
Joint Optimization of Cost and Coverage
of Query Plans in Data Integration

Zaiqing Nie & Subbarao Kambhampati
Department of Computer Science and Engineering

Arizona State University,Tempe, AZ 85287-5406

fnie,raog@asu.edu

ABSTRACT
Existing approaches for optimizing queries in data integration use
decoupled strategies–attempting to optimize coverage and cost in
two separate phases. Since sources tend to have a variety of access
limitations, such phased optimization of cost and coverage can un-
fortunately lead to expensive planning as well as highly inefficient
plans. In this paper we present techniques for joint optimization of
cost and coverage of the query plans. Our algorithms search in the
space of parallel query plans that support multiple sources for each
subgoal conjunct. The refinement of the partial plans takes into ac-
count the potential parallelism between source calls, and the binding
compatibilities between the sources included in the plan. We start
by introducing and motivating our query plan representation. We
then briefly review how to compute the cost and coverage of a paral-
lel plan. Next, we provide both a System-R style query optimization
algorithm as well as a greedy local search algorithm for searching in
the space of such query plans. Finally we present a simulation study
that demonstrates that the plans generated by our approach will be
significantly better, both in terms of planning cost, and in terms of
plan execution cost, compared to the existing approaches.

1. INTRODUCTION
With the vast number of autonomous information sources avail-

able on the Internet today, users have access to a large variety of data
sources. Data integration systems [LRO96, DGL00, LKG99, PL00]
are being developed to provide a uniform interface to a multitude of
information sources, query the relevant sources automatically and
restructure the information from different sources.

Query optimization in the context of integrating heterogeneous
data sources on the Internet has thus received significant attention
of late. It differs from the traditional query optimization in several
important ways. To begin with, a traditional optimizer is at the site
of the (single) database, and can naturally assume that each relation
mentioned in a query is stored in the same primary database, and
that the relation can always be accessed “in-whole.” In contrast, in
data integration scenarios, the optimizer sits at the mediator, and the
relations are effectively stored across multiple and potentially over-
lapping sources, each of which may only contain a partial extension
of the relation. The sources have a variety of access limitations–in
terms of binding pattern restrictions on feasible calls and in terms of

.

the number of disjunctive selections that can be passed in a single
query. Finally, and more importantly, users may have differing ob-
jectives in terms of what coverage they want and how much execu-
tion cost they are willing to bear for achieving the desired coverage.

Consequently, selecting optimal plans in data integration requires
the ability to consider the coverages offered by various sources,
and form a query plan with the combination of sources that is es-
timated to be the best plan given the cost-coverage tradeoffs of
the user. Existing approaches for optimizing queries in data inte-
gration [LRO96; NLF99; DL99; PL00] use decoupled strategies–
attempting to optimize coverage and cost in two separate phases.
Specifically, they first generate a set of feasible “linear plans,” that
contain at most one source for each query conjunct, and then rank
these linear plans in terms of the expected coverage offered by them.
Finally, they select top N plans from the ranked list and execute
them. Since sources tend to have a variety of access limitations, this
type of phased optimization of cost and coverage can unfortunately
lead to significantly costly planning and inefficient plans.

In this paper we present techniques for joint optimization of cost
and coverage of the query plans in data integration. Our algorithms
search in the space of “parallel” query plans that support parallel
access to multiple sources for each subgoal conjunct. An important
advantage of parallel plans over linear plans is that they avoid the
significant redundant computation inherent in executing all feasible
linear plans separately. The plan generation process takes into ac-
count the potential parallelism between source calls, and the binding
compatibilities between the sources included in the plan.

The rest of the paper is organized as follows. Section 2 uses a
simple example to provide a brief survey of existing work on query
optimization in data integration, as well as to motivate the need for
our joint optimization approach. Section 3 discusses the syntax and
semantics of the parallel query plans. Section 4 discusses the mod-
els for estimating the cost and coverage of parallel plans, and also
discusses the specific methodology we use to combine cost and cov-
erage into an aggregate utility metric. Section 5 describes two algo-
rithms to generate parallel query plans and analyzes their complex-
ity. Section 6 presents a comprehensive empirical evaluation which
demonstrates that our approach can offer high utility plans (in terms
of cost and coverage) for a fraction of the planning cost incurred
by the existing approaches that use phased optimization with linear
plans. This work is part of HAVASU, an ongoing project to develop
a flexible query processing framework for data integration.

2. BACKGROUND AND MOTIVATION
Consider a simple mediator that integrates several sources that ex-

port information about books. Suppose there are three relations in
the global schema of this system: book(ISBN, title, author), price-
of(ISBN, retail-price), review-of(ISBN, reviewer, review). Suppose
the system can access three sources: S11, S12, S13, each of which
contain tuples for the book relation, two sources S21, S22 each of

rao
Appeared in Proc. CIKM 2001 (pp 223-230)

Sources Relations Coverage Cost Must bind attributes
S11 book 70% 300 ISBN or title
S12 book 50% 200 ISBN or title
S13 book 60% 600 ISBN
S21 price-of 75% 300 ISBN or retail-price
S22 price-of 70% 260 ISBN or retail-price
S31 review-of 70% 300 ISBN
S32 review-of 50% 400 reviewer

Table 1: Statistics for the sources in the example system

which contain tuples for the price-of relation, and two sources S31,
S32 each of which contain tuples for the review-of relation. Individ-
ual sources differ in the amount of coverage they offer on the rela-
tion they export. Table 1 lists some representative statistics for these
sources. We will assume that the coverage is measured in terms of
the fraction of tuples of the relation in the global schema which
are stored in the source relation, and cost is specified in terms of
the average response time for a single source call. The last column
lists the attributes that must be bound in each call to the source. To
simplify matters, let us assume that the sources are “independent”
in their coverage (in that the probability that a tuple is present in a
given source is independent of the probability that the same tuple is
present in another source). Consider the example query:

Q(title,retail-price,review) : �
book(ISBN, title, author),
price-of(ISBN, retail-price),
review-of(ISBN, reviewer, review),
title=“Data Warehousing”, retail-price<$40.

In the following, we briefly discuss the limitations of existing ap-
proaches in optimizing this query, and motivate our approach.
Bucket Algorithm [LRO96]: The bucket algorithm by Levy et al.
[LRO96] will generate three buckets, each containing the sources
relevant to one of the three subgoals in the query:

Bucket B(for book): S11, S12, S13

Bucket P(for price-of): S21, S22

Bucket R(for review-of): S31, S32

Once the buckets are generated, the algorithm will enumerate 12
possible plans (= 3 � 2 � 2) corresponding to the selection of one
source from each bucket. For each combination, the correctness
of the plan is checked (using containment checks), and executable
orderings for each plan are computed. Note that the 6 plans that
include the source S32 are not going to lead to any executable or-
derings since there is no way of binding the “reviewer” attribute as
the input to the source query. Consequently, the set of plans output
by the bucket algorithms are:

p1 = (Sfbf11 ./ Sbf21) ./ S
bff
31 ,

p2 = (Sfbf11 ./ Sbf22) ./ S
bff
31 ,

p3 = (Sfbf12 ./ Sbf21) ./ S
bff
31 ,

p4 = (Sfbf12 ./ Sbf22) ./ S
bff
31 ,

p5 = (Sfb21 ./ S
bff
13) ./ Sbff31 ,

p6 = (Sfb22 ./ S
bff
13) ./ Sbff31

where, the superscripts “f” and “b” are used to specify which at-
tributes are bound in each source call. We call these plans “linear
plans” in the sense that they contain at most one source for each of
the relations mentioned in the query. Once the feasible logical plans
are enumerated, the approach in [LRO96] consists of finding “fea-
sible” execution orders for each of the logical plans, and executing
all the plans. While this approach is guaranteed to give maximal
coverage, it is often prohibitively expensive in terms of both plan-
ning and execution cost. In particular, for a query with n subgoals,
and a scenario where there are at most m sources in the bucket of
any subgoal, the worst case complexity of this approach (in terms
of planning time) is O(mnn2), as there can be mn distinct linear

plans, and the cost of finding a feasible order for them using the
approach in [LRO96] is O(n2).
Executing top N Plans: More recent work [FKL97; NLF99; DL99]
tried to make-up for the prohibitive execution cost of the enumera-
tion strategy used in [LRO96] by first ranking the enumerated plans
in the order of their coverage (or more broadly “quality”), and then
executing the top N plans , , for some arbitrarily chosen N. The idea
is to identify the specific plans that are likely to have high coverage
and execute those first.

In our example, these procedures might rank p1 = (Sfbf11 ./

Sbf21) ./ Sbff31 as the best plan (since all of the sources have the
highest coverage among sources in their buckets), and then rank
p6 = (Sfb22 ./ S

bff
13) ./ Sbff31 , as the second best plan as it contains

the sources with highest coverages after executing the best plan p1.
The problem with this type of approach is that the plans that are

ranked highest in terms of coverage may not necessarily provide
the best tradeoffs in terms of execution cost. In our example, sup-
pose source S22 stores 1000 tuples with attribute value retail-price
less than $40, then in plan p6 we have to query S13, the costli-
est among the accessible sources, a thousand times because of its
binding pattern restriction. The total cost of this plan will thus be
more than 6 � 105. In contrast, a lower ranked plan such as p4
(= (Sfbf12 ./ Sbf22) ./ Sbff31) may cost significantly less, while
offering coverage that is competitive with that offered by p6. For
example, assuming that source S12 maintains 10 independent ISBN
values for title=“Data Warehousing”, the cost of p4 may be less than
5800. In such a scenario, most users may prefer executing the plan
p4 first instead of p6 to avoid incurring the high cost of executing
plan p6.

The lesson from the example above is that if we want to get a plan
that can produce higher quality results with limited cost, it is critical
to consider execution costs while doing source selection (rather than
after the fact). In order to take the cost information into account, we
have to consider the source-call ordering during planning, since dif-
ferent source-call orders will result in different execution costs for
the same logical plan. In other words, we have to jointly optimize
source-call ordering and source selection to get good query plans.
Need for Parallel Plans: Once we recognize that the cost and cov-
erage need to be taken into account together, we argue that it is
better to organize the query planning in terms of “which sources
should be called for supporting each subgoal” rather than in terms
of “which linear plans have the highest cost/quality tradeoffs.” To
this end, we introduce the notion of a “parallel” plan, which is es-
sentially a sequence of source sets. Each source set corresponds
to a subgoal of the query, such that the sources in that set export
that subgoal (relation). The sources in individual source sets can be
accessed in parallel (see Figure 1).

In our continuing example, looking at the six plans generated by
the bucket algorithm we can see that the first four plans p1, p2, p3
and p4 have the same subgoal order (the order of the subgoals of the
sources in the plan): book!price-of! review-of; while the other
two plans p5, p6 have the subgoal order:price-of!book! review-
of. So we can use the following two parallel plans to give all of the
tuples that the six plans give in this example:

p
0

1=((Sfbf11 [S
fbf
12) ./ (Sbf21 [S

bf
22))./ Sbff31 ,

p
0

2=((Sfb21 [Sfb22) ./ Sbff13)./ Sbff31

These plans access all the sources related to a given subgoal of the
query in parallel (see Section 3.2 for a more detailed description of
their semantics). An important advantage of these plans over linear
plans is that they avoid the significant redundant computation inher-
ent in executing all feasible linear plans separately. In our example,
plan p1 and p2 will both execute source queries Sfbf11 and Sbff31 with
the same binding patterns. In contrast, p10 avoids this redundant

R1 R2 Rn

S11

S12

S13

S21

S22

S23

Sn1

Sn2

Sn3

B0 B1 B2 Bn-1 Bn

Figure 1: A parallel query plan

access.1

Need for searching in the space of parallel plans: One remain-
ing question is whether we should search in the space of parallel
plans directly, or search in the space of linear plans and post-process
the linear plans into a set of equivalent parallel plans. An exam-
ple of the post-processing approach may be one which generates
top N plans using methods similar to those outlined in [DL99] and
then parallelizes them. However such approaches in general are
not guaranteed to give cost-coverage tradeoffs that are attainable by
searching in the space of parallel plans because: (i) the cost of gen-
erating a single best parallel plan can be significantly lower than
the cost of enumerating, rank-ordering the top N linear plans and
post-processing them and (ii) since the post-processing approaches
separate the cost and coverage considerations, the utility of the re-
sulting plans can be arbitrarily far from the optimum.

Moreover, we will see that the main possible objection to search-
ing in the space of parallel plans–that the space of parallel plans may
be much larger than the space of linear plans–turns out to be a red
herring. Specifically, our approach involves searching in the space
of subgoal orders, and for each subgoal order efficiently generating
an optimal parallel plan. This approach winds up adding very little
additional planning overhead over that of searching in the space of
linear plans, and even this overhead is more than made up for by the
fact that we avoid the inefficiencies of phased optimization.

3. PRELIMINARIES

3.1 Schemas and queries
Data integration systems provide their users a virtual mediated

schema to query over. This schema is a uniform set of relations
serving as the application’s ontology and is used to provide the
user with a uniform interface to a multitude of heterogeneous ex-
ternal data sources, which store the actual available data. We model
the contents of these external data sources with a set of source re-
lations which are defined as views over the mediated schema re-
lations. Let’s assume R1(X1), R2(X2), ..., Rn(Xn) are medi-
ated schema relations, a query in our data integration system has
the form: Q(X) :- R1(X1), R2(X2), ..., Rn(Xn). The atom
Q(X) is called the head of the datalog rule, and the atoms R1(X1),
R2(X2), ..., Rn(Xn) are the subgoals in the body of the rule. The
tuples X , X1, X2, ...,Xn contain either variables or constants, and
we need X�X1[X2 [... [Xn for the query to be safe.

3.2 Parallel query plans
A parallel query plan p has the form

1Notice that here we are assuming that the linear plans are all ex-
ecuted independently of one another. A related issue is the opti-
mal way to execute a union of linear plans–they can be executed
in sequence, with cached intermediate results (which will avoid the
redundant computation, but increases the total execution time), or
executed in parallel (which reduces the execution time but incurs
the redundant accesses). These two options are really special cases
of the more general option of post-processing the set of linear plans
into a minimal set of parallel plans and executing them (see below).

p = ((:::(sp1 ./ sp2) ./ :::) ./ spn�1)./ spn,
where spi = (Si1 [Si2 [::: [Simi

)
Here spi is a subplan and Sij is a source relation corresponding to
the ith subgoal of the subgoal order used in the query plan. The
semantics of subplan spi are that it queries its sources in parallel
and unions the results returned from the sources. The semantics
of plan p are that it joins the results of the successive subplans to
answer the query.

To clarify this process more, we need the concept of binding rela-
tions,2 which are intermediate relations that keep track of the partial
results of executing the first k subplans of the query plan. Given a
query plan of n subgoals in the order of R1, R2, ...,Rn, we define a
corresponding sequence of n+ 1 binding relations B0, B1, B2, ...,
Bn (see Figure 1). B0 has the set of variables bound in the query
as its schema, and has as its instance a single tuple, denoting the
bindings specified in the query. The schema of B1 is the union of
the schema of B0 and the schema of the mediated relation of R1.
Its instance is the join of B0 and the union of the source relations in
the subplan of R1. Similarly we define B2 in terms of B1 and the
mediated relation of R2, and so on. The answer to the (conjunctive)
query is defined by a projection operation on Bn.

In order to better illustrate the novel aspects of our joint optimiza-
tion approach, we purposely assume a sequential execution model
between subplans. However, it is entirely possible to provide a fully
parallel (including pipelined) execution model for the plan that can
reduce the time needed to generate first tuples [NK01].

4. COST AND COVERAGE MODELS
The main aim of this section is to describe the models we use to

estimate the execution cost and coverage of (parallel) query plans,
and how we combine the cost and coverage components into an
aggregate utility metric for the plan.
Source Statistics: For a source S defined over the attributes A =
fA1; A2; :::; Amg and the mediated schema defined in the data inte-
gration system as R1; R2; :::; Rn, we currently assume the follow-
ing statistical data:

1. For each attribute Ai, its length, and for each attribute Ai in source
relation S, the number of distinct values of Ai;

2. For each source: the number of tuples, the feasible binding patterns,
the local delay time to process a query, the bandwidth between the
source and the integration system and the initial set up latency;

3. For each mediated relation Rj , its coverage in the source S; denoted
by P (SjRj), for example, P (Sjauthor) = 0:8 denotes that source
S stores 80% of the tuples of the mediated relation author(name; title)
of all the sources in the data integration system. Following [NLF99,
FKL97], we also make the simplifying assumption that the sources
are “independent” in that the probability that a tuple is present in
source S1 is independent of the probability that the same tuple is
present in S2.

These assumptions are in line with the types of statistics used by
previous work (c.f. [LRO96,NLF99]). Techniques for learning re-
sponse time statistics through probing are discussed in [GRZ+00],
while those for learning coverage statistics are developed in our re-
cent work [NKNV01].
Estimating the Cost of a parallel plan: In this paper, we will es-
timate the cost of a parallel plan purely in terms of its execution
time. We will also assume that the execution time is dominated by
the tuple transfer costs, and thus ignore the local processing costs at
the mediator (although this assumption can be relaxed without af-
fecting the advantages of our approach). Thus the execution costs

2The idea of binding relations is first introduced in [YLUG99] for
linear query plans where each subgoal of the query has only one
source relation. We use a generalization of this idea to parallel
plans.

are computed in terms of the response times offered by the various
sources that make up the (parallel) plan. The response time of a
source is proportional to the number of times that source is called,
and the expected number of tuples transferred over each call. Since
the sources have binding pattern limitations, and the set of feasible
source calls depend on the set of call variables that can be bound,
both the number of calls and the number of tuples transferred de-
pend on the value of the binding relation preceding the source call.

Specifically, suppose we have a plan p with the subplans
fsp1; sp2; :::; spng. The cost of p is given by:
cost(p)

:
=
P

i responseT ime(spi)
The response time of each subplan spi(= fSi1 ; Si2 ; :::; Simg 2

p) is computed in terms of the response times of the individual
sources that make up the subplan. Since the sources are processed
in parallel, the cumulative response time is computed as the sum of
the maximum response time of all the sources in the subplan and a
fraction of the total response time of the sources in the subplan:
responseT ime(spi) =

maxj2[1;m]fresponseT ime(Sij ; Bi�1)g+
� �
P

j 6=maxRT
responseT ime(Sij ; Bi�1)

where � is a weight factor between 0 and 1, which depends on the
level of parallelism assumed to be supported by the system and the
network. � = 0 means that the system allows full parallel execution
of all the sources queries, while � = 1 means that all the source
queries have to be executed strictly sequentially. Notice that the
response time of each source is being computed in the context of
the binding relation preceding that source call. For a source S
under the binding relation B, we have
responseT ime(S;B) = msgDelay(S) �msgs(S;B)+

bytes(S;B)=localDelay(S)+
bytes(S;B)=bandWidth(S)

where msgs(S;B) is the number of separate calls made to the
source S under the binding relation B, and bytes(S;B) denotes
the total bytes sent back by the source S in response to these calls
(with the remaining factors being part of the available source statis-
tics). As explained in the extended paper [NK01], we can compute
both msgs(S;B) and bytes(S;B) in terms of the available source
statistics. In doing this, we assume that the mediator uses a varia-
tion of semi-join based strategy [OV99] to evaluate the joins of the
source relations (the variation involves handling the source access
restrictions).
Estimating the Coverage of a parallel plan: For a plan p =
fsp1; sp2; :::; spng, the coverage of p will depend on the cover-
ages of the subplans spi in p and the join selectivity factors of the
subgoals and sources associated with these subplans. Let Rspi be
the corresponding subgoal of the subplan spi=fSi1 , Si2 , ..., Simg.
We use SFJ(Rspi1

; Rspi2
), 1 � i1 < i2 � n, to denote the join

selectivity factors of pairs of subgoal relations of the subplans in
the plan, and SFJ(spi1 ; spi2) to denote the join selectivity factors
of sources within the two subplans. Coverage of the plan p can be
computed as:

coverage(p) =
Qn
i=1[card(spi)]�

Q
i1<i2

[SFJ(spi1 ;spi2)]Q
n
i=1

[card(Rspi)]�
Q
i1<i2

[SFJ(Rspi1
;Rspi2

)]

If we assume that the subplans cover their respective relations
uniformly (as is likely to be the case as the size of the subplans and
their coverage increases), thenSFJ(spi1 ; spi2) = SFJ(Rspi1

; Rspi2
).

This, together with the fact that card(spi)
card(Rspi)

is just the definition of

P (spijRspi), simplifies the expression for coverage of p to
coverage(p) =

Qn

i=1[P (spijRspi)]

The coverage of a subplan itself can be written in terms of the
coverages provided by the individual sources exporting that relation:
P (spijRspi)=P ([Sij2spiSij jRspi)

= P (Si1 jRspi) + P (Si2 ^ :Si1 jRspi) + :::

+P (Sim ^ :Si1 ^ ::: ^ :Sim�1
jRspi)

As mentioned earlier, we assume that the contents of the sources
are independent of each other. That is, the presence of a tuple in one
source does not change the probability that the tuples also belongs
to another source. Thus, the conjunctive probabilities can all be
computed in terms of products. E.g.

P (Si2 ^ :Si1 jRspi) = P (Si2 jRspi) � (1� P (Si1 jRspi))

4.1 Combining Cost and Coverage
The main difficulty in combining the cost and the coverage of a

plan into a utility measure is that, as the length of a plan (in terms
of the number of subgoals covered) increases, the cost of the plan
increases additively, while the coverage of the plan decreases mul-
tiplicatively. In order to make these parameters combine well, we
take the sum of the logarithm of the coverage component and the
negative of the cost component:3

utility(p) = w � log(coverage(p))� (1� w) � cost(p)
The logarithm ensures that the coverage contribution of a set of sub-
goals to the utility factor will be additive. The user can vary w from
0 to 1 to change the relative weight given to cost and coverage.4

5. GENERATING QUERY PLANS
The algorithms presented in this section aim to find the best par-

allel plan–i.e., the parallel plan with the highest utility5. Our basic
plan of attack involves considering different feasible subgoal order-
ings of the query, and for each ordering, generating a parallel plan
that has the highest utility. To this end, we first consider the issue of
generating the best plan for a given subgoal ordering.

Given the semantics of parallel plans (see Figure 1), this involves
finding the best “subplan” for a subgoal relation under a given bind-
ing relation. We provide an algorithm for doing this in Section 5.1.
We then tackle the question of searching the space of subgoal or-
ders. For this, we develop a dynamic programming algorithm (Sec-
tion 5.2) as well as a greedy algorithm (Section 5.3).

5.1 Subplan Generation
The algorithm CreateSubplan shown in Algorithm 1 computes

the best subplan for a subgoal R, given the statistics about the m
sources S1; S2; :::; Sm that export R, and the binding relation at the
end of the current (partial) plan,

CreateSubplan first computes the utility of all the sources in the
bucket, and then sorts the sources according to their utility value.
Next the algorithm adds the sources from the sorted bucket to the
subplan one by one, until the utility of the current subplan becomes
less than the utility of the previous subplan. We use the models
discussed in Section 4 to calculate the utility (cost and coverage) of
the subplans.

Although the algorithm has a greedy flavor, the subplans gener-
ated by this algorithm can be shown to be optimal if the sources are
conditionally independent [FKL97] (i.e., the presence of an object
in one source does not change the probability that the object be-
longs to another source). Under this assumption, the ranking of the
3We adapt this idea from [C01] for combining the cost and quality
of Multimedia database query plans, where the cost also increases
additively and the quality (such as precision and recall) decreases
multiplicatively when the number of predicates increases.
4In the actual implementation we scale the coverage appropriately
to handle the discontinuity at 0, and use normalization to make the
contribution from the coverage component to be in the same range
as that from the cost component.
5While such a parallel plan will often have a significantly better util-
ity (lower cost, higher coverage) than the best single linear plan (see
the example in Section 2), it may not provide the maximal possible
utility. In general, to achieve maximal possible utility, we may need
to generate and execute a union of parallel plans. However, as we
discuss in [NK01], this will not be a major issue in practice.

Algorithm 1 CreateSubplan
1: input: B: the binding relation; R : the subgoal in the query
2: output: sp : the best plan
3: begin
4: sp fg
5: Bucket the Bucket for the subgoal R;
6: for each source s 2 Bucket do
7: if (s is feasible under B) then
8: utility(s) = w � log(coverage(s))�

(1� w) � responseT ime(s;B);
9: else

10: remove s from Bucket
11: end if
12: end for
13: sort the sources in Bucket in decreasing order of their util-

ity(s);
14: s the first source in the sorted Bucket;
15: while (s != null) and (utility(sp+ fsg) > utility(sp)) do
16: sp sp+ fsg
17: s the next source in the Bucket;
18: end while
19: return sp;
20: end

sources according to their coverage and cost will not change after
we execute some selected sources.

The running time of the algorithm is dominated by line 15, which
is executed m times, taking O(m) time in each loop for computing
the utility of the subplan (under the source independence assump-
tion). Thus the algorithm has O(m2) complexity.

5.2 A Dynamic Programming Approach for
Parallel Plan Generation

In the following we introduce a dynamic programming-style al-
gorithm called ParPlan-DP which extends the traditional System-R
style optimization algorithm to find the best parallel plan for the
query. The basic idea is to generate the various permutations of the
subgoals, compute the best parallel plan (in terms of utility) for each
permutation, and select the best among these. While our algorithm
is related to a traditional system-R style algorithm, as well as its
recent extension to handle binding pattern restrictions (but without
multiple overlapping sources), given in [FLMS99], there are some
important differences:

1. ParPlan-DP does source selection and subgoal ordering to-
gether according to our utility model for parallel plans; while
the traditional System-R and [FLMS99] just need to pick a
single best subgoal order according to the cost model.

2. ParPlan-DP has to estimate attribute sizes of the binding rela-
tions for partial parallel plans, where there are multiple sources
for a single subgoal. So we have to take the overlap of sources
in the subplan into account to estimate the sizes of each of the
attributes in the binding relation.

3. ParPlan-DP needs to remember all the best partial plans for
every subset of one or more of the n subgoals. For each sub-
set, it stores the following information: (i) the best plan for
these subgoals; (ii) the binding relation of the best plan; and
(iii) the cost, coverage and utility of the best plan. In contrast,
a traditional system-R style optimizer need only track the best
plan, and its cost [SACL79].

The subgoal permutations are produced by the dynamic construc-
tion of a tree of alternative plans. First, the best plan for single sub-
goals are computed, followed by the best plans for pairs and larger
subsets of subgoals, until the best plan for n subgoals is computed.
When we have the best plan for any i subgoals, we can find the best
plan for i + 1 subgoals by using the results of first i subgoals and

Algorithm 2 ParPlan-DP
1: Input: BUCKETS : Buckets for the n subgoals;
2: output: p : the best plan
3: begin
4: S fg; fa queue to store plans;g
5: p0:plan fg; fp0: the initial nodeg
6: p0:B B0; fthe binding relation of p0: B0g
7: p0:R fg; fthe selected subgoals of p0: emptyg
8: p0:utility �1; fthe utility of p0: negative infinityg
9: S S + fp0g;

10: p pop the first plan from S;
11: while (p 6= null) and (# of subgoals p:R < n) do
12: for each feasible subgoal Ri(2 BUCKETS and =2 p:R)

do
13: make a new plan p0 ;
14: sp CreateSubplan(p:B;Ri);
15: p0:plan p:plan+ sp;
16: m # of sources in sp;
17: p0:B p:B ./ (

Sm

i=1 Si); fSi 2 spg
18: p0:R p:R+ fRig;
19: p0:utility utility(p0);
20: if (9p1 2 S) and (p1:R commutatively equals p0:R) and

(p0:utility > p1:utility) then
21: remove p1from S and push p0 into S
22: else if (p0:utility � p1:utility) then
23: if (w = 1) and (p0:coverage = p1:coverage) and

(p0:cost � p1:cost) then
24: remove p1from S and push p0 into S
25: else
26: ignore p0
27: end if
28: else
29: push p0 into S;
30: end if
31: end for
32: p pop the first plan from S;
33: end while
34: return p;
35: end

finding the best subplan for the i+1th subgoal under the binding re-
lation given by the subplans of the first i subgoals. In practice, the
algorithm does not need to generate all possible permutations. Per-
mutations involving subgoals without any feasible source queries
are eliminated.
Complexity: The worst case complexity of query planning with
ParPlan-DP is is O(2nm2), where n is the number of subgoals in
the query and m is the number of sources exporting each subgoal.
The 2n factor comes from the complexity of traditional dynamic
programming, and them2 factor comes from the complexity of Cre-
ateSubplan.

We also note that our way of searching in the space of parallel
plans does not increase the complexity of our query planning al-
gorithm significantly. In fact, our O(2nm2) complexity compares
very favorably to the complexity of the linear plan enumeration ap-
proach described in [LRO96], which will be O(mnn2), where mn

is the number of linear plans that can be enumerated, and n2 is the
complexity of the greedy algorithm they use to find the feasible ex-
ecution order for each linear plan. This is despite the fact that the
approach in [LRO96] is only computing feasible rather than optimal
execution orders (the complexity would be O(mn2n) if they were
computing optimal orders).

5.3 A Greedy Approach
We noted that ParPlan-DP already has better complexity than the

linear plan enumeration approaches. Nevertheless, it is exponential
in the number of query subgoals. In order to get a more efficient

algorithm, we need to trade the optimality guarantees for perfor-
mance. We introduce a greedy algorithm ParPlan-Greedy (see Al-
gorithm 3) which gets a plan quickly at the expense of optimality.

This algorithm gets a feasible execution plan by greedily choos-
ing the subgoal whose subplan can increase the utility of the current
plan maximally. The subplan for that chosen subgoal is added to
the plan, and the procedure is repeated until every subgoal has been
covered.

Algorithm 3 ParPlan-Greedy
1: Input: BUCKETS : Buckets with n subgoals;
2: output: p : the best plan
3: begin
4: B B0;
5: UCS all n subgoals in the query;
6: p fg;
7: while (UCS 6= fg) do
8: for each feasible subgoal Ri(2 UCS) do
9: spi CreateSubplan(B;Ri);

10: end for
11: spmax subplan which will maximize utility(p + spi)fIf

w = 1, among the subplans with the highest coverage, we
choose the subplan with cheapest cost.g;

12: p p+ spmax;
13: UCS UCS � fRmaxg;
14: m # of sources in spmax;
15: B B ./ (

Sm
i=1 Si); fSi 2 spmaxg

16: end while
17: return p;
18: end

The worst-case running time of ParPlan-Greedy isO(n2m2), where
n is the number of subgoals in the query, and m is the number of
sources per subgoal.

Theoretically, ParPlan-Greedy may produce plans that are arbi-
trarily far from the true optimum, but we shall see in Section 6 that
its performance may be quite fair in practice. It is of course possible
to use this ParPlan-Greedy in concert with a hill-climbing([NK01])
approach to iteratively improve the utility of the query plan.

6. EMPIRICAL EVALUATION
We have implemented the query planning algorithms described in

this paper. In this section, we describe the results of a set of simula-
tion studies that we conducted with these algorithms. The goals of
the study are: (i) to compare the planning time and estimated qual-
ity of the solutions provided by our algorithms with the approaches
that enumerate and execute all linear plans, (ii) to demonstrate that
our algorithms are capable of handling a spectrum of desired cost-
quality tradeoffs, and (iii) to compare the performance of ParPlan-
DP and ParPlan-Greedy. Towards the first goal, we implemented
the approach described in [LRO96]. This approach enumerates all
linear plans, finds feasible execution orders for all of them, and ex-
ecutes them.

The experiments were done with a set of simulated sources. The
sources are specified solely in terms of the source statistics. We
used 206 artificial data sources and 10 mediated relations cover-
ing all these sources. The statistics for these sources were gen-
erated randomly, 60% sources have coverage of 20% � 40% of
their corresponding mediated relations, 20% sources have cover-
age of 40% � 80%, 10% sources have coverage below 20%, and
10% sources have coverage above 80%. 90% of the sources have
binding pattern limitations. We also set the response time statistics
of these sources to represent both slow and fast sources: 20% of
sources have a high response time, 20% of them have low response
time, and 60% of them have a medium response time. The source
statistics are used to estimate the costs and coverages of the plans,
as described in Section 3. The queries used in our experiments are

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10

of subgoals

M
ill

is
ec

on
ds

D P
Greedy
[LRO96]

Figure 2: Variation of planning time with the query size (when the the
number of relevant sources per subgoal is held constant at 8). X axis plots
the query size while Y axis plots the planning time.

hybrid queries with both chain query and star query features[PL00],
and their subgoals have 2-3 attributes. For example,
Q(A1; A4; A7) : �R1(A1; A2; A3); R2(A2; A3; A4);

R3(A3; A5; A6); R4(A6; A7); A4 = x0:
The comparison between our approach and that in [LRO96] will

be influenced by the parameter �. When � is close to 1, the amount
of parallelism supported is low. This is particularly hard on the
approach in [LRO96] as all the linear plans have to be essentially
sequentially executed. Because of this, in all our simulations (ex-
cept those reported in Figure 5), we use � = 0 as the parameter to
compute the response times as this provides the maximum benefit
to the algorithms in [LRO96], and thus establishes a lower bound
on the improvements offered by our approach in comparison. All
our simulations were run under JDK 1.2.2 on a SUN ULTRA 5 with
256Mb of RAM.
Planning time comparison: Figure 2 and Figure 3 compare the
planning time for our algorithms with the approach in [LRO96]. In
Figure 2, we keep the number of sources per subgoal constant at
8, and vary the number of subgoals per query from 1 to 10. In
Figure 3, we keep the number of subgoals constant at 3, and vary the
number of sources per subgoal from 5 to 50. The planning time for
[LRO96] consists of the time taken to produce all the linear plans
and find a feasible execution order for each plan using the greedy
approach in [LRO96], while the time for our algorithms consists of
the time taken to construct and return their best parallel plan. We see
right away that both our algorithms incur significantly lower plan
generation costs than the decoupled approach used in [LRO96]. We
also note that ParPlan-Greedy scales much better than ParPlan-DP
as expected.
Quality comparison: In Figure 4, we plot the estimates of the
cost and coverage of plans generated by ParPlan-DP as a percent-
age of the corresponding values of the plans given by the algorithm
in [LRO96]. The cost and coverage values for the plans generated
by each of the approaches are estimated from the source statistics,
using the methods described in Section 3. We use queries with 4
subgoals and each subgoal with 8 sources. Notice that the algo-
rithms in [LR096] do not take account of the relative weighting be-
tween cost and coverage. So the cost and coverage of the plans
produced by this approach remains the same for all values of w. We
note that the best plan returned by our algorithm has a pretty high
estimated coverage (over 80% of the coverage for w over 0.4) while
incurring cost that is below 2% of that incurred by [LRO96]. Note
also that even though our algorithm seems to offer only 20% of the
coverage offered by [LRO96] at w=0.1, this makes sense given that
at w=0.1, the user is giving 9 times more weight to cost than cov-
erage (and the approach of [LRO96] is basically ignoring this user

1

10

100

1000

10000

100000

1000000

5 10 15 20 25 30 35 40 45 50

of sources per subgoal

M
ill

is
ec

on
ds

D P
Greedy
[LRO96]

Figure 3: Variation of planning time with number of relevant sources
per subgoal (for queries of size 3). X axis plots the query size while Y axis
plots the planning time.

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weights

P
er

se
nt

ag
e

Coverage
Cost

Figure 4: Comparing the quality of the plans generated by ParPlan-DP
algorithm with those generated by [LRO96] (for queries of 4 subgoals),
while the weight in the utility measure is varied. X axis shows the weight
value in the utility measure and Y axis plots the cost and coverage of our
algorithm expressed as a percentage of the cost and coverage provided by
[LRO96].

preference and attempting full coverage).6 In Figure 5, we compare
the execution cost of plans given by our approach with that given
by [LRO96] with different values of � in the response time estima-
tion. As we can see the bigger the �, the better our plan execution
cost relative performance. This is because, for any � larger than 0,
the cost model will take into account the cost of redundant queries,
which will further worsen the execution cost of the [LRO96].
Comparing the greedy and exhaustive approaches: In order to
compare ParPlan-DP and ParPlan-Greedy in terms of the plan qual-
ity, we experimented with queries with 4 subgoals and each subgoal
with 8 sources, while the utility function is varied from being biased
towards cost to being biased towards coverage. Figure 6 shows the
utility of the best plan produced by ParPlan-Greedy as a percentage
of the utility of the plan produced by ParPlan-DP. We observe, as

6It is interesting to note that the execution cost for our approach
turns out to be better than that of [LRO96] even when w = 1, when
both approaches are forced to access all sources to maximize cover-
age. Since we kept � = 0, one might think that the execution costs
should be same for this particular case. The reason our approach
winds up having better execution cost even in this scenario is that it
finds the best execution order of the parallel plan. In contrast, the
[LRO96] approach just finds a feasible execution order for its plans.
Because there are so many linear plans, the probability that one of
them will wind up getting a feasible plan with high execution cost
is quite high.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weights

C
o

st
(D

P
)/

C
o

st
(L

R
O

96
)

β=0
β=0.01
β=0.1
β=1

Figure 5: Ratio of the execution cost of the plans given by ParPlan-DP
to that given by [LRO96], for a spectrum of weights in the utility metric
and parallelism facter � in the response time estimate. X axis varies the
coverage-cost tradeoff weights used in the utility metric, and Y axis shows
the ratio of execution costs for different �.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weights

U
til

ity
(G

re
ed

y)
/U

til
ity

(D
P

)

Figure 6: Ratio of the utility of the plans given by ParPlan-Greedy to that
given by ParPlan-DP for a spectrum of weights in the utility metric. X axis
varies the weight used in the utility metric, and Y axis shows the ratio of
utilities.

expected, that the utility of plans given by ParPlan-DP is better than
that of the ParPlan-Greedy with small initial weight (corresponding
to a bias towards cost), with the ratio tending to 1 for larger weights
(corresponding to a bias towards coverage). It is also interesting
to note that at least in these experiments, the greedy algorithm is
always producing plans that are within 70% of the utility of those
produced by ParPlan-DP.
Ability to Handle a spectrum of cost-coverage tradeoffs: Our
final set of experiments was designed to showcase the ability of our
algorithms to handle a variety of utility functions and generate plans
optimized for cost, coverage or a combination of both. Figure 7
shows how the coverage and the cost of plans given by our ParPlan-
DP changes when the weight of the coverage in the utility function
is increased. We observe that as expected both the coverage and the
cost increase when we try to get higher coverage. We can also see
that for the particular query at hand, there is a large area in which the
cost increases slowly while the coverage increases more rapidly. An
intriguing possibility offered by plots like this is that if they are done
for representative queries in the domain, the results can be used to
suggest the best initial weightings–those that are likely to give high
coverage plans with relatively low cost–to the user.

7. RELATED WORK
Bucket algorithm [LRO96] and the source inversion algorithm

[DGL00] provide two of the early approaches for generating candi-
date query plans in data integration. As we mentioned in Section 2
the disadvantages of generating all possible linear plans and exe-
cuting them have lead to other alternate approaches. The work on

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weights

P
er

ce
nt

ag
e

Coverage
Cost

Figure 7: Comparing the Coverage and cost of the plans found by
ParPlan-DP by using different weights in Utility function, on queries of
4 subgoals. X axis varies the weights in the utility function, while the Y
axis shows the cost and coverage as a percentage of the cost and coverage
offered by our ParPlan-DP with weight=1.

Streamer project [DL99] extends the query planning algorithm in
[LRO96], so it uses the coverage information to decide the order in
which the potential plans are executed. The coverage is computed
using the source overlap models in [FKL97]. A recent extension
of [LRO96] is the MINICON algorithm presented in [PL00]. Al-
though MINICON improves the efficiency of the bucket algorithm,
it still assumes a decoupled strategy–concentrating on enumerating
linear plans first, assessing their quality and executing them in a
rank-ordered fashion next. The work by Naumann et. al. [NLF99]
offers another variation on the bucket algorithm of [LRO96], where
the set of linear plans are ranked according to a set of quality crite-
ria, and a branch and bound approach is used to develop top-N best
linear plans. Although their notion of quality seems to include both
cost and coverage, their cost model seems to be quite restrictive,
making their approach a phased one in essence. For example, they
claim that “a change of the join execution order within a plan has
no effect on its IQ [quality] score.” As we have seen, join orders do
have a significant impact on the overall quality (utility) of the plan.

Although [YLUG99] and [FLMS99] consider the cost-based query
optimization problem in the presence of binding patterns, they do
not consider the source selection issue in their work. Finally, paral-
lel plans (or joins over unions) are quite standard in distributed/parallel
database systems [LPR98; OV99]. Use of parallel plans in data-
integration scenarios does however pose several special challenges
because of the uncontrolled overlap between data sources, the source
access (binding) restrictions, and the need to produce plans for a va-
riety of cost/coverage requirements.

8. CONCLUSION
In this paper we started by motivating the need for joint opti-

mization of cost and coverage of query plans in data integration.
We then argued that our way of searching in the space of parallel
query plans, using cost models that combine execution cost and the
coverage of the candidate plans, provides a promising approach. We
described ways in which cost and coverage of a parallel query plan
can be estimated, and combined into an aggregate utility measure.
We then presented two algorithms to generate parallel query plans.
The first, ParPlan-DP, is a System-R style dynamic programming
algorithm, while the second, ParPlan-Greedy, is a greedy algorithm.
Our experimental evaluation of these algorithms demonstrates that
for a given coverage requirement, the plans generated by our ap-
proach are significantly better, both in terms of planning cost, and
in terms of the quality of the plan produced (measured in terms of its
coverage and execution cost), compared to the existing approaches

that use phased optimization using linear plans. We also demon-
strated the flexibility of our algorithms in handling a spectrum of
cost-coverage tradeoffs.

The optimization algorithms presented in this paper are being in-
tegrated into a prototype system called HAVASU that we are devel-
oping for supporting query processing in data integration. Havasu
system is intended to support multi-objective query optimization,
flexible execution strategies for parallel plans, as well as mining
strategies for learning source statistics [NKNV01].

Acknowledgements
We would like to thank K. Selcuk Candan, AnHai Doan, Zoe Lacroix,
Ullas Nambiar and Sreelakshmi Vaddi, as well as the anonymous
referees of the previous versions of this paper for their helpful com-
ments and suggestions. This research is supported in part by the
NSF young investigator award (NYI) IRI-9457634, and NSF grant
IRI-9801676.

References
[C01] K.S. Candan. Query optimization in Multi-media and Web Databases.
ASU CSE TR 01-003. Computer Science & Engg. Arizona State University.

[DL99] A. Doan and A. Levy. Efficiently Ordering Plans for Data Integra-
tion. The IJCAI-99 Workshop on Intelligent Information Integration, Stock-
holm, Sweden, 1999.

[DGL00] Oliver M. Duschka, Michael R. Genesereth, Alon Y. Levy. Recur-
sive Query Plans for Data Integration. In Journal of Logic Programming,
Volume 43(1), pages 49-73, 2000.

[FKL97] D. Florescu, D. Koller, and A. Levy. Using probabilistic informa-
tion in data integration. In Proceeding of the International Conference on
Very Large Data Bases (VLDB), 1997.

[FLMS99] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query op-
timization in the presence of limited access patterns. In Proc. SIGMOD,
1999.

[GRZ+00] Jean-Robert Gruser, Louiqa Raschid, Vladimir Zadorozhny, Tao
Zhan: Learning Response Time for WebSources Using Query Feedback and
Application in Query Optimization. VLDB Journal 9(1): 18-37 (2000).

[KW96] C. Kwok, and D. Weld. Planning to gather information. In Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence,
1996.

[LKG99] E. Lambrecht, S. Kambhampati and S. Gnanaprakasam. Optimiz-
ing recursive information gathering plans. In Proceeding of the International
Joint Conference on Artificial Intelligence (IJCAI), 1999.

[LPR98] Ling Liu, Calton Pu, Kirill Richine. Distributed Query Schedul-
ing Service: An architecture and its Implementation. In Special issue on
Compound Information Services, International Journal of Cooperative In-
formation Systems (IJCIS). Vol.7, No.2&3, 1998. pp123-166. 1998.

[LRO96] A. Levy, A. Rajaraman, J. Ordille. Query Heterogeneous Informa-
tion Sources Using Source Descriptions. In VLDB Conference, 1996.

[NK01] Z. Nie, S. Kambhampati. Joint Optimization of Cost and Coverage
of Information Gathering Plans. ASU CSE TR 01-002. Computer Science
& Engg. Arizona State University.
http://rakaposhi.eas.asu.edu/havasu.html.

[NKNV01] Z. Nie, S. Kambhampati, U. Nambiar and S. Vaddi. Mining
Source Coverage Statistics for Data Integration. Proc. WIDM 2001.

[NLF99] F. Naumann, U. Leser, J. Freytag. Quality-driven Integration of
Heterogeneous Information Systems. In VLDB Conference 1999.

[OV99] M.T. Ozsu and P. Valduriez. Principles of Distributed Database Sys-
tems (2nd Ed). Prentice Hall. 1999.

[PL00] Rachel Pottinger , Alon Y. Levy , A Scalable Algorithm for An-
swering Queries Using Views Proc. of the Int. Conf. on Very Large Data
Bases(VLDB) 2000.

[SACL79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price. Ac-
cess path selection in a relational database management system. In SIGMOD
1979.

[YLUG99] R. Yerneni, C. Li, J. Ullman and H. Garcia-Molina. Optimizing
large join queries in mediation systems. In Proc. International Conference
on Database Theory, 1999.

