
 1

A Comparison of Document Clustering Techniques

Michael Steinbach George Karypis Vipin Kumar

Department of Computer Science and Egineering,
University of Minnesota

Technical Report #00-034
{steinbac, karypis, kumar@cs.umn.edu}

Abstract

This paper presents the results of an experimental study of some common document

clustering techniques. In particular, we compare the two main approaches to document

clustering, agglomerative hierarchical clustering and K-means. (For K-means we used a

“standard” K-means algorithm and a variant of K-means, “bisecting” K-means.) Hierarchical

clustering is often portrayed as the better quality clustering approach, but is limited because of its

quadratic time complexity. In contrast, K-means and its variants have a time complexity which

is linear in the number of documents, but are thought to produce inferior clusters. Sometimes

K-means and agglomerative hierarchical approaches are combined so as to “get the best of both

worlds.” However, our results indicate that the bisecting K-means technique is better than the

standard K-means approach and as good or better than the hierarchical approaches that we tested

for a variety of cluster evaluation metrics. We propose an explanation for these results that is

based on an analysis of the specifics of the clustering algorithms and the nature of document

data.

1 Background and Motivation
Document clustering has been investigated for use in a number of different areas of text

mining and information retrieval. Initially, document clustering was investigated for improving

the precision or recall in information retrieval systems [Rij79, Kow97] and as an efficient way of

finding the nearest neighbors of a document [BL85]. More recently, clustering has been

proposed for use in browsing a collection of documents [CKPT92] or in organizing the results

returned by a search engine in response to a user’s query [ZEMK97]. Document clustering has

also been used to automatically generate hierarchical clusters of documents [KS97]. (The

automatic generation of a taxonomy of Web documents like that provided by Yahoo!

 2

(www.yahoo.com) is often cited as a goal.) A somewhat different approach [AGY99] finds the

natural clusters in an already existing document taxonomy (Yahoo!), and then uses these clusters

to produce an effective document classifier for new documents.

Agglomerative hierarchical clustering and K-means are two clustering techniques that are

commonly used for document clustering. Agglomerative hierarchical clustering is often

portrayed as “better” than K-means, although slower. A widely known study, discussed in

[DJ88], indicated that agglomerative hierarchical clustering is superior to K-means, although we

stress that these results were with non-document data. In the document domain, Scatter/Gather

[CKPT92], a document browsing system based on clustering, uses a hybrid approach involving

both K-means and agglomerative hierarchical clustering. K-means is used because of its

efficiency and agglomerative hierarchical clustering is used because of its quality. Recent work

to generate document hierarchies [LA99] uses some of the clustering techniques from [CKPT92]

and presents a result that indicates that agglomerative hierarchical clustering is better than K-

means, although this result is just for a single data set and is not one of the major results of the

paper.

Initially we also believed that agglomerative hierarchical clustering was superior to K-

means clustering, especially for building document hierarchies, and we sought to find new and

better hierarchical clustering algorithms. However, during the course of our experiments we

discovered that a simple and efficient variant of K-means, “bisecting” K-means, can produce

clusters of documents that are better than those produced by “regular” K-means and as good or

better than those produced by agglomerative hierarchical clustering techniques. We have also

been able to find what we think is a reasonable explanation for this behavior.

The basic outline of this paper is as follows. Section 2 provides a brief review of

agglomerative and hierarchical clustering techniques, while Section 3 reviews the vector space

model for documents, particularly the aspects necessary to understand document clustering.

Section 4 presents some measures of cluster quality that will be used as the basis for our

comparison of different document clustering techniques and Section 5 gives some additional

details about the K-means and bisecting K-means algorithms. Section 6 briefly describes the data

sets used in our experiments, while sections 7 and 8 present our experimental results. More

specifically, Section 7 compares three agglomerative hierarchical techniques, while Section 8

 3

p4p1 p2 p3

compares the best hierarchical technique to K-means and bisecting K-means. Section 9 presents

our explanation for these results and Section 10 is a summary of our results.

2 Clustering Techniques
In this section we provide a brief overview of hierarchical and partitional

(K-means) clustering techniques [DJ88, KR90]

Hierarchical techniques produce a nested sequence of partitions, with a single, all-

inclusive cluster at the top and singleton clusters of individual points at the bottom. Each

intermediate level can be viewed as combining two clusters from the next lower level (or

splitting a cluster from the next higher level). The result of a hierarchical clustering algorithm

can be graphically displayed as tree, called a dendogram. This tree graphically displays the

merging process and the intermediate clusters. The dendogram at the right shows how four

points can be merged into a single cluster. For document clustering, this

dendogram provides a taxonomy, or hierarchical index.

There are two basic approaches to generating a hierarchical clustering:

a) Agglomerative: Start with the points as individual clusters and, at each

step, merge the most similar or closest pair of clusters. This requires a

definition of cluster similarity or distance.

b) Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster until only

singleton clusters of individual points remain. In this case, we need to decide, at each step,

which cluster to split and how to perform the split.

Agglomerative techniques are more common, and these are the techniques that we will

compare to K-means and its variants. (See [EW89] for a comparison of agglomerative

hierarchical clustering methods used for document retrieval.) We summarize the traditional

agglomerative hierarchical clustering procedure as follows:

Simple Agglomerative Clustering Algorithm

1. Compute the similarity between all pairs of clusters, i.e., calculate a similarity matrix

whose ijth entry gives the similarity between the ith and jth clusters.

2. Merge the most similar (closest) two clusters.

3. Update the similarity matrix to reflect the pairwise similarity between the new

cluster and the original clusters.

4. Repeat steps 2 and 3 until only a single cluster remains.

 4

In contrast to hierarchical techniques, partitional clustering techniques create a one-level

(un-nested) partitioning of the data points. If K is the desired number of clusters, then partitional

approaches typically find all K clusters at once. Contrast this with traditional hierarchical

schemes, which bisect a cluster to get two clusters or merge two clusters to get one. Of course, a

hierarchical approach can be used to generate a flat partition of K clusters, and likewise, the

repeated application of a partitional scheme can provide a hierarchical clustering. The bisecting

K-means algorithm that we present later is such an approach.

There are a number of partitional techniques, but we shall only describe the K-means

algorithm which is widely used in document clustering. K-means is based on the idea that a

center point can represent a cluster. In particular, for K-means we use the notion of a centroid,

which is the mean or median point of a group of points. Note that a centroid almost never

corresponds to an actual data point.

The basic K-means clustering technique is presented below. We elaborate on various

issues in the following sections.

Basic K-means Algorithm for finding K clusters.

1. Select K points as the initial centroids.

2. Assign all points to the closest centroid.

3. Recompute the centroid of each cluster.

4. Repeat steps 2 and 3 until the centroids don’t change.

3 The Vector Space Model and Document Clustering
Many issues specific to documents are discussed more fully in information retrieval texts

[Rij79, Kow97]. We briefly review a few essential topics to provide a sufficient background for

understanding document clustering.

For our clustering algorithms documents are represented using the vector-space model. In

this model, each document, d, is considered to be a vector, d, in the term-space (set of document

“words”). In its simplest form, each document is represented by the (TF) vector,

dtf = (tf1, tf2, …, tfn),

where tfi is the frequency of the ith term in the document. (Normally very common words are

stripped out completely and different forms of a word are reduced to one canonical form.) In

addition, we use the version of this model that weights each term based on its inverse document

 5

frequency (IDF) in the document collection. (This discounts frequent words with little

discriminating power.) Finally, in order to account for documents of different lengths, each

document vector is normalized so that it is of unit length.

The similarity between two documents must be measured in some way if a clustering

algorithm is to be used. There are a number of possible measures for computing the similarity

between documents, but the most common one is the cosine measure, which is defined as

cosine(d1, d2) = (d1 • d2) / ||d1|| ||d2|| ,

where • indicates the vector dot product and ||d|| is the length of vector d.

Given a set, S, of documents and their corresponding vector representations, we define

the centroid vector c to be

�
∈

=
SdS
dc 1

which is nothing more than the vector obtained by averaging the weights of the various terms

present in the documents of S. Analogously to documents, the similarity between two centroid

vectors and between a document and a centroid vector are computed using the cosine measure,

i.e.,

cosine(d, c) = (d • c) / ||d|| ||c|| = (d • c) / ||c||

cosine(c1, c2) = (c1 • c2) / ||c1|| ||c2||

Note that even though the document vectors are of length one, the centroid vectors will not

necessarily be of unit length. (We use these two definitions in defining two of our agglomerative

hierarchical techniques in Section 7, the “intra-cluster similarity and “centroid similarity”

techniques, respectively.)

For K-means clustering, the cosine measure is used to compute which document centroid

is closest to a given document. While a median is sometimes used as the centroid for K-means

clustering, we follow the common practice of using the mean. The mean is easier to calculate

than the median and has a number of nice mathematical properties.

For example, calculating the dot product between a document and a cluster centroid is

equivalent to calculating the average similarity between that document and all the documents

that comprise the cluster the centroid represents. (This observation is the basis of the “intra-

cluster similarity” agglomerative hierarchical clustering technique in section 7.) Mathematically,

 6

 ()��
∈∈

=•=•
SdSd
cosine

SS
ddddcd 111 ,11

Also the square of the length of the centroid vector is just the average pairwise similarity

between all points in the cluster. (This includes the similarity of each point with itself, which is

just 1.) In the following section, we will use this average pairwise similarity as the basis for one

of the measures for quantifying the goodness of a clustering algorithm.

() ccdddd •=•=′ ���
∈∈

∈′
∈ SdSd

Sd
Sd SS

cosine
S

11,1
2 = ||c||2

4 Evaluation of Cluster Quality
For clustering, two measures of cluster “goodness” or quality are used. One type of

measure allows us to compare different sets of clusters without reference to external knowledge

and is called an internal quality measure. As mentioned in the previous section, we will use a

measure of “overall similarity” based on the pairwise similarity of documents in a cluster. The

other type of measures lets us evaluate how well the clustering is working by comparing the

groups produced by the clustering techniques to known classes. This type of measure is called

an external quality measure. One external measure is entropy [Sha48], which provides a

measure of “goodness” for un-nested clusters or for the clusters at one level of a hierarchical

clustering. Another external measure is the F-measure, which, as we use it here, is more oriented

toward measuring the effectiveness of a hierarchical clustering. The F measure has a long

history, but was recently extended to document hierarchies in [LA99].

There are many different quality measures and the performance and relative ranking of

different clustering algorithms can vary substantially depending on which measure is used.

However, if one clustering algorithm performs better than other clustering algorithms on many of

these measures, then we can have some confidence that it is truly the best clustering algorithm

for the situation being evaluated. As we shall see in the results sections, the bisecting K-means

algorithm has the best performance for the three quality measures that we are about to describe.

4.1 Entropy
We use entropy as a measure of quality of the clusters (with the caveat that the best

entropy is obtained when each cluster contains exactly one data point). Let CS be a clustering

solution. For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we

 7

compute pij, the “probability” that a member of cluster j belongs to class i. Then using this class

distribution, the entropy of each cluster j is calculated using the standard formula

()ij
i

ijj ppE log�−= , where the sum is taken over all classes. The total entropy for a set of

clusters is calculated as the sum of the entropies of each cluster weighted by the size of each

cluster: �
=

=
m

j

jj
CS n

En
E

1

*
, where nj is the size of cluster j, m is the number of clusters, and n is

the total number of data points.

4.2 F measure
The second external quality measure is the F measure [LA99], a measure that combines

the precision and recall ideas from information retrieval [Rij79, Kow97]. We treat each cluster

as if it were the result of a query and each class as if it were the desired set of documents for a

query. We then calculate the recall and precision of that cluster for each given class. More

specifically, for cluster j and class i

Recall(i, j) = nij / ni

Precision(i, j) = nij / nj

where nij is the number of members of class i in cluster j, nj is the number of members of cluster j

and ni is the number of members of class i.

The F measure of cluster j and class i is then given by

F(i, j) = (2 * Recall(i, j) * Precision(i, j)) / ((Precision(i, j) + Recall(i, j))

For an entire hierarchical clustering the F measure of any class is the maximum value it

attains at any node in the tree and an overall value for the F measure is computed by taking the

weighted average of all values for the F measure as given by the following.

F = (){ }jiF
n
n

i

i ,max�

where the max is taken over all clusters at all levels, and n is the number of documents.

4.3 Overall Similarity
In the absence of any external information, such as class labels, the cohesiveness of

clusters can be used as a measure of cluster similarity. One method for computing the cluster

cohesiveness is to use the weighted similarity of the internal cluster similarity,

 8

().,1
2 �

∈′
∈

′
Sd
Sd

cosine
S

dd . Recall that in Section 3 it was shown that this is just the squared length of

the cluster centroid, ||c||2.

5 Details of K-means and Bisecting K-means
In this section we discuss general issues related to the K-means clustering algorithm and

introduce the bisecting K-means algorithm.

There are many ways to enhance the basic K-means algorithm given in section 2, e.g., see

[CKPT92, BF98, and LA99]. But to keep things simple, we chose a very simple and efficient

implementation of the K-means algorithm. For instance, we select our initial centroids by

randomly choosing K documents.

 However, we did choose to update centroids incrementally, i.e., as each point is assigned

to a cluster, rather than at the end of an assignment pass as is indicated in the K-means algorithm

in section 2. Our reason is that we noticed that incremental updates were more effective, i.e.,

produced results with better overall similarity and lower entropy. The incremental version of K-

means is also advocated in [LA99].

For what follows we will use a bisecting K-means algorithm as our primary clustering

algorithm. This algorithm starts with a single cluster of all the documents and works in the

following way:

Basic Bisecting K-means Algorithm for finding K clusters.

1. Pick a cluster to split.

2. Find 2 sub-clusters using the basic K-means algorithm. (Bisecting step)

3. Repeat step 2, the bisecting step, for ITER times and take the split that produces the

clustering with the highest overall similarity.

4. Repeat steps 1, 2 and 3 until the desired number of clusters is reached.

There are a number of different ways to choose which cluster is split. For example, we

can choose the largest cluster at each step, the one with the least overall similarity, or use a

criterion based on both size and overall similarity. We did numerous runs and determined that

the differences between methods were small. In the rest of this paper we split the largest

remaining cluster.

 9

Note that the bisecting K-means algorithm can produce either an un-nested (flat)

clustering or a hierarchical clustering. For un-nested clusters we will often “refine” the clusters

using the basic K-means algorithms, but we do not refine the nested clusters. We will provide

more details later.

Strictly speaking, the bisecting K-means algorithm is a divisive hierarchical clustering

algorithm, but, to avoid confusion, when we speak of hierarchical clustering algorithms we shall

mean agglomerative hierarchical algorithms of the sort traditionally used to cluster documents.

Finally, note that bisecting K-means has a time complexity which is linear in the number

of documents. If the number of clusters is large and if refinement is not used, then bisecting K-

means is even more efficient than the regular K-means algorithm (In this case, there is no need

to compare every point to every cluster centroid since to bisect a cluster we just consider the

points in the cluster and their distances to two centroids.)

6 Data Sets
In all of the data sets, we have removed stop words, i.e., common words such as “a”,

“are”, “do”, and “for”. We have also performed stemming using Porter's suffix-stripping

algorithm. Thus, all the words sharing the same stem are considered to be the same word. For

example, words “compute”, “computing”, and “computed” are stemmed to “comput”.

The summary of documents used in this paper is shown in Table 1. The details of each

data set are described here. Data sets tr31 and tr45 are from TREC-5 [trec], TREC-6 [trec], and

TREC-7 [trec]. Data set fbis is from the Foreign Broadcast Information Service data of TREC-5

[trec]. Data sets la1 and la2 are from the Los Angeles Times data of TREC-5 [trec].

The class labels of tr31and tr45 came from the relevance judgments provided by “qrels.1-

243.part1”, “qrels.1-243.part2”, “qrels.251-300.part1”, “qrels.251-300.part3”,

“qrels.trec6.adhoc.part1”, “qrels.trec7.adhoc.part1”, and “qrels.trec7.adhoc.part5” [trecq]. The

class labels of fbis were generated from the relevance judgments provided by TREC-5 routing

query relevance “qrels.1-243” [trecq].

We collected documents that have relevance judgments and then selected documents that

have just a single relevance judgment. The class labels of la1, and la2 were generated according

to the section names of articles, such as “Entertainment”, “Financial”, “Foreign”, “Metro”,

“National”, and “Sports.” Data sets re0 and re1 are from Reuters-21578 text categorization test

 10

collection Distribution 1.0 [reut]. Data set wap is from the WebACE project (WAP) [han98].

Each document corresponds to a web page listed in the subject hierarchy of Yahoo!.
Data
Set

Source Number of
Documents

Number of
 Classes

Minimum
Class
Size

Maximum
Class
Size

Average
Class
Size

Number
of
Words

re0 Reuters-
21578

1504 13 11 608 115.7 11465

re1 Reuters-
21578

1657 25 10 371 663 3758

wap WebAce 1560 20 5 341 78.0 8460
tr31 TREC 927 7 2 352 132.4 10128
tr45 TREC 690 10 14 160 69.0 8261
fbis TREC 2463 17 38 506 144.9 2000
la1 TREC 3204 6 273 943 534.0 31472
la2 TREC 3075 6 248 905 512.5 31472

Table 1: Summary description of document sets.

7 Comparison of Agglomerative Hierarchical Techniques
In this section we compare three different agglomerative hierarchical schemes against

one another. We will then compare the “best” of these algorithms against our K-means and

bisecting K-means algorithms.

Before describing the results, we briefly describe the different hierarchical clustering

algorithms that we used. As mentioned before, the only real difference between the different

hierarchical schemes is how they choose which clusters to merge, i.e., how they choose to define

cluster similarity.

7.1 Techniques
Intra-Cluster Similarity Technique (IST): This hierarchical technique looks at the

similarity of all the documents in a cluster to their cluster centroid and is defined by Sim(X)

=�
∈Xd

cosine),(cd , where d is a document in cluster, X, and c is the centroid of cluster X. The

choice of which pair of clusters to merge is made by determining which pair of clusters will lead

to smallest decrease in similarity. Thus, if cluster Z is formed by merging clusters X and Y, then

we select X and Y so as to maximize Sim(Z) – (Sim(X) + Sim(Y)). Note that Sim(Z) – (Sim(X) +

Sim(Y)) is non-positive.

Centroid Similarity Technique (CST): This hierarchical technique defines the

similarity of two clusters to be the cosine similarity between the centroids of the two clusters.

 11

UPGMA: This is the UPGMA scheme as described in [DJ88, KR90]. It defines the

cluster similarity as follows, similarity(cluster1, cluster2) =
)2(*)1(

),(
2
1

21

2
1

clustersizeclustersize

cosine
clusterd
clusterd
�

∈
∈

dd

where d1 and d2 are, documents, respectively, in cluster1 and cluster2.

7.2 Results
The F-measure results are shown in table 8 – larger is better. UPGMA is the best,

although the two other techniques are often not much worse.
Data Set UPGMA Centroid

Similarity
Cluster
Similarity

re0 0.5859 0.5028 0.5392
re1 0.6855 0.5963 0.5509
wap 0.6434 0.4977 0.5633
tr31 0.8693 0.7431 0.7989
tr45 0.8528 0.7105 0.8054
Fbis 0.6717 0.6470 0.6233
la1 0.6963 0.4557 0.5977
la2 0.7168 0.4531 0.5817

Table 2: Comparison of the F-measure for Different Clustering Algorithms

The entropy results are shown in figures 1 - 8. Notice that UPGMA and IST are the best,

with similar behavior with respect to entropy. CST does poorly. Figures 1, 5, and 6 indicate that

CST does about as well with respect to entropy as do IST and UPGMA in the initial phases of

agglomeration, but, at some point, starts “making mistakes” as to which clusters to merge, and its

performance diverges from the other schemes from then on. In the cases represented by the

other figures, this divergence happens earlier. UPGMA shows similar behavior, but only when

the number of clusters is very small.

Overall, UPGMA is the best performing hierarchical technique that we investigated and

we compare it to K-means and bisecting K-means in the next section.

 12

 13

8 Comparison of K-means, Bisecting K-means and UPGMA

8.1 Details
Here we provide some brief details of how we performed the runs that produced the results

we are about to discuss.

For these experiments we equalized the number of runs for bisecting K-means versus

regular K-means. If ITER is the number of trial bisections for each phase of bisecting K-means

and K is the number of clusters sought, then a bisecting K-means run is equivalent to log2 (K) *

ITER regular K-means runs. (There are the equivalent of ITER K-means runs for the whole set

of documents for each of the log2 (K) levels in the bisection process.) For the bisecting K-

means, we set ITER = 5. We did 10 runs of the bisecting K-means and for each run of the

bisecting K-means we performed log2 (K) * ITER runs of a regular K-means. Since hierarchical

clustering produces the same result every time, there was no need to conduct multiple runs for

UPGMA.

There is also another issue that must be mentioned. Both bisecting K-means and

hierarchical clustering produce clustering results that can be further “refined” by using the K-

means algorithm. That is, if the centroids of the clusters produced by these two techniques are

used as the initial centroids for a K-means clustering algorithm, then the K-means algorithm will

change these initial centroids and readjust the clusters. The key question here is whether such

refinement will improve the quality of the clusterings produced.

We also mention that hierarchical clustering with a K-means refinement is essentially a

hierarchical-K-mean hybrid that is similar to techniques that other people have tried. In

particular, the Scatter/Gather system [CKTP92] uses hierarchical clustering to produce “seeds”

for a final K-means phase.

8.2 Results
Tables 3 - 5 show the entropy results of these runs, while tables 6 - 9 show the overall

similarity results. Figure 10 also shows entropy results and is just Figure 1 with the entropy

results for bisecting K-means added. Table 8 shows the comparison between F values for

bisecting K-means and UPGMA. We state the three main results succinctly.

 14

• Bisecting K-means, with or without refinement is better than regular K-means and UPGMA,

with or without refinement, in most cases. Even in cases where other schemes are better,

bisecting K-means is only slightly worse.

• Refinement significantly improves the performance of UPGMA for both the overall

similarity and the entropy measures.

• Regular K-means, although worse than bisecting K-means, is generally better than UPGMA,

even after refinement.

We make a few brief comments on the fact that we did multiple runs of K-means and

bisecting K-means. For bisecting K-means, this did not improve the results much as this

algorithm tends to produce relatively consistent results. For regular K-means, the results do vary

quite a bit from one run to another. Thus, one run of regular K-means might produce results that

are not as good as those produced by UPGMA, even without refinement.

However, even many runs of K-means or bisecting K-means are significantly quicker

than a single run of a hierarchal clustering algorithm, particularly if the data sets are large. For

example, for the data set, la1, with 3204 documents and 31,472 terms, a single hierarchical

clustering run takes well in excess of an hour on a modern Pentium system. By comparison, a

single bisecting K-means run to find 32 clusters takes less than a minute on the same machine.
Data Set K Bisecting

K-means
Bisecting
K-means with refinement

Regular
 K-means

Hierarchical
(UPGMA)

Hierarchical
(UPGMA)
with refinement

re0 16 1.3305 1.1811 1.3839 1.9838 1.4811
re1 16 1.6315 1.7111 1.6896 2.0058 1.7361
wap 16 1.5494 1.5601 1.8557 2.0584 1.8028
tr31 16 0.4713 0.4722 0.5228 0.8107 0.5711
tr45 16 0.6909 0.6927 0.7426 1.1955 0.8665
fbis 16 1.3708 1.4053 1.3198 1.8594 1.3832
la1 16 0.9570 0.9511 1.0710 2.4046 1.2390
la2 16 0.9799 0.9445 0.9673 1.5955 1.1392

Table 3: Comparison of the Entropy for Different Clustering Algorithms for K = 16

Data Set K Bisecting

K-means
Bisecting
K-means with refinement

Regular
 K-means

Hierarchical
(UPGMA)

Hierarchical
(UPGMA)
with refinement

re0 32 1.0884 1.1085 1.2064 1.5850 1.3969
re1 32 1.4229 1.3148 1.4290 1.5360 1.2138
wap 32 1.3314 1.2482 1.4422 1.7201 1.5252
tr31 32 0.2940 0.3327 0.4281 0.5123 0.4641
tr45 32 0.5676 0.4991 0.5293 0.7312 0.4730
fbis 32 1.1872 1.2060 1.2618 1.4538 1.2841
la1 32 0.8659 0.9149 1.0626 1.5375 1.0111
la2 32 0.8969 0.8463 0.9659 1.3568 0.9623

Table 4: Comparison of the Entropy for Different Clustering Algorithms for K = 32

 15

Data Set K Bisecting
K-means

Bisecting
K-means with refinement

Regular
 K-means

Hierarchical
(UPGMA)

Hierarchical
(UPGMA)
with refinement

re0 64 1.0662 0.9428 0.9664 1.3215 1.1764
re1 64 1.0249 0.9869 1.1177 1.1655 0.9826
wap 64 1.1066 1.0783 1.2807 1.3742 1.2825
tr31 64 0.3182 0.2743 0.3520 0.3985 0.3855
tr45 64 0.4613 0.4199 0.4308 0.4668 0.3913
fbis 64 1.0456 1.0876 1.0504 1.2346 1.1430
la1 64 0.8698 0.8748 1.0084 1.3082 1.0066
la2 64 0.7514 0.7291 0.9204 1.1082 0.9138

Table 5: Comparison of the Entropy for Different Clustering Algorithms for K = 64

Data Set K Bisecting

K-means
Bisecting
K-means with refinement

Regular
 K-means

Hierarchical
(UPGMA)

Hierarchical
(UPGMA)
with refinement

re0 16 0.4125 0.4137 0.4158 0.3157 0.3784
re1 16 0.3325 0.3341 0.3317 0.2703 0.3084
wap 16 0.2763 0.2771 0.2703 0.2440 0.2533
tr31 16 0.4212 0.4231 0.4204 0.3560 0.3619
tr45 16 0.4182 0.4204 0.4190 0.3561 0.3739
fbis 16 0.4464 0.4496 0.4514 0.3657 0.4189
la1 16 0.2228 0.2244 0.2198 0.1420 0.1995
la2 16 0.2282 0.2299 0.2276 0.1694 0.2019

Table 6: Comparison of the Overall Similarity for K = 16

Data Set K Bisecting

K-means
Bisecting
K-means with refinement

Regular
 K-means

Hierarchical
(UPGMA)

Hierarchical
(UPGMA)
with refinement

re0 32 0.4677 0.4788 0.4778 0.4136 0.4421
re1 32 0.3957 0.4009 0.4009 0.3369 0.3690
wap 32 0.3226 0.3258 0.3235 0.2786 0.2876
tr31 32 0.4802 0.4866 0.4795 0.4373 0.4441
tr45 32 0.4786 0.4827 0.4763 0.4299 0.4382
fbis 32 0.4989 0.5071 0.5110 0.4435 0.4827
la1 32 0.2606 0.2640 0.2596 0.1922 0.2247
la2 32 0.2675 0.2738 0.2655 0.2018 0.2437

Table 7: Comparison of Overall Similarity for K = 32

Data Set K Bisecting

K-means
Bisecting
K-means with refinement

Regular
 K-means

Hierarchical
(UPGMA)

Hierarchical
(UPGMA)
with refinement

re0 64 0.5327 0.5541 0.5521 0.4983 0.5258
re1 64 0.4671 0.4758 0.4742 0.4270 0.4422
wap 64 0.3842 0.3914 0.3850 0.3478 0.3567
tr31 64 0.5483 0.5536 0.5501 0.5214 0.5232
tr45 64 0.5502 0.5563 0.5481 0.5168 0.5204
fbis 64 0.5495 0.5648 0.5627 0.5032 0.5387
la1 64 0.3047 0.3129 0.3080 0.2446 0.2648
la2 64 0.3177 0.3267 0.3212 0.2575 0.2842

Table 8: Comparison of Overall Similarity for K = 64

 16

9 Explanations
In this section we propose an explanation for why agglomerative hierarchical clustering

performs poorly and why bisecting K-means does better than K-means. The arguments that we

present here, while plausible, are preliminary. In future work, we hope to verify our logic by

using document models to generate artificial document data sets with varying properties.

9.1 Why agglomerative hierarchical clustering performs poorly.
What distinguishes documents of different classes is the frequency with which words are

used. In particular, each class typically has a “core” vocabulary of words that are used more

frequently. For example, documents about finance will often talk about money, mortgages,

trade, etc. while documents about sports talk about players, coaches, games, etc. These core

vocabularies may overlap, documents may use more than one “core” vocabulary, and any

particular document may contain words from these different “core” vocabularies, even if it does

not belong to the class of documents that typically

uses such words.

Each document has only a subset of all

words from the complete vocabulary. Thus,

because of the probabilistic nature of how words

are distributed, any two documents may share

many of the same words. Thus, we would expect

that two documents can often be nearest neighbors without belonging to the same class. Figure

10 shows the percent of documents whose nearest neighbor is not of the same class. While this

Data Set Bisecting
K-means UPGMA

re0 0.5863 0.5859
re1 0.7067 0.6855
wap 0.6750 0.6434
tr31 0.8869 0.8693
tr45 0.8080 0.8528
Fbis 0.6814 0.6717
la1 0.7856 0.6963
la2 0.7882 0.7168

Table 9: Comparison of the F-measure for
 Bisecting K-means and UPGMA

 17

percentage varies widely from one data set to another, the chart does confirm what we have

stated about nearest neighbor behavior in documents. As you consider the second, third, …,100th

nearest neighbors, the percentage of points with a majority of non-nearest neighbors increases.

(We mention that for small classes, this point is reached quite soon, just from the logic of the

situation.)

Since, in many cases, the nearest neighbors of a document are of different classes,

agglomerative hierarchal clustering will often put documents of the same class in the same

cluster, even at the earliest stages of the clustering process. Because of the way that hierarchical

clustering works, these “mistakes” cannot be fixed once they happen. A K-means refinement

helps hierarchical clustering because, as we will see shortly, K-means can “overcome the

problem of mixed nearest neighbors.” The last two columns of Tables 3 – 9 show the benefit of

a K-means refinement for hierarchical clustering very clearly.

In cases where nearest neighbors are unreliable, a different approach is needed that relies

on more global properties. (This issue was discussed in a non-document context in [GRS99].)

Since computing the cosine similarity of a document to a cluster centroid is the same as

computing the average similarity of the document to all the cluster’s documents, K-means is

implicitly making use of such a “global property” approach. This explains why K-means does

better vis-à-vis agglomerative hierarchical clustering, than is the case in other domains.

We stress that we are not saying that K-means or its variants are the “perfect” clustering

algorithm for documents. There are a variety of issues with respect to K-means, e.g.,

initialization, and in practice, K-means sometimes fails to find clusters that correspond the

desired document classes. However, the general approach of K-means seems better suited to

documents than the approach of agglomerative hierarchical clustering.

9.2 Why bisecting K-means works better than regular K-means.
We believe that the main reason for this result is that bisecting K-means tends to produce

clusters of relatively uniform size, while regular K-means is known to produce clusters of widely

different sizes. Smaller clusters are often of higher quality, but this doesn’t contribute much to

the overall quality measure since quality measures weight each cluster’s quality contribution by

the cluster’s size. Larger clusters, on the other hand, tend to be of lower quality and make a large

negative contribution to cluster quality. We provide a simple numerical example to illustrate this

for the case of entropy.

 18

Consider a set of documents with two equal sized classes that are split into two clusters.

If there is one cluster that contains few points and one cluster that contains

almost all the points, then the entropy of the resulting solution is very

nearly the entropy the larger cluster, which is just – ½ log2 ½ - ½ log2 ½ =

1. If the two clusters are equal size and the clustering algorithm manages

to produce somewhat pure clusters, i.e., both clusters are more than 50%

pure, then the entropy of each cluster is less than 1. The accompanying

table shows the entropy for some values.

10 Conclusions
This paper presented the results of an experimental study of some common document

clustering techniques. In particular, we compared the two main approaches to document

clustering, agglomerative hierarchical clustering and K-means. For K-means we used a standard

K-means and a variant of K-means, bisecting K-means. Our results indicate that the bisecting K-

means technique is better than the standard K-means approach and as good or better than the

hierarchical approaches that we tested. More specifically, the bisecting K-means approach

produces significantly better clustering solutions quite consistently according to the entropy and

overall similarity measures of cluster quality. Furthermore, bisecting K-means seems

consistently to do slightly better at producing document hierarchies (as measured by the F

measure) than the best of the hierarchical techniques, UPGMA. In addition, the run time of

bisecting K-means is very attractive when compared to that of agglomerative hierarchical

clustering techniques - O(n) versus O(n2).

The reason that our relative ranking of K-means and hierarchical algorithms differs from

those of other researchers could be due to many factors. First we used many runs of the regular

K-means algorithm. If agglomerative hierarchical clustering techniques such as UPGMA are

compared to a single run of K-means, then the comparison would be much more favorable for

the hierarchical techniques. Secondly, we used incremental updating of centroids, which also

improves K-means. Of course, we also used the bisecting K-means algorithm, which, to our

knowledge, has not been previously used for document clustering. While there are many

agglomerative hierarchical techniques that we did not try, we did try several other techniques

which we did not report here. The results were similar– bisecting K-means performed as well or

Percent

Cluster

Purity

Entropy

90 .47

80 .72

70 .88

60 .97

50 1.00

 19

better then the hierarchical techniques that we tested. Finally, note that hierarchical clustering

with a K-means refinement is essentially a hybrid hierarchical-K-means scheme similar to other

such schemes that have been used before [CKPT92]. In addition, this scheme was better than

any of the hierarchical techniques that we tried, which gives us additional confidence in the

relatively good performance of bisecting K-means vis-à-vis hierarchical approaches.

We caution that the main point our paper is not a statement that bisecting K-means is

“superior” to any possible variations of agglomerative hierarchical clustering or possible hybrid

combinations with K-means. However, given the linear run-time performance of bisecting K-

means and the consistently good quality of the clusterings that it produces, bisecting K-means is

an excellent algorithm for clustering a large number of documents.

We argued that agglomerative hierarchical clustering does not do well because of the

nature of documents, i.e., nearest neighbors of documents often belong to different classes. This

causes agglomerative hierarchical clustering techniques to make mistakes that cannot be fixed by

the hierarchical scheme. Both the K-means and the bisecting K-means algorithms rely on a more

global approach, which effectively amounts to looking at the similarity of points in a cluster with

respect to all other points in the cluster. This view also explains why a K-means refinement

improves the entropy of a hierarchical clustering solution.

Finally, we put forward the idea that the better performance of bisecting K-means vis-à-

vis regular K-means is due to fact that it produces relatively uniformly sized clusters instead of

clusters of widely varying sizes.

References
[AGY99] Charu C. Aggarwal, Stephen C. Gates and Philip S. Yu, On the merits of building categorization

systems by supervised clustering, Proceedings of the fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Pages 352 – 356, 1999.

[APR97] Javed Aslam, Katya Pelekhov, and Daniela Rus, A Practical Clustering Algorithm for Static and

Dynamic Information Organization, Proceedings of the 1998 ACM CIKM International Conference

on Information and Knowledge Management, Bethesda, Maryland, USA, Pages 208-217, November

3-7, 1998.

[BF98] Paul Bradley and Usama Fayyad, Refining Initial Points for K-Means Clustering, Proceedings of the

Fifteenth International Conference on Machine Learning ICML98, Pages 91-99. Morgan Kaufmann,

San Francisco, 1998.

[BL85] Chris Buckley and Alan F. Lewit, Optimizations of inverted vector searches, SIGIR ’85, Pages 97-

110, 1985.

 20

[CKPT92] Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey, Scatter/Gather: A

Cluster-based Approach to Browsing Large Document Collections, SIGIR ‘92, Pages 318 – 329,

1992.

[CCFW98] Moses Charikar, Chandra Chekuri, Tomas Feder, and Rajeev Motwani, Incremental Clustering and

Dynamic Information Retrieval, STOC 1997, Pages 626-635, 1997.

[DJ88] Richard C. Dubes and Anil K. Jain, Algorithms for Clustering Data, Prentice Hall, 1988.

[EW89] A. El-Hamdouchi and P. Willet, Comparison of Hierarchic Agglomerative Clustering Methods for

Document Retrieval, The Computer Journal, Vol. 32, No. 3, 1989.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, (1998), ROCK: A Robust Clustering Algorithm for

Categorical Attributes, In Proceedings of the 15th International Conference on Data Engineering,

1999.

 [Han98] Eui-Hong (Sam) Han, Daniel Boley, Maria Gini, Robert Gross, Kyle Hastings, George Karypis, Vipin

Kumar, B. Mobasher, and Jerry Moore, WebAce: A Web Agent for Document Categorization and

Exploration. Proceedings of the 2nd International Conference on Autonomous Agents (Agents'98).

[KS97] Daphe Koller and Mehran Sahami, Hierarchically classifying documents using very few words,

Proceedings of the 14th International Conference on Machine Learning (ML), Nashville, Tennessee,

July 1997, Pages 170-178.

[Kow97] Gerald Kowalski, Information Retrieval Systems – Theory and Implementation, Kluwer Academic

Publishers, 1997.

[KR90] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis, John

Wiley and Sons, 1990.

[LA99] Bjorner Larsen and Chinatsu Aone, Fast and Effective Text Mining Using Linear-time Document

Clustering, KDD-99, San Diego, California, 1999.

[reut] D. Lewis, Reuters-21578 text categorization text collection 1.0. http://www.research.att.com/~lewis

[Rij79] C. J. van Rijsbergen, (1989), Information Retrieval, Buttersworth, London, second edition.

[SS97] Hinrich Schutze and Craig Silverstein, Projections for Efficient Document Clustering, SIGIR ’97,

Philadelphia, PA, 1997.

[Sha48] Claude. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, vol.

27, pp. 379-423 and 623-656, July and October, 1948.

[trec] TREC: Text REtrieval Conference. http://trec.nist.gov

[trecq] TREC: Text REtrieval Conference relevance judgments. http://trec.nist.gov/data/qrels_eng/index.html

[ZEMK97] Oren Zamir, Oren Etzioni, Omid Madani, Richard M. Karp, Fast and Intuitive Clustering of Web

Documents, KDD ’97, Pages 287-290, 1997.

