardless of its pattern of connections, provided
that all its nodes have outlinks to the target page (community) (Figure 3).

Finally, we extend a previous result given in Ng et al. [2001a] by means
of Theorem 5.3, stating that if I is a subset of pages that are changed, and
x̃ ∗ is the PageRank after the changes, then

‖x ∗ − x̃ ∗‖1 ≤ 2
d

1 − d
EI . (11)

Thus, the overall change on the whole Web is proportional to the energy of
the modified pages in I . Such a result implies that PageRank is robust with
respect to changes taking place in small communities of the Web.

(3) PAGERANK COMPUTATION. We give two results concerning the computation of
PageRank:

(a) PageRank Can be Computed on Graphs Changing Over Time. The
PageRank computation is normally based on a given fixed graph. In this
article, we prove that we can also provide a more general interpretation
of PageRank in the case in which the graph changes over time. This is
of significant practical interest. Unlike the static scoring policy, one can
calculate the page scoring dynamically, while the crawler is visiting the
Web. In particular, the sequence {x (t)} remains bounded, even if the
transition matrix W = W(t) is updated during the computation of x (t).

ACM Transactions on Internet Technology, Vol. 5, No. 1, February 2005.



100 • M. Bianchini et al.

Fig. 3. The energy of the target community grows at least linearly with the number of pages of the
promoting community, regardless of its pattern of connections. This makes it very hard to detect
such a spamming method.

(b) PageRank Can be Computed by an Optimal Algorithm. Since today
search engines operate on billions of pages, the scoring systems must
face the problem of efficiency. In theoretical computer science, one
usually regards the polynomial complexity as the barrier of tractability.
In this case, the huge number of parameters involved changes the face
of tractability.3 Let |H| be the number of hyperlinks in the Web. We
prove that for a given degree of precision ε, the solution can be found
with O(|H| log(1/ε)) floating-point operations. The convergence rate is
neither dependent on the connectivity nor on the Web dimension, which
offers an explanation of the experimental results reported in Brin et al.
[1999].

The ideal computation of PageRank stops whenever the solution
yields a sorted list of pages which does not change when continuing to
refine the solution. This condition could be adopted in order to choose
the degree of precision ε. However, in this article, we argue that the
above strict interpretation of the solution might not be meaningful,
since a slight difference in PageRank is likely not to affect the whole
process of page sorting for a given query. Moreover, there is another

3Interestingly enough, the issue of tractability arises in other problems involving a huge num-
ber of parameters. For instance the problem of computing the gradient of the error function at-
tached to multilayer neural networks, having w parameters, can be faced by using Backpropaga-
tion [Rumelhart et al. 1986], an algorithm which takes O(w) floating-point operations. The adoption
of classical numerical algorithms, which neglect the neural network architecture, results in a O(w2)
complexity, that makes it completely unreasonable to attack problems involving up to a million of
parameters.
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strong argument to claim that the computation of PageRank does
not require the above-mentioned strict constraint. We prove that the
ordering induced by PageRank is significantly affected by the choice of
the dumping factor d .

1.3 Organization of the Article

The remainder of this article is organized as follows. In the next section, we
discuss some basic properties of PageRank, while in Section 3 we provide a new
stochastic interpretation of the model described by Eq. (2). In Section 4, we dis-
cuss the interaction of communities by means of a circuit analysis based on the
notion of energy, while, in Section 5 we analyze page (community) promotion.
In Section 6, we deal with different aspects of the computation of PageRank,
and, finally, some conclusions are drawn in Section 7.

2. BASIC PROPERTIES OF PAGERANK

In the following, the Web is represented by a graph GW = (P, H), where each
page p ∈ P is a node and a hyperlink between two pages h ∈ H is an edge
between the corresponding nodes. The set of pages pointing to p is denoted
by pa[p], and ch[p] is the set of pages pointed by p, while “ ′ ” stands for the
transpose operator on arrays. Moreover, | · | denotes the cardinality operator
on sets and the module operator on reals, and ‖V‖1 = ∑ |vi| is the 1–norm
of the array V = [v1, . . . , vn]′. Given a set of pages I ⊂ P , a community GI
is any subgraph GI = (I, HI ) of the Web that contains all the hyperlinks be-
tween pages in I . If the pages belonging to I are disconnected from the rest
of the Web, then we say that GI is an island. Let x ∗ = [x∗

1, . . . , x∗
N ]′ be the

PageRank defined by Eq. (2). The energy EI of community GI is given by
EI = ∑

p∈I |x∗
p|, while the energy of the whole Web is denoted by EW . Finally,

out(I ) ⊂ I denotes the pages of the community that point to other pages not
in I , and in(I ) represents the pages not belonging to I and pointing to pages
in I .

2.1 Removing Dangling Pages

Some of the elementary properties of matrix W will be particularly useful in
order to discuss our results. First of all, notice that W is a stochastic matrix
except for the null rows.4 The pages that do not contain hyperlinks are called
dangling pages and will have a special role in the following discussion. In fact,
the presence of dangling pages prevents the direct application of the results
from the theory of stochastic matrices (see Seneta [1981]). A simple trick to
eliminate dangling pages consists of introducing a dummy page which has a
link to itself and is pointed by every dangling page. Thus, the extended graph
turns out to be GW = (P , H), where P = P ∪ {N + 1} and H = H ∪ {(i, N + 1)|

4Stochastic matrices are nonnegative matrices having all columns that sum up to 1.
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Fig. 4. A trick to eliminate dangling pages: A dummy node with a self-loop is added.

� ∃ j , (i, j ) ∈ H}. The transition matrix W that corresponds to GW is

W =
(

W 0
R 1

)
,

where R= [r1, . . . , rN ], and if i is a dangling page then ri = 1, else ri = 0. After
such a transformation, the Web has no dangling page (see Figure 4) and W is a
stochastic matrix.

For instance, referring to Figure 4, the transition matrix W is

W =




0 0 0 0 1/3 0 0 0 0 0
1/2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1/2 0

1/2 0 0 0 1/3 0 0 0 0 0
0 0 0 0 0 1/2 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1/3 1/2 0 1 0 0
0 0 0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 1




.

The following proposition relates the PageRank of GW to the PageRank of
GW .

PROPOSITION 2.1. Let us consider the dynamical system

x (t + 1) = dW x (t) + (1 − d )1IN+1 (12)

related to the extended graph. Then, the following properties hold:

(a) Eq. (12) has a finite stable equilibrium point if and only if Eq. (3) has a finite
stable equilibrium point.

(b) If x ∗ is an equilibrium point of (12) and x ∗ is an equilibrium point of (3),
then x ∗ = [x ∗′, 1 + d

1−d Rx ∗]′.

(c) If x (0) = 1IN and x (0) = 1IN+1, then x (t) = [x (t)′, 1 + ∑t−1
s=0 dt−s Rx (s)]′.

PROOF.

(a) Let x ∗ = [Z′, y]′ be a finite solution of (12), where Z ∈ IRN and y ∈ IR. Then,
with respect to the first N rows of Eq. (12), Z = dWZ+ (1−d )1IN , that is, Z
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is a solution of (3). Moreover, from the last row, we get y = dRZ+dy+(1−d ),
which yields y = 1 + d

1−d RZ.
(b) Vice-versa, let x ∗ be a solution of (3). Then, by straightforward algebra, it

follows that the vector [x ∗′, 1 + d
1−d Rx ∗]′ is a solution of (12).

(c) The last statement can be proved by induction on t. For t = 0, x (0) =
[x ′(0), 1]′ holds by hypothesis. Let t > 0 and assume by induction that
assertion (c) holds for t − 1. Then, the first N components of x (t) = dW x
(t − 1) + (1 − d )1IN+1 satisfy x (t) = dWx (t − 1) + (1 − d )1IN , while the last
component can be calculated by

y(t) = dRx (t − 1) + dy(t − 1) + 1 − d

= dRx (t − 1) + d

(
1 +

t−2∑
s=0

dt−1−s Rx (s)

)
+ 1 − d

= 1 +
t−1∑
s=0

dt−s Rx (s).

Other authors (e.g., Ng et al. [2001a] and Brin et al. [1999]) use a different
trick in order to eliminate dangling pages. In fact, they assume that dangling
pages are special nodes pointing all the pages of the Web. Hence, the PageRank
equation becomes

x = d (W + V)x + (1 − d )
N

1IN (13)

where V = 1
N 1IN R and R is the vector of Proposition 2.1. The approach is mo-

tivated by a stochastic interpretation of PageRank which will be clarified in
Section 3.

Now we prove that Eqs. (12) and (13) describe related dynamical systems. Ac-
tually, Eqs. (2)–(3), Eq. (12), and Eq. (13) yield the same ranking scheme, modulo
normalization. Therefore, Eq. (3) can be used instead of Eq. (13), taking into
account the presence of dangling pages, but keeping a simpler mathematical
formulation. Let us first introduce the following lemma.

LEMMA 2.1. Let us consider the dynamical system (3) and its stationary point
x ∗. Let S be the set of dangling pages. Then, x ∗ > 0 and

‖x ∗‖1 = N − d
1 − d

∑
i∈S

x∗
i . (14)

Moreover, if x (0) = 1IN , then, for each t, x (t) > 0 and

‖x (t)‖1 = N −
∑
i∈S

t∑
k=1

dkxi(t − k) . (15)

PROOF. The inequality x (t) ≥ 0 follows directly by induction on t, observing
that W contains only nonnegative components, x (0) = 1IN ≥ 0, and x (t − 1) =
dWx (t) + (1 − d )1IN . Moreover, x ∗ ≥ 0 since x ∗ = limt→∞ x (t) ≥ 0. The proof of
Eqs. (14) and (15) consists of two steps. In the former step, we assume S = ∅,
that is, there is no dangling page. Then, the general case is considered.
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Case S = ∅. Equation (15) is proven by induction on t.

(1) For t = 0, x (0) = 1IN and x (0) ≥ 0; hence Eq. (15) holds straightforwardly.
(2) Let t > 0 be and assume by induction that ‖x (t)‖1 = N holds. Then, based

on the definition of stochastic matrices,

‖x (t + 1)‖1 = 1I′
N x (t + 1) = d1I′

N Wx (t) + (1 − d )1I′
N 1IN

= d1I′
N x (t) + (1 − d )N = N .

Moreover,

‖x ∗‖1 = ‖ lim
t→∞ x (t + 1)‖1 = lim

t→∞ ‖x (t + 1)‖1 = N ,

which proves (14).

Case S �= ∅. Consider the graph GW extended from GW . Since GW has no
dangling pages, we can use the result of case S = ∅ which yields, ∀ t, ‖x (t)‖1 =
‖x ∗‖1 = N + 1.

From Proposition 2.1,

N + 1 = ‖x ∗‖1 = ‖x ∗‖1 + d
1 − d

Rx ∗ + 1. (16)

Hence, Eq. (14) follows by solving Eq. (16) with respect to ‖x ∗‖1 and observing
that Rx ∗ = ∑

i∈S x∗
i holds by the definition of R. Similarly, from Proposition 2.1,

N +1 = ‖x (t)‖1 = ‖x (t)‖1 +1+
t−1∑
s=0

dt−s Rx (s) = ‖x (t)‖1 +1+
∑
i∈S

t∑
r=1

dr xi(t −r),

which, in turn, yields Eq. (15).

In fact, based on the above result, the solution x̃ ∗ of Eq. (13) can be recon-
structed by normalization from PageRank.

PROPOSITION 2.2. The fixed points x ∗ and x̃ ∗ of (2) and (13) are related by
x̃ ∗ = x ∗/‖x ∗‖1.

PROOF. Since the spectral radius of both matrices dW and dW+dV is smaller
than 1, then Eqs. (2) and (13) have unique solutions. Thus, let x ∗ be a solution
of (2). Then,

x ∗

‖x ∗‖1

= d
‖x ∗‖1

Wx ∗ + (1 − d )
‖x ∗‖1

1IN

= d
‖x ∗‖1

Wx ∗ + (1 − d )
N‖x ∗‖1

(
d

1 − d
Rx ∗ + ‖x ∗‖1

)
1IN

= d
‖x ∗‖1

Wx ∗ + d
N‖x ∗‖1

1IN (Rx ∗) + (1 − d )
N

1IN

= d (W + V)
x ∗

‖x ∗‖1

+ (1 − d )
N

1IN ,

where N .= d
1 − d

Rx ∗ + ‖x ∗‖1 , because of Lemma 2.1.
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Thus, x̃ ∗ gives the same ordering of pages as PageRank. However, in this
article, we prefer to remove dangling pages by the method of Proposition 2.1,
which allows us to use Eq. (3) directly. In fact, our analysis will show that
interesting properties of PageRank are disclosed more easily when (3) is used
instead of (13).

2.2 Stability and Dynamical Updating

The following proposition defines a property of W that is useful for our dis-
cussion. The proof of the proposition is a well-known result which we briefly
resketch in the following for the sake of completeness.

PROPOSITION 2.3. For any Web graph GW , the spectral radius ρ(W) fulfills
ρ(W) ≤ 1. Moreover, if GW has no dangling page, then ρ(W) = 1 and 1IN is the
left eigenvector associated with the largest eigenvalue λmax = 1.

PROOF. Based on the Gerschgorin Theorem [Golub and Van Loan 1993,
pp. 341–342], the eigenvalues of matrix W belong to

S =
⋃

i

{
c ∈ C, |c − wi,i| ≤

∑
j �=i

|wj ,i|
}

.

Since
∑N

j=1 |wi, j | ≤ 1 by definition, then the spectral radius of W fulfills
ρ(W) ≤ 1. Moreover, if the given graph has no dangling page, then W is a
stochastic matrix and every column sums up to 1. Thus, 1I′

N W = 1I′
N which also

implies ρ(W) = 1.

An immediate consequence of Proposition 2.3 (see Golub and Van Loan [1993,
p. 508]) guarantees that the PageRank scheme is well founded whenever 0 ≤
d < 1.

PROPOSITION 2.4. Let 0 ≤ d < 1 hold. Equation (2) admits a unique solution
x ∗ = (1 − d )(I − dW)−11IN . Moreover, the dynamics of Eq. (3) is such that
limt→∞ x (t) = x ∗ for any initial state x (0).

Lemma 2.1 describes a fundamental property of PageRank: Regardless of
the graph topology, the sum of the score over all the pages ‖x (t)‖1, at each time
step t, is always bounded by the number of pages N , provided that x (0) = 1IN .
Moreover, this result holds, in the limit, for ‖x ∗‖1.

An immediate corollary of Lemma 2.1 is derived in the case in which there
is no dangling page.

COROLLARY 2.1. If GW has no dangling page and x (0) = 1IN , then

∀ t ≥ 0 : ‖x (t)‖1 = ‖x ∗‖1 = N .

Lemma 2.1 also points out that, due to the presence of dangling pages, the
Web loses part of its energy. The energy loss is represented by the negative
term of Eq. (14), Edp = d/(1 − d )

∑
i∈S x∗

i . In the worst (ideal) case, when all
the pages are dangling pages, xp = (1 − d ) for each p, and, therefore, the loss
of energy is dN. If d approaches 1 (e.g., d = 0.85 is the value suggested in Brin
et al. [1999]), the loss can be an important percentage of the available energy.
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Corollary 2.1 can be extended to the time–variant system

x (t + 1) = dW (t)x (t) + (1 − d )1IN .

Such a system corresponds to the case in which PageRank is computed online
while the crawler of the search engine is visiting the Web.5 In this case, we
can prove that ‖x (t)‖1 = N (‖x (t)‖1 ≤ N ) holds, if GW has no dangling pages
(respectively, has dangling pages). In order to deal with the growth of the pages
downloaded during the crawling (change of N ), we can simply embed x into an
infinite dimensional space (x ∈ IR∞) so as to accommodate all incoming new
pages. Moreover, we assume that the unknown pages have a single internal
hyperlink and are not pointed to by other pages, so that xp(t) = 1 before p is
visited. Thus, the most general version of Corollary 2.1 states that ‖x V (t)(t)‖1 =
|V (t)|, where V (t) is the set of pages visited at time t and x V (t)(t) is the related
subvector of x (t).

Finally, let us consider Eq. (4), which has been suggested in Brin et al. [1998,
1999] in order to compute PageRank. The next theorem proves that system (4) is
stochastic and produces a normalized version of PageRank. In fact, the dynam-
ical system (4) converges to the linear system (13) and, therefore, PageRanks
defined by (3) and (4) are equivalent.

THEOREM 2.1. The following two systems

x (t) = dWx (t − 1) + α(t − 1)
N

1IN , (17)

x (t) =
[
d (W + V ) + (1 − d )

N
1IN 1I′

N

]
x (t − 1), (18)

produce the same sequence, provided that ‖x (0)‖1 = 1, V = 1
N 1IN R, and α(t) =

dRx (t)+ (1−d ), t ≥ 0. Moreover, d (W + V )+ (1−d )
N 1IN 1I′

N is a stochastic matrix,
the sequence {x (t)} satisfies ‖x(t)‖1 = 1, t ≥ 0, and converges to x ∗

‖x ∗‖1
.

PROOF. We will prove that both systems (17) and (18) are equivalent to

x (t) = (W + V )x (t − 1) + (1 − d )
N

1IN (19)

which, according to Theorem 2.2, converges to x ∗
‖x ∗‖1

In fact, Eq. (17) is the
same as Eq. (19) by definition of α(t) and V. Moreover, since W + V repre-
sents the transition matrix of a graph with no dangling page (see the dis-
cussion about Eq. (13)), it follows that ‖x(t)‖1 = 1I′

N x(t) = 1, t ≥ 0. Then,
system (19) is equivalent to system (18). Furthermore, by straightforward al-
gebra, it can be seen that all the columns of the matrix d (W + V ) + (1−d )

N 1IN 1I′
N

sum up to 1. Finally, according to Proposition 2.2, system (19) converges
to x ∗

‖x ∗‖1
.

5Google search engine completely rebuilds its indexes, on average, after a few weeks, instead of
performing dynamic updating.
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Fig. 5. Examples of essential (grey circles) and inessential nodes (white circles). The black node
(connected with a dashed line in (b)) is the dummy node of the extended Web.

2.3 The Dumping Factor Boundary Values

When d is set to the boundary values 0 or 1, the ranking system ceases to op-
erate properly. In fact, if d = 0, all the PageRanks equals 1. On the other hand,
if d = 1, the sequence {x (t)} might not converge (even if it is still bounded).
Interestingly, if d = 1, many pages would have a zero PageRank. This can be
seen by applying the theory of Markov chains6 to the sequence {x (t)} generated
by Eq. (12) on the extended graph. The results we address are based on the
concept of ESSENTIAL and INESSENTIAL nodes. Intuitively, a page is essential if it
belongs to a subgraph where a surfer can be entrapped, that is, a group of con-
nected pages without any way of escaping. On the other hand, an inessential
page p has some escaping path: when the surfer follows that path, it cannot
come back to p. Figure 5 shows some examples: the grey circles represent the
essential nodes, while the white circles represent the inessential ones. Notice
that since the theory of Markov chains can be applied only to stochastic matri-
ces, in order to define the inessential pages, we use the extended Web, which
has no dangling pages. For example, the dangling pages are inessential pages
(see Figure 5(b)), since they are connected to the dummy node in the extended
Web, where any surfer gets trapped. Formally, we have the following definition.

Definition 2.1. A node p is said to be INESSENTIAL if there exists a node p′

such that p → p′ (p′ can be reached by a path from p) and p′ �→ p (there is no
path from p′ to p).

According to the theory of Markov chains, if i is an inessential node, then
x∗

i = 0 (see Seneta [1981]). Thus, the scoring of inessential pages approaches
0 when d → 1. In other words, the communities without out–links have an
increasing advantage as d ≈ 1. In theory, the term d could be used to control
this mechanism and to move part of the energy from inessential to essential
nodes or vice-versa.

Example 2.1. The concept of essential and inessential nodes has a particu-
lar meaning in the context of PageRank, since those nodes that are inessential
gain a low PageRank, while essential nodes are those where most of the en-
ergy is concentrated. Let us consider Figure 5 again. In particular, referring to
Figure 5(a), x ∗ = [1 − d , 1 − d , 1 − d , 1 − d , 4d + 1]′ which, in accordance with

6If d = 1, then Eq. (12) is the stochastic system x (t + 1) = W x (t).
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Eq. (38), guarantees that x∗
i → 0, i = 1, . . . , 4, as d → 1, while x∗

5 → |I |, being
|I | the cardinality of I . For the case of Figure 5(b),

x ∗ =
[

2(1 − d )
2 − d

,
4(1 − d )
(2 − d )2

,
(d2 − 2d + 4)(1 − d )

(2 − d )2

]′

holds. Moreover, x ∗ → 0 for d → 1.

Finally, with respect to Figure 5(c),

x ∗ =
[

1 + d + 2d2

1 + d + d2
,

1 + d + d2 + d3

1 + d + d2
,

1 + 2d + d2

1 + d + d2
, 1 − d

]′
,

and

x ∗ →
[

4
3

,
4
3

,
4
3

, 0
]′

for d → 1, that is, at the steady state, the total energy of the community, |I |, is
distributed among the three essential nodes.

3. STOCHASTIC INTERPRETATION

The random walk theory has been widely used to compute the authority of a
page in the Web [Ng et al. 2001b; Lempel and Moran 2000; Brin et al. 1999]. A
common assumption is that the rank of a page p is modeled by the probability
P(p) of reaching that page during a random walk in the Web. The motivation
underlying the stochastic interpretation of PageRank is that a random surfer
spends a lot of time in important pages: in fact, P(p) describes how often a page
will be visited. However, the random walk theory holds for the extended models
(see Eqs. (12) and (13)) which remove the dangling pages.

In this section, we provide a stochastic interpretation of PageRank computed
according to Eq. (3), which is appropriate to handle also the problem of dangling
pages.

Definition 3.1. Let us denote Si(t) = (pi(t), ai(t)), pi(t) ∈ P ∪ {“idle”}, ai(t)
∈ A = {l , s}, and i = (ti(0), pi(0)). Si defines a random Markovian Web surfer,
which starts its navigation from page pi(0) at time ti(0). Function Si describes
the position on GW at time t ≥ ti(0) and the action which will be performed next.
In particular, Si can perform two actions ai(t) ∈ A:

—follow a hyperlink (action l );
—stop surfing and become “idle” (action s).

Therefore, we define:

—P(ai(t) = a | pi(t) = p) as the probability of performing a ∈ A, provided that
Si stays in p at time t;

—P(pi(t + 1) = p|pi(t) = q, ai(t) = l ) as the probability of moving from page
q to page p, provided that Si is located in q at time t and it will follow a
hyperlink;
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—P(pi(t + 1) = p|pi(t) = q) = ∑
a∈A P(pi(t + 1) = p | pi(t) = q, ai(t) =

a)P(ai(t) = a | pi(t) = q) as the probability of moving to page p, provided
that Si is located in q at time t and the performed action is unknown;

—P(pi(t) = p) as the probability that Si is located in p at time t.

Since the surfers are Markovian, the future behavior of Si depends on the
current page p ∈ P . In fact, when visiting an interesting page, Si will likely
follow a hyperlink towards a neighboring page. If the current page is not sig-
nificant, the surfer will get “bored” and stop surfing. Hence, at time t + 1, Si is
located in p with probability

P(pi(t + 1) = p) =
∑
q∈P

P(pi(t + 1) = p | pi(t) = q)P(pi(t) = q)

=
∑
q∈P

(∑
a∈A

P(pi(t+1)= p | pi(t)=q, ai(t)=a)P(ai(t)=a | pi(t) = q)

)
P(pi(t)=q).

Let M α be a multiset operator that replicates α–times the set M and let Q
be defined as Q = ⋃

ti(0)≥0, pi(0)∈P {(ti(0), pi(0))}. The PageRank scheme models the
behavior of the set of independent surfers Uα = ⋃

i∈Q {Si}α. Thus, for each time
ti(0) and each page pi(0), Uα contains α surfers Si which start navigating from
pi(0) at time ti(0). Hence, the expected number of surfers E(np(t + 1)) which lie
in p at time t + 1 can be calculated as

E(np(t + 1)) =
∑
i∈Q

P(pi(t + 1) = p)

= α +
∑
i∈Q

∑
q∈P

P(pi(t + 1) = p | pi(t) = q)E(nq(t)).
(20)

Equation (20) becomes Eq. (1) when, for each p, q ∈ P , we make the following
assumptions:

(1) α = 1 − d , that is, 1 − d surfers start navigating from each page, at each
time step;

(2) if p is not a dangling page, P(ai(t) = l | pi(t) = p) = d , that is, every Si
has the same constant probability d of following a link in each page (and a
constant probability 1 − d of stopping the navigation);

(3) P(pi(t + 1) = p | pi(t) = q, ai(t) = l ) = 1/hq if there exists a link (q, p), and
0 otherwise. Here hq is the outdegree of page q, that is, the number of
outcoming links from q. This assumption makes the surfer “random”, since
all the outcoming links from a page are followed with the same probability;

(4) if p is a dangling page, P(ai(t) = s | pi(t) = p) = 1, that is, the surfers stop
the navigation on dangling pages.

The above result can be formalized as follows.

THEOREM 3.1. If the assumptions 1, 2, 3, and 4 hold and xp(0) = E(np(0))
then the PageRank xp(t), computed according to Eq. (1), of page p at time t
counts the expected number of surfers E(np(t)) that lie in p at t.
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The above stochastic interpretation of PageRank is slightly different from
those presented in Brin and Page [1998], Ng et al. [2001a], and Lempel and
Moran [2000]. In fact, PageRank is usually modeled using the classical random
walk theory on graphs, with the following assumptions:

—there is only one Web surfer and xp(t)/N represents the probability that the
surfer lies in p at time t;

—the surfer starts navigating at time 0 and the initial page is set according to
a distribution which is proportional to x (0);

—the surfer never stops navigating; at each time instant t, it still may become
“bored” with probability 1−d and jumps to another Web page with a uniform
probability.

Such an interpretation to PageRank works only when there is no dangling
page. In Ng et al. [2001a] and Lempel and Moran [2000], each dangling page
is assumed to be a special node pointing to all the pages (see Section (2.1)),
which means that classical random walk is used to model (18) instead of Eq. (3):
matrix dW collects the probabilities that the surfer moves from a page following
a hyperlink; matrix (1 − d )1IN×N defines the probabilities of jumping out of
pages.

According to Theorem (2.1), the two stochastic models are equivalent. How-
ever, the interpretation of PageRank introduced in this article provides a
direct model for Eq. (3) and simplifies the comprehension of some properties
of PageRank. For example, according to our interpretation, surfers are forced
to stop the navigation in dangling pages, which clearly explains why dangling
pages produce a loss of energy.

4. COMMUNITIES AND ENERGY BALANCE

This section is devoted to a simple analysis of the mechanisms that are in-
volved in the interaction among communities. Let dp(I ) be the set of dan-
gling pages in GI and let R and C be subsets of pages in GI . Moreover,
x R stands for a vector that contains only the components R of x and WR,C
is the submatrix of W, which contains only the rows in R and the columns
in C.

Definition 4.1. The vectorial scores

x i
I = (1 − d )(I − dWI, I )−11I|I | (21)

x e
I = d (I − dWI, I )−1WI,in(I )x in(I ) (22)

are referred to as the INTERNAL and the EXTERNAL PAGERANK of the community
GI , respectively.

The external PageRank x e
I depends linearly on x in(I ), a vector that includes

only the external nodes that have hyperlinks to the community. A similar com-
ment holds for the internal PageRank. Due to the linearity of Eq. (2), PageRank
meets the decomposition property.
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THEOREM 4.1. For any community GI , the page score can be decomposed as
follows

x ∗
I = x i

I + x e
I =

∑
p∈GI

Φp +
∑

p∈in(I )

Ψpx∗
p,

where Ψp is the pth column of d (I − dWI, I )−1WI,in(I ) and Φp is the pth column
of (1 − d )(I − dWI, I )−1.

PROOF. By an appropriate reordering of the pages, x ∗′ = [x ∗′
I , x ∗′

in(I ),
x ∗′

P\(I∪in(I ))], Eq. (2) becomes

x ∗′ = d
(

WI, I WI,in(I ) 0
. . . . . . . . .

)
x ∗′ + (1 − d )1IN ,

where, for the sake of simplicity, only the rows of W which play an active role
in the calculation are displayed. Solving the first |I | equations with respect to
x ∗

I , we get

x ∗
I = (1 − d )(I − dWI, I )−11I|I | + d (I − dWI, I )−1WI,in(I )x ∗

in(I )

The hypothesis of the theorem follows by the definition of x i
I , x e

I , Φp, and Ψp.

Notice that, regardless of the amount of injected energy, Ψp, which depends
only on the topology of the community, defines how the injected energy is dis-
tributed within the community.

Furthermore, like the energy of an island, also the energy of a community
depends on dangling pages. However, in the case of communities, the equation
must take into account the energy, Ein

I , that comes from outside and the energy,
Eout

I , that is spread outside.

THEOREM 4.2. Given a community GI , let f p be the fraction of the hyperlinks
of page p that point to pages in GI with respect to the total number of hyperlinks
outgoing from p. Let Ein

I , Eout
I , and Edp

I be defined by

Ein
I = d

1 − d

∑
i∈in(I )

fix∗
i , Eout

I = d
1 − d

∑
i∈out(I )

(1 − fi)x∗
i , Edp

I = d
1 − d

∑
i∈dp(I )

x∗
i .

Then, PageRank x ∗
I of GI satisfies

EI = |I | − Edp
I + Ein

I − Eout
I . (23)

PROOF. Without loss of generality, let us assume that pages in P are ordered
such that we can write consistently x ∗ = [x ∗′

out(I ), x ∗′
dp(I ), x ∗′

o(I ), x ∗′
P\I ]′, with o(I ) =

I \ (out(I )
⋃

dp(I )). First, we consider the following system

Y = dQY + U, (24)
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with

Q =




WI,out(I ) 0 WI,o(I ) 0 0
F 0 0 1 0
0 1I′

|dp(I )| 0 0 1


 ,

F = [1 − f1, . . . , 1 − f |out(I )|],
U = v[U′

I , 0, (1 − d )
(
N − Ein

I + Eout
I

)]′,
UI = dWI,in(I )x ∗

in(I ) + (1 − d )1I|I |.

If x ∗ is a solution of (2), then

Y∗ = [
x ∗

I , Eout
I , Edp

I + (
N − Ein

I + Eout
I

)]
(25)

is a solution of (24). In fact, by definition, Eout
I = d/(1 − d )Fx ∗

out and Edp
I =

d/(1 − d )1I′
|dp(I )|x

∗
dp(I ), so that

YI = dQI, I Y∗
I + UI

= dWI,out(I )x ∗
out(I ) + dWI,o(I )x ∗

o(I ) + dWI,in(I )x ∗
in(I ) + (1 − d )1I|I | = x ∗

I ,

y∗
|I |+1 = d Fx ∗

out(I ) + [d2/(1 − d )]Fx ∗
out(I ) = [d/(1 − d )]Fx ∗

out(I ) = Eout
I ,

y∗
|I |+2 = d1I′

|dp(I )|x
∗
dp(I ) + [d2/(1 − d )]1I′

|dp(I )|x
∗
dp(I ) + d

(
N − Ein

I + Eout
I

)
+ (1 − d )

(
N − Ein

I + Eout
I

) = Edp
I + (

N − Ein
I + Eout

I

)
follows. Moreover, Q is a stochastic matrix. In fact, let Qp and Wp be the pth
columns of Q and W, respectively. The equality ‖Qp‖1 = 1 must be proved for
p ∈ dp(I ), p ∈ o(I ), and p ∈ out(I ). If p ∈ dp(I ), then ‖Qp‖1 = ‖[0, . . . , 0, 1]‖1 =
1 by definition of Qp. Assume p ∈ o(I ). Then, ‖Wp‖1 = 1 holds since p is
not a dangling page, Wp = [0, . . . , 0, Q′

p, 0, . . . , 0]′ holds by definition, and
‖Qp‖1 = 1 is an immediate consequence. On the other hand, let p ∈ out(I ).
Then ‖Qp‖1 = ∑

q∈ch[p]∩I 1/hp + 1 − f p = 1.
Since Q is a stochastic matrix, the solution of (24) fulfills ‖Y∗‖1 =

d‖Q‖1‖Y∗‖1 + ‖U‖1 and, as a consequence,

‖Y∗‖1 = ‖U‖1/(1 − d ). (26)

Combining (26) with the definition of U

‖Y∗‖1 = 1
1 − d

‖dWI,in(I )x ∗
in(I ) + (1 − d )1I|I |‖1 + (1 − d )

(
N − Ein

I + Eout
I

)
= Ein

I + |I | + (
N − Ein

I + Eout
I

)
.

(27)

Finally, by the definition of Y∗,

‖Y∗‖1 = ‖x ∗
I‖1 + Eout

I + Edp
I + (

N − Ein
I + Eout

I

)
, (28)

and, matching Eqs. (27) and (28),

Ein
I + |I | + (

N − Ein
I + Eout

I

) = ‖x ∗
I‖1 + Eout

I + Edp
I + (

N − Ein
I + Eout

I

)
(29)

which, in turn, yields

‖x ∗
I‖1 = |I | + Ein

I − Eout
I − Edp

I .
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The following corollary gives some details about Edp
I , which represents the

energy lost by dangling pages.

COROLLARY 4.1. Given a community GI , let gp be the fraction of the hyper-
links of page p that point to pages in dp(I ) with respect to the total number
of hyperlinks outgoing from p and let ps[I ] be the set of pages with at least a
hyperlink to a dangling page. Then

Edp
I = d |dp(I )| + d2

1 − d

∑
i∈ps[I ]

gix∗
i

PROOF. Let us rewrite Edp
I with respect to the PageRanks of the pages in

ps[I ] as follows.

Edp
I = d

1 − d

∑
i∈dp(I )

x∗
i = d

1 − d

∑
i∈dp(I )

( ∑
j∈pa[i]

d
x∗

j

h j
+ 1 − d

)

= d |dp(I )| + d2

1 − d

∑
j∈ps[I ]

∑
i∈ch[ j ]∩I

x∗
j

h j
= d |dp(I )| + d2

1 − d

∑
j∈ps[I ]

sj x∗
j

h j
,

where sj is the number of hyperlinks of page j which point to a dangling page.
Hence, the thesis follows straightforwardly by observing that gj = sj

h j
.

Due to the decomposition property, the energy that comes from outside Ein
I

can be analyzed in more details, page by page, separating the contribution cp
I ,

of each page p ∈ in(I )∪ I , into ep
I , sp

I , and op
I , which describe the energy which is

entrapped in the community, lost in dangling pages, and spread onto the Web,
respectively.

THEOREM 4.3. Given a community GI , let ψi, p be the ith component of Ψp,
that is, the element in position (i, p) in the matrix d (I − dWI, I )−1WI,in(I ), and let

cp
I = d

1 − d
f px∗

p, op
I = d

1 − d

( ∑
i∈out(I )

(1 − fi)hi, p,

)
x∗

p,

sp
I = d

1 − d

( ∑
i∈dp(I )

hi, p

)
x∗

p, ep
I =

(∑
i∈I

hi, p

)
x∗

p.

Then, ep
I = cp

I − op
I − sp

I and Ein
I = ∑

p∈in(I ) cp
I hold.

PROOF. The proof that ep
I = cp

I − op
I − sp

I holds can be carried out by the
same analysis as Theorem 4.2, where Ein

I , Eout
I , Edp

I , and ‖x I‖1 are replaced by
cp

I , op
I , sp

I , and ep
I , respectively. Moreover, Ein

I = ∑
p∈in(I ) cp

I follows straightfor-
wardly from the definition of Ein

I .

The quantities cp
I , ep

I , sp
I , op

I cannot be computed exactly, unless the whole
matrix W is known, since the PageRank of p may depend on the whole Web.
On the other hand, one can compute cp

I /x∗
p, ep

I /x∗
p, sp

I /x∗
p that depend only on
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the connectivity of GI and p. Those quantities provide an estimation on how
the community spends the energy given by page p.

Theorem 4.3 can be also extended to the pages of the community. When p ∈ I ,
the default energy of p must be considered, such that cp

I = 1 and ep
I , sp

I , op
I denote

the parts of the default energy which are entrapped in the community, lost in
dangling pages, and spread onto the Web, respectively.

Moreover, notice that cp
I /ep

I represents the portion of the energy, provided by
page p, which is entrapped in the community. Theorem 4.3 clarifies that if a
community has no dangling page and no external hyperlink, then it entraps all
the input energy, that is, cp

I /ep
I = 1. In order to study how the connectivity of

a community affects the entrapped energy in more general cases, we introduce
the following two lemmas.

LEMMA 4.1. Let l be a positive integer, p ∈ in(I ), q ∈ I be pages, and ψ l
q, p be

the element in position (q, p) in matrix

d (dWI, I )l−1WI,in(I ) .

Moreover, suppose that �l is the subset of I containing the pages that can be
reached from p using a path that consists of exactly l arcs and contains only
pages in I. Then, ∑

r∈�l

ψ l
r, p = dlf p , (30)

provided that 1 ≤ l ≤ Lp, where Lp(I ) = max{n| �n ∩ (dp(I ) ∪ out(I )) = ∅}.
PROOF. The proof is carried out by induction on l .

Base: l = 1.
The thesis follows by the definition of ψ l

q, p, since

∑
r∈�1

ψ1
r, p = d

∑
r∈�1

1
hp

= dfp .

Induction: Let 1 < l < Lp(I ) and assume, by induction on l , that
∑

r∈�l
ψ l

r, p =
dlf p. Since d (dWI, I )l+1WI,in(I ) = (dWI, I )[d (dWI, I )l WI,in(I )], then

ψ l+1
r, p = d

∑
q∈pa[r]∩I

ψ l
q, p

hq
. (31)

Moreover, ∑
q∈ch[r]

1
hq

= 1 (32)

holds for any r ∈ �l since, by hypothesis, �l does not contain dangling pages
or pages pointing outside I . Finally, using Eqs. (31) and (32),

∑
r∈�l+1

ψ l+1
r, p = d

∑
r∈�l+1

∑
q∈pa[r]∩I

ψ l
q, p

hq
= d

∑
q∈�l

∑
r∈ch[q]

ψ l
q, p

hq
= d

∑
q∈�l

ψ l
q, p = dl+1 f p

follows.
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LEMMA 4.2. Let ψ l
q, p, Lp(I ) be defined as in Lemma 4.1 and let ψq, p be the

qth element of Ψp. Then,

ψr, p =
∞∑

k=1

ψk
r, p (33)

and ∑
r∈I

ψr, p ≥ 1 − d Lp

1 − d
dfp . (34)

PROOF. Equation (33) follows from the definition of ψq, p and ψ l
q, p and by

d (I − dWI, I )−1WI,in(I ) = d

( ∞∑
k=1

(dWI, I )k−1

)
WI,in(I )

=
∞∑

k=1

d (dWI, I )k−1WI,in(I ) .

In order to prove Eq. (34), notice that

∑
r∈I

ψr, p =
∑
r∈I

∞∑
k=1

ψk
r, p =

∞∑
k=1

∑
r∈I

ψk
r, p ≥

∞∑
k=1

∑
r∈�k

ψk
r, p ≥

Lp(I )∑
k=1

∑
r∈�k

ψk
r, p .

Thus, by Lemma 4.1,

∑
r∈I

ψr, p ≥
Lp(I )∑
k=1

dkf p = 1 − d Lp

1 − d
dfp .

In the following, we prove that the entrapped energy ep
I is proportional to

the input energy cp
I . The factor of proportionality depends upon the length of

the paths from p to the pages in dp(I ) ∪ out(I ). As the input pages become far
from the dangling pages and the output pages, the entrapped energy becomes
larger and larger, approaching cp

I .

THEOREM 4.4. Let Lp(I ) be defined as in Lemma 4.1 and let L(I ) =
maxp∈in(I ) Lp(I ). Then,

ep
I ≥ (1 − d Lp(I ))cp

I , (35)

EI ≥ (1 − d L(I ))Ein
I . (36)

PROOF. Equation (35) follows from the definition of ep
I , cp

I and from
Lemma 4.2:

ep
I =

(∑
r∈I

ψr, p

)
x∗

p ≥ (
1 − d Lp(I )) d

1 − d
f px∗

p = (
1 − d Lp(I ))cp

I .
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Fig. 6. Examples of islands extended by dangling pages.

Moreover, by Theorem 4.1,

EI = ‖x ∗
I‖1 ≥

∥∥∥∥∥
∑

p∈in(I )

Ψpx∗
p

∥∥∥∥∥
1

,

which implies

EI =
∑

p∈in(I )

∑
r∈I

ψr, px∗
p =

∑
p∈in(I )

ep
I ≥

∑
p∈in(I )

(
1 − d Lp(I ))cp

≥
∑

p∈in(I )

(
1 − d L(I ))cp = (

1 − d L(I ))Ein
I .

More generally, the entrapped energy depends not only on Lp(I ) but also
on the proportion between the number of paths that connect p to output and
dangling pages with respect to the paths that connect p to the other pages
of the community. This fact can be easily explained considering the stochastic
interpretation of Section 3. Random surfers remain entrapped in a community
having a large number of internal paths, since they have a small chance to
select hyperlinks to the outside.

Notice that, some Web designers have already exploited this fact in practice,
even if the theoretical motivations were probably still unknown. In fact, they
have built communities with a large number of internal hyperlinks in order to
improve the PageRank.

Example 4.1. Let us consider a regular graph of degree k with N pages,
where each page has been extended by a hyperlink to a dangling page (see
Figure 6(b)).7 Using straightforward algebra, we find that the PageRank of the
dangling page is

1 − d + Nd (1 − d )
k − d (k − 1)

7In practice, such an island could be a small personal page and the dangling page might be a text
document.
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and the energy loss is

Edp = d + Nd2

k − d (k − 1)
.

Thus, Edp increases when the connectivity k becomes smaller. Such a behavior is
sketched by with rule (2) (see Section 1.2, item 2). Moreover, Edp increases also
when d approaches 1, which exemplifies the property discussed in Section 2.3.
Notice that the energy loss can be a considerable part of the available energy
N + 1. In the limit case d = 1, all the energy is lost, since Edp = N + 1. On the
other hand, if k = 0, Edp = d (N + 1), which is most of the available energy for
d = 0.85.

Example 4.2. Let us consider the example depicted in Figure 6(a), which
reminds us the structure of a Web directory where there is also a node “0” which
injects energy inside the community pointing to the root. Using Theorem 4.3
and straightforward algebra, we derive

ψi,0 =




2d (N − 1 + o)
(N − 1)(2 − d2) + 2o

if i = 1,

2d2

(N − 1)(2 − d2) + 2o
if 2 ≤ i ≤ N ,

2d3

(N − 1)(2 − d2) + 2o
if i > N ,

such that

e0
I

x∗
0

= 2d
(N − 1)(1 + d + d2) + o

(N − 1)(2 − d2) + 2o
,

o0
I

x∗
0

= 2d2o
(1 − d )[(N − 1)(2 − d2) + 2o]

,

s0
I

x∗
0

= 2d4(N − 1)
(1 − d )[(N − 1)(2 − d2) + 2o]

.

The above equations suggest some interesting remarks, which illustrate how
Theorem 4.3 can be exploited in practice. For example, when N increases, the
energy lost in dangling pages s0

I (and provided by 0) becomes larger and larger.
However, such a lost is completely balanced by having less energy spread to the
Web. In fact, the entrapped energy e0

I is always an increasing function of N .
One may wonder whether it is preferable that 0 points to the root of the

directory (see previous analysis) or to another page, (e.g., page 2). Let us denote
by ē0

I the entrapped energy when 0 points to node 2 instead of 0. We have

ē0
I

x∗
0

= d2 (N − 1)(1 + d + d2) + o
(N − 1)(2 − d2) + 2o

+ d (1 + d ).

Then, it can be easily shown that the inequality e0
I ≥ ē0

I always holds. As a result,
the use of the incoming energy is more efficient when 0 points to the root.
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Fig. 7. The islands which yield the maximum PageRank onto a target page in the case in which
self–hyperlinks are (a) and are not (b) considered.

Finally, let us consider the island in which we remove node 0. In this case

Edp = (N − 1)d
[
1 + d2

(N − 1)(2 − d2)
+ d

2 − d2

]

is the energy loss. Notice that if d = 0.85, Edp > 1.4(N − 1) and, as a con-
sequence, ‖x ∗‖1 < N . Thus, even if this island contains more pages than the
island of Figure 7(b), its energy is smaller. Moreover, notice that when d ≈ 1,
we observe the same behavior of the previous example and Edp ≈ 2N − 1.

5. PAGERANK DISTRIBUTION AND COMMUNITY INTERACTION

The examples given in the previous section provides a clear picture on the effect
of dangling pages and external connections to the energy of communities. This
provides evidence of the rules described in Section 1.2 concerning the promotion
of Web pages on the base of the topological properties of communities. In this
section, we discuss some issues about distribution of PageRank and the way
communities can interact with each other. In particular, we show the effect of
external communities that can be purposely designed to promote the energy of
a given target community.

5.1 Master/Slave Islands

Given a fixed number of nodes N , we want to find the island that contains
exactly N pages and has a page with the highest PageRank. Intuitively, in
order to increase xp, p must be pointed by many other pages, and the pages that
point to p should have few outgoing links. Moreover, dangling pages must be
avoided to limit the loss of energy. Formally, the question is different depending
on whether or not self-hyperlinks, that is, hyperlinks pointing to the same page
where they are originated, are admissible. Figure 7 shows the two islands with
the largest PageRanks in the case of presence (absence) of self-hyperlinks. This
property is stated formally as follows:

THEOREM 5.1. Let x(a)
1 be the PageRank of node 1 in Figure 7(a) and x(b)

1 be
the PageRank of node 1 in Figure 7(b). Then,

x(a)
1 = 1 + (N − 1)d , (37)

x(b)
1 = d (N − 1) + 1

d + 1
. (38)
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Moreover, the islands of Figure 7(a) (Figure 7(b)) yield the maximum
PageRank that can be accumulated onto a given target page in the case in which
self-hyperlinks are considered (are not considered, respectively).

PROOF. Let us consider the graph of Figure 7(a), that is, the case in which
there are self-hyperlinks. Nodes from 2 to N get the minimal PageRank, that
is, x(a)

i = 1 − d , ∀ i, 2 ≤ i ≤ N . From Corollary 2.1,
∑N

i=1 x(a)
i = N holds. Hence,

x(a)
1 = N − ∑N

i=2 x(a)
i = 1 + (N − 1)d , which is the maximum PageRank.

Now, let us consider the graph of Figure 7(b). From Eq. (1), for each i, 2 ≤
i ≤ N ,

x(b)
1 = (N − 1)d x(b)

i + 1 − d , (39)

x(b)
i = d x(b)

1

N − 1
+ 1 − d , (40)

from which we derive (38).
Now we prove that there are no different patterns of connectivity with higher

PageRank than islands of Figure 7. Let GW be any graph with N pages and no
self-hyperlinks,8 and let x ∗ be the PageRank computed on GW . Without loss of
generality, we assume that the largest component of x ∗ is x∗

1.
Let us split x ∗ and the transition matrix W, associated with GW , into blocks

x ∗ = [x∗
1, Z′]′,

W =
(

0 R
B G

)
,

where Z ∈ IRN−1, R ∈ IR1,N−1, B ∈ IRN−1,1, and G ∈ IRN−1,N−1, and define α,
β, γ as follows:

α = Rx ∗

1I′
N−1x ∗ ,

β = 1I′
N−1Gx ∗

1I′
N−1x ∗ ,

γ = 1I′
N−1 B.

It is easy to verify that α, β, γ must satisfy the following constraints:

α, β, γ ≥ 0, α + β ≤ 1, γ ≤ 1. (41)

With this notation, Eq. (2) becomes{
x∗

1 = dRZ + 1 − d
Z = dBx∗

i + dGZ + (1 − d )1IN−1
,

and multiplying the latter equation by 1I′
N−1,{

x∗
1 = dα1I′

N−1 Z + 1 − d

1I′
N−1 Z = dγ x∗

1 + dβ1I′
N−1 Z + (1 − d )(N − 1)

,

8For the sake of simplicity, in the following we use x1 instead of x(a)
1 .
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which yields

x∗
1 = (1 − d )

1 − dβ + dα(N − 1)
1 − dβ − d2αγ

. (42)

Therefore, x∗
1 can be written as a function of α, β, γ . We are interested in finding

the maximum of x∗
1. Without loss of generality we assume γ = 1, since x∗

1 is a
monotonically nondecreasing function of γ . Moreover, notice that x∗

1 does not
admit a maximum in the interior of the polytope defined by (41), since

∂x∗
1

∂β
= (1 − d )

d2(N − 1 − dγ )α
(1 − dβ − d2α)2

is null only when α = 0. Thus, x∗
1 reaches the maximum either when β = 0,

or α = 0, or α + β = 1. However, if α = 0, then x∗
1 = 1 − d , which is not

maximal. If β = 0, then x∗
1 = (1 − d )[1 + dα(N − 1)]/(1 − d2α), which reaches

the maximum for α = 1. If α + β = 1, by replacing β by 1 − α in (42), it
follows that x∗

1 = (1 − d )(1 − d + dNα)/(1 − d + d (1 − d )α), which is maximal
when α = 1. Summing up, x∗

1 is maximal when α = 1 and β = 0 and we have
x∗

1 = [1 + d (N − 1)]/(1 + d ).9

Of course, the maximum score which can be transferred to a target page
depends on d and takes the supremum (x(a)

1 → N , x(b)
1 = N/2) as d → 1. Notice

that when self-hyperlinks are not considered, the island depicted in Figure 7(b)
is not the only one having a page with the largest PageRank. In fact, one can
remove any proper subset of the hyperlinks of page 1, without changing x(b)

1 .
Intuitively, this follows from the fact that removing the hyperlink (1, i), x(b)

i
decreases, whereas the PageRanks of the pages that are still referenced by 1
increase of the same amount. Therefore, the PageRank x(b)

i remains unchanged.

5.2 Linear Growth of PageRank

A promoting technique based on the results given in Theorem 5.1 can be easily
detected. Instead, in the following, we will prove that an analogous increase in
the energy of a target community can be obtained by any promoting community,
regardless of its connectivity pattern, with the only constraint that all its nodes
have outlinks to the target community.

THEOREM 5.2. Let us consider two communities C and D such that every node
of C is connected to at least one of D, and let F be defined as F = maxp∈C hp.
Then,

ED ≥ d (1 − d )
F

|C|. (43)

PROOF. By Theorem 4.4, we get

ED ≥ (1 − d L(I ))Ein
D .

9In fact, it is easily seen that in the case of Figure 7(b), we have α = 1, β = 0 and γ = 0, since
G = 0, and R′ = B = 1IN .
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Since all the paths from p to a page in I contains at least an arc, then L(I ) ≥ 1,
and it follows that

ED ≥ (1 − d )Ein
D . (44)

Moreover, using x∗
I ≥ 1 − d and by straightforward algebra,

Ein
D =

∑
p∈in(I )

d
1 − d

f px∗
p ≥

∑
p∈in(I )

dfp ≥ d
∑
p∈C

1
F

= d
F

|C| . (45)

The thesis follows putting together Eqs. (44) and (45).

The above results provide only a static picture of the effects that a page can
produce onto a community, since they analyze the energy flows under the as-
sumption that the Web remains fixed. On the other hand, even a simple change
to the Web connectivity, like the introduction or the removal of a hyperlink, may
cause a modification of all the PageRanks x ∗. When a community is altered,
the PageRank x ∗

I is affected both because the community propagates the exter-
nal PageRank in a different way and because the energy spread onto the Web,
Eout

I , is changed, modifying recursively the external energy Ein
I . However, Web

changes actually cause only a redistribution of the energy associated with the al-
tered pages, such that the distance between the old and the new rank is bounded
accordingly. The following theorem proves that this intuitive idea is correct.

THEOREM 5.3. Suppose that C is a set of pages where we change the outlinks
and denote by x̃ ∗ the PageRank after the changes were carried out. Then,

‖x ∗ − x̃ ∗‖1 ≤ d
1 − d

∑
p∈C

δpx∗
p ≤ 2d

1 − d
Ec, (46)

where δp ≤ 2, ∀p. More precisely,

δp =




∣∣∣∣ 1
h̄p

− 1
hp

∣∣∣∣ up + np

h̄p
+ rp

hp
, if hp �= 0, h̄p �= 0,

1, if hp = 0 or h̄p = 0,

being hp and h̄p the number of hyperlinks in p before and after the change,
respectively, np the number of new hyperlinks, rp the number of removed hyper-
links, and up the number of unchanged hyperlinks.

PROOF. Let W2 be the transition matrix of the changed Web and let us define
D = W2 − W. Then, by Eq. (2)

x ∗
2 −x ∗ = dW2x ∗

2 −dWx ∗ = dW2(x ∗ +x ∗
2 −x ∗)−dWx ∗ = dW2(x ∗

2 −x ∗)+d Dx ∗.

Considering the 1-norm,

‖x ∗
2 − x ∗‖1 ≤ d‖W2‖1‖x ∗

2 − x ∗‖1 + d‖Dx‖1

follows, which implies

‖x ∗
2 − x ∗‖1 ≤ d

1 − d
‖Dx‖1 = d

1 − d

N∑
p=1

Dpx∗
p,

where Dp is the pth column of D.
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Fig. 8. A case in which the upper bound of Theorem 5.3 is exactly achieved.

By the definition of D, if page p is unchanged then Dp = 0. Otherwise, the ith
component di, p of Dp is 1/h̄p if the hyperlink (p, i) was introduced, di, p = −1/hp
if (p, i) was removed, di, p = 1/h̄p − 1/hp if (p, i) was unchanged, and di, p = 0 if
the page has never contained the hyperlink (p, i). By straigthforward algebra,
‖Dp‖1 = δp.

Finally, assuming rp ≥ np and hp �= 0, h̄p �= 0, we get δp = 2rp/hp ≤ 2. A
similar analysis can be carried out if rp < np.

Theorem 5.3 extends a similar result given in Ng et al. [2001a], where the
authors prove that ‖x ∗ − x̃ ∗‖1 ≤ 2Ec/(1 − d ). In fact, Theorem 5.3 gives a
tighter bound—it replaces the factor 2/(1 − d ) with 2d/(1 − d )—and yields
a more detailed analysis—it introduces the δis. Moreover, Theorem 5.3 can be
applied both to the PageRank defined by Eq. (2) and Eq. (13), whereas the result
in Ng et al. [2001a] can be used only for the PageRank of Eq. (13).

Notice that there are cases when the equality holds in (46). For example,
consider the graph of Figure 8 where the change described in Theorem 5.3
consists of removing the dotted link and of introducing the dashed link is in-
troduced. Before the change, x ∗ = [1 − d , 1, 1 + d ]′ whereas, after the change,
x̃ ∗ = [1 − d , 1 + d , 1]′, and ‖x ∗ − x̃ ∗‖1 = 2d , which is exactly the bound found
in Theorem 5.3.

Theorem 5.3 highlight a nice property of PageRank, namely that that a com-
munity can only make a very limited change to the overall PageRank of the Web.
Thus, regardless the way they change, nonauthoritative communities cannot
affect significantly the global PageRank.10

The bound of Theorem 5.3 gives also indications on the frequency of
PageRank updating. Assuming that every day the Web dynamics alters α pages
and that the affected pages are random, then 2dαt/(1 − d ) is an approximate
measure of ‖x 0 −x t‖1, the difference between the PageRanks computed at days
0 and t. Thus, for example, if we want that the error remains bounded by ε,
then PageRank must be computed approximately every ((1 − d )/2dα) ε days.

6. PAGERANK COMPUTATION

The Jacobi algorithm, described by Eq. (3), is an efficient solution, especially
when compared to noniterative algorithms for solving linear systems, such as
the Gaussian elimination. In fact, the Gauss method would require O(N 3) flops

10In Ng et al. [2001a], the authors analyze HITS [Kleinberg 1999] proving that Kleinberg’s method
does not share this robustness property.
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to solve Eq. (2), which is nowadays prohibitive due to the dimension of the
Web. On the other hand, each iterative computation based on Eq. (3) requires
O(m· |H|) flops, where m is the number of iterations and |H| is the total number
of hyperlinks in the Web.11 Using experimental arguments, in Brin et al. [1999]
and Haveliwala [1999] the system (3) is proven to converge in a reasonably
limited number of steps (i.e., m = 52 when Google’s PageRank was applied to a
database of 322 millions of pages). Therefore, since m << N (and |H| << N 2),
the Jacobi method is much faster than the Gaussian elimination.

The convergence rate of PageRank is also an interesting issue. Brin et al.
[1999] claim that the rapid convergence rate of Google’s PageRank depends on
the particular connectivity of the Web-graph and that the Web should be an
expander-like graph [Motwani and Raghavan 1995]. However, as pointed out in
the following theorem, the exponential reduction of the error of Eq. (3) yields
even without the hypothesis of expander-like graphs.

THEOREM 6.1. Let |erel(t)|1 = ‖x ∗−x (t)‖1
‖x ∗‖1

be the 1-norm of the relative error
made in the computation of PageRank at time t. Then,

|erel(t)|1 ≤ dt |erel(0)|1 .

Moreover, if there is no dangling page, then there exists v, where v ≥ 0 and
v = Wv, such that the equality holds.

PROOF. From Eq. (3), which has x ∗ as the stable equilibrium point,

|erel(t)|1 = ‖x ∗ − x (t)‖1

‖x ∗‖1

=
∥∥dWx ∗ + (1 − d )1IN − dWx (t − 1) − (1 − d )1IN

∥∥
1

‖x ∗‖1

= ‖dW[x ∗ − x (t − 1)]‖1

‖x ∗‖1

= ‖dt Wt[x ∗ − x (0)]‖1

‖x ∗‖1

≤ dt‖W‖t
1

‖x ∗ − x (0)‖1

‖x ∗‖1

≤ dt |erel(0)|1 ,

since, from Proposition 2.3, ‖W‖1 ≤ 1. On the other hand, if the graph has no
dangling page, then ‖W‖1 = 1 and W is a stochastic matrix. Therefore, according
to Frobenius’ Theorem, the maximal eigenvalue of W is 1. Thus, let v ≥ 0 be
the corresponding real eigenvector, then W t(x ∗ − x (0)) = W tv = v, from which
|erel(t)|1 = dt |erel(0)|1 follows.

Remark 6.1. Let us consider the computation of PageRank over all the Web.
The dynamical system (3) reaches the solution in a number of steps that is log-
arithmic in d . More precisely, since ‖x ∗ − x (0)‖1 ≤ N and ‖x ∗‖1 ≥ N (1 − d ),
then |erel(t)|1 ≤ dt/(1 − d ). Therefore, in order to gain a relative error which

11In fact, Wx can be calculated in O(|H|) steps, due to the sparsity of x .
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is under a desired threshold ε, we must impose dt/(1 − d ) ≤ ε, from which
t ≥ log((1 − d )ε)/log d ≈ log(1/ε).12

For example, when choosing d = 0.5, after 50 steps we have |erel|1 ≤ 3.5e−15.
Vice-versa, the number of steps needed to reach a precision up to 8 digits, that
is, ε = 10−8, is 28, which is congruent with the experimental results found
in Brin et al. [1999].

It is worth mentioning that PageRank can be also evaluated by solving the
linear system (2) with any of the available algorithms. For instance, the Gauss-
Seidel method (see Golub and Van Loan [1993, pp. 506–511]) guarantees a faster
convergence rate with respect to the Jacobi method, which is the algorithm
represented by (3). More precisely, consider a linear system Ax = b, where A =
{ai, j }. By the Stein–Rosenberg Theorem [Varga 1962], the Gauss-Seidel method
is always faster than the Jacobi procedure, when ai,i �= 0 for each i, ai, j ≤ 0 for
each i, j , and ρ(A) < 1; this holds in our case, since A = I−dW and wi, j < 1 hold.
The Gauss-Seidel is a modified Jacobi method where, during each iteration, the
components of x (t) are updated one at a time, instead of in parallel. Formally,
we have xp(t) = d

∑
q∈pa[p], q<p xp(t) + d

∑
q∈pa[p], q≥p xp(t − 1) + 1 − d . Notice

that this procedure has also the advantage of using less memory, since it uses
only a copy of x , instead of the two copies (i.e., x (t) and x (t − 1)) required by
Eq. (3).

Remark 6.2. Several implementation issues may decisively support the use
of the Jacobi algorithm. In fact, the efficiency of the computation of PageRank
mainly depends on the data structures used to store the huge matrix W. At
each time step t, all the elements of W must be accessed in order to compute
x (t + 1). Since the matrix cannot fit into the main memory, but must be stored
onto disks, a sequential access is the best way for reading W (see Haveliwala
[1999]). However, a crawler naturally produces a sequence Seq = c1; c2; . . . ; cN ,
where ci = pi

1, . . . , pi
|ch[i]| and pi

j is the j th page referenced by i. Thus, the
subsequence ci is a compact representation of the ith column of W and Seq is a
data structure where W is stored by columns. Such a data structure can be used
straightforwardly by the Jacobi algorithm. On the contrary, this data structure
cannot be used directly by Gauss-Seidel algorithm, which needs the matrix
W be stored by rows. Producing the new data structure used by Gauss-Seidel
method can be very expensive from a computational point of view and definitely
suggests that the Jacobi algorithm is better suited for computing PageRank.

Notice that, due to the particular “pseudo-stochastic ” nature of matrix I−dW,
an upper bound can be established for its condition number, k(I − dW). In
particular, k(I − dW) ≤ (d + 1)/(d − 1), which is independent of the matrix
dimension.13 Such a property guarantees the solution of the linear system (2)

12In the special case of a graph with no dangling page, then ‖x ∗‖1 = N and t ≥ log (ε/2)/log d ≈
log (1/ε).
13By its definition, using the 2-norm, the condition number of Ais k(A) = λmax/λmin, being λmax and
λmin the maximum and the minimum eigenvalue of A, respectively. Moreover, again by definition,
λ ≤ supx �=0 ‖Ax‖p/‖x‖p, for all eigenvalues λ and for each p–norm. Therefore, in this case, λ ≤
‖I − dW‖1 ≤ ‖I‖1 + d‖W‖1 ≤ 1 + d , ∀ λ, and if x is an eigenvector, then λ‖x‖1 = ‖Ix − dWx‖1 ≥
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Fig. 9. (a) An example of how d can effect the ordering of pages in PageRank. Page p1 has many
far relatives, whereas p2 has a few near ancestors. (b) The effect of the outdegree in PageRank
extinguishes the effect of d .

using optimal iterative solvers (see, e.g., Björck [1996] and Bianchini et al.
[2001]) in a number of steps which is independent of the Web dimension, thus
confirming the result stated by Theorem 6.1.

The proposed complexity analysis shows that the number of steps is only
dependent on the precision term log(1/ε). Since PageRank contributes to the
sorting of the pages returned on a given query, as a matter of fact, the precision
requirements might be dictated by the constraint of keeping the ordering un-
changed. However, the above strict interpretation is not meaningful in practical
applications. In fact, PageRank does not model exactly the concept of “page au-
thority” as it is conceived by users. Perturbations on the PageRank may result
in different orderings of the pages, but if the perturbation is small, it is unlikely
that users can perceive differences in the quality the service provided by the
search engine. Moreover, we now show that the precision requirement are not
a crucial issue since we prove that PageRank is strongly affected by the choice
of the dumping factor d .

PageRank deeply depends on parameter d . When d is small, only the nearest
relatives give an actual contribution to xp, whereas, as d → 1, far ancestors
are also significant for the evaluation of xp.

Example 6.1. Let p1 and p2 be connected as in Figure 9(a). Suppose that
p1 has more ancestors than p2, which are far from p1, whereas p2 has less but
closer relatives. When d ≈ 1, xp1 will be larger than xp2 , but when d ≈ 0 the
converse holds. In particular,

xp1 = (1 − d ) + d (1 − d ) + 4d2(1 − d ),

xp2 = (1 − d ) + 2d (1 − d ),

and xp1 > xp2 if d >
1
4

.

Example 6.2. Let us consider trees tp and tq which, by construction, have
p and q as their roots and are constructed by following back the hyperlinks

‖Ix‖1 − d‖Wx‖1, from which λ ≥ 1 − d follows. Finally, k(I − dW) ≤ (d + 1)/(d − 1) holds.
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driving to p and q, respectively. Let the outdegree be constant for each node.
If tp and tq have the same number of nodes in levels 0, 1, . . . , i − 1, but tp has
fewer nodes than tq at level i, and a greater number of nodes at level i +1, then
xp < xq as d approaches 0. When the hypothesis on the outdegree is relaxed,
the score of each page is deeply influenced by the importance of the hyperlinks
pointing to it.

Example 6.3. Let us consider again the page score of p1 and p2 with the
connectivity described in Figure 9(a), but taking into account parent nodes
with distinct outdegree for both pages (see Figure 9(b)). In this case xp2 ≥ xp1

∀ d ∈ [0, 1). In particular, we can notice that pages f1 and f3 give the same
contribution to the PageRank of p1 and p2, respectively. Nevertheless, when
d ≈ 1, the PageRanks due to pages gi, i = 1, 4, sum up to approximately 1/3,
which is far away from the unitary score given by f2.

7. CONCLUSIONS

In this article, we have presented an in-depth analysis of PageRank to disclose
its fundamental properties concerning stability, complexity of the computa-
tional scheme, and the critical role of parameters involved in the computation.
In particular, we have pointed out that the inherent structure of the Markovian
matrices associated with the Web makes it to possible to perform an optimal
computation of PageRank, a property of crucial importance for the actual scal-
ing up to the Web. It is shown that, as a matter of fact, the effectiveness of
the computational scheme also depends on the limited precision requirements
imposed by the sensitivity of PageRank from the dumping factor. Some nice
properties concerning PageRank robustness have been derived, which extend
previous results in the literature. In addition, we have shown the technical
soundness of a dynamic computational scheme taking place while changing
the structure of the Web.

We have introduced the notion of energy and a circuital analysis to under-
stand the evolution of PageRank inside Web communities. The derived energy
balance equations make it possible to understand the way different Web com-
munities interact each other and to disclose some secrets for promotion of Web
pages. In particular, it is pointed out that the energy of a given target com-
munity can be driven by a “promoting community” so as to grow linearly with
the number its pages. This property holds regardless of the structure of the
promoting community, which makes it very hard its detection.

Finally, it worth mentioning that PageRank is only one of the parameters
involved in Google’s ranking of the answers to a given query. The aim of the
article are limited to the investigation of PageRank and do not allow to make
conclusions on the actual ranking attached by Google to the Web pages.
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