
Bibliography

[1] S. Gauch, J. Wang, and S. Rachakonda. \A Corpus Analysis Approach for Automatic Query

Expansion and Its Extension to Multiple Databases". ACM Transactions on Information Sys-

tems, 1999, pp. 250-269.

[2] W. Frakes, and R. Baeza-Yates. \Information Retrieval: Data Structures and Algorithms".

Prentice-Hall, 1992.

[3] G. Salton and M. McGill. Introduction to Modern Information Retrieval. New York: McCraw-

Hill, 1983.

[4] C. Yu, and W. Meng. Principles of Database Query Processing for Advanced Applications.

Morgan Kaufmann, San Francisco, 1998.

21

20 CHAPTER 1. TEXT RETRIEVAL

utilize the same list. These locations can be arranged in the order they appear in the document (for

example in ascending line number). Given two such lists of two terms, it is rather straightforward

to check if there are occurrences of the two terms in close proximities of each other, say the two

locations di�er by no more than a certain distance. For example, the list of one term can be (2,

[4, 24]), indicating that the document has two occurrences of the term and they appear in line 4

and line 24. The list of another term can be (3, [5, 18, 31]). When these two lists are merged, it is

easy to identify the pairs of locations which are identical or close to each other. For example, when

\4" is compared against \5", the locations are judged to be close, as they di�er by 1 only. Then,

the next location after \4" in the same list, namely \24", is compared to \5". Since \24" and \5"

are very di�erent, the proximity condition is not satis�ed by this pair of locations. Then \24" is

compared against the next location after \5" in the same list, namely \18". This is repeated until

one list runs out. In general, after each comparison of two locations, loc1 and loc2, the following

situations are possible. loc1 = loc2, loc1 > loc2 and loc1 < loc2. In the �rst case, if we assume that

it is su�cient to match the pair with the closest location, we can compare the next location after

loc1 with the next location after loc2 in the two lists. In the second case, we compare loc1 with

the location after loc2. In the last case, we compare the next location after loc1 with loc2. In each

situation, at least one element can be eliminated from one of the two lists. Thus, if there are n1

and n2 elements in the two lists, then the time complexity to identify the pairs of locations which

are in proximity is O(n1 + n2). By applying this process to pairs of terms in the user query, the

number of pairs of occurrences of terms which satisfy the proximity condition can be counted. This

count can be used to supplement the computation of similarity between a query and a document.

By using the list of locations associated with each term, it is possible to identify sets of occurrences

of terms which satisfy certain proximity conditions. For example, the occurrences of three terms

within a document need to be no more than 1 line apart.

1.7. EFFICIENT QUERY EVALUATION 19

algorithm. These columns contain the inverted �le lists of the query terms. Since a typical

query contains only a few terms, this means that typically only the non-zero entries in a few

columns are accessed to evaluate a query. This is in sharp contrast with the direct com-

putation method in which the query is compared against all documents. The direct method

would require all non-zero entries in all columns need to be accessed. In the proposed e�cient

method, the needed columns (i.e., inverted �le lists) can be located quickly using the hash

table (or a B-tree).

2. Let D be a document that has terms in common with a query q. It is typical that most terms

in D do not appear in q. It can be seen that the e�cient algorithm does not need to process

those terms of D which do not appear in the query q.

3. If a document D does not have any term in common with a query q, then document D will

not be involved in the evaluation of q by the e�cient algorithm. This is because in this case,

the inverted �le lists of the query terms will not contain any information regarding D. In

contrast, the direct computation method needs to compare q with every document, including

those documents that do not share any term with q.

1.7.1 Boolean Query Evaluation

The data structures used above for evaluating vector queries can also be used to evaluate Boolean

queries e�ciently. For a query that requires each quali�ed document to contain a number of terms

(i.e., an and-query), we can �rst obtain the inverted �le list of each query term and then perform an

intersection among document numbers. The document numbers in each inverted �le list are usually

in ascending order so that the intersection can be performed e�ciently. Speci�cally, a multi-way

intersection similar to a multi-way merge in merge-sort can be performed. Only one scan of each

list is su�cient for the intersection as all lists are sorted. For a query that requires a quali�ed

document to contain at least one query term (i.e., an or-query), a union of the inverted �le lists of

all query terms can be performed. Again, only one scan of each list is su�cient.

1.7.2 Proximity Query Evaluation

In order to evaluate proximity queries, location information of terms need to be stored. This

location information can be placed in an extended inverted list. As an example, consider term

t. If document D contains term t with weight w, then there is a pair (D;w) in the inverted

�le list of t. In order to support the evaluation of proximity queries, this pair can be extended

into (D; (total occ; [loc1; loc2; :::; lock]); w), where total occ is the total number of occurrences of

the term in the document, and the locations of these occurrences in the document are given by

loc1; loc2; :::; lock. Note that term weights may not be needed for processing proximity queries. But

they are normally kept so that both proximity queries and vector queries (or hybrid queries) can

18 CHAPTER 1. TEXT RETRIEVAL

t1 t2 t3 t4 t5
D1 2 1 1 0 0
D2 0 2 1 1 0
D3 1 0 1 1 0
D4 2 1 2 2 0
D5 0 2 0 1 2

Figure 1.4: A Example Document-Term Matrix

0:2774; nf [5] = 0:3333; I(t1) = [(D1; 2); (D3; 1); (D4; 2)]; I(t2) = [(D1; 1); (D2; 2); (D4; 1); (D5; 2)]; I(t3) =

[(D1; 1); (D2; 1); (D3; 1); (D4; 2)]; I(t4) = [(D2; 1); (D3; 1); (D4; 2); (D5; 1)]; I(t5) = [(D5; 2)]. Let q

be a query with two terms t1 and t3 and their weights are both 1. The normalization factor for the

query is 1=jqj = 0:7071.

We now apply the algorithm to calculate the similarities of documents with respect to q. For

query term t1, we �rst obtain I(t1). Since I(t1) contains D1; D3 and D4, the following interme-

diate similarities are obtained after t1 is processed: sim(q;D1) = 1 � 2 = 2; sim(q;D3) = 1 � 1 =

1; sim(q;D4) = 1 � 2 = 2. For query term t3, we obtain I(t3) and compute the following interme-

diate similarities: sim(q;D1) = 2 + 1 � 1 = 3; sim(q;D2) = 1 � 1 = 1; sim(q;D3) = 1 + 1 � 1 =

2; sim(q;D4) = 2+1 � 2 = 4. After normalization factors are multiplied, the following �nal similar-

ities can be obtained: sim(q;D1) = 0:87; sim(q;D2) = 0:29; sim(q;D3) = 0:82; sim(q;D4) = 0:78.

A special feature of the above algorithm is that it computes the similarities between a given

query and a number of documents at the same time. Speci�cally, after the �rst query term is

processed, a temporary similarity between every document containing this term and the query will

be obtained. If a document contains more than one query term, then this temporary similarity of

the document is not the �nal similarity of the document. In other words, it is only an intermediate

result. Only after the last term of the query is processed, we can be sure that the �nal similarity is

computed (subject to multiplying the normalization factors). During the evaluation of a query, the

intermediate similarity of a document may be accessed several times for adding contributions by

new query terms. There is a need to locate the intermediate result of each query quickly. This can

be accomplished by another hash table. If document Di contains query term tj , then i is hashed

into a bucket in the hash table. If Di has an entry (i.e., intermediate result) already in the hash

table, the intermediate similarity will be in the same bucket and can be updated; otherwise a new

entry will be created to contain the intermediate similarity of Di with q due to term tj .

The following observations about the above algorithm explains why the algorithm is e�cient.

1. For each given query, only the non-zero entries in the columns in the document-term ma-

trix corresponding to the query terms are needed to evaluate the query using the e�cient

1.7. EFFICIENT QUERY EVALUATION 17

for any given term the storage location of the inverted �le list of the term. Consider the case

when a hash table is used. In this case, the hash table consists of a number of buckets. For

each term t in the collection, a hash function h() is applied to the term and the hash value

h(t) determines the bucket that contains the disk address of the inverted �le list I(t).

3. If the similarity function employed by the text retrieval system uses the norm of a document

to compute the similarity of the document (e.g., the Cosine function), then an array say

nf [n] can be used to store the normalization factors of documents, where n is the number

of documents in the collection. Speci�cally, nf [i] stores the normalization factor of the ith

document Di, namely nf [i] = 1=jDij.

The above data structures permit e�cient calculation of similarities of documents with any

query q. For each term t in q, the hash function h() is applied to �nd the address of the inverted

�le list I(t). For each document-weight pair (D, w) in I(t), where w is the weight of t in D, the

similarity between q and D is increased by qt � w, where qt is the weight of t in q. After all terms

in q are processed as above, the normalization factor of each encountered document as well as the

normalization factor of the query are multiplied to the accumulated similarity of the document to

produce the �nal similarity. Finally, documents are sorted in descending similarities and the top

k documents are displayed for some user speci�ed k (If the user did not specify such a k when

submitting his/her query, a system default can be used). This process is summarized into the

following procedure:

Algorithm E�cient Retrieval(q, k)

begin

initialize all sim(q;Di) = 0;

for each term t in q

f �nd I(t) using the hash table;

for each (Dj , wj) in I(t)

sim(q;Dj)+ = qt � wj ;

g

for each encountered document Dj

sim(q;Dj) = sim(q;Dj) � (1=jqj) � nf [j];

sort documents;

display the top k documents;

end;

Example 1.4 An example of document-term matrix is shown in Figure 1.4.

From this matrix, we can obtain nf [1] = 0:4082; nf [2] = 0:4082; nf [3] = 0:5772; nf [4] =

16 CHAPTER 1. TEXT RETRIEVAL

sentences S2 and S4 is (null, (0,0,0,0,0,1), (0,1,0,0,1,0), (1,0,0,1,0,0)). Null can be replaced by

(0,0,0,0,0,0). A similarity function can then be applied to the two vectors to measure their degree

of relatedness. (In [1], a mutual information measure is used instead.)

1.7 E�cient Query Evaluation

It is very ine�cient to compute the similarity between a user query and every document directly

as most documents do not have any terms in common with the query. To illustrate this point more

clearly, let us consider the following document-term matrix:

t1 t2 � � � tj � � � tm
D1 w11 w12 � � � w1j � � � w1m

D2 w21 w22 � � � w2j � � � w2m

...
...

... � � �
... � � �

...
Di wi1 wi2 � � � wij � � � wim

...
...

... � � �
... � � �

...
Dn wn1 wn2 � � � wnj � � � wnm

Figure 1.3: A Document-Term Matrix

where n is the number of documents in the collection, m is the number of distinct terms of the

collection, and wij is the weight of the jth term in the ith document. If the jth term does not

appear in the ith document, then wij will be zero. Most entries in the matrix would be zero as

most documents have relatively small number of distinct terms in comparison to the total number

of distinct terms in a large collection. If a query is compared with each document directly to

compute the similarity of the document, then all or most non-zero entries in the matrix would need

to be accessed. This would be very ine�cient. A much more e�cient way to compute document

similarities is to utilize several special data structures as described below:

1. The �rst data structure is called an inverted �le index. For each term tj , an inverted list of

the format [(Dj1 ; wj1j); :::; (Djk; wjkj)] is generated and stored, where Dji is the identi�er of

a document containing tj and wjij is the weight of tj in Dji , 1 � i � k, and k is the number

of documents containing tj . In other words, the inverted �le list of tj contains the non-zero

entries in the jth column in the document-term matrix, plus the corresponding document

identi�ers. The inverted �le index consists of the inverted �le list for all terms and is usually

stored on disk as the size of the index can be very large. Let I(t) denote the inverted �le list

of term t.

2. The second data structure is a hash table or a B-tree data structure used to quickly locate

1.6. IMPROVING RETRIEVAL EFFECTIVENESS 15

word together with these four words make up the window of �ve words.) Consider the following

two sentences.

S1: The beautiful color of the dress is observed.

S2: The beautiful colour of the shirt was observed.

Supposed that the context words are \beautiful", \shirt', \dress" and \observed" in this example

(i.e., the stopped words \the", \are" and \of" are not used as context words). In sentence S1, the

context of \color" can be represented by a vector V = (v1; v2; v3; v4), where v1 and v2 are the two

words to the left of \color" and v3 and v4 are the two words to the right. Since \the" is not considered

a context word, v1 is null. v2 is \beautiful"; v3 is \dress" and v4 is \observed", assuming that the

non-context words are not included in the context window. Similarly, the context of \colour" in

sentence S2 is W = (w1; w2; w3; w4), where w1 is null, w2 is \beautiful", w3 is \shirt" and w4 is

\observed". By comparing the corresponding positions of the two vectors V and W, v2 = w2 and

v4 = w4. Thus, we may argue that \color" and \colour" are related, since their contexts are similar.

Determining the contexts of the two words based on two sentences is not statistically signi�cant.

Thus, we need to �nd contexts of the two words using all sentences in which these two words

occur. This involves all documents in the database. Thus, in general, each context position (say

vi) contains a set of context words which occur in that position relative to the target word. As an

example, v1 is the set of words which are two words to the left of \color". When vi is compared

against wi, the set of context words in common in the same context position is obtained. In order to

facilitate computation, the jth context word may be represented by a vector (0; 0; :::; 0; 1; 0; :::; 0) in

which the \1" occurs in the jth position. If a set of context words appear in a context position, say

position i of a target word, then the context position will have a vector of the form (o1; o2; :::; om),

where oj is the number of times the jth context word occurs in the ith context position. If two

target words have the jth context word occurring in the ith context position multiple times, then

the corresponding oj 's in the two vectors will have positive values. A simple similarity function

such as the Cosine function can be utilized to compute the degree of relatedness of the two target

words, based on their context vectors.

Example 1.3 In addition to the above two sentences, assume that there are 2 other sentences:

S3: The color of the sky is blue.

S4: The colour of the dress is blue.

Let the set of context words be \blue", \dress", \sky", \observed", \shirt" and \beautiful". Let

them be ordered from 1 to 6 respectively. Thus, \blue" is represented by the vector (1; 0; 0; 0; 0; 0).

The context vector of color in sentence S3 = (null, null, \sky", \blue"). Replacing the words by

their vector forms, the vector of color in S3 = (null, null, (0,0,1,0,0,0), (1,0,0,0,0,0)) or simply (null,

null, 0,0,1,0,0,0,1,0,0,0,0,0). The corresponding vector for color in sentence S1 = (null, (0,0,0,0,0,1),

(0,1,0,0,0,0), (0,0,0,1,0,0)). Combining the e�ects of the two sentences, the context vector of color

is then (null, (0,0,0,0,0,1), (0,1,1,0,0,0), (1,0,0,1,0,0)). Similarly, the context vector of colour in

14 CHAPTER 1. TEXT RETRIEVAL

S2 are better represented by the phrase \programming language". The phrase, if applicable to those

documents, is a more precise description than the combination of the individual terms. Documents

which are not represented by the phrase will still contain the individual terms, depending on which

terms they originally have. Clearly, the document frequency of the phrase is no higher (and usually

much lower) than those of the individual terms. In addition, the number of documents which

now have either the term \program" or the term \language" is decreased, as some of the these

documents are now indexed by the phrase \programming language" instead. In general, a phrase

t can be used to index some of the documents in the intersection of the documents containing the

individual terms, if the individual terms form a phrase representing t. Those documents having one

or more component terms but not the phrase will continue to be indexed by the individual terms.

It is also possible that some documents having the phrase may also have isolated instances of some

of the individual terms as well.

1.6.3 Finding Related Terms

There are several ways to identify terms which are related to certain terms given in the query.

By adding related terms to the query, it may be possible to improve retrieval e�ectiveness. One

common technique to identify related terms is to make use of co-occurrence information. Two

terms are related if they co-occur in many documents. For example, the term \snow" and the term

\cold" may co-occur in many documents and they can be considered as related terms. To identify

such terms automatically, we can measure the deviation in which they actually co-occur from the

number of documents they are expected to co-occur as if they occur independently. For example, if

the term \snow" occurs in n1 out of n documents, the term \cold" occurs in n2 out of n documents,

then the number of documents containing both terms is estimated to be EXP = n �n1=n �n2=n, if

the terms are distributed independently. If the number of documents having both terms, n-cooccur,

is signi�cantly higher than EXP , say one or two standard deviation away, then the two terms are

likely to be related.

Related terms need not co-occur in documents. For example, the term \color" and its British

counterpart \colour" may not have a single document containing both terms. However, the two

terms are likely to occur in similar contexts. In order to determine such related terms automatically,

it is essential to de�ne the contexts. First, a context word of a word w is a word which occurs near

w. It is usually a word which occurs frequently in documents. For example, all words which are

the most frequent k words, for some integer k, can be used as context words. (In [1], all the k most

frequent words are context words, although it may be argued that the stop-words or non-content

words should be eliminated.) Less frequent words which we want to determine relationships among

them are called target words. The context of a target word consists of a \window" of a set of

context words and their positions. For example, if the window size is 5, then the context of a target

word consists of two words to the left of the target word and two words to its right. (The target

1.6. IMPROVING RETRIEVAL EFFECTIVENESS 13

Experiments with several document collections indicate the the relationship between document

frequency of a term and the quality of the term (see Figure 1.2). Poor terms are usually those with

high document frequencies, i.e., terms which occur in many documents. Good terms tend to occur

in few documents. Yet the best terms are found to be those with medium document frequencies,

i.e., they do not occur in too many nor too few documents. The reason that the rare terms are

good but not the best terms is as follows. Rare terms do not appear in queries frequently and as a

result, their e�ects on overall retrieval performance may be insigni�cant.

Document Frequency:

rare highmedium

Quality of Terms: good best

N=#documents 0

poor

Figure 1.2: Relationship between Term Quality and Document Frequency

Based on the relationship between the quality of terms and their document frequencies, it is

desirable to transform terms with both low document frequencies and high document frequencies

into terms with medium document frequencies.

One way to transform low document frequency terms into medium document frequency terms

is to recognize synonyms and replace them by a single term. As an example, suppose \journal",

\periodical" and \magazine" are three terms with low document frequencies. Suppose df(journal)

= 15, df(periodical) = 5, df(magazine) = 20, where df(t) denotes the document frequency of term

t. Since these terms are synonyms, we can replace them by a single term, say \journal", such that

this term will appear in a document whenever \journal", \periodical" or \magazine" appears in the

document. After the replacement, \periodical" and \magazine" disappear from the term list of the

document collection and if the above three terms appear in di�erent documents, then df(journal)

= 15 + 5 + 20 = 40. In general, a term t can be used to represent a set of synonymous terms ftig

such that whenever one or more component terms ti occurs in a document D, t is considered to have

occurred in D. Clearly, the document frequency of t is at least as high as that of highest document

frequency of its component terms. That is, df(t) � maxifdf(ti)g. Note that this transformation

may also change the term frequency of a term in a document. For example, if a document contains

\journal" 2 times, \magazine" 3 times and \periodical" 0 times, then after the above replacement,

the term frequency of \journal" would become 5 and that of \magazine" become 0. Also note that

the same replacement should also applied to user queries. For example, if a user query contains

\magazine", then the term should be replaced by \journal" before the query is used to calculate

similarities.

We can also transform high document frequency terms into medium document frequency terms.

As an example, suppose there are two terms \program" and \language", which appear in two sets

of documents S1 and S2, respectively. Furthermore, suppose \program" and \language" are high

document frequency terms. It is possible that quite a few documents in the intersection of S1 and

12 CHAPTER 1. TEXT RETRIEVAL

where C1 and C2 are constants; q0 is the modi�ed user query. A common value for C1 is 1/N1,

where N1 is the cardinality of RR; a corresponding value for C2 is 1/N2 where N2 is the cardinality

of RI. Usually, N2 is signi�cantly larger than N1. By having this normalization, the vector for the

modi�ed query q' will not have most of the terms having negative entries. The additions and the

subtractions in the above formula are in vector form. Addition of the documents in RR is to move

the query towards the retrieved and relevant documents (i.e., �nd more documents like them),

while the subtraction is to shift the query away from the retrieved and irrelevant documents. By

combining the additions and the subtractions, the terms which are responsible for retrieving the

relevant documents in RR but not the irrelevant documents in RI will be emphasized. At the same

time, those terms responsible for retrieving the irrelevant documents in RI but not the relevant

documents in RR will be deemphasized. If the documents which are relevant but not retrieved by

q are close to the documents in RR, the modi�ed query q0 is likely to retrieve them. If all relevant

documents are clustered together, then q0 will be able to retrieve relevant documents which are not

retrievable by q. If the user is satis�ed with the retrieved result by q0, then the feedback process

is terminated; otherwise, another modi�ed query q00 is generated based on the feedback to the

returned documents by q0 to retrieve more documents. This process may be repeated more times

if the user wants.

There are many proposed relevance feedback algorithms and it is beyond the scope of this book

to cover them.

1.6.2 Better Document Representation

One way to improve the representation of documents is to use better terms to index them. The

following de�nition is useful for determining the quality of a term in indexing documents.

De�nition 1.1 Let sim(D1; D2) be the similarity between two documents D1 and D2 according

to some similarity function (say the Cosine function). The compactness of a set of documents

in a collection is de�ned to be
X

i6=j

sim(Di; Dj), where the summation is over all di�erent pairs of

documents.

Intuitively, if all documents are close together (i.e., have high similarity), then the compactness

is high and it is di�cult to di�erentiate the documents of interest from the other documents with

respect to a given query. Thus, it is desirable to have a low compactness. Based on this intuition,

we can de�ne the quality of a term as follows.

De�nition 1.2 If the removal of a term from all document representations increases (decreases)

the compactness of the collection, then the term is a good (bad) term. The more the compactness

increases (decreases), the better (worse) the term is.

1.6. IMPROVING RETRIEVAL EFFECTIVENESS 11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.3

0.4

0.6

0.7

0.8

1.0

0.9

0.5

0.2

0.1

PR
E

C
IS

IO
N

RECALL

0

Y

X

Figure 1.1: Comparing the E�ectiveness of Retrieval Systems

3. Document representation and query representation are not perfect. In other words, the

representations usually do not preserve the meanings of the original document and query. For

example, the employed stemming algorithm may work incorrectly for some terms. As another

example, when documents and queries are represented as vectors, information regarding the

order in which terms appear would likely be lost.

In this section, we briey discuss some techniques that have proposed to address the above

issues.

1.6.1 Relevance Feedback

Relevance feedback is a mechanism for a user to interact with a text retrieval system to modify the

user's original query to a new and better query. A good relevant feedback process has the potential

to improve the quality of a user query so that the information needs of the user can be described

more precisely by the new query. This in turn can improve the retrieval quality for the query by

the retrieval system.

Relevance feedback operates as follows. After a set, R, of documents is retrieved by the text

retrieval system for a user query q and is shown to the user, the user is asked to identify among R

which documents are relevant. From the response of the user, R is partitioned into two sets, RR,

containing the retrieved relevant documents, and RI, containing the retrieved irrelevant documents.

The initial query q is then modi�ed, taking into consideration the additional feedback information

from the user. One such modi�cation is as follows:

q0 = q + C1 �
X

Di2RR

Di � C2 �
X

Dj2RI

Dj (1.5)

10 CHAPTER 1. TEXT RETRIEVAL

document, but the user wants to �nd multiple relevant documents. Thus, the e�ectiveness of a

system should be measured based on the precisions at di�erent recall levels. As each recall and

precision pair can be plotted as a point in the plane as determined with recall being the x-axis and

precision being the y-axis, a curve can be plotted based on a number of recall and precision pairs.

To evaluate the e�ectiveness of a text retrieval system, a set of test queries is used. For each

query, the set of relevant documents is identi�ed in advance. For each such query, a recall-precision

curve can be obtained. The average recall-precision curve over all test queries is used as the measure

of the e�ectiveness of the system.

If a text retrieval system is perfect, then its precision should stay at 1 for all recalls. This

essentially means that for every query the system must rank each relevant document ahead of all

irrelevant documents. In practice, it is nearly impossible to achieve perfect e�ectiveness. Usually,

as recall increases, precision decreases. In other words, when the number of relevant documents to

be retrieved increases, the number of documents to retrieve for each additional relevant document

also increases. The �rst few relevant documents may require modest e�ort to retrieve, but later

relevant documents require more and more e�orts. In comparing the retrieval e�ectiveness of two

systems, two recall-precisions curves for the two systems are plotted. The system whose curve is

above the other is a better system, because at any given recall, the precision is higher for this

system. It is possible that the two curves would intersect at certain locations. The intersections

partition the range of recall from 0 to 1 into di�erent intervals such that within each interval, one

curve is above the other. Thus, for a given interval I, if curve A is above curve B, then the system

which produces curve A is better than the other system within the interval I.

In Figure 1.1, the two curves represent the performance of two text retrieval systems. It can be

seen that System X is better than System Y when the recall is in interval [0.0, 0.4], but the reverse

is true when the recall is in the interval [0.5, 1.0].

1.6 Improving Retrieval E�ectiveness

There are many reasons that the perfect e�ectiveness is very hard to achieve. Some of the reasons

are as follows.

1. User's inability to describe information needs precisely. In practice, most users either cannot

describe their information needs precisely or don't bother to spend too much time to precisely

describe their information needs.

2. Many terms have multiple meanings and di�erent terms may have similar meanings. Term

matching based on exact spellings is not capable of dealing with inaccuracies caused by these

problems.

1.5. MEASURING RETRIEVAL EFFECTIVENESS 9

together, then only occurrences of the two terms in proximity of each other in a document satisfy

the constraint imposed by the query.

1.5 Measuring Retrieval E�ectiveness

For a query submitted by a user, a document is said to be relevant if it is determined by the user to

be useful; otherwise, the document is said to be irrelevant. For a give query, a text retrieval system

computes the similarity of each document with the query and displays documents in descending

similarity values. As users usually examine documents in the order in which the documents are

displayed, this order can have a big impact on the ultimate performance of the system. For example,

if many relevant documents appear near the top of the displayed list, then they are likely to be

identi�ed by the user. On the other hand, if very few relevant documents are displayed near the top,

then many relevant may be missed. Thus, intuitively, a good text retrieval system should compute

similarities in such a way such that when documents are displayed in descending similarity values,

relevant documents are displayed ahead of irrelevant documents.

From the discussions in previous sections, we can see that the similarity between a document

and a query depends on several factors such as the indexing scheme used, the term weighting

formula used and the similarity function employed. It can also depend on whether term proximity

information is used and how it is used. Di�erent choices of the above factors lead to di�erent text

retrieval systems. The question here is how to compare the performance or e�ectiveness of di�erent

text retrieval systems.

A common measure for retrieval e�ectiveness is recall and precision. For a given query submitted

by a user, suppose that the set of relevant documents with respect to the query in the document

collection can be determined. The two quantities recall and precision can be de�ned as follows:

recall =
the number of retrieved relevant documents

the number of relevant documents
(1.3)

precision =
the number of retrieved relevant documents

the number of retrieved documents
(1.4)

Example 1.2 Suppose for a given query, there are 12 relevant documents in the collection. When

10 documents are retrieved, 8 are identi�ed as relevant. In this case, recall = 8/12 = 2/3 and

precision = 8/10 = 0.8. Suppose when 20 documents are retrieved, 12 are identi�ed as relevant.

Then in this case, recall = 12/12 = 1 and precision = 12/20 = 0.6. Usually, when recall increases,

precision decreases.

A recall of 100% may not indicate excellent retrieval because the system may simply return

all documents to the user who does not have the time to read these documents. A precision of

100% does not necessarily indicate good retrieval results, as the system may return a single relevant

8 CHAPTER 1. TEXT RETRIEVAL

Numerous other similarity functions exist. Usually, they return values between 0 and 1, indicat-

ing no match and perfect match respectively. Very often, proximity information about terms can be

utilized to yield more relevant documents. For example, consider two documents D1 and D2 which

have exactly the same length and exactly the same set of terms in common with a query and the

normalized weights of the common terms are identical in both documents. Suppose in document

D1, the set of common terms appear in close proximity, while in document D2, they appear in

di�erent locations which are far apart. It is possible to argue that document D1 is semantically

more similar to the query than document D2 and a good similarity function, say sim(), would

assign a higher similarity to D1 than D2. As an example, suppose the query is \programming

language". In document D1, the phrase \programming language" appears in a sentence (note that

after stemming is applied, \programming" becomes \program"), while in document D2, the phrase

\TV program" appears in one sentence and \the German language" appears in another sentence.

In this example, it is likely that the document D1 is useful to the user, but the document D2 is

not. One way to implement a similarity function which takes into consideration the proximity of

words is as follows. First, compute the similarity between the query and the documents using a

standard similarity function such as Cosine. This will have the similarity of D1 with the query

identical to that of D2. Second, each document is pre-partitioned into chunks. For example, for a

book, each chapter is a partition of a book. A �ner partition would have sections within a chapter

as partitions. Then, the same similarity function is applied to each partition. In the case of D1,

there is a partition of the document which have all the common terms between the document and

the query. As a result, the similarity of this partition with the query will be high. In the case of D2,

since the common terms are spread out over di�erent partitions, the similarity of the query with

any one partition in D2 will be small. Thus, the partition in D1 with all the common terms will be

retrieved ahead of any partition in D2. In other words, the retrieval process is a two step process.

First, the similarities of whole documents with the query are obtained. Those documents which are

reasonably similar to the query will undergo the second step. In the second step, the similarities

of the partitions of each retrieved document with the query are computed. Those partitions which

yield high similarities (possibly together with the whole documents containing them) are presented

to the user.

The above scheme is by no means the only way to implement the computation of similarities

which take into consideration the proximities of terms. Assume that each occurrence of a term is

associated with a location. It could be a logical one such as a chapter number, a section number

within a chapter, a paragraph number within a section and a sentence number within a paragraph.

It could be a physical one such as a line number within the document. Based on the location

information, it is possible to compute the degree of proximity between the occurrences of two

terms. For example, if the two occurrences are in the same line or di�er by at most one line, then

they are assumed to be in proximity of each other. Thus, if a query requires two terms to be close

1.4. DOCUMENT/QUERY MATCHING 7

two vectors. One simple similarity function is the following dot product function:

dot(q; d) =
nX

k=1

qi � di (1.1)

where q = (q1; :::; qn) is a query and d = (d1; :::; dn) is a document. When the two vectors are binary

vectors, i.e., containing 0's and 1's only, where 0 and 1 represent the absence and presence of a term

in the document/query, the similarity given by the dot product function yields the number of terms

in common between the two vectors. If the ith term is present in both vectors, the contribution to

the dot product due to this term is 1; otherwise, the contribution is 0. The dot product function

sums the contributions due to the n terms. In practice, the terms are weighted, permitting more

important terms to contribute more to the similarity. Thus, the dot product function is a weighted

sum of terms in common between the two vectors. A main drawback of the dot product function is

that it tends to favor long documents over short documents. The reason is that the chance of having

more terms in common between a document and a given query is higher for a longer document than

a shorter document as a longer document has more terms. Another drawback of the dot product

function is that similarities computed using this function has no clear upper bound.

One popular way to overcome the problems associated with the dot product function is to divide

the dot product by the product of the lengths of the two vectors, namely the document vector and

the query vector. The new similarity function is known as the Cosine function [3].

Cosine(q; d) =
dot(q; d)

jqj � jdj
(1.2)

where jqj and jdj are respectively the lengths (or norms) of the query vector and the document

vector. For a given vector X = (x1; :::; xn), its length is de�ned by jX j =
q
x21 + :::+ x2n. The

Cosine function overcomes the problems of the dot product function as follows. First, a longer

document will have a large norm and since the norm is the denominator of the fraction it will

compensate the likely larger dot product achieved by the document. As a result, longer documents

will no longer be favored over shorter ones. Second, if the weight of each term in a document or

a query is non-negative, then the Cosine function returns a value between 0 and 1. It gets the

value 0 if there is no term in common between the query and the document; its value is 1 if the

query and the document are identical or one vector is a positive multiplicative constant of the

other. In fact, the Cosine function measures the angular distance between the query vector and

the document vector. Speci�cally, if � is the degree of the angle between the query vector and the

document vector, then Cosine(q; d) = cos�. In practice, we are mostly interested in the relative

similarity values of documents with respective to a given query so that the documents can be ranked

in descending similarity values. Since all similarities computed based on the Cosine function has

the same factor 1=jqj for a given query, jqj could be dropped (i.e., replaced by 1). However, such a

replacement may yield similarities not upper bounded by 1.

6 CHAPTER 1. TEXT RETRIEVAL

tf > 0, where max tf is the largest term frequency for all terms in the document; otherwise, the

weight is 0. In the formula, c1 and c2 are constants. The choice c1 = c2 = 0:5 is widely used. The

second factor a�ecting the weight of a term is the document frequency (df), which is the number

of documents having the term. Usually, the higher the document frequency, the less important

the term is in di�erentiating di�erent documents. In the extreme case where all documents have a

term, then this term is not very useful for di�erentiating one document from another. In the other

extreme case where there is only one document having the term, the document having the term can

be easily distinguished from other documents. Thus, the weight of a term based on its document

frequency is usually monotonically decreasing and is called the inverse document frequency weight

(idfw). One such formula is log N
df+c

, where N is the total number of documents and c is a constant

(say 1). The weight of a term in a document can be the product of its term frequency weight and

its inverse document frequency weight, i.e., tfw � idfw.

1.3 Query Representation

A query is simply a question written in text. Based on the vector query model, each query can be

transformed into an n-dimensional vector as well. Speci�cally, the non-content words are eliminated

by comparing the words in the query against the stop list. Then, words in the query are mapped

into terms and �nally, terms are weighted based on term frequency and/or document frequency

information. While term frequency weights are used in both queries and documents, the inverse

document frequency weight is usually used in either the queries or the documents but not both.

Thus, the weight of a term in a document can be its term frequency weight and the weight of the

term in a query can be the product of its term frequency weight and its inverse document frequency

weight.

Although the terms submitted in a user query are indicative of the content of the documents

the user wants to retrieve, documents of interest may not be retrieved based on these terms only.

One reason is that a word in di�erent contexts may have di�erent meanings. Another reason is

that synonyms or related terms but not the exact terms used in the query are present in the desired

documents. If these related terms are added to the query, then the query is represented in a better

context, resulting in the retrieval of more relevant documents. This is known as query expansion.

1.4 Document/Query Matching

After documents and query vectors are formed, document vectors which are close to the query

vector are retrieved. A similarity function can be used to measure the degree of closeness between

1.2. DOCUMENT REPRESENTATION 5

more terms with similar meanings can be matched). A stemming program may sometimes yield

incorrect results. Speci�cally, variations of the same words may be mapped to di�erent terms and

semantically di�erent words can be mapped to the same term.

Several other simple techniques for mapping words to terms are also widely used. These include

converting upper-case characters to lower-case characters and the removing of special symbols such

as hyphen and punch signs. In a later section, additional techniques for determining terms will be

discussed.

After the above steps, each document can be represented as a set of terms.

Example 1.1 Consider a document d = \The number of Web pages on the World Wide Web

was estimated to be over 800 millions in 1999." The stop-words in this document are \the", \of",

\on", \was", \to", \be", \over" and \in" and they should be removed. After the application of the

stemming algorithm, the words \pages", \estimated" and \millions" become \page", \estimat" and

\million", respectively. After converting upper-case characters to lower-case ones, this document

can be represented by the following index terms (800, 1999, estimat, million, number, web, wide,

world).

1.2.2 Term Weighting

As discussed in the above, each document can be represented as a vector of its index terms. Intu-

itively, we can see that not all index terms of a document have the same importance in representing

the content of the document. While it might be possible to manually assign an appropriate im-

portance factor (weight) to each term in a document, this method is not practical as it is too

time-consuming. In this subsection, we introduce a widely used automated technique for assigning

weights to terms.

For ease of discussion, each document is logically represented as a vector of n terms, where n is

the total number of terms in the collection of all documents in a text retrieval system. The terms

can be ordered in certain way (say in alphabetical order). Suppose the document d is represented

by the vector (d1; :::; di; :::; dn). Then, di is 0 if the ith term is absent from the document and it

takes on a positive value if the ith term is present in the document. Most of the entries in the vector

will be 0 because most terms are absent from any given document. The value of di is called the

weight of the ith term in document d. Ideally, the weight of a term in a document should indicate

the importance of the term in representing the content of the document.

When a term is present in a document, the weight assigned to the term in the document is

usually based on two factors. The term frequency (tf) of a term in a document is the number of

times the term occurs in the document. Intuitively, the higher the term frequency of the term,

the more important the term is in representing the content of the document. As a consequence,

the term frequency weight (tfw) of the term in the document is usually a monotonically increasing

function of its term frequency. A possible weighting formula is c1+c2�
tf

max tf
, if the term frequency

4 CHAPTER 1. TEXT RETRIEVAL

1.2 Document Representation

In order to facilitates e�cient and accurate retrieval, documents in a text retrieval system need

to be �rst preprocessed and then represented in suitable format. A text retrieval system typically

characterizes each text document by a set of keywords. When a user query contains some keywords,

documents having some or all of these keywords are retrieved. We now outline the process to

characterize the documents. This process consists of primarily two steps. The �rst step is to

determine what terms to use to represent the content of each document and this is known as

document indexing. The second step is to determine the relative importance (or weight) of each

term in a document representation and this is known as term weighting. Finally, the matching

of documents against the query is performed to obtain the similarities of the documents with the

query.

1.2.1 Document Indexing

A text document is usually rather lengthy and it often contains a high percentage of non-content

words such as \a", \of" and \is". Keeping these words in the representation of a document will

not only increase the overhead of storing the document but will also have an adverse e�ect on the

retrieval accuracy as matching on non-content words can distract the attention from the matching

of important content words. For example, a document matching many non-content words but few

content words with the query may be ranked higher than another document having few non-content

words but more content words in common with the query. To solve this problem, non-content words

are typically not used to represent documents. In practice, non-content words can be identi�ed in

advance and manually placed in a collection of words called the stop list. Words appearing in the

stop list are then discarded from document representations. The remaining words in the document

are content words and can be used to represent the document. A possible way to identify words

in the stop list automatically is to �nd for each word the number of documents having the word

and then set a threshold. Any word in which the number of documents containing it exceeds the

threshold is assumed to belong to the stop list.

Many words have di�erent variations but with similar meanings. An example is the words

\beauty", \beautiful" and \beautify". Due to their di�erences in spelling, word variations prevent

words with similar meanings to be matched. A commonly used technique to deal with this problem

is to apply a stemming algorithm to map word variations with the word stem into a single word (i.e.,

the stem). There are stemming programs such as Porter's stemming program [2] which perform

such a task by removing some su�x of a word and possibly replace it by some other characters.

For example, the above three words may be mapped to the term \beaut". A good stemming

program can map most words to terms correctly and as a result can improve the e�ciency of

query evaluation (as fewer distinct terms need to be matched) and the retrieval accuracy (as

1.1. QUERY MODELS 3

details). This is in sharp contrast with the Boolean query model where a document either satis�es

to fails a query. This feature of the vector query model allows documents to be ranked according to

how well they match with a given query. Furthermore, better matched documents can be displayed

�rst to the user to facilitate the �nding of useful documents. The ranking also makes it possible to

control the number of documents in the result for each query. For example, if a user only wants 10

documents in the result, then the 10 highest ranked documents can be displayed.

Vector queries are most widely used and supported on Web-based search engines. Throughout

this book, vector queries will be the assumed query model in our discussion unless the otherwise is

explicitly stated.

1.1.3 Proximity Query Model

A common weakness of the Boolean query model and the vector query model is that they do not

take the closeness of query terms in documents into consideration. Intuitively, when query terms

appear close to each other in a document, the document is more likely to be useful. For example,

consider a query with two terms \space shuttle". The two terms have a special meaning when used

together as a phrase. If the closeness of the two terms is ignored, then the statement \There is

still space on that shuttle bus." will match the query as well as the statement \The space shuttle

Challenger is taking o�.". But clearly the latter statement should be a better match.

Proximity queries specify how the closeness of query terms should be taken into consideration

when retrieving documents. Sometimes the order of the occurrences of query terms will also be

utilized. As an example, the proximity query \proximity(t1, t2, 3)" can be used to retrieve all

documents that contain both terms t1 and t2 with the two terms not being separated by more than

3 words. A phrase query can be considered as a special case of a proximity query. For example, the

phrase query \space shuttle" can be used to �nd all documents that contain both terms \space"

and \shuttle" with the term \space" appearing immediately before the term \shuttle". Most text

retrieval systems support certain types of proximity queries such as phrase query.

Just as in the case of Boolean queries, documents satisfying a proximity query are usually not

ranked.

In principle, it is possible for a text retrieval system to support combined query models so that

the advantages of di�erent query models can be utilized. For example, a query (t1; w1), (t2; w2)

and (t1; t2, proximity 3) may mean documents retrieved by the query need to have both terms with

no more than 3 words apart. Furthermore, these documents are ranked using the weights assigned

to the terms in the query as well as weights assigned to the terms in the documents.

2 CHAPTER 1. TEXT RETRIEVAL

example, to retrieval documents that contain either the two terms t1 and t2 or term t3, as well as

term t4 but not no term t5, the Boolean query can be expressed as \((t1 and t2) or t3) and t4 and

not(t5)". It can be shown that any Boolean query can be transformed into one of two normal forms:

the conjunctive normal form and the disjunctive normal form. The former connects or-clauses by

\and" operators while the latter connects and-clauses by \or" operators. An or-clause contains one

or more terms (or the negation) and uses the \or" operator to connect them and an and-clause

contains one or more terms (or the negation) and uses the \and" operator to connect them. As an

example, the above Boolean expression can be transformed into the conjunctive normal form \(t1

or t3) and (t2 or t3) and t4 and not(t5)" with 4 or-clauses. The same above Boolean expression

can be transformed into the disjunctive normal form \(t1 and t2 and t4 and not(t5)) or (t3 and t4

and not(t5))" with 2 and-clauses.

Boolean queries are widely used in text retrieval systems. The Boolean query model has several

advantages. First, it has good expressive power in terms of representing users' information needs.

Second, it makes the retrieval deterministic. In other words, for any Boolean query, a document

either satis�es it or not satis�es it. However, the Boolean query model also has several drawbacks.

First, non-trivial Boolean queries are di�cult to form and understand. Users need to be trained to

write complex Boolean queries correctly. Second, documents satisfying a Boolean query cannot be

ranked as they are all considered to satisfy the condition equally well. This is somewhat counter-

intuitive as it is likely that some documents will match the user's information needs better than

others. Third, a user can either get too many or too few results depending on how many documents

can satisfy his/her Boolean query. Should it be possible to rank results, the user may be able to

control the result size by requesting the system to return only the top k ranked documents for some

desirable k.

1.1.2 Vector Query Model

A vector query contains one or more terms and there are no special operators. It can be entered

either as an English sentence from which terms (content words) are extracted or as a set of terms

directly. Each query can be represented as a vector of terms with weights where the weight of

a term indicates the importance of the term in the query. For example, consider the query \text

analysis and text retrieval". This query has three distinct content words, namely \text", \analysis"

and \retrieval". The other word \and" is a non-content word (also known as stopword). Suppose

among the three content words, \analysis" and \retrieval" are equally important and \text" is twice

as important as the other two words as it appears twice in the query while the other two words

appear only once. As a result, this query can be represented as ((analysis, 1), (retrieval, 1), (text,

2)) or simply as (1, 1, 2) if we know the order of these words.

A document can satisfy a vector query to di�erent extents depending on several factors such

as the number of query terms it contains and the importance of these terms (see Section 1.2.2 for

Chapter 1

Text Retrieval

A large amount of digital data are in text format. They can be text �les in personal computers

or web pages on the World Wide Web. They usually have less structure than formatted data in a

traditional database such as a relational database. Sometimes they are referred to as unstructured

data. Text retrieval (also known as information retrieval and document retrieval) is an area in

computer science that addresses issues or techniques for the accurate and e�cient retrieval of text

documents. In this chapter, we provide a short introduction to this area. The content in this

chapter is crucial for understanding later chapters.

1.1 Query Models

When a user wants to �nd some documents from a text retrieval system, he/she needs to submit

a query to the system. The query should indicate the information need of the user. There are

primarily three query models for users to express their information needs and they are the Boolean

query model, the vector query model and the proximity query model. It is possible to form a query

that has components in di�erent query models.

1.1.1 Boolean Query Model

Queries in this model use Boolean operators and, or and not to connect query terms. For example,

the Boolean query for retrieving all documents that contain both \text" and \retrieval" can be

expressed as \text and retrieval" and the query for retrieving all documents that contain either

\text" or \retrieval" or both words can be expressed as \text or retrieval". The query for retrieving

all documents that contain \text" but not \retrieval" can be expressed as \text and not(retrieval)".

In general, a Boolean query is a Boolean expression of terms and Boolean operators. Any single

term is a Boolean expression and if B, B1 and B2 are Boolean expressions, so are \B1 and B2",

\B1 or B2" and \not(B)". A single Boolean query can contain zero or more Boolean operators. For

1

