
CSE 494 Project A

Garrett Wolf

Introduction
The main purpose of this project was to give us a chance to experiment with various ranking algorithms.

First, we were provided an interface with which we could perform Boolean queries on the underlying

index. After running some of the sample queries using the Boolean Model search interface, we were asked

to implement the Vector Space Model to rank the documents. This write-up will provide a background on

the Vector Space Model, an explanation of the ranking algorithm that was implemented, and a brief

evaluation of the algorithm’s performance.

Vector Space Model Background
In this project, the Vector Space Model ranking algorithm was implemented using the cosine theta

normalized similarity metric where term weights in the documents and queries are represented using a tf-idf

weighing scheme. In this scheme, the following formulas are used in calculating the document term

weights.

)),(max(
),(),(

jifreq
jifreqjitf = = the normalized term frequency of term ti in document dj

= the normalized inverse document frequency of term ti where N is the total
number of documents and ni is the number of documents containing the term ti

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

in
Niidf log)(

)(*),(iidfjitfwij= = weight of term ti in document dj

Queries entered by the user are also represented as a vector of term weights. The formula for the query

term weights uses the idf formula from above from above but has a slightly different tf formula. For each

term in the query, a weight is assigned using the following formulas and is assigned a zero weight

otherwise.

)),(max(
),(*5.05.0),(
qifreq

qifreqqitf += = the normalized term frequency of term ti in query q

)(*),(iidfqitfwiq= = weight of term ti in query q

Using these formulas, we can define the cosine similarity formula as the sum of the document/query term

weights divided by the product document and query vector norms.

qd
wijwiq

dqSim
j

j
*
*

),(∑= = the similarity between document dj and query q

Vector Space Model Algorithm
Figure 1 provides definitions for variables and data structures used in this implementation of the Vector

Space Model algorithm. These definitions will be used throughout the discussion of the algorithm shown

in Figure 2.

Figure 1: Vector Space Model Algorithm Definitions

Let N = number of documents in the index
Let n = the document frequency for term Ti i

Let idfi = inverse document frequency of term Ti in the index
Let tfij = term frequency of term Ti in document Dj
Let tfiq = term frequency of term Ti in query Q
Let wiq = weight of term Ti in the query Q
Let qNorm = the norm of the query vector Q
Let qTerms = set of terms and their weights in query Q
Let wij = weight of term Ti in the document Dj
Let sim[j] = similarity score for document Dj
Let maxFreq[j] = maximum term frequency of document Dj
Let maxTfq = maximum term frequency of query Q
Let docTotal[j] = total sum of squares for document Dj
Let norm[j] = normalization factor for document Dj
AddToMaxHeap(j, sim[j]) = adds document number and similarity score for

document Dj to a sorted max heap

Figure 2 shows an outline of the algorithm used in the implementation of the Vector Space Model. The

algorithm consists of three main steps: computing the document norms, computing the query weights/norm,

and computing the document/query similarity.

To save valuable time and improve performance from the user perspective, the normalization factors for

each document are precomputed when the system first starts. To compute these normalization factors, the

system iterates through each term in the index (line 01). The first step is to calculate the inverse document

frequency (line 02) according to the formulas provided in the background section. Next, the system iterates

through each document that contains the term (line 03). Remember that when calculating a document’s

normalized term frequency, the maximum term frequency over all terms in the document must be used.

For this reason, the system tracks the maximum term frequency for each document in an array (lines 04 &

05). Part of the normalization factor is going to include the norm of the document where the norm is the

square root of the sum of the document term weights squared. The sum of the document term weight

squares are tracked for each document (line 06). After iterating through each term in the index, another

loop begins which iterates through each document in the index (line 07). This iteration computes the

normalization factor for each document (line 08). The factor is computed as one divided by the square root

of the sum of squares divided by the maximum term frequency. Here the sum of squares is divided by the

maximum term frequency because when calculating the term weights, the maximum term frequency was

not known and therefore the tf value was not normalized. All of this is equal to one over the norm of the

document. This algorithm goes an extra step by dividing the entire value by the maximum term frequency

to eliminate the need to store the maximum term frequency for later use in the document term weight

calculation of the similarity function’s quotient. Not storing the maximum term frequency for each

document helps to save resources and can come in quite useful if the number of documents in the index

becomes quite large. An example is provided below.

()
qd

iidfjifreqwiq
jifreqqd

iidf
jifreq

jifreqwiq

qd
wijwiqdqSim

jjj
j *

)(*),(**
)),(max(

1
*

)(*
)),(max(

),(*

*
*),(∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=∑=

The next main step in the algorithm is computing the query term weights and norm of the query vector.

The query is represented as a vector with the terms and their corresponding weights. First, the system

iterates through each term in the query (line 09). If the term is already in the vector, the system gets its

associated frequency; otherwise it sets the frequency to zero (lines 10 & 11). The term frequency is then

incremented by one (line 12) and if the incremented weight is greater than the query’s maximum term

frequency, it becomes the new maximum term frequency (lines 13 & 14). The vector is then updated with

the frequency (line 15).

The final step of the algorithm computes the document/query similarity. For each term in the query (line

16) the query term weight is calculated using the formulas provided in the background section (line 17).

Similar to the calculation of the document norms, the sum of the query term weight squares are tracked

(line 18). For each document containing the term (line 19), the document term weight is calculated (line

20). The document and query term weights are then multiplied and added to the similarity score for the

document (line 21). After completing the loop, the query normalization factor is computed as one divided

by the square root of the sum of query term weight squares (line 22). Finally, for each document (line 23),

the similarity score is normalized by multiplying it by the document and query normalization factors (line

24). The normalized similarity score and document number are then added to a sorted max heap (line 25)

where they can then be displayed to the user in vector space model ranked order.

Figure 2: Vector Space Model Algorithm

01
02
03
04
05
06

// precompute document norms
For each term Ti in the index

Set idf = log(N/n) i i

For each document D containing term Tj

If tf
i

ij > maxFreq[j]
Set maxFreq [j] = tfij

 Set docTotal[j] = docTotal[j] + (tfij * idfi)2

07
08

09
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

For each document Dj in the index
 Set norm[j] = 1 / (docTotal[j] / maxFreq[j]).5 / maxFreq[j]

// compute query term frequencies
For each term T in the query Q i

 If qTerms contains Ti
 Set tfiq = frequency of Ti in qTerms
 Set tfiq = tfiq + 1
 If tfiq > maxTfq
 Set maxTfq = tfiq
 Set add/update Ti and tfiq to qTerms

// compute document/query similarity
For each term Ti in the query Q

Set wiq = (.5 + .5 * [freq(i,Q)/max(freq(i,Q)]) * log(N/ni)
Set qNorm = qNorm + wiq2

For each document D containing Tj i

 Set wij = freq(i,j) * log(N/ni)
Set sim[j] = sim[j] + wiq * wij

Set qNorm = 1 / qNorm.5
For each document Dj in the index
 Set sim[j] = sim[j] * norm[j] * qNorm
 AddToMaxHeap(j, sim[j])

As mentioned earlier, precomputing the normalization factors for each document results in a user perceived

performance increase. The loop at line 01 requires at most t+1 operations to loop through each term and

set the idf. There are at most dt+3 more operations performed during the inner for loop starting at line 03.

At line 07 the norm is calculated for each document requiring at most d+1 operations. Therefore, the

running time for the segment that precomputes the document norms is O(tdt) where t is the number of

terms in the index and dt is the maximum document frequency of the terms.

)(43)1()3)(1(tdtdtdttdtddtt Ο=++++=++++

The actual running time of the algorithm that executes after the user enters the query can be calculated as

follows. At most qt+6 operations for the loop starting at line 09. Starting at line 16, at most tq+2

operations are needed. The loop starting on line 19 requires at most qdt+2 operations. A single operation

is needed for line 22 and d+2 more are needed for the loop starting on line 23. Therefore, the running time

of the algorithm that executes after the user enters their query is O(tqqdt) where tq is the number of terms

in the query and qdt is the maximum document frequency of a term in the query.

)(1322)2(1)2)(2()6(tqqdtdqtqdttqtqqdtdqdttqqt Ο=+++++=+++++++

Conclusion
The Vector Space Model provides better results than the Boolean model because it allows documents that

only partially match the user’s query to be returned. In addition, by computing a similarity score, the

documents can be ranked according to their closeness to the user’s query. By normalizing the term

frequency and inverse term frequency when computing the weight of a term and by dividing by the norm of

the document and query vectors, you wind up with a much more accurate similarity score.

