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ABSTRACT

Planning consists of an action selection phase where actions are selected and ordered
to reach the desired goals, and a resource allocation phase where enough resources
are assigned to ensure the successful execution of the chosen actions. In most real-
world problems, these two phases are loosely coupled. Most existing planners do not
exploit this loose-coupling and perform both action selection and resource assignment
employing the same algorithm. The current work shows that the above strategy
severely curtails the scale-up potential of existing planners, including such recent ones
as Graphplan and Blackbox. In response, a novel planning framework was developed
in which resource allocation is de-coupled from planning and is handled in a separate
“scheduling” phase.

Implementing this framework raises several interesting issues regarding the
role of resources in planning, the interactions between the planning and scheduling
phases and the choices in selecting the methods for the two phases. During planning,
resource constraints are ignored and an abstract plan is produced that can correctly
achieve the goals but for the resource constraints. Next, based on the actual resource
availability, the abstract plan is allocated resources to produce an executable plan.
This work introduces a procedural method for inexpensive (bactrack-free) scheduling
and a declarative method for posing the scheduling problem with all its complexity
as a Constraint Satisfaction Problem.

The new approach not only preserves both the correctness as well as the quality

(measured in length) of the plan but also improves efficiency. It is implemented on top

iii



of Graphplan and shows impressive empirical results. This work can be viewed beyond
the context of planner efficiency as how to integrate planning with real world problem
solving. Specifically, when a plan fails to achieve its intended purpose during plan
execution, it does not imply that the causal structure of the failed plan was incorrect
but that some allocated resources were found to be unavailable. The benefit of the
current approach is that it provides a framework to undertake only necessary resource

re-allocation and not complete re-planning.
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Chapter 1

Introduction

Planning comprises of causal reasoning and resource reasoning. Given a do-
main, a set of actions to change states in the domain, an initial state and the desired
goal state, the planning problem is to find a sequence of actions (also known as a plan)
such that when it is executed from the initial state, a goal state can be reached. Causal
reasoning ensures that for every action in the plan, its preconditions can be satisfied
from the effect of another action preceding it within the plan. Causal relationships
force sufficient orderings among actions to achieve the goals and furthermore, deter-
mine the extent of concurrency' possible in a plan. Resource reasoning ensures that
all the resources needed for the execution of an action are available for allocation
without any resource conflicts. A resource conflict occurs when two actions cannot
be assigned the same resource, either due to resource characteristics (non-sharable

resources) or due to domain characteristics (actions interfere). If resources are scarce,

! Borrowing from operating system terminology, concurrency refers to the potential of executing
actions in parallel. The parallelism (or lack of it) exhibited in the final plan is dependent on the
actual number of resources available to exploit this concurrency.
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Figure 1.1. Unified planning-scheduling framework

the resource allocation may involve freeing and reallocating the limited resource which
can add more ordering relationships among actions and effectively serialize the plan.

AT Planning can handle small plans compared to what humans can already
control in the real world. In real-world problems, planning and scheduling phases are
usually loosely coupled. Planning and monitoring of large-scale projects is done with
a project management tool like Microsoft Project[27] by using a activity network for
both planning and control. Humans come up with the Work Breakdown Structure
(WBS)[26] to identify the different tasks at some granularity and estimate time and

resources for each task. From this information, the critical bottleneck in the project is



identified and the sequence of non-critical tasks is re-alligned to optimize on resource
usage. In Critical Path Method (CPM), activity times are assumed to be known
or predictable (deterministic) while in Program Evaluation and Review Technique
(PERT), activity times are assumed to be random, with known probability distri-
bution (probabalistic). But the nature of WBS (i.e. causal plan) remains relevant
irrespective of how activities (actions) are modeled.

Most planners do not distinguish between causal and resource reasoning and
handle them within the same planning algorithm. Discrete resources (sharable or non-
sharable) like robots, trucks and planes have traditionally been straightforwardly han-
dled by logic-based planners like UCPOP[31] and Graphplan in the same way as other
objects in the domain. T will show (in Section 1.1) that this strategy severely curtails
the scale-up potential of existing planners, including such recent ones as Graphplan [2]
and Blackbox [15]. In particular, these planners exhibit the seemingly irrational be-
havior of worsening in performance with increased resources. For continous resources
like time and fuel, planning systems have additionally employed time/resource map
managers to ensure resource consistency (SIPE[35], IxTeT[21], IPP[20], LPSAT[36]).
But such an integration explodes the search space for the planner beyond action sets
that are minimal with respect to the logical goals. Actions may be added to achieve
the resource goals but may not be necessary for logical goals. To handle this, IPP re-
stricts expressivity by avoiding explicit temporal modeling while other planners take
a performance drop with slower flaw resolution.

In this dissertation [32],[33], I introduce a novel approach where causal-



reasoning (planning) is used to generate an abstract plan ignoring all resource con-
flicts. The abstract plan is then post-processed to allocate the required resources
without altering the causal structure of the plan. Separating planning and schedul-
ing is quite the normal practice in project planning scenarios in the industry, where
planning is done by the humans, and scheduling is done by a variety of software pack-
ages. | am proposing a similar flow to exploit the loose coupling — except that both
planning and scheduling phases will be automated.

Figure 1.1 provides a general overview of my approach. My unified framework
accepts a domain description along with optional annotations for resources, finds a
plan modulo the choice of resource abstraction, and then allocates resources to pro-
duce the correct final plan (if necessary). In this work, I focus on discrete reusable
as well as non-sharable resources. But I argue in Chapter 8 that the approach can
be extended for continous resources as well. Resources are either declared by the
domain expert, or deduced through automated methods discussed later. After plan-
ning is complete, a scheduler can decide which resources to actually allocate. I have
implemented this approach on top of Graphplan algorithm, and the resulting planner
is not only more rational in its treatment of resources (i.e., performance does not
worsen with increased resources), but also significantly outperforms Graphplan on
several benchmark problems.

There are a number of technical challenges that arise in making my approach
work. First, I have to identify resources in a given domain. Second, I have to decide

about optimization criteria during scheduling. Third, I need to allocate resources to



an abstract plan without transferring the full complexity of planning to the schedul-
ing phase. The planning phase produces an abstract plan of shortest length in terms
of number of steps (where each step may contain several concurrent actions)?. The
resource allocation problem is formulated as a Constraint Satisfaction Problem (CSP)
and considered for scheduling based on different allocation policies including main-
taining the concurrency of the plan, serializing the plan and inserting actions to free
and reallocate the resources. If freeing/ reallocating actions are allowed, the problem
is infact a Dynamic Constraint Satisfaction Problem (DCSP) because these actions
(variables) control the normal action variables.

I introduce an intuition driven procedural method for inexpensive (bactrack-
free) scheduling. My aim in procedural scheduling phase is to use the least number of
resources for producing a final plan of the same length as the abstract plan and with
minimum number of additional actions and causal relationships, without changing
the relative positions of actions. When resource allocation is not possible without in-
creasing the plan length, I consider it as a hard resource allocation problem and revert
to declarative scheduling or traditional planning. I also introduce a declarative ap-
proach for formally specifying the resource allocation constraints and transferring the
full complexity to a constraint solver. In my declarative approach, all the constraints
of the scheduling problem are formulated as a Dynamic Constraint Satisfaction Prob-
lem (DCSP) and passed to a CSP solver (specifically, backjumping solver in [34]). If

the declarative scheduling method fails to allocate resources in the context of given

2Such a plan may not be optimal if actions have differing costs, but this is how Graphplan works.



resources, time limit and nature of allocation policy, the responsibility transfers to the
planner to change any of the permissible parameters and try again. If the resource
allocation succeeds and new free/ reallocation actions were added by the scheduler,
the scheduled plan is post-processed for neccessary domain translation for executabil-
ity. If all the allocation policies lead to failure or inexecutable plans in a domain,
this implies that planning and scheduling were infact, not loosely coupled. In such a
case, the framework retains the ability to switch off resource abstraction and resort

to traditional planning.

1.1 An Empirical Motivation

Since the current investigation is primarily in the context of Graphplan, a state-of-
the-art planner, it will help to give a brief summary. Graphplan [2] performs forward
state-space refinement over disjunctive partial plans [13] that correspond to a unioned
representation of the forward state-space search space tree. To improve pruning power
in these disjunctive plans (planning graphs in Graphplan parlance), Graphplan infers
and propogates information about disjuncts which cannot hold together in a solution
(mutex relations). A solution is obtained by searching for a sequence of actions in the
planning graph that satisfies the planning problem and mutexes help considerably in
this effort. The terminology below is biased towards the Graphplan algorithm but
the idea is general enough to work with most classical planners.

To motivate the need for separating resource scheduling, I will see the behavior
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of Graphplan, in a modified blocks world domain that contains multiple robot hands.
If T run Graphplan multiple times on the same problem, while increasing the number
of robot hands available, one would expect that the performance would improve with
increased resources. Figure 1.2 shows the performance of Graphplan on the “shuffle’?
problem, where a 6-block stack needs to be shuffled in a symmetric way to form a new
stack. Notice that the total planning time, GP-TOT, increases quite steeply with the
increase in the number of robots. In fact, by providing 8 robots instead of 1 robot,
the planning time is slowed down by an order of magnitude! Lest the reader suspect
that the increase is just due to the increased cost in constructing a planning-graph,
the figure also plots the time for building the planning graph (GP-G) and the time
for searching the planning graph (GP-S). I note that both of them increase with the
number of robots.

I wanted to further check if the results are consistent when the problem size is
scaled independent of number of resources. In Figure 1.3, I show the performance of
Graphplan on shuffle problems of 4, 6, 8 and 10 blocks as the number of robots are
varied from 1 to 10. I note that planning performance degrades with increase in size
of the domain as well as resources.

The rather counter-intuitive behavior of the planning algorithm (in Figure 1.3)
can be deciphered once we realize that every causal failure is being needlessly redis-
covered multiple times with different identities of the robot hands. The plan length

and the number of steps in the plan reduce with increased resources as more resource

3Shuffle problem is the multiple robots version of the 6-block blocks_facts_shuffle problem in the
Graphplan system. Later I consider k-block shuffle versions also.
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conflicts get resolved at a level* (see Figure 1.4 which plots the number of steps and
actions in the solution plan for shuffie) and stabilize after 1 and 4 robots respectively.
More resources lead to the increase in the planning graph size and consequently the
cost of plan search in its space. Specifically, the asymptotic cost of planning in Graph-
plan like planners is O(w'), where w is the width of the planning graph and [ is the
length of the graph. As the resources (e.g. number of robots in blocks world) increase,
[ tends to reduce while w increases. However, [ does not reduce indefinitely, while w
does increase monotonically with resource increase. Thus, the net effect is that the
performance degrades with increased resources.

To ensure that this behavior is not peculiar to Graphplan, I also experimented
with Blackbox [15], which uses SAT techniques for searching the plan graph; and
UCPOP [31], a traditional partial-order planner[14, 23]. I found similar behavior in
both cases. The plot titled BB-TOT in the left graph in Figure 1.2 illustrates the
behavior of Blackbox. When the same shuffle blocks world problem was given to
UCPOP, even the smallest problem instance with 6 blocks and 1 robot could not be
solved in 10 minutes and search limit of 100000 nodes. With a smaller size problem
like Sussman Anomaly which has 3 blocks (refer to Table 1.1), I found that the
increase in robots does increase the planning time. The search space here gets large
with increase in robots as all possible clobberers of conditions have to be considered

for completeness.

“In Graphplan parlance, a plan step is also called an operator level. I will use the terms step and
level interchangeably.
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Figure 1.4. The nature of plans produced by Graphplan on a blocks world problem
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number of steps in the plan reduce because there are more possibilities of avoiding
resource bottlenecks and so, more ways of generating parallel plan.

| Robots 1 |2 |3 |4 |5 |
| Time (in sec) | 0.49 | 0.73 | 0.85 [ 1.46 | 2.42 |

Table 1.1. Table showing the performance of UCPOP in Sussman Anomaly problem
with varying number of robots.
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1.2 Scheduling as a Post-planning Phase

As soon as Graphplan generates a plan graph upto the level that one solution can
be extracted, it has a structure that contains all minimal solutions to the problem.
Keeping disjunctive plans around leads to the explosion of the size of plan graph due
to the recording of interactions among domain objects. Since the user does not care
about the specifics of resources, recording interactions among multiple resources is
clearly wasteful. This also degrades the backward search. One can try to reduce
both graph expansion and search by abstracting (variablizing) resources needed by
actions during planning and avoiding checking all interactions between them. The
assumption is that they would be somehow allocated following search in a scheduling
phase.

For UCPOP, considering resources during planning corresponds to additional
clobbering possibilities which can degrade the planner if conflict resolution is enabled.
Abstraction of resources leads to postponment of commitments on them during con-
flict resolution. We will focus on Graphplan planner for the rest of the dissertation
but the techniques are still useful for other forms of Al planning.

When I abstract resources, I not only reduce the plan graph size but also
obtain a maximally concurrent plan. A successful plan ensures that all facts that do
not need resources are correctly achieved by that plan. A straightforward method for
resource allocation is to assign a new or freed resource to any step that is involved

in a resource conflict. Suppose that this method needs R resources. Now for all
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Figure 1.5. When there are enough resources to overcome any resource conflict, one
gets a maximally parallel plan. Otherwise, the scheduler has to serialize the plan
in line with the resource availability. For the most resource constrained problems
(normally 1 resource), one gets the maximally serial plan.

problems with resources N > R, the same resource scheduling technique can be
applied. As the number of resources decrease, the scheduler has to serialize the plan
in line with the resource limitation. This may involve moving the parallel steps to
less-constrained levels and introducing steps to release unnecessary allocations and
re-allocate them where needed. Figure 1.5 gives a broad look at the type of plans
obtained with different numbers of resources. Here, the same causal plan is being
adapted to satisfy the resource availability constraints. In the pathological cases of
the most resource constrained problems (normally 1 resource), one gets the maximally
serial (i.e. serialized) plan.

Another benefit of my approach of postponing scheduling is during plan execu-

tion, when the user can easily specify the changed resource environment and obtain
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new plans. In a traditional planner which performs integrated planning and schedul-
ing, if some allocated resource becomes unavailable during plan execution, the whole
plan has to be re-done or all other plans have to be enumerated until the correct plan
for the new environment is found. In my case, only necessary resource re-allocation is
needed because all the different plans for the problem differ only in how they allocate
or de-allocate resources. To see an example, please refer to Appendix A where some
of the plans for the shuffle problem are listed. Note that the plans differ only in
how and when resources are allocated and de-allocated. If one schedule for resource
management fails during plan execution, I only need to consider other alternative

schedules.

1.3 Proposed Approach

In this dissertation, I focus on the role of resources in a planning domain and how
resource-based reasoning can expedite planning. A major motivation is to scale plan-
ning algorithms to large, realistic domains where addition of more resources can
provably reduce the planning time and not increase it. I first need to describe what
resources are. I assume that a resource is any object for which actions may contend
and which is secondary (name is unimportant to the user) in a domain. The user
would want the planner to satisfy certain conditions (goals) but which resource ob-
jects are utilized to complete the plan is of no concern. Resource are identified either

by the domain expert or through automated methods (see Chapter 2).
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Next, the planner can be least committed about the identity of resource and
postpone interactions among equivalent resources. After planning is complete, a
scheduler can decide which resources to actually allocate. I have implemented this
approach on top of Graphplan algorithm, and the resulting planner is not only more
rational in its treatment of resources, but also achieves performance speedup. We
reiterate that if all the resource allocation policies proposed by the planner lead to
failure or inexecutable plans in a domain, this implies that planning and scheduling
phases in this problem are infact, not loosely coupled. In such a case, the framework
retains the ability to switch off resource abstraction and resort to traditional planning.

Here is an outline of the rest of this dissertation report. Istart with a discussion
about resources and their role in planning in Chapter 2. Next, I develop a planning
formalism to abstract resources during planning and schedule them in a separate phase
in Chapter 3. I proceed to discuss a procedural method for handling the various classes
of the resource scheduling problem in Chapter 4. I also describe a declarative method
for solving the resource scheduling problem as a Dynamic Constraint Satisfaction
Problem in Chapter 5 and relate planner-scheduler interaction to it. The scheduled
plan may need post-processing which is discussed in Chapter 6. Next I show through
empirical results that my method is effective in Chapter 7. In Chapter 8, I make some
observations on the overall nature of the problem and put my work in perspective
with related works. Finally, I conclude in Chapter 9 with my contributions and future

work.



Chapter 2

What are Resources ?

Before we discuss resources, we must formalize some terminology. All objects
in a domain are instantiations of types. Types describe the entities present in a
domain and their corresponding attributes. Attributes can be described by literals
(binary variables) or multi-valued variables.

Recall from above that a resource is any object for which actions may contend
and whose identity is unimportant to the user. For example, in the logistics domain,
where there are some packages, trucks and planes at a set of places and the problems
require the packages to be moved to their goal locations, the user does not care if
Plane?2 is selected instead of Planel but they will be concerned if the packet lands in
Boston instead of Philadelphia. So, plane is a resource. But if the plane’s identity
does matter, then the plane type is not a resource!. The proposed definition captures

the theme that scheduling should consider interactions among objects that do not

!Note that an object is a resource for all the actions in a domain and not per-action as has been
modeled in some sytems like SIPE [35].
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matter (i.e. resources) for the acceptance of the plan. Within this broad framework,
resources may additionally provide domain control knowledge, suggestions for the
planner about which interactions to disregard or special monitoring and execution
capabilities, as is accomplished in some systems (Also see related works in Section 8).

A related issue that must be addressed is how the resources are identified in a
planning domain. The most obvious approach is to let the domain expert specify the
resources in the domain at the outset. I have implemented a resource specification
format for this purpose. Appendix B illustrates the specification of robot as a resource
in blocks world domain and truck and airplane in the logistics domain.

There are ways of automating resource identification process, however. We can
assume that a resource is a type such that no object of that type figures explicitly in
the goal specification. The motivation here is that if no objects of a type are neces-
sarily required in the goal, these objects are secondary and will be useful only in the
service of planning. The corresponding type is therefore secondary too. The definition
can be easily used in the blocks world domain to detect that robot is a resource type
or gripper is in gripper domain. But in more complex domains like logistics, there are
multiple resources which can interact. Researchers have addressed identification of
resources, for example, in TIM[9], by emulating the finite state machines implicit in
the domain structure (legal operators and initial/ goal states) to automatically infer
type structure of the domain, and extracting state invariants from them. Resources
are objects corresponding to attribute spaces where an object can acquire or loose

a property unconditionally, in contrast to a state space where corresponding objects



18

only exchange properties. I can easily incorporate their domain modeling techniques.

There are a number of definitions of resources in literature and corresponding
resource reasoning approaches. SIPE [35] defines a resource as anything for which
two actions contend when they have a harmful interaction in a nonlinear plan. The
resource declaration is being used as a mechanism to specify domain control knowledge
about ordering and there may be no physical mapping. For example, in the blocks
world domain, blocks can be specified as “resources” and so can the robot arm. This is
very unintuitive. Knoblock [18] uses similar ideas to specify a database as a resource in
some action if the domain modeler wants to prevent one operator to execute in parallel
with another operator when they require the same database. Though domain-specific
ordering information can improve planning, we envision a broader role of resources
during planning where some interactions can also be ignored.

An altogether different view of resources is taken in CIRCA[25]. Here, resources
have no direct bearing on the planning domain or problem that is being solved and
the goal is to come up with a plan that will also lead to optimal run-time resource
usage without missing any deadline. From our perspective, this definition of resources
does not help us in improving the performance of planning. But it does bring in real
world constraints into planning which is a natural extension of the problem. IxTeT
[21] defines a resource as any substance or set of objects whose cost or availability
induces constraints on the actions that use them. The space station domain of HSTS
[29] allows it to consider most of its physical components as resources and schedule

for their optimal usage. Planning and resource constraints are converted to set of
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common data-structures and search applied to get a plan. In these systems, planning
has been extended to include specification about physical resource usage and this
increases expressivity but not necessarily efficiency of planning.

Though we have only partially handled the resource modeling isses, we are in
a position to tease scheduling apart from planning because modeling is an orthogonal
issue and our results will still be applicable. For the rest of the dissertation, we
will assume that resources have been identified either by the domain expert or by

automated means like those discussed above.



Chapter 3

A New Planning Formalism

I am exploring a planning model in which resource allocation is teased apart
from planning, and is handled in a separate “scheduling” phase (See Figure 3.1). I
observe that a necessary condition for a schedulable plan is that it should be causally
correct irrespective of the nature of resources. I can produce an abstract plan (P')
which is correct sans the resource allocation and use it as a starting point for all
planning problems that differ only in the number or amount of resources present.
Next, based on the actual resource availability, the abstract plan will be allocated
resources to produce an executable plan.

In most existing classical planning systems, sharable discrete resources are typ-
ically assumed to have infinite capacity (e.g. trucks can load any number of packages)
and continous resources are assumed unlimited (e.g. fuel is available or not). The
causal plan P’ is also created under the most optimistic resource assumption (unlim-

ited or infinite). While scheduling, the actual resources may be found insufficient to
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SCHEDULER
Executable Plan

(Re-) Plan
(Re-) Schedule

Planning Problem
PLANNER

270

Figure 3.1. A generalized plan model for separate planning and scheduling.

assign to P’ and this will force replanning to take place to honor the resource limits.
he scheduler can aid the planner informing it where re planning is needed or

re plan itself.

Figure 3.2 summarizes m algorithm for handling this pro lem. n raphplan terms
one can reduce oth graph e pansion and search o erheads a stracting the re
sources needed  actions during planning and ignoring all interactions etween them
there o taining a ma imall concurrent plan. his plan will then e post processed
to allocate resources to actions including re planning. ee Figure 1.1 for a schematic
o er iew of m approach.

ased on the ideas a out resources from the pre ious chapter consider some
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