Lecture of 11/16

Two parts:
Part 1: Practical issues in constructing Bayes networks
Part 2. Inference in Bayes networks

Part 1. Issues in constructing Bayes Nets

Constructing Belief Networks: Summary

- [[Decide on what sorts of queries you are interested in answering
- This in turn dictates what factors to model in the network
- Decide on a vocabulary of the variables and their domains for the problem
- Introduce "Hidden" variables into the network as needed to make the network "sparse"
- Decide on an order of introduction of variables into the network
- Introducing variables in causal direction leads to fewer connections (sparse structure) AND easier to assess probabilities
- Try to use canonical distributions to specify the CPTs
- Noisy-OR
- Parameterized discrete/continuous distributions
- Such as Poisson, Normal (Gaussian) etc

Constructing Belief Networks: Summary

- [[Decide on what sorts of queries you are interested in answering
- This in turn dictates what factors to model in the network
- Decide on a vocabulary of the variables and their domains for the problem
- Introduce "Hidden" variables into the network as needed to make the network "sparse"
- Decide on an order of introduction of variables into the network
- Introducing variables in causal direction leads to fewer connections (sparse structure) AND easier to assess probabilities
- Try to use canonical distributions to specify the CPTs
- Noisy-OR
- Parameterized discrete/continuous distributions
- Such as Poisson, Normal (Gaussian) etc

Case Study: Pathfinder System

- Domain: Lymph node diseases
- Deals with 60 diseases and 100 disease findings
- Versions:
- Pathfinder I: A rule-based system with logical reasoning
- Pathfinder II: Tried a variety of approaches for uncertainity
- Simple bayes reasoning outperformed
- Pathfinder III: Simple bayes reasoning, but reassessed probabilities
- Parthfinder IV: Bayesian network was used to handle a variety of conditional dependencies.
- Deciding vocabulary: 8 hours
- Devising the topology of the network: 35 hours
- Assessing the $(14,000)$ probabilities: 40 hours
- Physician experts liked assessing causal probabilites
- Evaluation: 53 "referral" cases
- Pathfinder III: 7.9/10
- Pathfinder IV: 8.9/10 [Saves one additional life in every 1000 cases!]
- A more recent comparison shows that Pathfinder now outperforms experts who helped design it!!

Part II. Inference in Bayes Nets

Converting Multi-connected trees into Singly connected trees

Conversion will take exponential time
-Still worth doing if conversion is done off-line and the cost is amortized over many potential queries

Summary of BN Inference Algorithms

TONS OF APPROACHES

Exact Inference

- Complexity
- NP-hard (actually \#P-Complete; since we "count" models)
- Polynomial for "Singly connected" networks (one path between each pair of nodes)
- Algorithms
- Enumeration
- Variable elimination
- Avoids the redundant computations of Enumeration
- [Many others such as "message passing" algorithms, Constraintpropagation based algorithms etc.]

Approximate Inference

- Complexity
- NP-Hard for both absolute and relative approximation
- Algorithms
- Based on Stochastic Simulation
- Sampling from empty networks
- Rejection sampling
- Likelyhood weighting
- [And many more]

Inefficient (redundant) computations in Enumeration

Inefficient (redundant) computations in Enumeration

Summary of BN Inference Algorithms

TONS OF APPROACHES

Exact Inference

- Complexity
- NP-hard (actually \#P-Complete; since we "count" models)
- Polynomial for "Singly connected" networks (one path between each pair of nodes)
- Algorithms
- Enumeration
- Variable elimination
- Avoids the redundant computations of Enumeration
- [Many others such as "message passing" algorithms, Constraintpropagation based algorithms etc.]

Approximate Inference

- Complexity
- NP-Hard for both absolute and relative approximation
- Algorithms
- Based on Stochastic Simulation
- Sampling from empty networks
- Rejection sampling
- Likelyhood weighting
- [And many more]

