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Abstract 
 

This paper presents the results of an experimental study of some common document 

clustering techniques.  In particular, we compare the two main approaches to document 

clustering, agglomerative hierarchical clustering and K-means.  (For K-means we used a 

“standard” K-means algorithm and a variant of K-means, “bisecting” K-means.)  Hierarchical 

clustering is often portrayed as the better quality clustering approach, but is limited because of its 

quadratic time complexity.  In contrast, K-means and its variants have a time complexity which 

is linear in the number of documents, but are thought to produce inferior clusters.   Sometimes 

K-means and agglomerative hierarchical approaches are combined so as to “get the best of both 

worlds.”   However, our results indicate that the bisecting K-means technique is better than the 

standard K-means approach and as good or better than the hierarchical approaches that we tested 

for a variety of cluster evaluation metrics.  We propose an explanation for these results that is 

based on an analysis of the specifics of the clustering algorithms and the nature of document 

data.  

1 Background and Motivation  
Document clustering has been investigated for use in a number of different areas of text 

mining and information retrieval.  Initially, document clustering was investigated for improving 

the precision or recall in information retrieval systems [Rij79, Kow97] and as an efficient way of 

finding the nearest neighbors of a document [BL85]. More recently, clustering has been 

proposed for use in browsing a collection of documents [CKPT92] or in organizing the results 

returned by a search engine in response to a user’s query [ZEMK97].  Document clustering has 

also been used to automatically generate hierarchical clusters of documents [KS97]. (The 

automatic generation of a taxonomy of Web documents like that provided by Yahoo! 



 2

(www.yahoo.com) is often cited as a goal.)  A somewhat different approach [AGY99] finds the 

natural clusters in an already existing document taxonomy (Yahoo!), and then uses these clusters 

to produce an effective document classifier for new documents. 

Agglomerative hierarchical clustering and K-means are two clustering techniques that are 

commonly used for document clustering.  Agglomerative hierarchical clustering is often 

portrayed as “better” than K-means, although slower.  A widely known study, discussed in 

[DJ88], indicated that agglomerative hierarchical clustering is superior to K-means, although we 

stress that these results were with non-document data.  In the document domain, Scatter/Gather 

[CKPT92], a document browsing system based on clustering, uses a hybrid approach involving 

both K-means and agglomerative hierarchical clustering. K-means is used because of its 

efficiency and agglomerative hierarchical clustering is used because of its quality.  Recent work 

to generate document hierarchies [LA99] uses some of the clustering techniques from [CKPT92] 

and presents a result that indicates that agglomerative hierarchical clustering is better than K-

means, although this result is just for a single data set and is not one of the major results of the 

paper.   

Initially we also believed that agglomerative hierarchical clustering was superior to K-

means clustering, especially for building document hierarchies, and we sought to find new and 

better hierarchical clustering algorithms.  However, during the course of our experiments we 

discovered that a simple and efficient variant of K-means, “bisecting” K-means, can produce 

clusters of documents that are better than those produced by “regular” K-means and as good or 

better than those produced by agglomerative hierarchical clustering techniques.  We have also 

been able to find what we think is a reasonable explanation for this behavior. 

The basic outline of this paper is as follows.  Section 2 provides a brief review of 

agglomerative and hierarchical clustering techniques, while Section 3 reviews the vector space 

model for documents, particularly the aspects necessary to understand document clustering.  

Section 4 presents some measures of cluster quality that will be used as the basis for our 

comparison of different document clustering techniques and Section 5 gives some additional 

details about the K-means and bisecting K-means algorithms. Section 6 briefly describes the data 

sets used in our experiments, while sections 7 and 8 present our experimental results.  More 

specifically, Section 7 compares three agglomerative hierarchical techniques, while Section 8 
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compares the best hierarchical technique to K-means and bisecting K-means.  Section 9 presents 

our explanation for these results and Section 10 is a summary of our results. 

2 Clustering Techniques 
In this section we provide a brief overview of hierarchical and partitional  

(K-means) clustering techniques [DJ88, KR90] 

Hierarchical techniques produce a nested sequence of partitions, with a single, all-

inclusive cluster at the top and singleton clusters of individual points at the bottom.  Each 

intermediate level can be viewed as combining two clusters from the next lower level (or 

splitting a cluster from the next higher level).  The result of a hierarchical clustering algorithm 

can be graphically displayed as tree, called a dendogram.  This tree graphically displays the 

merging process and the intermediate clusters.  The dendogram at the right shows how four 

points can be merged into a single cluster.  For document clustering, this 

dendogram provides a taxonomy, or hierarchical index.    

There are two basic approaches to generating a hierarchical clustering:  

a) Agglomerative:  Start with the points as individual clusters and, at each 

step, merge the most similar or closest pair of clusters.  This requires a 

definition of cluster similarity or distance. 

b) Divisive:  Start with one, all-inclusive cluster and, at each step, split a cluster until only 

singleton clusters of individual points remain.  In this case, we need to decide, at each step, 

which cluster to split and how to perform the split. 

Agglomerative techniques are more common, and these are the techniques that we will 

compare to K-means and its variants.  (See [EW89] for a comparison of agglomerative 

hierarchical clustering methods used for document retrieval.)  We summarize the traditional 

agglomerative hierarchical clustering procedure as follows: 

Simple Agglomerative Clustering Algorithm 

1. Compute the similarity between all pairs of clusters, i.e., calculate a similarity matrix 

whose ijth entry gives the similarity between the ith and jth clusters. 

2. Merge the most similar (closest) two clusters. 

3. Update the similarity matrix to reflect the pairwise similarity between the  new  

cluster and the original clusters. 

4. Repeat steps 2 and 3 until only a single cluster remains. 
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In contrast to hierarchical techniques, partitional clustering techniques create a one-level 

(un-nested) partitioning of the data points.  If K is the desired number of clusters, then partitional 

approaches typically find all K clusters at once.  Contrast this with traditional hierarchical 

schemes, which bisect a cluster to get two clusters or merge two clusters to get one.  Of course, a 

hierarchical approach can be used to generate a flat partition of K clusters, and likewise, the 

repeated application of a partitional scheme can provide a hierarchical clustering.  The bisecting 

K-means algorithm that we present later is such an approach. 

There are a number of partitional techniques, but we shall only describe the K-means 

algorithm which is widely used in document clustering. K-means is based on the idea that a 

center point can represent a cluster.  In particular, for K-means we use the notion of a centroid, 

which is the mean or median point of a group of points.  Note that a centroid almost never 

corresponds to an actual data point.   

The basic K-means clustering technique is presented below.  We elaborate on various 

issues in the following sections. 

Basic K-means Algorithm for finding K clusters. 

1. Select K points as the initial centroids. 

2. Assign all points to the closest centroid. 

3. Recompute the centroid of each cluster. 

4. Repeat steps 2 and 3 until the centroids don’t change. 

3 The Vector Space Model and Document Clustering 
Many issues specific to documents are discussed more fully in information retrieval texts 

[Rij79, Kow97].  We briefly review a few essential topics to provide a sufficient background for 

understanding document clustering. 

For our clustering algorithms documents are represented using the vector-space model. In 

this model, each document, d, is considered to be a vector, d, in the term-space (set of document 

“words”). In its simplest form, each document is represented by the (TF) vector, 

dtf  = (tf1, tf2, …, tfn),   

where tfi  is the frequency of the ith term in the document. (Normally very common words are 

stripped out completely and different forms of a word are reduced to one canonical form.)  In 

addition, we use the version of this model that weights each term based on its inverse document 
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frequency (IDF) in the document collection. (This discounts frequent words with little 

discriminating power.)  Finally, in order to account for documents of different lengths, each 

document vector is normalized so that it is of unit length.  

The similarity between two documents must be measured in some way if a clustering 

algorithm is to be used.  There are a number of possible measures for computing the similarity 

between documents, but the most common one is the cosine measure, which is defined as  

cosine( d1, d2 ) =  (d1 • d2) / ||d1|| ||d2|| ,  

where • indicates the vector dot product and ||d|| is the length of vector d.  

Given a set, S, of documents and their corresponding vector representations, we define 

the centroid vector c to be  

�
∈

=
SdS
dc 1  

which is nothing more than the vector obtained by averaging the weights of the various terms 

present in the documents of S. Analogously to documents, the similarity between two centroid 

vectors and between a document and a centroid vector are computed using the cosine measure, 

i.e., 

cosine( d, c ) =  (d • c) / ||d|| ||c|| = (d • c) / ||c|| 

cosine( c1, c2) =  (c1 • c2) / ||c1|| ||c2|| 

Note that even though the document vectors are of length one, the centroid vectors will not 

necessarily be of unit length.  (We use these two definitions in defining two of our agglomerative 

hierarchical techniques in Section 7, the “intra-cluster similarity and “centroid similarity” 

techniques, respectively.) 

For K-means clustering, the cosine measure is used to compute which document centroid 

is closest to a given document.  While a median is sometimes used as the centroid for K-means 

clustering, we follow the common practice of using the mean. The mean is easier to calculate 

than the median and has a number of nice mathematical properties. 

For example, calculating the dot product between a document and a cluster centroid is 

equivalent to calculating the average similarity between that document and all the documents 

that comprise the cluster the centroid represents.  (This observation is the basis of the “intra-

cluster similarity” agglomerative hierarchical clustering technique in section 7.)  Mathematically, 
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Also the square of the length of the centroid vector is just the average pairwise similarity 

between all points in the cluster.  (This includes the similarity of each point with itself, which is 

just 1.)   In the following section, we will use this average pairwise similarity as the basis for one 

of the measures for quantifying the goodness of a clustering algorithm. 

( ) ccdddd •=•=′ ���
∈∈

∈′
∈ SdSd

Sd
Sd SS

cosine
S

11,1
2 = ||c||2   

4 Evaluation of Cluster Quality 
For clustering, two measures of cluster “goodness” or quality are used. One type of 

measure allows us to compare different sets of clusters without reference to external knowledge 

and is called an internal quality measure.   As mentioned in the previous section, we will use a 

measure of  “overall similarity” based on the pairwise similarity of documents in a cluster.  The 

other type of measures lets us evaluate how well the clustering is working by comparing the 

groups produced by the clustering techniques to known classes.  This type of measure is called 

an external quality measure.  One external measure is entropy [Sha48], which provides a 

measure of “goodness” for un-nested clusters or for the clusters at one level of a hierarchical 

clustering.  Another external measure is the F-measure, which, as we use it here, is more oriented 

toward measuring the effectiveness of a hierarchical clustering.  The F measure has a long 

history, but was recently extended to document hierarchies in [LA99].   

There are many different quality measures and the performance and relative ranking of 

different clustering algorithms can vary substantially depending on which measure is used.   

However, if one clustering algorithm performs better than other clustering algorithms on many of 

these measures, then we can have some confidence that it is truly the best clustering algorithm 

for the situation being evaluated.  As we shall see in the results sections, the bisecting K-means 

algorithm has the best performance for the three quality measures that we are about to describe.  

4.1 Entropy 
We use entropy as a measure of quality of the clusters (with the caveat that the best 

entropy is obtained when each cluster contains exactly one data point).  Let CS be a clustering 

solution. For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we 
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compute pij, the “probability” that a member of cluster j belongs to class i.  Then using this class 

distribution, the entropy of each cluster j is calculated using the standard formula 

( )ij
i

ijj ppE log�−= , where the sum is taken over all classes. The total entropy for a set of 

clusters is calculated as the sum of the entropies of each cluster weighted by the size of each 

cluster: �
=

=
m

j

jj
CS n

En
E

1

*
, where nj is the size of cluster j, m is the number of clusters, and n is 

the total number of data points.  

4.2 F measure 
The second external quality measure is the F measure [LA99], a measure that combines 

the precision and recall ideas from information retrieval [Rij79, Kow97].  We treat each cluster 

as if it were the result of a query and each class as if it were the desired set of documents for a 

query. We then calculate the recall and precision of that cluster for each given class.  More 

specifically, for cluster j and class i 

Recall( i, j ) = nij / ni 

Precision( i, j ) = nij / nj 

where nij is the number of members of class i in cluster j, nj is the number of members of cluster j 

and ni is the number of members of class i. 

The F measure of cluster j and class i is then given by 

F(i, j) = (2 * Recall( i, j ) * Precision( i, j )) / ((Precision( i, j ) + Recall( i, j ))   

For an entire hierarchical clustering the F measure of any class is the maximum value it 

attains at any node in the tree and an overall value for the F measure is computed by taking the 

weighted average of all values for the F measure as given by the following. 

F = ( ){ }jiF
n
n

i

i ,max�  

where the max is taken over all clusters at all levels, and n is the number of documents. 

4.3 Overall Similarity 
In the absence of any external information, such as class labels, the cohesiveness of 

clusters can be used as a measure of cluster similarity.  One method for computing the cluster 

cohesiveness is to use the weighted similarity of the internal cluster similarity, 
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Sd
Sd

cosine
S

dd .  Recall that in Section 3 it was shown that this is just the squared length of 

the cluster centroid, ||c||2. 

5 Details of K-means and Bisecting K-means 
In this section we discuss general issues related to the K-means clustering algorithm and 

introduce the bisecting K-means algorithm. 

There are many ways to enhance the basic K-means algorithm given in section 2, e.g., see 

[CKPT92, BF98, and LA99].  But to keep things simple, we chose a very simple and efficient 

implementation of the K-means algorithm.  For instance, we select our initial centroids by 

randomly choosing K documents. 

 However, we did choose to update centroids incrementally, i.e., as each point is assigned 

to a cluster, rather than at the end of an assignment pass as is indicated in the K-means algorithm 

in section 2.  Our reason is that we noticed that incremental updates were more effective, i.e., 

produced results with better overall similarity and lower entropy. The incremental version of K-

means is also advocated in [LA99].  

For what follows we will use a bisecting K-means algorithm as our primary clustering 

algorithm.  This algorithm starts with a single cluster of all the documents and works in the 

following way: 

Basic Bisecting K-means Algorithm for finding K clusters. 

1. Pick a cluster to split. 

2. Find 2 sub-clusters using the basic K-means algorithm. (Bisecting step) 

3. Repeat step 2, the bisecting step, for ITER times and take the split that produces the 

clustering with the highest overall similarity.   

4. Repeat steps 1, 2 and 3 until the desired number of clusters is reached. 
 

There are a number of different ways to choose which cluster is split.  For example, we 

can choose the largest cluster at each step, the one with the least overall similarity, or use a 

criterion based on both size and overall similarity.  We did numerous runs and determined that 

the differences between methods were small.  In the rest of this paper we split the largest 

remaining cluster.   
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Note that the bisecting K-means algorithm can produce either an un-nested (flat) 

clustering or a hierarchical clustering.  For un-nested clusters we will often “refine” the clusters 

using the basic K-means algorithms, but we do not refine the nested clusters.  We will provide 

more details later. 

Strictly speaking, the bisecting K-means algorithm is a divisive hierarchical clustering 

algorithm, but, to avoid confusion, when we speak of hierarchical clustering algorithms we shall 

mean agglomerative hierarchical algorithms of the sort traditionally used to cluster documents. 

Finally, note that bisecting K-means has a time complexity which is linear in the number 

of documents.  If the number of clusters is large and if refinement is not used, then bisecting K-

means is even more efficient than the regular K-means algorithm  (In this case, there is no need 

to compare every point to every cluster centroid since to bisect a cluster we just consider the 

points in the cluster and their distances to two centroids.)  

6 Data Sets 
In all of the data sets, we have removed stop words, i.e., common words such as “a”, 

“are”, “do”, and “for”.  We have also performed stemming using Porter's suffix-stripping 

algorithm.  Thus, all the words sharing the same stem are considered to be the same word.  For 

example, words “compute”, “computing”, and “computed” are stemmed to “comput”. 

The summary of documents used in this paper is shown in Table 1. The details of each 

data set are described here.  Data sets tr31 and tr45 are from TREC-5 [trec], TREC-6 [trec], and 

TREC-7 [trec]. Data set fbis is from the Foreign Broadcast Information Service data of TREC-5 

[trec].  Data sets la1 and la2 are from the Los Angeles Times data of TREC-5 [trec].  

The class labels of tr31and tr45 came from the relevance judgments provided by “qrels.1-

243.part1”, “qrels.1-243.part2”, “qrels.251-300.part1”, “qrels.251-300.part3”, 

“qrels.trec6.adhoc.part1”, “qrels.trec7.adhoc.part1”, and “qrels.trec7.adhoc.part5” [trecq].  The 

class labels of fbis were generated from the relevance judgments provided by TREC-5 routing 

query relevance “qrels.1-243” [trecq]. 

We collected documents that have relevance judgments and then selected documents that 

have just a single relevance judgment.  The class labels of la1, and la2 were generated according 

to the section names of articles, such as “Entertainment”, “Financial”, “Foreign”, “Metro”, 

“National”, and “Sports.”  Data sets re0 and re1 are from Reuters-21578 text categorization test 
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collection Distribution 1.0 [reut].  Data set wap is from the WebACE project (WAP) [han98].  

Each document corresponds to a web page listed in the subject hierarchy of Yahoo!. 
Data 
Set 

Source Number of 
Documents 

Number of 
 Classes 

Minimum 
Class 
Size 

Maximum 
Class  
Size 

Average 
Class  
Size 

Number 
of  
Words 

re0 Reuters-
21578 

1504 13 11 608 115.7 11465 

re1 Reuters-
21578 

1657 25 10 371 663 3758 

wap WebAce 1560 20 5 341 78.0 8460 
tr31 TREC 927 7 2 352 132.4 10128 
tr45 TREC 690 10 14 160 69.0 8261 
fbis TREC 2463 17 38 506 144.9 2000 
la1 TREC 3204 6 273 943 534.0 31472 
la2 TREC 3075 6 248 905 512.5 31472 

 
Table 1: Summary description of document sets. 

7 Comparison of Agglomerative Hierarchical Techniques 
In this section we compare three different agglomerative hierarchical schemes against 

one another.  We will then compare the “best” of these algorithms against our K-means and 

bisecting K-means algorithms. 

Before describing the results, we briefly describe the different hierarchical clustering 

algorithms that we used.  As mentioned before, the only real difference between the different 

hierarchical schemes is how they choose which clusters to merge, i.e., how they choose to define 

cluster similarity.  

7.1 Techniques 
Intra-Cluster Similarity Technique (IST): This hierarchical technique looks at the 

similarity of all the documents in a cluster to their cluster centroid and is defined by Sim(X) 

=�
∈Xd

cosine ),( cd , where d is a document in cluster, X, and c is the centroid of cluster X.  The 

choice of which pair of clusters to merge is made by determining which pair of clusters will lead 

to smallest decrease in similarity.  Thus, if cluster Z is formed by merging clusters X and Y, then 

we select X and Y so as to maximize Sim(Z) – (Sim(X) + Sim(Y)).  Note that Sim(Z) – (Sim(X) + 

Sim(Y)) is non-positive.   

Centroid Similarity Technique (CST): This hierarchical technique defines the 

similarity of two clusters to be the cosine similarity between the centroids of the two clusters. 
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UPGMA: This is the UPGMA scheme as described in [DJ88, KR90].  It defines the 

cluster similarity as follows,     similarity(cluster1, cluster2) = 
)2(*)1(

),(
2
1

21

2
1

clustersizeclustersize

cosine
clusterd
clusterd
�

∈
∈

dd

 

where d1 and d2 are, documents, respectively, in cluster1 and cluster2.     

7.2 Results 
The F-measure results are shown in table 8 – larger is better.  UPGMA is the best, 

although the two other techniques are often not much worse.   
Data Set UPGMA Centroid 

Similarity 
Cluster 
Similarity 

re0 0.5859 0.5028 0.5392 
re1 0.6855 0.5963 0.5509 
wap 0.6434 0.4977 0.5633 
tr31 0.8693 0.7431 0.7989 
tr45 0.8528 0.7105 0.8054 
Fbis 0.6717 0.6470 0.6233 
la1 0.6963 0.4557 0.5977 
la2 0.7168 0.4531 0.5817 

 
Table 2: Comparison of the F-measure for Different Clustering Algorithms 

 

The entropy results are shown in figures 1 - 8.  Notice that UPGMA and IST are the best, 

with similar behavior with respect to entropy.  CST does poorly.  Figures 1, 5, and 6 indicate that 

CST does about as well with respect to entropy as do IST and UPGMA in the initial phases of 

agglomeration, but, at some point, starts “making mistakes” as to which clusters to merge, and its 

performance diverges from the other schemes from then on.  In the cases represented by the 

other figures, this divergence happens earlier.  UPGMA shows similar behavior, but only when 

the number of clusters is very small. 

Overall, UPGMA is the best performing hierarchical technique that we investigated and 

we compare it to K-means and bisecting K-means in the next section. 
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8 Comparison of K-means, Bisecting K-means and UPGMA 

8.1 Details 
Here we provide some brief details of how we performed the runs that produced the results 

we are about to discuss.  

For these experiments we equalized the number of runs for bisecting K-means versus 

regular K-means. If ITER is the number of trial bisections for each phase of bisecting K-means 

and K is the number of clusters sought, then a bisecting K-means run is equivalent to log2 (K) * 

ITER regular K-means runs.  (There are the equivalent of ITER K-means runs for the whole set 

of documents for each of the log2 (K) levels in the bisection process.)   For the bisecting K-

means, we set ITER = 5.  We did 10 runs of the bisecting K-means and for each run of the 

bisecting K-means we performed log2 (K) * ITER runs of a regular K-means.  Since hierarchical 

clustering produces the same result every time, there was no need to conduct multiple runs for 

UPGMA.  

There is also another issue that must be mentioned.  Both bisecting K-means and 

hierarchical clustering produce clustering results that can be further “refined” by using the K-

means algorithm. That is, if the centroids of the clusters produced by these two techniques are 

used as the initial centroids for a K-means clustering algorithm, then the K-means algorithm will 

change these initial centroids and readjust the clusters.  The key question here is whether such 

refinement will improve the quality of the clusterings produced.     

We also mention that hierarchical clustering with a K-means refinement is essentially a 

hierarchical-K-mean hybrid that is similar to techniques that other people have tried.  In 

particular, the Scatter/Gather system [CKTP92] uses hierarchical clustering to produce “seeds” 

for a final K-means phase. 

8.2 Results 
Tables 3 - 5 show the entropy results of these runs, while tables 6 - 9 show the overall 

similarity results.  Figure 10 also shows entropy results and is just Figure 1 with the entropy 

results for bisecting K-means added.  Table 8 shows the comparison between F values for 

bisecting K-means and UPGMA.  We state the three main results succinctly. 
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• Bisecting K-means, with or without refinement is better than regular K-means and UPGMA, 

with or without refinement, in most cases.  Even in cases where other schemes are better, 

bisecting K-means is only slightly worse. 

• Refinement significantly improves the performance of UPGMA for both the overall 

similarity and the entropy measures. 

• Regular K-means, although worse than bisecting K-means, is generally better than UPGMA, 

even after refinement. 

We make a few brief comments on the fact that we did multiple runs of K-means and 

bisecting K-means.  For bisecting K-means, this did not improve the results much as this 

algorithm tends to produce relatively consistent results.  For regular K-means, the results do vary 

quite a bit from one run to another. Thus, one run of regular K-means might produce results that 

are not as good as those produced by UPGMA, even without refinement.  

However, even many runs of K-means or bisecting K-means are significantly quicker 

than a single run of a hierarchal clustering algorithm, particularly if the data sets are large.  For 

example, for the data set, la1, with 3204 documents and 31,472 terms, a single hierarchical 

clustering run takes well in excess of an hour on a modern Pentium system.  By comparison, a 

single bisecting K-means run to find 32 clusters takes less than a minute on the same machine. 
Data Set K Bisecting   

K-means 
Bisecting 
K-means with refinement 

Regular 
 K-means 

Hierarchical  
(UPGMA) 

Hierarchical  
(UPGMA) 
with refinement 

re0 16 1.3305 1.1811 1.3839 1.9838 1.4811 
re1 16 1.6315 1.7111 1.6896 2.0058 1.7361 
wap 16 1.5494 1.5601 1.8557 2.0584 1.8028 
tr31 16 0.4713 0.4722 0.5228 0.8107 0.5711 
tr45 16 0.6909 0.6927 0.7426 1.1955 0.8665 
fbis 16 1.3708 1.4053 1.3198 1.8594 1.3832 
la1 16 0.9570 0.9511 1.0710 2.4046 1.2390 
la2 16 0.9799 0.9445 0.9673 1.5955 1.1392 

 
Table 3: Comparison of the Entropy for Different Clustering Algorithms for K = 16 
 
Data Set K Bisecting   

K-means 
Bisecting 
K-means with refinement 

Regular 
 K-means 

Hierarchical  
(UPGMA) 

Hierarchical  
(UPGMA) 
with refinement 

re0 32 1.0884 1.1085 1.2064 1.5850 1.3969 
re1 32 1.4229 1.3148 1.4290 1.5360 1.2138 
wap 32 1.3314 1.2482 1.4422 1.7201 1.5252 
tr31 32 0.2940 0.3327 0.4281 0.5123 0.4641 
tr45 32 0.5676 0.4991 0.5293 0.7312 0.4730 
fbis 32 1.1872 1.2060 1.2618 1.4538 1.2841 
la1 32 0.8659 0.9149 1.0626 1.5375 1.0111 
la2 32 0.8969 0.8463 0.9659 1.3568 0.9623 

 

Table 4: Comparison of the Entropy for Different Clustering Algorithms for K = 32 
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Data Set K Bisecting   
K-means 

Bisecting 
K-means with refinement 

Regular 
 K-means 

Hierarchical  
(UPGMA) 

Hierarchical  
(UPGMA) 
with refinement 

re0 64 1.0662 0.9428 0.9664 1.3215 1.1764 
re1 64 1.0249 0.9869 1.1177 1.1655 0.9826 
wap 64 1.1066 1.0783 1.2807 1.3742 1.2825 
tr31 64 0.3182 0.2743 0.3520 0.3985 0.3855 
tr45 64 0.4613 0.4199 0.4308 0.4668 0.3913 
fbis 64 1.0456 1.0876 1.0504 1.2346 1.1430 
la1 64 0.8698 0.8748 1.0084 1.3082 1.0066 
la2 64 0.7514 0.7291 0.9204 1.1082 0.9138 

 
Table 5: Comparison of the Entropy for Different Clustering Algorithms for K = 64 

 
Data Set K Bisecting   

K-means 
Bisecting 
K-means with refinement 

Regular 
 K-means 

Hierarchical  
(UPGMA) 

Hierarchical  
(UPGMA) 
with refinement 

re0 16 0.4125 0.4137 0.4158 0.3157 0.3784 
re1 16 0.3325 0.3341 0.3317 0.2703 0.3084 
wap 16 0.2763 0.2771 0.2703 0.2440 0.2533 
tr31 16 0.4212 0.4231 0.4204 0.3560 0.3619 
tr45 16 0.4182 0.4204 0.4190 0.3561 0.3739 
fbis 16 0.4464 0.4496 0.4514 0.3657 0.4189 
la1 16 0.2228 0.2244 0.2198 0.1420 0.1995 
la2 16 0.2282 0.2299 0.2276 0.1694 0.2019 

 
Table 6: Comparison of the Overall Similarity for K = 16 

 
Data Set K Bisecting   

K-means 
Bisecting 
K-means with refinement 

Regular 
 K-means 

Hierarchical  
(UPGMA) 

Hierarchical  
(UPGMA) 
with refinement 

re0 32 0.4677 0.4788 0.4778 0.4136 0.4421 
re1 32 0.3957 0.4009 0.4009 0.3369 0.3690 
wap 32 0.3226 0.3258 0.3235 0.2786 0.2876 
tr31 32 0.4802 0.4866 0.4795 0.4373 0.4441 
tr45 32 0.4786 0.4827 0.4763 0.4299 0.4382 
fbis 32 0.4989 0.5071 0.5110 0.4435 0.4827 
la1 32 0.2606 0.2640 0.2596 0.1922 0.2247 
la2 32 0.2675 0.2738 0.2655 0.2018 0.2437 

 
Table 7: Comparison of Overall Similarity for K = 32 

 
Data Set K Bisecting   

K-means 
Bisecting 
K-means with refinement 

Regular 
 K-means 

Hierarchical  
(UPGMA) 

Hierarchical  
(UPGMA) 
with refinement 

re0 64 0.5327 0.5541 0.5521 0.4983 0.5258 
re1 64 0.4671 0.4758 0.4742 0.4270 0.4422 
wap 64 0.3842 0.3914 0.3850 0.3478 0.3567 
tr31 64 0.5483 0.5536 0.5501 0.5214 0.5232 
tr45 64 0.5502 0.5563 0.5481 0.5168 0.5204 
fbis 64 0.5495 0.5648 0.5627 0.5032 0.5387 
la1 64 0.3047 0.3129 0.3080 0.2446 0.2648 
la2 64 0.3177 0.3267 0.3212 0.2575 0.2842 

 
Table 8: Comparison of Overall Similarity for K = 64 
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9 Explanations 
In this section we propose an explanation for why agglomerative hierarchical clustering 

performs poorly and why bisecting K-means does better than K-means.  The arguments that we 

present here, while plausible, are preliminary.  In future work, we hope to verify our logic by 

using document models to generate artificial document data sets with varying properties. 

9.1 Why agglomerative hierarchical clustering performs poorly. 
What distinguishes documents of different classes is the frequency with which words are 

used.  In particular, each class typically has a “core” vocabulary of words that are used more 

frequently.   For example, documents about finance will often talk about money, mortgages, 

trade, etc. while documents about sports talk about players, coaches, games, etc.  These core 

vocabularies may overlap, documents may use more than one “core” vocabulary, and any 

particular document may contain words from these different “core” vocabularies, even if it does 

not belong to the class of documents that typically 

uses such words. 

Each document has only a subset of all 

words from the complete vocabulary.  Thus, 

because of the probabilistic nature of how words 

are distributed, any two documents may share 

many of the same words.  Thus, we would expect 

that two documents can often be nearest neighbors without belonging to the same class. Figure 

10 shows the percent of documents whose nearest neighbor is not of the same class.  While this 

Data Set Bisecting 
K-means UPGMA 

re0 0.5863 0.5859 
re1 0.7067 0.6855 
wap 0.6750 0.6434 
tr31 0.8869 0.8693 
tr45 0.8080 0.8528 
Fbis 0.6814 0.6717 
la1 0.7856 0.6963 
la2 0.7882 0.7168 

 
Table 9: Comparison of the F-measure for   
 Bisecting K-means and UPGMA 
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percentage varies widely from one data set to another, the chart does confirm what we have 

stated about nearest neighbor behavior in documents.  As you consider the second, third, …,100th 

nearest neighbors, the percentage of points with a majority of non-nearest neighbors increases.  

(We mention that for small classes, this point is reached quite soon, just from the logic of the 

situation.)  

Since, in many cases, the nearest neighbors of a document are of different classes, 

agglomerative hierarchal clustering will often put documents of the same class in the same 

cluster, even at the earliest stages of the clustering process.  Because of the way that hierarchical 

clustering works, these “mistakes” cannot be fixed once they happen.  A K-means refinement 

helps hierarchical clustering because, as we will see shortly, K-means can “overcome the 

problem of mixed nearest neighbors.”  The last two columns of Tables 3 – 9 show the benefit of 

a K-means refinement for hierarchical clustering very clearly. 

In cases where nearest neighbors are unreliable, a different approach is needed that relies 

on more global properties.  (This issue was discussed in a non-document context in [GRS99].)  

Since computing the cosine similarity of a document to a cluster centroid is the same as 

computing the average similarity of the document to all the cluster’s documents, K-means is 

implicitly making use of such a “global property” approach.  This explains why K-means does 

better vis-à-vis agglomerative hierarchical clustering, than is the case in other domains. 

We stress that we are not saying that K-means or its variants are the “perfect” clustering 

algorithm for documents.  There are a variety of issues with respect to K-means, e.g., 

initialization, and in practice, K-means sometimes fails to find clusters that correspond the 

desired document classes.  However, the general approach of K-means seems better suited to 

documents than the approach of agglomerative hierarchical clustering. 

9.2 Why bisecting K-means works better than regular K-means. 
We believe that the main reason for this result is that bisecting K-means tends to produce 

clusters of relatively uniform size, while regular K-means is known to produce clusters of widely 

different sizes.  Smaller clusters are often of higher quality, but this doesn’t contribute much to 

the overall quality measure since quality measures weight each cluster’s quality contribution by 

the cluster’s size.  Larger clusters, on the other hand, tend to be of lower quality and make a large 

negative contribution to cluster quality.  We provide a simple numerical example to illustrate this 

for the case of entropy. 
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Consider a set of documents with two equal sized classes that are split into two clusters.  

If there is one cluster that contains few points and one cluster that contains 

almost all the points, then the entropy of the resulting solution is very 

nearly the entropy the larger cluster, which is just  – ½ log2 ½ - ½ log2 ½ = 

1.  If the two clusters are equal size and the clustering algorithm manages 

to produce somewhat pure clusters, i.e., both clusters are more than 50% 

pure, then the entropy of each cluster is less than 1.  The accompanying 

table shows the entropy for some values. 

  

10 Conclusions 
This paper presented the results of an experimental study of some common document 

clustering techniques.  In particular, we compared the two main approaches to document 

clustering, agglomerative hierarchical clustering and K-means.  For K-means we used a standard 

K-means and a variant of K-means, bisecting K-means.  Our results indicate that the bisecting K-

means technique is better than the standard K-means approach and as good or better than the 

hierarchical approaches that we tested.  More specifically, the bisecting K-means approach 

produces significantly better clustering solutions quite consistently according to the entropy and 

overall similarity measures of cluster quality. Furthermore, bisecting K-means seems 

consistently to do slightly better at producing document hierarchies (as measured by the F 

measure) than the best of the hierarchical techniques, UPGMA.   In addition, the run time of 

bisecting K-means is very attractive when compared to that of agglomerative hierarchical 

clustering techniques - O(n) versus O(n2). 

The reason that our relative ranking of K-means and hierarchical algorithms differs from 

those of other researchers could be due to many factors.  First we used many runs of the regular 

K-means algorithm.  If agglomerative hierarchical clustering techniques such as UPGMA are 

compared to a single run of K-means, then the comparison would be much more favorable for 

the hierarchical techniques. Secondly, we used incremental updating of centroids, which also 

improves K-means.  Of course, we also used the bisecting K-means algorithm, which, to our 

knowledge, has not been previously used for document clustering.  While there are many 

agglomerative hierarchical techniques that we did not try, we did try several other techniques 

which we did not report here. The results were similar– bisecting K-means performed as well or 

Percent 

Cluster 

Purity 

Entropy 

90 .47 

80 .72 

70 .88 

60 .97 

50 1.00 
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better then the hierarchical techniques that we tested.  Finally, note that hierarchical clustering 

with a K-means refinement is essentially a hybrid hierarchical-K-means scheme similar to other 

such schemes that have been used before [CKPT92].   In addition, this scheme was better than 

any of the hierarchical techniques that we tried, which gives us additional confidence in the 

relatively good performance of bisecting K-means vis-à-vis hierarchical approaches. 

We caution that the main point our paper is not a statement that bisecting K-means is 

“superior” to any possible variations of agglomerative hierarchical clustering or possible hybrid 

combinations with K-means.   However, given the linear run-time performance of bisecting K-

means and the consistently good quality of the clusterings that it produces, bisecting K-means is 

an excellent algorithm for clustering a large number of documents. 

We argued that agglomerative hierarchical clustering does not do well because of the 

nature of documents, i.e., nearest neighbors of documents often belong to different classes. This 

causes agglomerative hierarchical clustering techniques to make mistakes that cannot be fixed by 

the hierarchical scheme.  Both the K-means and the bisecting K-means algorithms rely on a more 

global approach, which effectively amounts to looking at the similarity of points in a cluster with 

respect to all other points in the cluster.  This view also explains why a K-means refinement 

improves the entropy of a hierarchical clustering solution. 

Finally, we put forward the idea that the better performance of bisecting K-means vis-à-

vis regular K-means is due to fact that it produces relatively uniformly sized clusters instead of 

clusters of widely varying sizes.   
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