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tampering

smoke

Figure 10.2: Belief network for report of leaving of Example 10.16

applicable, even if all of the parents of a are also part of e. If e specifies a value for
a—for example, contains ¢ = v;—then that value is all that is needed to determine
the probability of a. Otherwise, suppose e is a conjunction ¢; A €: where ¢; involves
only descendants of a. and e, contains no descendants of a. Bayes’ rule can be used
to compute Plale):

Plejla nea) x Plales)
Plelez)

Plale; nea) =

The right-hand side of this equation has no instance of conditioning on a descendant:
Neither a nor e» involves a descendant of ¢, and e; doesn't involve a descendant of a.

Suppose you want to use the diagnostic assistant to diagnose whether there is a firein
a building. based on noisy sensor information and possibly conflicting explanations
of what could be going on. The agent receives a report about whether everyone
is leaving the building. Suppose the report sensor is noisy: It sometimes reports
leaving when there is no exodus, a false positive, and sometimes doesn’t report
when everyone is leaving, a false negative. Suppose the fire alarm going off can
cause the leaving. Either tampering or fire could cause the alarm. Fire also causes
smoke to rise from the building. The belief network of Figure 10.2 can express
such knowledge.

The variable repert denotes the sensor report that people are leaving. This
variable is introduced to allow conditioning on unreliable sensor data. The infobot
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knows what the sensor reports, but it only has unreliable evidence about people
leaving the building. It can condition only on what it knows—in this case, on what
the sensor reports,

As well as the graph depicted in Figure 10.2, you also need to specify the
domain of each variable and the conditional probabilities of each variable given
each assignment of values to its parent. For this example, assume that the variables
are all Boolean, with the following probabilities:

Plalarm|fire » tampering) = 0.5
Plalarm|fire A —tampering) = 0.99
P(alarm|—fire » tampering) = 0.85
Plalarm|=fire n —tampering) = 0.0001
P(smokelfire) = 0.9
P(smoke|—fire) = 0.01
Pleavinglalarm) = (.88
P(leaving|—alarm) = 0.001
F(report|leaving) = 0.75
Plreport|—leaving) = 0.01
P(fire) = 0.01
Pltampering) = 0.02
The probabilities of a variable given nondescendants can be computed using the
“reasoning by cases” rule (page 352). The probability of people leaving the build-
ing, given there is smoke, can be derived using
P(leaving|smoke)
= P(leaving|alarm » smoke) x P(alarm|smoke)
+ P(leaving|—alarm A smoke) x (1 — Plalarm|smoke))
= Plleavinglalarm) x Plalarm|smoke)
+ P(leaving|—alarm) x (1 — P(alarm|smoke)).
The probabilities P{leaving|alarm) and P(leaving|—alarm) are provided as part of
the belief network. '

It remains to compute P(alarm|smoke). A case analysis on Plalarm|smoke)

gives
Plalarm|smoke)
= Plalarm|fire A tampering) x P(fire A tampering|smoke)
+ P(alarm|fire /. —tampering) x P(fire 7 —tampering|smoke)

+ Plalarm|—fire n tampering) x P(—fire A tampering|smoke)
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is to add an extra node that indicates that the model is appropriate. Arcs from this
node would lead to each variable representing power in a wire and to each light,
When the model is appropriate, you can use the probabilities of Example 10.15
(page 368). When the model is inappropriate, you can, for example, specify that
each wire and light works at random. When there are weird ohservations that don’t
fit in with the original model—they are impossible or extremely unlikely given the
model—the probability that the model is inappropriate will increase.
This network can be used in a number of ways, for example:

o By conditioning on the knowledge that the switches and circuit breakers are
ok. and on the values of the outside power and the position of the switches,
you can use this network to simulate how the lighting should work.

o Given values of the outside power and the position of the switches, you can
determine how likely any outcome is—for example, how likely it is that [} is
lit.

o Given values for the switches and whether the lights are lit, you can determine
the posterier probability that each switch or circuit breaker is in any particular

state.

Given some observations, you can use the network to reason backwards to

determine the most likely position of switches.

o Given some switch positions and some outputs and some intermediate values,
you can determine the probability of any other variable in the network.

Implementing Belief Networks

The problem of determining posterior distributions—the problem of computing
conditional probabilities given the evidence—is one that has been widely researched.

The problem of estimating the posterior probability in a belief network within an
absolute error (of less than 0.3), or within a constant factor, is NP-hard, so general
efficient implementations will not be available.

Three main approaches are taken to implement belief networks:

o Exploiting the structure of the network. This approach is typified by the cligue
tree propagation method. where the network is transformed into a tree with
nodes labeled with sets of variables. Evidential reasoning is carried out by
passing messages between the nodes in the tree. The values passed between the
nodes are the distributions on the variables in commeon between the nodes. These
distributions on a subset of the variables are called marginal distributions. One
piece of evidence (an observation) can be entered with time complexity linear in
the size of the tree. The size of the tree may, however. be exponential in the size
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of the belief network. but it's small when there are few multiple paths between

nodes the belief networks. A related approach that exploits structure is detailed
below.

Search-based approaches. You enumerate some of the possible worlds, and
you estimate posterior probabilities from the worlds generated. You can bound
the probability mass of the worlds not considered, and you use this bound to
estimate the error in the posterior probability. This approach works well when
the distributions are extreme (all probabilities are close to zero or close to one).

° .m,onwpmmn simulation. In these approaches, random cases are generated accord-
ing to the probability distributions. By treating these random cases as a set
of samples. you can estimate the marginal distribution on any combination of
variables.

The following gives a general algorithm for exploiting structure. Many of the efficient
methods can be seen as optimizations of this algorithm.

An Algorithm For Evaluating Belief Networks

) This section gives an algorithm for finding the posterior distribution for a variable
in an arbitrarily structured belief network. The algorithm is based on the notion that a
belief network specifies a factorization of the joint probability distribution (page 368).
A Prolog implementation of this algorithm is given on page 521. i

Before we give the algorithm, we need to define factors and the operations that
will be performed on them.

A factor is a representation of a function from a tuple of random variables into a
number. We will write factor f on variables x, ...y asf(x,.... %;). The variables
X1, ....x are the variables of the factor f, and f is a factor on xy, ..., x;.

Suppose f(x,.... %) is a factor and each v; is an element of the domain of x;.
flxi=v, xa=va,...,1 xj=v;) is a number that is the value of f when each x; has
value v;. You can assign some of the variables of a factor and make a new factor. For
example, f(x; = vy, 2. ..., x;), sometimes written as f(x;, X2, ..., )y =y, Where v
is an element of the domain of variable xi, is a factoron xa. ..., x;. S

You can multiply factors together. Suppose fi and f are factors, where-f] is a
factor that contains variables x....,x and yi....,¥; and f> is a factor with vari-
ables vy, ...,y and z;...., 2, where y;,....); are the variables in common to f
and f5. The product of fi and /> is a factor on the union of the variables, namely
Ky ey Xy Pl o rio Wi Bl s 2a i, defined by: ’

U X B)Y0ers oo vy Praeeos Y Tps woa v Zk)

= filxy, oo X Vi ¥R o W T 2
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You can sum out a variable in a factor. Given factor f(x|.....X;), summing out a
v; defined by:

variable, say x;. results in a factor on %2, ..

P x) =fla=v ) A f =)

where {v, ..., v} is the setof possible values of variable x;.
Given this definition. a conditional probability distribution P(x|¥,....¥) can be
seen as a factor f onx, ¥p..... ¥j, where

y=v) = Ple=uln =vi A= Ay =)

Usually we will use the P(-|-) notation rather than use f. The fact that it’s a probability
means that for all values 1 and vy, . ... Vi,

Plx=ulyi=".- )
ME»,_.«__ =vi...ay=y=1

The belief network inference problem is the problem of computing the posterior
distribution of a variable given some evidence.

The problem of computing posterior probabilities can be reduced to the problem of
computing the probability of conjunctions. Given evidence y; =V, .... Y =V, and
query variable 2:

Pizlyi=vi, ... ¥%=V)
Blzivi=vii:

i B q | =V]..

. Plz.y1 =V .- !

o Muﬁhn‘v;”._\_.::e____.uﬁ_.u.
So all you need to do is compute the factor P(z. vy =Vi,....);=V;) and mcdﬁ.mmmﬂ
Note that this is a factor only of z; given a value for z, this returns a number that is the
probability of the conjunction of the propositions.

Suppose the variables of the belief network are xj, ..., v,. To compute H._E m,.,.ﬂm_.

P(z.y =V, ....¥=v), you can sum out the other variables from the joint distri-

bution. Suppose I, ..., Is an enumeration of the other variables in the belief

network—that is,

{

You can construct the desired factor by summing out the . The order of the z; is an
elimination ordering.

~OAH..<_. =V Yi= _.___q = M HH MHUART b ..H___u.__._ =V =Y
b 2

vzl =1x o = {2 = Dk
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Note how this is related to the semantics of probability (page 349): There is a possible
world for each assignment of a value to each variable. The joint probability distri-
bution, P(x;. ..., x,) gives the probability (or measure) for each possible world. All
you are doing is selecting the worlds with the observed values for the y,'s and summing
over the possible worlds with the same value for z. This is the definition of conditional
probability (page 353).

By the rule for conjunction of probabilities and the definition of a belief network,

P(xy, ooy dn) = P3|y} X -0 % Plxylm,),

where m,, is the set of parents of variable x;,

We have now reduced the belief network inference problem to a problem of sum-
ming out a set of variables from a product of factors. To compute the posterior distri-
bution of a query variable given observations:

1. Construct the joint probability distribution in terms of a product of factors,
2. Set the observed variables to their observed values.

3. Sum out each of the other variables (the {zy, ..., z¢}).

4, Multiply the remaining factors and normalize.

To sum out a variable z from a productfi , - . ., fi of factors, you first partition the factors
into those that don’t contain z, say fi, . . ., fi, and those that contain z, fiyy. ..., fi; then

YoAxcexfimfixeoxfix | Do fiwrxoxf).

You explicitly construct a representation (in terms of a multidimensional array, a tree,
or a set of rules) of the rightmost factor. The factor’s size is exponential in the number
of variables of the factor.

_ Consider Example 10.16 (page 370). Here two-letter abbreviations are used for the
variables. The joint probability distribution is given by

Plta, fi, sm, al. le, re)
= Plra) x P(fi) x P(sm|fi) x Plaljta, fi) x P(lelal) x P(re|le).

Suppose that each variable has possible values {yes. no). Given the query
P(ta|sm=yes n re=yes)
and the elimination ordering fi. al, le, use the following equation:

P(ta A sm=yes A re = yes)

= M” M M P(ta) x P{fi) x P(sm=yes|fi) x
e ai fi Plallta, fi) x P(lelal) x P(re=yes|le)
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You first sum out fi:

M P(ra) x P(fi) x Plsin=yes|fi] x

f# Plallta, fi) x P(lelal) x P(re=yes|le)
Plta) x P(lelal) x P(re= yes|le) x
Y P(fi) x P(sm=yesifi) x P(allta. fi)

fi
= Plra) x P(lelal) x P{re=yeslle) x f(al, ta).

Il

£ is a newly created factor. f; only depends on al and ta. For each combination
of values of these variables there is a number obtained by summing the product
F(fi} x P(sm=yes|fi) x Plal|ta, fi) for each value of fi. Note how the factor’s size
depends on how many variables are connected to the summed-out variable.

Next sum out al:

Mm:& x P(lelal) = P(re=yesl|le) x fi(al, ta)

al

P(ta) x P(re=yes|le) x » _ P(lelal) x fi(al. ta)
al

= P(ra) x P(re=yes|le) x falle. ta).

where /> is a newly created factor that depends on le and ra.
You next sum out fe:

D Plta) x P(re=yes|le) x fi(le, ta)
Ie

Plra) = MEEH&&:& x falle, ta)
le

= Plta) x falta),

where f3 is a newly created factor that depends on ta.
The posterior distribution on ta can be computed by multiplying these factors
| and normalizing.

Modern exact algorithms use what is essentially this method, and they speed it up
by preprocessing as much as possible into a secondary structure before any evidence
arrives. This is appropriate when, for example, the same belief network may be used
for many different cases. They save intermediate results so that evidence can be
incrementally added and so that each variable’s probability can be derived after each
addition of evidence.

This algorithm can be speeded up by pruning the irrelevant nodes from the network
before the query starts. An approximation to what is relevant can be stated as follows:
The query node is relevant, ancestors of relevant nodes are relevant, and observed
descendants of relevant nodes are relevant. All other nodes are irrelevant. This will
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not remove relevant nodes but misses some irrelevant nodes. For example, if le were
observed and the query variable were re, all other variables really are irrelevant. A
more detailed specification is left as an exercise.

Unfortunately, extensive preprocessing, allowing arbitrary sequences of observa-
tions and deriving the posterior on each variable, precludes pruning the network. So
for each application you need to choose whether you will save more by pruning irrel-
evant variables for each query and observation or by preprocessing before you have
any observations.

|
” 5
E— () ﬁ i~ _H_Jﬁ.‘.f\v{
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aking Decisions Under Uncertainty

The main reason you need probabilities is to make decisions under uncertainty.
An agent’s decision on what to do depends on two things:

o What the agent believes. You may be tempted to say “what is true in the world,”
but when an agent doesn’t know what is true in the world, it can act based only
on its beliefs. Sensing the world updates the agent’s beliefs by conditioning on
what is sensed.

The agent’s goals. When an agent has to reason under uncertainty, it has to
consider not only what will most likely happen but also what may happen. Some
possible outcomes may have much worse consequences than others. The notion
of a “goal” here needs to be richer than the goals considered in Chapter 8 because
you must specify the tradeoffs between different outcomes. Forexample, if some
action results in a good outcome most of the time, but sometimes results in a
disastrous outcome, it needs to be compared with doing an alternative action that
results in the good outcome less often and the disastrous outcome less often,
Decision theory specifies how to trade off the desirability of outcomes with the
probabilities.

Example _
10.20

Consider the problem of the delivery robot when there is uncertainty in the outcome
of its actions. In particular, consider the problem of going from position 0109 in
Figure 8.1 (page 285) to the mail position, where there is a chance that the robot
will slip off course and fall down the stairs. Suppose that you can get pads for the
robot that won’t change the probability of an accident, but will make it less severe.
Unfortunately, the pads add extra weight. The robot could also go the long way
around, which would reduce the probability of an accident but make the trip much
slower.

Figure 10.4 shows a decision tree that depicts the different choices and out-
comes. To read the decision tree, you start from the left. From each node one of




