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rather are summarized as “noise parameters.” If P(Fever|Cold) = 0.4, P(Fever|Flu) = 0.8, anq
P(Fever|Malaria) = 0.9, then the noise parameters are 0.6, 0.2, and 0.1, respectively. 11 no parent
node is true, then the output node is False with 100% certainty. If exactly one parent is true, then
the output is false with probability equal to the noise parameter for that node. In general, the
probability that the output node is False is just the product of the noise parameters for all the
input nodes that are true. For this example, we have the following:

Cold Flu  Malaria |7’(Fever) P(—Fever) ]
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02=0.2 0.1
T F F 0.4- 0.6
T F T 0.94 0.06 = 0.6 = 0.1
T T F 0.88 0.12=0.6 2 0.2
L T T T 0.988 0.012=0.6 x 02 0.l

In general, noisy logical relationships in which a variable depends on k parents can be described
using O(k) parameters instead of 024 for the full conditional probability table. This makes
assessment and learning much easier. For example, the CPSC network (Pradhan et al., 1994)
uses noisy-OR and noisy-MAX, and requires “only” 8,254 values instead of 133,931,430 for a
network with full CPTs. -

Conditional independence relations in belief networks

The preceding analysis shows that a belief network expresses the conditional independence of a
node and its predecessors, given its parents, and uses this independence to design a construction
method for networks. If we want to design inference algorithms, however, we will need to know
whether more general conditional independences hold. If we are given a networl, is it possible
to “read off” whether a set of nodes X is independent of another set ¥, given a set of evidence
nodes £7 The answer is yes, and the method is provided by the notion of direction-dependent

“separation or d-separation.

First, we will say what d-separation is good for. If every undirected path® from a node in
X to a node in Y is d-separated by E, then X and Y are conditionally independent given E. The
definition of d-separation is somewhat complicated. We will need to appeal to it several times in
constructing our inference algorithms. Once this is done, however, the process of constructing
and using belief networks does not involve any uses of d-separation.

A set of nodes E d-separates two sets of nodes X and Y if every undirected path from a
pode in X to a node in Y is blocked given E. A path is blocked given a set of nodes E il there is
a node Z on the path for which one of three conditions holds:

1. Zisin E and Z has one arrow on the path leading in and one arrow out.

2 An undirected path is a path through the network that ignores the direction of the arrows.
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2. Zisin E and Z has both path arrows leading out. Bt N e
3. Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z. '

Figure 15.4 shows these three cases. The proof that d- separated nodes are conditionally indepen-
dent i is also complicated. We will use Figure 15.5 to give examples of the three cases:

1. Whether there is Gas in the car and whether the car Radio plays are independent given
evidence about whether the SparkPlugs fire.

2. Gas and Radio are independent if it is known if the Battery works.

3. Gas and Radio are independent given no evidence at all. But they are dependent given
evidence _abﬂt whether the car Starts. For example, if the car do€s not start, then the radio

playmg is increased evidence that we are out of gas. Gas and Radio are also dependent
given evidence about whether the car Moves, because that is enabled by the car starting.
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Figure 15.4  Three ways in which a path from X to ¥ can be blocked, given the evidence E. If
every path from X to Y is blocked, then we say that £ d-separates X and Y.

15.3 INFERENCE IN BELIEF NETWORKS

The basic task for any probabilistic inference system is to compute the posterior probability
distribution for a set of query variables, given exact values for some evidence variables. That
is, the system computes P(Query|Evidence). In the alarm example, Burglary is an obvious query
variable, and JohnCalls and MaryCalls could serve as evidence variables. Of course, belief
networks are flexible enough so that any node can serve as either a query or an evidence variable.
There is nothing to stop us from asking P(Alarm|JohnCalls, Earthquake), although it would be
I iz somewhat unusual. In general, an 1 agent gets values for evidence variables from its percepts (or

from other reasoning), and asks about the possible values of other variables so that it can decide
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Battery

Figure 15.5 A belief network describing some features of a car’s electrical system and engine.

what action to take. The two functions we need are BELIEF-NET-TELL, for adding evidence to the
network, and BELIEF-NET-ASK, for computing the posterior probability distribution for a given
query variable. '

The nature of probabilistic inferences

Before plunging into the details of the inference algorithms, it is worthwhile to examine the kinds
of things such algorithms can achieve. We will see that a single mechanism can account for a
very wide variety of plausible inferences under uncertainty.

Consider the problem of computing P(Burglary|JohnCalls), the probability that there is
a burglary given that John calls. This task is quite tricky for humans, and therefore for many
reasoning systems that attempt to encode human judgment. The difficulty is not the complexity
of the problem, but keeping the reasoning straight. An incorrect but all-too-common line of
reasoning starts by observing that when the alarm goes off, JohnCalls will be true 90% of the
time. The alarm is fairly accurate at reflecting burglaries, so P(Burglary|JohnCalls) should also
be about 0.9, or maybe 0.8 at worst. The problem is that this line of reasoning ignores the prior
probability of John calling. Over the course of 1000 days, we expect one burglary, for which
John is very likely to call. However, John also calls with probability 0.05 when there actually is
no alarm—about 50 times over 1000 days. Thus, we expect to receive about 50 false alarms from
John for every 1 burglary, so P(Burglary|JohnCalls) is about 0.02. In fact, if we carry out the
exact computation, we find that the true value is 0.016. It is less than our 0.02 estimate because
the alarm is not perfect.

Now suppose that as soon as we get off the phone with John, Mary calls. We are now inter-
ested in incrementally updating our network to give P(Burglary|JohnCalls A MaryCalls). Again,
humans often overestimate this value; the correct answer is only 0.29. We can also determine
that P(Alarm|JohnCalls A MaryCalls)is 0.76 and P(Earthquake|JohnCalls A MaryCalls)is 0.18.



