
Chapter 2

Search Engine Technology

In the last several years, the World Wide Web has become the most popular place for people to

publish and obtain information. It is estimated that there are currently over three billion publicly

accessible web pages on the Web. As more and more web pages are added to the Web, how to �nd

useful information quickly has quickly become a challenge for millions of Web users. Currently,

there are primarily two approaches to �nd desired data on the Web.

Browsing A user can start the browse from a starting page and follow certain hyperlinks to

navigate to other pages. The activity of following hyperlinks can be repeated until the user

has either found the desired information or become bored. A key to successful browsing

is to �nd a good starting page. To facilitate browsing, web pages can be organized into

a category hierarchy such as the one provided by Yahoo (www.yahoo.com). In a typical

category hierarchy, the root contains very general categories such as education and sports.

Each category in turn contains less general categories. This hierarchy helps narrow down

the information space gradually and eventually leads to desired information. A portion of an

example category hierarchy for sports is shown in Figure 2.1.

Searching A user can utilize a search engine to �nd desired information. From the interface of a

search engine, the user submits a query that describes the user's information needs. When the

query is processed by the search engine, a list of documents are returned to the user, usually

Football Tennis SwimmingBasketball

Sports

NBA WNBA College

Bulls Lakers . . .

Boxing Golf . . .

Figure 2.1: An Example Category Hierarchy for Sports

1

2 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

with the best matched documents displayed at the top. Many search engines are running on

the Web. Some of the most well known ones are AltaVista, WebCrawler, HotBot, Google and

Lycos. To enable fast evaluation of user queries, most search engines preprocess documents

searchable in their engines by creating an inverted �le index for these documents.

Each of the above two approaches has advantages and disadvantages when compared with the

other. Browsing tends to yield higher quality result (i.e., fewer junk pages) when a good starting

page is used. The category hierarchy often used to guide browsing may need to be created mostly

manually, requiring a lot of manpower. As a result, only a very small portion of web pages can be

categorized. In addition, navigating through the hierarchy can be tedious and a user can sometimes

get lost during the process due to several factors: (1) The hierarchy usually becomes very complex

after the �rst several levels and the user may not know which subhierarchy to navigate next. (2)

The desired data may be placed under di�erent subhierarchies. (3) The user may get confused by

the hierarchy if the way the data are organized does not match what is expected by the user; this

is possible because di�erent people may have di�erent ways to categorize data (i.e., categorization

is highly subjective). In contrast, a search engine can automatically index a large number of web

pages and as a result, a single query can often yield a large number of returned pages. A main

problem with current search engines is that users often get overwhelmed by a high percentage of

junk pages in the search result. Nevertheless, using a search engine is a quick way to obtain desired

information on the Web and millions of users use search engines everyday.

A basic search engine is essentially a text retrieval system on the Web for searching web pages.

The basic technologies used to build text retrieval systems as discussed in Chapter 1 are also used

to build search engines. Nevertheless, there are signi�cant di�erences between the environment

where traditional text retrieval systems are developed and the Web environment where search

engines are built. These di�erences have prompted new and exciting technologies be developed and

incorporated into advanced search engines. In this chapter, we describe these new technologies. But

before we do that, we would like to �rst point out the unique characteristics of the Web environment

over traditional text retrieval environment and lay out the reason why these characteristics motivate

us to develop new technologies for search engines.

Unique characteristics of the Web environment:

1. Web pages are widely distributed on many servers. Traditional text retrieval systems usually

assume that all documents in a system are provided at a central site and they are under the

control of the system. Any change (addition, deletion and modi�cation) to a document must

go through the system. In contrast, in the Web environment, pages are stored at numerous

autonomous Web servers. In order to index these pages, we �rst need to fetch them to the site

of the search engine. This is usually accomplished by a program known as Web robot or Web

spider. In addition, the search engine has no control on changes to Web pages. As a result, in

order to keep the index data of the search engine reasonably up-to-date, the robot program

needs to visit di�erent Web servers periodically to refetch changed pages and/or fetch newly

added pages. In Section 2.1, we describe issues related to the creation of the robot program.

2. Web pages are highly tagged documents. At present, most Web pages are in HTML (Hy-

perText Markup Language) format. In the foreseeable future, XML (eXtensible Markup

Language) documents may be widely used. These tags often convey rich information regard-

ing the terms used in documents. For example, a term appearing in the title of a document

2.1. WEB ROBOT 3

or a term emphasized with special font can provide hint that the term is rather important in

indicating the contents of the document. Traditional text retrieval systems are usually based

on plain text documents that are either not or rarely tagged. In Section 2.2, we discuss some

techniques that utilize these tags to improve retrieval e�ectiveness.

3. In the Web environment, pages are extensively linked. A link from page A to page B provides

a convenient path for a Web user to navigate from page A to page B. Careful analysis can

reveal that such a simple link could contain several pieces of information that may be made

use of to improve retrieval e�ectiveness. First, such a link indicates a good likelihood that

the contents of the two pages are related. Second, the author of page A values the contents

of page B. Note that page B could be one of a number of possible pages that have similar

contents. The fact that page B is chosen indicates that the author of page A sees something

special about page B. Third, when the author of page A creates the link to page B, he or she

often attaches a few words to the link to indicate the contents of page B. The set of words

associated with the link is called an anchor of page B and each word in the set is called

an anchor term. Documents in traditional text retrieval systems are usually not linked. In

Section 2.3, we introduce several methods for utilizing linkage Information among Web pages

to improve the search engine retrieval performance.

4. A large search engine could be used by hundreds of thousands of users each day. These

users may submit even a larger number of queries every day. Many users may share similar

search interests and/or even submit identical or similar queries. In addition, the same user

may use the same search engine multiple times over a period of time. Rich knowledge can

be discovered from di�erent users' search histories and reactions (�ltering behaviors such as

clicking and viewing) to returned documents. In Section 2.4, we discuss how to derive useful

knowledge from users' interaction with a search engine and use the knowledge to help the

users of the search engine obtain better results.

2.1 Web Robot

A Web robot (also known as spider, crawler and wanderer) is a program for fetching Web pages

from the Web. Robots can be used in several types of applications such as Web site analysis and

the creation of mirror sites. In this book, robots are used to fetch Web pages to the site of a search

engine. After all Web pages needed by a search engine are fetched, they are preprocessed to create

an index database for the search engine to use when evaluating user queries.

The main idea behind the robot program is quite simple. Note that each page on the Web has

a URL (Universal Resource Locator) which identi�es the location of the page on the Web. First,

one or more initial URLs are placed into a URL queue. Next, the following steps are repeated until

either no new URLs can be found or enough pages have been fetched: (1) take the next URL from

the queue and fetch the corresponding Web page from its server to a local site using the HTTP

(HyperText Transfer Protocol); (2) from the fetched Web page, extract new URLs and add them

to the queue.

When actually implementing a robot, the following issues need to be addressed.

1. Which initial URL(s) to use?

4 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

The answer depends on what document collection we would like to generate for a search

engine. If the goal is to build a general-purpose search engine such as AltaVista and Lycos,

then URLs that are likely to reach a large portion of the Web should be used. One such

URL is the URL of the Yahoo homepage. If the goal is to build a search engine for a local

organization, then the homepage of the organization would be a good choice. As an example,

suppose we would like to collect all Web pages related to Binghamton University. In this case,

the URL of the homepage of the university, www.binghamton.edu, can be used. It is likely

that some Web pages from the Binghamton University domain have links to pages outside

the domain. As a result, Web pages that are not related to Binghamton University may be

fetched by the robot. This problem can be solved easily by checking whether a new URL is

in the correct domain (e.g., check if it contains \binghamton.edu") and add a new URL to

the queue only if it satis�es the domain requirement.

2. How to extract correct URLs from a Web page?

We need to identify all possible HTML tags and tag attributes that can hold URLs. While

most URLs appear in the anchor tag (e.g., ...), there are other

tags in which URLs could appear. For example, a URL may appear in the option tag as in

<option value=\URL" ...> ... </option>, in the area tag (map) as in <area href=\URL"

...> ... </area>, or in the frame tag as in <frame src=\URL" ...> ... </frame>. Frequently

a URL appearing in a Web page P does not contain the full path needed to locate the

corresponding Web page from a browser. Instead, a partial path (relative path) is used and

a full path can be derived from either the location of P or a base path provided in P.

3. How fast should a robot fetch Web pages from a server?

Common sense seems to suggest that a robot should fetch Web pages as fast as possible.

The problem is actually more complex than this. When a robot fetches a Web page from a

remote server, it will consume some of the server's CPU/IO resources. When a large number

of Web pages from the same server are fetched in high speed, the remote server could be

overwhelmed. A good robot designer should be considerate to remote servers from which

Web pages are fetched. Ideally, the operation of a robot should not a�ect remote servers in

a noticeable way. This can be achieved by slowing down the speed of fetching from the same

server. For example, the robot can wait for a few minutes before fetching another Web page

from the same server. Since a robot usually fetches Web pages from a large number of Web

servers, it can alternate the fetching from di�erent servers so that the robot can be kept busy

while all remote servers feel little impact.

Most robots fetch Web pages in a breadth-�rst order from the initial URLs. This order works

quite adequately when the objective of the robot is to fetch as many Web pages in speci�ed do-

main(s) as possible. There are situations where fetching Web pages in a di�erent order may be

preferred. For example, we may have limited resources such as limited storage space or limited time

so we want to fetch as many important pages as possible subject to the limited resources. Here the

importance of a page can be de�ned in a number of ways such as its popularity (e.g., the number

of pages that have links pointing to it) or whether it is related to an area of interest. Fetching

Web pages that are related to a speci�ed subject area is very important in building domain-speci�c

search engines. Here the term \domain" refers to application domain such as movie or sport rather

URL domain.

2.1. WEB ROBOT 5

One way to fetch as many pages related to a given subject as possible quickly is to identify

promising URLs (i.e., URLs that are likely to lead to related pages) in the URL queue and use

these URLs �rst. Often heuristics can be used to identify promising URLs. As an example, suppose

we are interested in obtaining Web pages that are related to \movie". More speci�cally, suppose

a query consisting of one or more related terms such as \movie" and \motion picture" is used and

a page is considered to be relevant (or hot) to the query if its similarity with the query is above a

given threshold. The following heuristics can be used to identify potential hot pages. A page has

a high likelihood to be hot if one of the following is true:

1. An anchor of its URL contains one or more query terms.

2. Its URL contains one or more query terms.

3. Its URL is within 3 links away from a hot page. Several studies have observed that related

pages tend to be clustered together. This heuristic re
ects this observation.

Based on the above heuristics, the robot program can be revised to consider two types of URLs,

namely hot URLs | URLs that satisfy the heuristics and non-hot URLs. Accordingly, two URL

queues are used, one is hot queue for hot URLs whose pages have not been fetched and the other

is url queue for non-hot URLs whose pages have not been fetched. When the robot needs to fetch

another Web page, it �rst considers URLs from the hot queue. The url queue is considered only

when the hot-queue is empty. The modi�ed robot can obtain hot pages more quickly than a regular

robot. The following procedure summarizes the above discussion [5].

Priority-Crawling

begin

hot queue = url queue = empty; /* initialization */

enqueue(url queue, starting url)

while (hot queue or url queue is not empty)

f url = dequeue(hot queue, url queue) /* dequeue hot queue �rst if it is not empty */

page = fetch(url);

if (page is hot)

hot[url] = true; /* the url is a hot url */

enqueue(crawled urls, url); /* crawled urls contains urls of pages that have been fetched

*/

url list = extract urls(page); /* extracting URLs from the fetched page */

for each u in url list

if (u not in url queue and u not in hot queue and u not in crawled urls)

/* u is a new url */

if (u is a hot URL) /* the three heuristics are examined */

enqueue(hot queue, u);

else enqueue(url queue, u);

g;
end;

6 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

2.2 Use of Tag Information

Web pages are usually formatted in certain markup language, mostly noticeably in HTML. A

markup language formats a document through the use of a number of tags such as title and list.

Usually, tags appear in pairs with one indicating the start and the other indicating the end. For

example, in HTML, the starting title tag is <title> and the ending title tag is </title>. Currently,

tag information is used in primarily two di�erent ways to improve retrieval e�ectiveness. First,

tag information can be used to select index terms, i.e., choosing terms to represent a document.

Second, tag information can be used to determine the degrees of signi�cance or weights of index

terms.

In traditional text retrieval systems, other than stop words, all terms in a document are used to

index the document. In Web search engines, we may choose not to use certain terms in a document

to index the document. For example, in order to make its index database more scalable against

the fast growing Web, Lycos uses only \important" terms as index terms. An \important" term

could be a term in the title, in one of the headers, in a location near the start or the end of the

page, or a term that has a high frequency or is emphasized with an emphatic font such as boldface

and large sized font. In contrast, terms that appear in the middle of the page and in reduced fonts

such as small and tiny fonts can be considered not or less important. The practice of using only

selected terms to index documents is called partial-text indexing and the regular approach of using

all terms is called full-text indexing. It is clear that tag information is very useful for identifying

\important" terms.

On the other hand, we can use certain terms not in a document to represent the document

according to our needs. As we mentioned previously, when a page A has a link to page B, a set of

terms known as anchor terms is usually associated with the link. The purpose of using the anchor

terms is to provide information regarding the contents of page B to facilitate navigation by human

users. The anchor terms often provide related terms or synonyms to the terms used to index page

B. To utilize such valuable information, several search engines like Google [1] and WWWW [15]

have suggested to also use anchor terms to index linked pages (e.g., page B). In general, a Web

page may be linked by many other Web pages and has many associated anchor terms. Anchor

terms can also be used as collateral text to index non-textual objects such as images.

In Chapter 1, we mentioned that the signi�cance (weight) of a term in a document may depend

on its term frequency (the number of times that the term appears in the document) and its document

frequency (the number of documents having the term). Tag information can also be used to in
uence

the weight of a term. For example, many well-known search engines such as AltaVista, HotBot

and Yahoo have been known to assign higher weights to terms in the title. Terms in large fonts or

special fonts such as boldface, italics and underscored may also be assigned higher weights.

A more general approach for determining the relative weights of term occurrences in di�erent

tags is as follows [7]. First, the set of available tags is partitioned into a number of subsets. For

example, the title tag could be a subset by itself, all header tags (HTML has six levels of headers

h1, ..., h6) could form a subset, all list tags (HTML has three di�erent list tags, namely ul for un-

ordered list, ol for ordered list and dl for descriptive list) can form a separate subset, all emphatic

tags (large fonts and special fonts) can be grouped together as a subset and the rest of the tags can

form yet another subset. Next, based on the partition of the tags, term occurrences in a document

can be partitioned into a number of classes. For example, all term occurrences appearing in headers

form a class. In addition to these classes, two special classes can be formed. The �rst contains

2.3. USE OF LINKAGE INFORMATION 7

terms in plain text (i.e., with no tags) and the second contains anchor terms associated with the

links pointing to the page. Let n be the number of classes formed. With these classes, the term

frequency of each term can be represented as a term frequency vector: tfv = (tf1; :::; tfn), where tfi
is the number of times the term appears in the ith class, i = 1; :::; n. Finally, we can assign di�erent

importance to di�erent classes. Let civ = (civ1; :::; civn) be the class importance vector such that

civi is the importance assigned to the ith class, i = 1; :::; n. With tfv and civ, the traditional term

frequency weight formula can be extended into tf1 � civ1 + � � � + tfn � civn. This formula takes

both the frequencies of the term in di�erent classes as well as the importance of di�erent classes

into consideration. Note that when the civ for the anchor class is assigned 0 and all other civ's are

assigned 1, tf1 � civ1 + � � �+ tfn � civn = tf is the total frequency of the term in a document.

An interesting question is which class importance vector can provide the best performance

improvement over the traditional method in which term occurrences are not partitioned into classes.

Let the civ that can achieve the most improvement be called an optimal civ. One method to �nd

an optimal or near optimal civ is as follows. First, a test bed is utilized. The test bed contains a

Web page collection and a set of queries. In addition, for each query, the set of relevant documents

has been identi�ed. Next, di�erent civ's can be tested and the civ that yields the highest retrieval

e�ectiveness for the testbed queries can be considered as an optimal civ. As there may be in�nite

number of di�erent civ's, heuristic algorithms such as genetic algorithm may be employed to �nd

an optimal or near optimal civ eÆciently and automatically [8].

2.3 Use of Linkage Information

As we mentioned earlier, Web pages are extensively linked. The linkage information can be utilized

in a number of ways to improve retrieval performance. In the previous section, we already saw that

anchor terms associated with links could be used to index linked pages. Other methods of utilizing

linkage information are discussed below.

2.3.1 Vector Spread Activation

A page, say page A, is said to be a parent of another page, say page B, if page A has a link to

page B. Often, for a given query, if a page p has many relevant parent pages, then p is also likely

to be relevant even though page p itself may have low similarity with the query. Vector Spread

Activation [21] is a method that is designed to increase the chance that the page p is retrieved by a

query q by adding a portion of the similarities of its parents with q to its similarity with q. Suppose

page p indeed has a low similarity with a query q. Clearly, if documents are retrieved based on

their similarities directly, then p is unlikely to be retrieved due to its low similarity. On the other

hand, relevant pages are likely to have high similarities on the average. Consider pages p1 and

p2 such that p1 is linked to by many relevant pages but p2 is not. With vector spread activation,

the new similarity of p1 with respect to q is likely to be higher than that of p2 due to the larger

increase of similarity by the parents of p1. As a result, if documents are retrieved based on the new

similarities, then p1 would have a better chance to be retrieved than p2.

More precisely, vector spread activation works as follows. For a given query q, let sim(q; pi)

be the regular similarity between q and Web page pi. Suppose link(x; y) is a function such that

link(x; y) = 1 if page px has a link to page py and link(x; y) = 0 if px does not have a link to py.

8 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

The vector spread activation method ranks Web pages in descending values of rs(q; pi), the ranking

score of pi with respect to q, being de�ned by the following formula:

rs(q; pi) = sim(q; pi) + �
X
j

link(j; i) � sim(q; pj) (2.1)

where � is a constant parameter de�ning the portion of a parent's similarity that needs to be

propagated to a child page. The parameter is usually small such as 0.1. Note that rs(q; pi) is the

\new similarity" of pi with q in the above example.

Example 2.1 Suppose the regular similarities of three pages p1, p2 and p3 with the query q are

0.4, 0.2 and 0.2, respectively, and pages p1 and p2 point to page p3. When � = 0:1, rs(q; p3) =

sim(q; p3) + 0:1(sim(q; p1) + sim(q; p2)) = 0:2 + 0:1 � (0:4 + 0:2) = 0:26.

2.3.2 PageRank

The Web can be viewed as a gigantic directed graph G(V;E), where V is the set of pages (vertices)

and E is the set of hyperlinks (directed edges). Each page may have a number of outgoing edges

(forward links) and a number of incoming edges (backlinks). As mentioned earlier, when an author

places a link in page A pointing to page B, the author shows his/her belief that page B is at least

somewhat important (i.e., worth pointing to). The Web graph contains a huge number of links

and each link implies certain degree of importance of the pointed page. A very interesting question

is how to use the links in the Web graph to measure the relative importance of each Web page.

PageRank or simply rank is proposed to measure the relative importance of each page on the Web

[18]. The rank of each page is computed based on the following three observations.

1. The larger the number of backlinks a page has, the more important the page is likely to be.

This is intuitively correct as more backlinks imply that more authors consider the page to be

important. In other words, the rank of a page re
ects the popularity of the page among all

Web page authors. The Yahoo homepage is probably one of the most important pages on the

Web and it is probably linked by millions of pages.

2. A page can be an important page if it is linked by important pages even though there aren't a

large number of pages linking to it. Intuitively, important pages are likely to be published by

important authors or organizations and their endorsement should have more weight in deter-

mining the importance of a page. For example, if a page is pointed to by Yahoo homepage,

then the page is likely to be important. The rank of a page can be considered as a weighted

popularity measure of the page.

3. The more the forward links a page has, the less the in
uence the page should have on the

importance of a pointed page. Item 2 above indicates that the importance of a page may be

propagated to its child pages. If a page has multiple child pages, then these pages should

share the importance of the parent page. As a result, if a page has more child pages, then it

can only propagate a smaller fraction of its importance to each child page.

2.3. USE OF LINKAGE INFORMATION 9

More formally, the rank is de�ned as follows. For a given Web page u, let Fu denote the set of

pages u points to and Bu denote the set of pages that point to u. The rank of u, denoted R(u), is

de�ned by the formula below:

R(u) =
X
v2Bu

R(v)

jFv j (2.2)

where jFvj denotes the number of pages in set Fv. Notice how the formula incorporates the three

observations discussed above. First, the sum re
ects that more backlinks can lead to larger rank.

Second, that R(v) is in the numerator indicates that the rank of u is increased more if page v

is more important (i.e., has large R(v)). Third, that jFvj is in the denominator implies that the

importance of a page is evenly divided and propagated to each of its child pages. Also notice that

Formula (2.2) is a recursive formula. The computation can be carried out as follows. First, all

pages are assigned with the same initial rank, say 1=N , where N is the number of Web pages. This

initial assignment keeps the sum of all ranks to be 1. Next, the formula is applied to compute the

rank in a number of iterations. In each iteration, the rank of each page is computed using the ranks

of its parent pages in the previous iteration. This is repeated until the ranks of the pages converge

within a given threshold. Let Ri(u) denote the rank of page u after the i-th iteration and R0(u)

denote the initial rank assigned to page u. Then Formula (2.2) can be re-written as:

Ri(u) =
X
v2Bu

Ri�1(v)

jFv j (2.3)

Formula (2.3) can be expressed in matrix format as follows. Let M be an N � N matrix

representing the Web graph. If page v has a link to page u, then let the matrix entry muv be

1=jFv j. If there is no link from page v to page u, then muv = 0. Let Ri be an N � 1 vector

representing the rank vector of the N pages after the i-th iteration. Then Formula (2.3) can be

expressed as:

Ri =M �Ri�1 (2.4)

where R0 is the initial rank vector with all entries having value 1=N . When the ranks converge, the

rank vector is the eigenvector of the matrix M with the corresponding eigenvalue being 1. Note

that if every page has at least one forward link, then the sum of the values in each column of M

is 1 and all values are non-negative (such a matrix is called a stochastic matrix). Looking from

a di�erent angle, the entries of matrix M can be interpreted as follows. Consider a surfer who is

sur�ng the Web. At each step, the surfer follows a random link from the current page to one of its

child pages. Thus the value at entry muv can be interpreted as the probability that a random walk

from page v to its child pages will lead to page u. Now consider the e�ect on the ranks of pages by

applying Formula (2.4). Suppose page v has a number of children. When Formula (2.4) is applied,

the rank of v is propagated to its children. If each page has at least one forward link, the ranks of

all pages will be passed on to their children. Since the sum of the ranks of all pages is initially 1,

the sum is preserved at each iteration. Suppose by repeatedly applying Formula (2.4), the ranks of

the pages converge. The converged rank of a page can be interpreted as the probability that the

page will be visited by a random walk on the Web graph.

10 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

There is a problem with using the Formula (2.4) directly. That is, the ranks are guaranteed to

converge only if M is aperiodic (i.e., the Web graph is not a large cycle) and irreducible (i.e., the

Web graph is not strongly connected) [10, 17]. While the former (i.e., aperiodicity) is practically

guaranteed for the Web, the latter is usually not true. A directed graph is said to be strongly

connected if for any two distinct vertices in the graph, there is a directed path from one vertex to

the other and vice versa. When the Web graph is not strongly connected, there may be pages (or a

set of pages involved in a cycle) that only have backlinks but no forward links. These pages, which

can only receive rank propagation from their parents but cannot propagate ranks to other pages,

are called rank sink. The existence of rank sink can cause the loss of total rank value. One way to

solve this problem is to conceptually add a link from each page to every page in the Web graph and

associate an appropriate positive probability with each such a link [10]. The probabilities should be

assigned in such a way that the matrix corresponding to the resulted Web graph has the stochastic

property (i.e., the sum of all entries in each column is 1). Suppose a link is conceptually added

from page v to page u with probability p. In the random walk model, this can be interpreted as

that the Web surfer, while at page v, may jump to page u with probability p. Note that v and u

may be the same page. In this case, the jump can be interpreted as a refresh or reload request.

Let us now consider how to assign probabilities to added links. Consider the following two cases

for a given page v.

1. Page v has no forward links in the original Web graph. In this case, the Web surfer can only

follow one of the added links (i.e., can only jump). It is reasonable to assume that the Web

surfer may jump to any page with the same probability. Therefore, each added link from page

v should have the probability 1=N , where N is the number of pages in the Web graph. This

is equivalent to making all the entries in the column corresponding to page v in the matrix

be 1=N .

2. Page v has at least one forward link in the original Web graph, i.e., jFvj � 1. Based on

matrix M , each such link is assigned a probability of 1=jFv j. This probability needs to be

modi�ed because without change the probabilities for the newly added links can only be zero,

indicating no jumps are possible. Let c be a weight parameter satisfying 0 < c < 1. Then

we may adjust the probability for each original link from 1=jFv j to c � 1=jFv j while assign

probability (1 � c) � 1=N to each newly added link from v. The closer to 1 the value of c

is, the smaller the impact of the added links will be. It is easy to see that the sum of these

probabilities is 1.

Mathematically, the addition of the links, the assignment of the probabilities to newly added

links and the adjustment of the probabilities on original links can be done by modifying the matrix

M to the following new matrix:

M
� = c� (M + Z) + (1� c)�K (2.5)

where Z is an N �N matrix such that all entries in the column corresponding to page v are either

1=N if v has no forward links in the original graph or zero if v has at least one forward link; K is

an N �N matrix with all entries having the value of 1=N ; and c is a constant between 0 and 1.

When matrix M in Formula (2.4) is replaced by the new matrix M�, the problem associated

with rank sinks will be solved. EÆcient techniques for computing PageRanks are discussed in [10].

2.3. USE OF LINKAGE INFORMATION 11

d

c

a

b

Figure 2.2: A Sample Web Graph

Finally, after convergence, the PageRanks of pages can be normalized by dividing the PageRank

of each page by the maximum PageRank of all pages so that the normalized PageRank of any page

is between 0 and 1. In this case, a page with PageRank = 1 is considered to be the most important

document and a page with PageRank = 0 is considered to be least important.

Example 2.2 Consider the directed graph in Figure 2.2. Suppose nodes in the graph correspond

to Web pages and directed edges denote links. We now compute the rank of each page.

Based on this graph, we have

M =

0
BBB@

0 0 0 1
2

0 0 0 1
2

1 1 0 0

0 0 1 0

1
CCCA

Since each node has at least one forward link, all entries in matrix Z are zero. Since there are

4 vertices, all entries in matrix K are 1=4. Suppose the constant c in Formula (2.5) is 0.8. Then

the new matrix M� is

M
� = 0:8� (M + Z) + 0:2�K =

0
BBB@

0.05 0.05 0.05 0.45

0.05 0.05 0.05 0.45

0.85 0.85 0.05 0.05

0.05 0.05 0.85 0.05

1
CCCA

Suppose all pages have the same initial rank of 0.25, i.e., R0 = (0:25; 0:25; 0:25; 0:25)t , where

Vt denotes the transpose of vector V . After 30 iterations, we have the following converged ranks

R(a) = R(b) = 0:176, R(c) = 0:332 and R(d) = 0:316. Note that page c is pointed to by 2 pages,

while each of the other pages is pointed at by 1 page only. As a result, the rank of c is higher than

that of other pages. The reason why the rank of d is higher than that of page a or that of page b

is that d is pointed at by the most important page, namely page c.

The PageRanks of Web pages can be used by a search engine to improve the retrieval e�ec-

tiveness. The Google search engine (www.google.com), for example, uses PageRanks to improve

the result of its search. We now describe a method for the PageRanks to be utilized by a search

engine. For a given query, most search engines rank documents according to the similarities of

12 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

these documents with respect to the query. The similarity functions employed usually do not take

linkage information into consideration. One way to utilize PageRanks is to de�ne a new function

for ranking documents that combines both PageRanks and similarities of documents.

Let sim(q; d) be the content-based similarity between query q and document d, and R(d) be

the normalized PageRank of d. We now de�ne a new quantity to measure the degree of relevance

of document d with respect to q. The new quantity, denoted by rel(q; d), is a weighted sum of

sim(q; d) and R(d). More precisely,

rel(q; d) =

(
w � sim(q; d) + (1� w) � R(d); if sim(q; d) > 0

0; otherwise
(2.6)

where w is a constant between 0 and 1, indicating the importance of similarity relative to PageR-

ank. With this function, when the similarity between a document and the query is 0, then the

document will not be considered for retrieval as its degree of relevance is zero. In other words, the

linkage information will be incorporated with the similarity function only when the similarity of

the document is strictly positive. This is to avoid retrieving documents that have extremely high

PageRanks but are unrelated to the query.

For each query, the search engine displays documents in descending order of their degrees of

relevance. Now let us use an example to illustrate how this new ranking function can help retrieve

better documents. Suppose that a user query asks for \IBM". There are numerous pages having

the term \IBM", but the page most likely to be of interest to the user is the home page of IBM.

Among the pages having the index term \IBM", the homepage of IBM is likely to be linked by a

large number of other Web pages, i.e., its PageRank is likely to be very high among the pages that

contain \IBM". As a result, the rank of the IBM homepage in the result is likely to be improved

relative to other pages that have lower PageRanks.

2.3.3 Hub and Authority

PageRank de�nes the global importance of Web pages but the importance is domain/topic indepen-

dent. Although the global importance is very useful, we often also need domain/topic dependent

importance. For example, if you are a basketball fan, then you may be interested in important

basketball pages. A topic dependent important page can be considered as an authoritative page

with respect to a given topic. The question here is how to �nd authoritative pages for a given

topic. Jon Kleinberg proposed to use authority scores to measure the importance of a Web page

with respect to a given topic [12]. He also suggested a procedure to �nd topic speci�c important

pages. The main ideas of this approach is reviewed in this subsection.

Web pages may be conceptually classi�ed into two types: Authoritative Pages that contain

informative contents on one or more topics, and hub pages that have links to authoritative pages.

It is observed that for a given topic, a good authoritative page is often linked by many good hub

pages related to the topic and a good hub page often has links to many good authoritative pages

related to the topic. In other words, good authoritative pages and good hub pages related to the

same topic often reinforce each other. To draw an analogy, suppose each page is a research paper.

Then a good authoritative page is like an important paper on a topic and a good hub page is like a

good survey paper/article on the same topic. Note that it is possible for the same page to be both

a good authoritative page and a good hub page on the same topic.

2.3. USE OF LINKAGE INFORMATION 13

In the Web search engine environment, a topic can be de�ned by a user query. The procedure

proposed in [12] for �nding good authoritative and hub pages can be summarized into the following

three steps. Let q be a user submitted query.

1. The query is �rst processed by a typical similarity-based search engine. After this step, a

set S of documents with the largest similarities is returned. The set S is called the root set.

In order to �nd good authoritative pages with respect to a query, the size of S should be

reasonably large, say in the low hundreds.

2. Expand the root set S into a larger set T called the base set. T is expanded from S as follows.

Initially, T = S. Next, any page that is pointed to by a page in S is added to T . Second,

any page that has a link to a page in S is added to T . In other words, T contains all pages

in S as well as all the parent pages and child pages of the pages in S. In order to compute

T from S quickly, the search engine can save the link structure of the Web in advance. The

link structure can be stored in a table with two columns (parent url, child url) which can be

constructed by the Web robot when collecting Web pages for the search engine.

Note that while a Web page typically has limited number of child pages, it may have an

extremely large number of parent pages. For example, the homepage of Yahoo may be linked

by millions of pages. In order to limit the size of the base set, a threshold say 20 can be used

such that at most 20 parent pages of each page in S are included in T . Similar restriction may

also be applied to the inclusion of child pages. The 20 parent pages could be chosen randomly

from all the parent pages of a page in S. Some heuristics may be applied to choose better

parent pages. As mentioned previously, when a page has a link to another page, anchor text

is associated with the link. One heuristic is to select those parent pages whose corresponding

anchor text contains many terms in the query.

The base set typically contains thousands of pages. If S contains 200 pages and we include

20 parent pages and 20 child pages for each page in S, then the base set could have up to

8,200 pages (some duplicate pages may exist). It is expected that the base set for a given

query contains suÆcient number of pages related to the query. In the subsequent steps, our

task is to identify the most authoritative pages with respect to the query from the base set.

3. Compute the authority score and hub score of each page in the base set T . For a given page p,

let a(p) and h(p) be the authority and hub scores of p, respectively. Initially, a(p) = h(p) = 1

for each page p. For pages p and q, let (p; q) denote a link from p to q. The computation

is carried out in a number of iterations. In each iteration, two basic operations and two

normalizations are executed for each page. The two operations are de�ned below:

� Operation I: Update each a(p) to be the sum of the current hub scores of Web pages in

the base set that have a link to p. More precisely, a(p) =
X

q:(q;p)2E

h(q), where E is the

set of links with both involved pages from the base set T .

� Operation O: Update each h(p) to be the sum of the current authority scores of Web

pages in the base set that are linked from p. More precisely, h(p) =
X

q:(p;q)2E

a(q), where

E is the same as in Operation I.

14 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

� After all authority and hub scores have been updated in the current iteration, normalize

each authority score and each hub score as follows:

a(p) =
a(p)qP
q2T

[a(q)]2

h(p) =
h(p)qP
q2T

[h(q)]2

The above computation process is repeated until the scores converge.

It is shown in [12] that the authority and hub scores of all pages are guaranteed to converge by

the above algorithm.

After all scores are computed, the Web pages in the base set are sorted in descending authority

score and the pages with top authority scores are displayed to the user.

The process for retrieving n Web pages with top authority scores for a given query q can be

summarized as follows.

Algorithm Search by Authority(q; n)

begin

submit q to a similarity-based search engine to obtain the root set S;

expand S to the base set T ;

initialize authority and hub scores a(p) = h(p) = 1 for each page in T ;

repeat for each page p in T

f apply Operation I;

apply Operation O;

normalize a(p) and h(p);

g
until the scores converge;

sort pages in descending authority scores;

return the top n pages;

end;

Example 2.3 Consider the directed graph in Figure 2.3. Suppose nodes in the graph correspond

to Web pages and directed edges denote links. Suppose the pages in the graph form the base set

T . We now compute the hub score and authority score of each page. Let a(p) and h(p) denote the

authority and hub scores of page p. Initially, a(p) = h(p) = 1 for each page p.

In the �rst iteration, we have a(a) = 1; a(b) = 0; a(c) = 0; a(d) = 2; a(e) = 3; h(a) = 5; h(b) =

3; h(c) = 5; h(d) = 0; h(e) = 1. After normalization, we have a(a) = 0:267; a(b) = 0; a(c) =

0; a(d) = 0:535; a(e) = 0:802; h(a) = 0:645; h(b) = 0:387; h(c) = 0:645; h(d) = 0; h(e) = 0:129.

In the second iteration, we have a(a) = 0:129; a(b) = 0; a(c) = 0; a(d) = 1:29; a(e) = 1:678; h(a) =

2:969; h(b) = 1:678; h(c) = 2:969; h(d) = 0; h(e) = 0:129. After normalization, we have a(a) =

0:061; a(b) = 0; a(c) = 0; a(d) = 0:609; a(e) = 0:791; h(a) = 0:656; h(b) = 0:371; h(c) = 0:656; h(d) =

0; h(e) = 0:029.

After 5 iterations, the following are the approximate converged scores: a(a) = 0; a(b) = 0; a(c) =

0; a(d) = 0:615; a(e) = 0:788; h(a) = 0:657; h(b) = 0:369; h(c) = 0:657; h(d) = 0; h(e) = 0. The

2.3. USE OF LINKAGE INFORMATION 15

a

b

c

d

e

Figure 2.3: A Web Graph for Example 2.3

authority score of page e is higher than that of page d because e is pointed to by more good hub

pages. It is interesting to note that the authority score of page a is 0 even though it is pointed to

by page e. The reason is that e is not a good hub page as its hub score is 0. Clearly, that a is not

a good authority page and that e is not a good hub page reinforce each other.

Both operations I and O can be expressed as matrix multiplication. Let A be the adjacency

matrix of the Web graph induced by Web pages in the base set. The (i,j)-th entry of the matrix is

1 if the i-th page has a link to the j-th page and the entry is 0 if there is no such a link. A is an

n�n matrix if the base set has n pages. Let AT be the transpose of A; ai and hi be the vectors of

authority scores and hub scores after the ith iteration, i=1, 2, Then the operation I in the ith

iteration can be expressed as ai = AThi�1 and the operation O in the ith iteration can be expressed

as hi = Aai, where h0 is the initial vector of hub scores.

Notice that after the identi�cation of the pages in the root set, the entire computation of

authority and hub scores is based on the link structure associated with the pages in the root set.

In other words, only in the step for identifying the pages in the root set, the similarities of pages

with respect to the given query are taken into consideration and the remaining steps do not use

information regarding document similarity.

The above method for calculating authority and hub scores treats all links the same. This is

re
ected in the adjacency matrix A as each link is associated with a value (weight) of 1. In reality,

some links may be more useful in identifying authoritative pages with respect to a given topic that

other links. Two cases are considered below.

1. Two types of links can be distinguished based on whether or not the two pages related to a link

are from the same domain, where the domain name of a page is the �rst level string of its URL.

For example, if the URL of a page is \www.cs.binghamton.edu/�meng/meng.html", then the
domain name of the page is \www.cs.binghamton.edu". A link between pages with di�erent

domain names is called a transverse link and a link between pages with the same domain

name is called an intrinsic link. It can be argued that transverse links are more signi�cant

than intrinsic links for two reasons. First, intrinsic links are sometimes used for presentation

purposes, i.e., breaking a large document into smaller linked pieces to facilitate browsing.

Second, intrinsic links can be considered to be self-referencing whose signi�cance should be

lower than references by others. At an extreme case, intrinsic links may be solely added by

an author to arti�cially boost the authority of his/her own pages (i.e., link spamming). One

way to handle intrinsic links is to simply discard them [12]. Another method is to give a

16 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

lower weight to intrinsic links. This can be achieved by associating a value smaller than 1

with each intrinsic link in the matrix A [3].

2. As mentioned previously, an anchor text is often associated with each link. It can be argued

that if the anchor text of a link contains some terms in the query (topic), then the likelihood

that the page pointed to by the link is an authoritative page with respect to the topic is

increased. In general, a vicinity of a link can be de�ned to include terms within certain

distance (say 50 characters) on both sides on the link. Then the weight associated with a link

can be de�ned as an increasing function of the number of terms in the vicinity of the link

that appear in the query. In [2], the weight formula is w(p; q) = 1 + k(p; q), where (p; q) is a

link from page p to page q and k(p; q) is the number of terms in the vicinity of the link that

appear in the query. This weight can be incorporated into the computation of authority and

hub scores by replacing the (p; q) entry in matrix A by w(p; q).

Multiple Communities

For a given topic, the Web may contain multiple communities that are related to the topic.

Each community can be characterized as a set of Web pages that is related to a common topic and

are densely linked. In comparison, there are relatively few links between di�erent communities.

There are many reasons for the existence of multiple communities related to the same topic. One

possibility is that the authors of the pages in one community are not aware of the existence of

other communities. Another possibility is that the communities representing competing groups or

even hostile groups that do not want to link to each other. For example, pro-choice and pro-life

groups are both related to abortion and their Web pages may not reference to each other. A third

possibility is that the topic as de�ned by some terms actually has multiple meanings. For example,

the communities that are related to the topic \house" may include the one that involves pages

related to \house of representatives" (i.e., US Congress) and the one relating to \the sale of house

in real estate market".

The existence of multiple communities related to the same topic can cause problems to the

retrieval of desired pages. Speci�cally, if the algorithm discussed above is used to compute authority

and hub scores for a given topic, then it is likely that only good authoritative pages in the largest

community (i.e., the one with the largest size) can be found and smaller communities may not yield

any results. In other words, the largest community will dominate smaller communities. Let us use

an example to explain the reason of this phenomenon. First it can be observed that the pages in

a community roughly form a bipartite graph with hub pages and authority pages (see Figure 2.4).

Suppose the pages in the base set T for a given query contains two communities C1 and C2 such

that size of C1 is larger than that of C2. Speci�cally, we consider the case when C1 has 2n nodes

(pages) with n hub pages and n authority pages, and C2 has 2m nodes with m hub pages and m

authority pages, n > m, such that every hub page has a link to every authority page in the same

community but there are no links across di�erent communities.

Suppose initially the hub and authority scores of all pages in T are 1. In the �rst iteration,

after Operation I, all authority pages in C1 have the authority score of n and all authority pages

in C2 have the authority score of m; after Operation O, all hub pages in C1 have the hub score

of n2 and all hub pages in C2 have the hub score of m2. Now we perform normalization. Let

A1 =
p
n � n2 +m �m2 and H1 =

p
n � n4 +m �m4. Then after normalization, for each authority

page p in C1, the authority score is a(p) = n=A1 and for each authority page q in C2, the authority

2.3. USE OF LINKAGE INFORMATION 17

Authoritieshubs

Figure 2.4: A Web Community

score is a(q) = m=A1. Similarly, for each hub page p in C1, the normalized hub score is h(p) = n2=H1

and for each hub page q in C2, the normalized hub score is h(q) = m2=H1. Now consider the second

iteration. After Operation I, all authority pages in C1 have the authority score of n � n2=H1 and

all authority pages in C2 have the authority score of m � m2=H1; after Operation O, all hub

pages in C1 have the hub score of n2 � n2=H1 and all hub pages in C2 have the hub score of

m2 � m2=H1. Let A2 and H2 be the normalization factors of authority scores and hub scores

for the second iteration, respectively. Then after normalization, for each authority page p in C1,

the authority score is a(p) = n3=(H1 � A2) and for each authority page q in C2, the authority

score is a(q) = m3=(H1 � A2). In general, it can be shown that after k iterations, the normalized

authority score for each authority page in C1 is a(p) = n2k�1=(H1 � � � � � Hk�1 � Ak) and the

normalized authority score for each authority page in C2 is a(q) = m2k�1=(H1 � � � � �Hk�1 � Ak),

where Hi is the normalization factor of hub scores in the ith iteration (H0 = 1) and Ak is the

normalization factor of authority scores in the kth iteration. Since n > m, when k is suÆciently

large, a(q)=a(p) = (m=n)2k�1 will approach zero, i.e., a(q) will become negligible in comparison to

a(p). As pages are retrieved in descending authority scores, pages from community C2 are unlikely

to be retrieved.

One method that enables the retrieval of pages from multiple communities is as follows. First,

Algorithm Search by Authority is applied against the original base set T . This enables the retrieval

of good authoritative pages from the largest community in T . If the user is not satis�ed by the

results (i.e., the results are not from the community expected by the user) or the user simply

wants to retrieve more documents from possibly smaller communities, he/she makes a request for

results from a di�erent community, say by clicking the \next community" button. Upon receiving

the request, the search engine removes all pages in T whose authority scores are above certain

threshold (e.g., signi�cantly di�erent from zero). This has the e�ect of removing pages from the

largest community. As a result, the largest community is destroyed. Next, the same algorithm is

applied against the remaining pages. This permits the retrieval of good authoritative pages from the

second largest community. Obviously, this process can be repeated until either the user is satis�ed

or all communities have been exhausted. Alternatively, the search engine may automatically repeat

the above process and display the results from di�erent communities separately without waiting

any further request from the user.

The search engine HITS (Hyperlink-Induced Topic Search) [12] retrieves Web pages in descend-

ing order of authority scores. Currently, IBM's CLEVER project [6] is to develop a new search

engine that incorporates the latest research results based on the hub and authority theory.

18 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

2.3.4 Comparisons of Di�erent Methods

In this subsection, we brie
y compare the three methods of utilizing the linkage information, namely

Vector Spread Activation, PageRank and Hub and Authority, based on the three properties associ-

ated with PageRank in Section 2.3.2.

1. From Formula (2.1), we can see that the ranking scores of pages computed by the Vector

Spread Activation method satisfy the �rst two properties of the three properties. To see this,

consider page pi in Formula (2.1). When there are more links to page pi, more link(j,i) = 1

will be true and therefore the ranking score of pi, rs(q; pi) will become higher. Furthermore,

the higher the values rs(q; pj)'s are, the higher the value rs(q; pi) will be. However, Formula

(2.1) does not satisfy the third property as it does not take the number of child pages of any

parent page into consideration.

2. The authority scores can also be said to satisfy the �rst two properties among the set of pages

in the same community. When more pages in the same community point to a page p, the

authority score of p, namely a(p) is likely to be increased. Furthermore, if p is pointed to by

important (hub) pages, then a(p) will also likely be increased. However, the third property

is not satis�ed by the authority scores as the contribution of a page, say q, to the authority

score of a child page is independent of the number of child pages of q. Unlike the PageRank

method and the Vector Spreading Activation method which compute a single quantity for

each page, two quantities, namely hub and authority scores, are computed for each page in

the Hub and Authority method.

3. In the Vector Spread Activation method, the importance of a page is dependent on a given

query and is directly related to the similarities of the page and its parent pages. Unlike the

other two methods, the computation the Vector Spread Activation method is not carried out

repeatedly until the scores converge. In the Hub and Authority method, the authority score

of a page is also dependent on a given query but is less directly related to the similarities

of Web pages with respect to the query. The similarities are used to identify the root set

but after the root set is identi�ed, document similarities are no longer used in subsequent

computation of authority scores. PageRanks are computed independent of any given query.

However, through Formula (2.6), it is possible to combine PageRanks and similarities to

retrieve important pages related to a given topic. It would be interesting to compare the

retrieval e�ectiveness of the three methods based on a common testbed. There is currently

no reported study on such a comparison.

2.4 Collaborative Filtering

When a user submits a query to a search engine, the user may have some of the following behaviors

or reactions regarding the returned Web pages:

1. Click some pages in certain order while ignore others.

2. Read some clicked pages longer than some other clicked pages.

3. Save/print certain pages.

2.4. COLLABORATIVE FILTERING 19

4. Follow some links in clicked pages to reach more pages.

The reaction of a user u to the results of a query q can be considered as a piece of knowledge

associated with the user-query pair (u; q). The same user may use the search engine many times

with di�erent queries. Each time, the user reacts to the retrieved results. Many users may submit

di�erent queries to the search engine and have their own reactions to returned results. Thus, a

vast knowledge base can be obtained based on all users' reactions to the returned results of their

queries. This knowledge base is potentially very useful to improve the retrieval performance of the

search engine as many users may have common information needs and the same or similar queries

may be submitted by di�erent users. A challenge is how to make use of the knowledge base to

improve the e�ectiveness of the search engine.

There are at least three di�erent ways the knowledge base could be utilized.

1. Use the knowledge obtained from a user's reaction to the results of his/her current query

immediately to bene�t the current search needs of the user. This is very similar to the

relevance feedback introduced in Chapter 1 except that here the user does not explicitly tell

the search engine which returned pages are relevant, instead, the search engine may deduce

which pages are likely to be useful based on the user's reactions. For example, if a page is

saved, printed or viewed for a signi�cant amount of time, then the page can be considered to

be relevant.

2. Use the knowledge obtained from a user's reactions to the results of his/her current query

as well as that of the user's previous queries to bene�t the future search needs of the user.

The idea is to use the queries as well as derived relevant pages to each query to built one

or more pro�les for the user. Each user pro�le contains information, say appropriate terms,

to indicate one interest of the user. For example, if a user has submitted queries to search

Web pages related to �nance and environment, then one pro�le for �nance and one pro�le

for environment can be constructed for the user. A sample pro�le for environment could

contain terms such as \forest", \ozone", \pollution", \environment", etc. A pro�le could be

constructed using important terms appearing in related queries and documents.

User pro�les can bene�t a user in a number of ways. First, they can be used to determine

the meaning of a query term. If a user submits a query with a single term \bank" and the

user has a pro�le on environment but no pro�le on �nance, then it is likely that the current

usage of this term is like in \river bank" rather than in \investment bank". Second, when an

appropriate pro�le can be identi�ed to be closely related to a query, then terms in the pro�le

may be added to the query (i.e., query expansion) such that a longer query can be processed.

In text retrieval, it is known that longer queries tend to return better matched documents

because they are often more precise in describing users' information needs than short queries.

3. Use the knowledge obtained from all users' reactions to the results of their current and

previous queries to bene�t the future search needs of every user. This is essentially an

application of collaborative �ltering in the search engine environment. According to [16],

\Collaborative �ltering systems make use of the reactions and opinions of people who have

already seen a piece of information to make predictions about the value of that piece of

information for people who have not yet seen it." For the rest of this subsection, we describe

how collaborative �ltering can help with text retrieval in the context of a search engine.

20 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

A collaborative �ltering system is sometimes also called a recommendation system with the

following three major components:

Recommendation gathering: This component records users' reactions to retrieved documents.

Essentially it keeps track of who has found what documents to be useful and how useful with

respect to what query. As discussed above, the usefulness of a document could be derived

from viewing time and other user reactions.

Recommendation aggregation: This is to combine multiple recommendations into a useful mea-

sure. A simple aggregation is to count the number of times that a particular document has

been recommended (i.e., considered to be useful) for a particular query. A more elaborate

solution may weigh each recommendation with higher weights for stronger recommendations.

In PHOAKS system [20], the measure is the number of unique recommenders.

Recommendation usage: This is to apply recommendation measures to recommend documents

to retrieve for a given query. One possibility is to use a recommendation measure directly to

rank documents. Another possibility is to combine the recommendation and the document

similarity to rank documents.

The DirectHit search engine (www.directhit.com) is a collaborative �ltering based search engine.

According to [9], there are three paradigms to provide access to Web pages.

1. Author-controlled search engines. Most search engines on the Web retrieves pages for a given

query based on the content of each page. As the content of a page is controlled by the author

of the page, these search engines can be considered as author-controlled. One big problem

with such type of search engines is that the quality of a page such as writing style cannot be

taken into consideration. Worse yet, an author may use di�erent ways to trick a search engine

by adding popular terms into his/her page even though the terms are not related to the real

content of the page (i.e., spamming. See next section for more discussion on spamming).

2. Editor-controlled directories. In this case, all pages that are searchable have been examined

and organized into a hierarchy by some one (editor) who created the directory. As a result,

the editor controls the order in which pages related to a given topic are viewed. The most

famous example for this type of directory is Yahoo. This method can ensure the quality of

pages to a large extent. However, this method, if carried out manually, is very time-consuming

and only a very small portion of the Web can be scanned by the editor(s).

3. User-controlled search engines. This type of search engine relies on the collective feedback

of all users to determine the quality of a page. If a page is viewed by many users with

similar information needs (i.e., their queries are similar), then it is likely that the page is of

good quality and should be retrieved when a related query is submitted. This approach can

not only safeguard the quality of retrieved pages but also scale to a large number of Web

pages. One weakness of this approach is that pages that have not been retrieved previously

(such as newly added pages) will have less chance to be retrieved. One possible solution

is to take the freshness of a page into consideration. For newly added or recently updated

pages, the ranking function gives more weight to content-based similarity and less weight

to user recommendation. As a page becomes older, more emphasis will be placed on the

recommendation and less on content-similarity.

2.5. OTHER ISSUES 21

2.5 Other Issues

2.5.1 Additional Search Parameters

In addition to the contents and links associated with a page, other secondary information can be

utilized as search parameters. Examples include the date in which a page is created, the latest

date in which it is modi�ed and the organization which publishes the page. These parameters may

permit more accurate retrieval.

2.5.2 Dynamic Environment

In the Web environment, changes are usually made a lot more frequently than in a non-Web

environment. In standard document retrieval, adding new documents is more likely than making

changes. The reason is that historically, when a book or a paper is published, it is not changed,

until there is a new edition. At that time, it can be classi�ed as a new document. In the Web

environment, since information is stored electronically, whenever there is a need for changes, the

document is modi�ed. Furthermore, Web pages are stored in autonomously managed Web servers.

When a Web page is modi�ed, a new page is added to a local server or an existing page is deleted

from a local server, the search engine is usually not noti�ed. As a result, search engines often

have index information based on obsolete documents. One way to deal with the problem is to let

the robot re-visits di�erent sites periodically to �nd updated pages. As the Web is very large and

growing rapidly, it takes a lot of resources to visit all the sites once. Currently, a newly added

page may be added to the index of a search engine in weeks. As a consequence, there is a need

to develop better methods to detect document changes so that more e�ort can be focused on sites

that have more changed documents �rst.

2.5.3 Combating Spamming

Spamming refers to techniques that are employed to increase the chance of a page being retrieved

by search engines even when the content of the page is not related to a given query. Spamming can

have di�erent forms. For example, popular terms that do not re
ect the real contents of a page

may be added into the page so that when these popular terms appear in a query the page will have

a better chance to be retrieved. As an example, if there is a current hot topic, then the keywords

related to that hot topic may be added to the page as spamming terms. Furthermore, the popular

terms could be repeated many times in a page so that they will have high term frequencies. As term

frequency weight is widely used by search engines and is an increasing function of term frequency,

this increases the likelihood for the page to be retrieved. In order not to a�ect the presentation

of the main contents of a page, spamming terms may be de-emphasized or hidden from viewers.

Common tricks are to use tiny font for spamming terms and place them as the end of the pages,

place spamming terms in comments so that they would not show up for viewers and put spamming

terms in the color which is identical to the background color of the page so that they would not

be visible to viewers. Spamming may also appear in the form of links. For example, in order to

arti�cially increase the popularity and/or authority of a page, the author may create many dummy

pages with links to the page.

A good search engine should employ retrieval techniques that can either eliminate or signi�cantly

curb the in
uence of spamming so that better quality documents can be returned to users. For

22 CHAPTER 2. SEARCH ENGINE TECHNOLOGY

spamming terms, the indexer of a search engine may choose to ignore terms in comments and

terms that have the same color as the background, ignore or signi�cantly reduce the weights of,

terms that are in very small fonts. More sophisticated indexers may analyze whether terms with

high term frequencies appear in grammatically incorrect sentences as spamming terms often repeat

many times by themselves and do not form correct sentences. By placing signi�cant weight on

linkage-derived importance as in the PageRank approach and the authority approach, we can

reduce relying on content-based similarity. This can also curb the impact of spamming terms. For

spamming links, the search engine may ignore intrinsic links or give them low signi�cance. In the

PageRank approach, the signi�cance of a link is tied to the importance of the page containing it.

As pages housing spamming links are unlikely to be important, the in
uence of spamming links

can be curbed.

Bibliography

[1] S. Brin, and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. WWW7

Conference, 1998.

[2] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan. Au-

tomatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text. 7th

International World Wide Web Conference, 1998.

[3] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, S. Kumar, P. Raghavan, S. Rajagopalan,

and A. Tomkins. Mining the Web's Link Structure. IEEE Computer, August 1999.

[4] Fah-Chun Cheong. Internet Agents: Spiders, Wanderers, Brokers, and Bots. New Riders.

[5] J. Cho, H. Garcia-Molina, and L. Page. EÆcient Crawling Through URL Ordering. 7th WWW

Conference, 1998.

[6] http://www.almaden.ibm.com/cs/k53/clever.html.

[7] M. Cutler, Y. Shih, and W. Meng. Using the Structures of HTML Documents to Improve

Retrieval. USENIX Symposium on Internet Technologies and Systems (NSITS'97), Monterey,

California, 1997, pp.241-251.

[8] M. Cutler, H. Deng, S. Manicaan, and W. Meng. A New Study on Using HTML Structures to

Improve Retrieval. Eleventh IEEE Conference on Tools with Arti�cial Intelligence (ICTAI'99),

Chicago, November 1999.

[9] The Direct Hit Popularity Engine Technology: A White Paper

(http://www.directhit.com/about/products/technology whitepaper.html).

[10] T. Haveliwala. EÆcient Computation of PageRank. Technical Report, Stanford University,

1999.

[11] B. Janson, A. Spink, J. Bateman, and T. Saracevic. Real Life Information Retrieval: A Study

of User Queries on the Web. ACM SIGIR Forum, 32:1, 1998.

[12] J. Kleinberg. Authoritative sources in a hyperlinked environment. 9th ACM-SIAM Symposium

on Discrete Algorithms, 1998.

[13] S. Lawrence, and C. Lee Giles. Accessibility of Information on the Web. Nature, 400, July

1999, pp. 107-109.

23

24 BIBLIOGRAPHY

[14] M. Mauldin. Lycos: Design Choices in An Internet Search Service. IEEE Expert Online,

February 1997.

[15] O. McBryan. GENVL and WWWW: Tools for Training the Web. First WWW Conference,

Geneva, May 1994.

[16] B. Miller, J. Riedl, and J. Monstan. Experiences with GroupLens: making Usenet Useful

Again. Proceedings of the 1997 Usenix Winter Technical Conference, January 1997.

[17] R. Motwani, and P. Raghavan. Randomized Algorithms. Cambridge University Press, United

Kingdom, 1995.

[18] L. Page, S. Brin, R. Motwani, and Terry Winograd. The PageRank Citation Ranking: Bring

Order to the Web. Technical Report, Stanford University, 1998.

[19] J. Rennie, A. McCallum. Using Reinforcement Learning to Spider the Web EÆciently. Inter-

national Conference on Machine Learning, 1999.

[20] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter. PHOAKS: A System for Sharing

Recommendations. The Communications of the ACM, 40:3, March 1997, pp. 59-62.

[21] B. Yuwono, and D. Lee. Search and Ranking Algorithms for Locating Resources on the World

Wide Web. IEEE Conference on Data Engineering, pp.164-177, 1996.

